Unifying Demonstration Selection and Compression for In-Context
Learning

Anonymous ACL submission

Abstract

In-context learning (ICL) enables LLMs to
exhibit spectacular emergent capabilities in
various scenarios. Unfortunately, introducing
demonstrations easily makes the prompt length
explode, bringing a significant burden to hard-
ware. In addition, random demonstrations usu-
ally achieve limited improvements in ICL, ne-
cessitating demonstration selection among ac-
cessible candidates. Previous studies introduce
extra modules to perform demonstration com-
pression or selection independently. In this
paper, we propose an ICL framework Uni-
ICL, which Unifies demonstration selection
and compression, and final response generation
via a single frozen LLM. UnilCL leverages the
understanding ability of well-trained LLMs to
independently compress different demonstra-
tions into compressed features, and then a learn-
able projection layer converts features to LLM-
acceptable compressed virtual tokens. Apart
from substituting original demonstrations to
reduce input length, virtual tokens are again
used to select potential demonstrations. Fi-
nally, current queries together with selected
compressed virtual tokens are fed into the same
frozen LLM for response generation. UnilCL
is a parameter-efficient framework that only
contains 17M trainable parameters originating
from the projection layer and a learnable em-
bedding. We build UnilCL upon two back-
bones and conduct experiments over in- and
out-domain datasets of both generative and un-
derstanding tasks, encompassing ICL scenarios
with plentiful and limited demonstration can-
didates. Results show that UnilCL effectively
unifies 12x compression, demonstration selec-
tion, and response generation, efficiently scal-
ing up the baseline from 4-shot to 64-shot ICL
with 24 GB CUDA allocation'.

The code and model will be released in the final version.

1 Introduction

In-context learning (ICL) (Brown et al., 2020;
Xie et al., 2021; Wang et al., 2023b) exhibits
powerful performance in practical applications
with the emergence of scaled-up Transformer-
based (Vaswani et al., 2017) Large Language Mod-
els (LLMs) (Wang et al., 2023c; Yang et al., 2023;
Wei et al., 2023; Wang et al., 2023a; Min et al.,
2022). In ICL, the provided demonstrations acti-
vate the pre-training knowledge of LLMs to allow
them to perform well on various downstream tasks
such as text summarization (Wang et al., 2023c;
Yang et al., 2023) and text classification (Min et al.,
2022) without gradient updating of billion param-
eters. Despite its significant role in the era of
LLMs, ICL also brings an enormous challenge
to the input window. Specifically, inevitably in-
troducing demonstrations directly causes length
explosion (Wang et al., 2024), bringing significant
memory costs and decreasing inference throughput
as described in Figure 8. Except for length explo-
sion, Liu et al. (2021) points out that the quality of
the selected demonstrations significantly influences
the ICL performance.

Recent efforts in modifying model architecture
significantly expand the input window (Zheng et al.,
2022; Wu et al., 2022; Ding et al., 2023; Bula-
tov et al., 2023). However, LLMs with million
context windows still struggle to overcome perfor-
mance degradation (Liu et al., 2024). Researchers
also attempted to alleviate length explosion via
prompt pruning (Jiang et al., 2023) or soft prompts
(Wingate et al., 2022; Mu et al., 2023; Ge et al.,
2023). Their main idea is to train an independent
compressor to compress the input into soft prompts.
While in selecting powerful in-context demonstra-
tions, Liu et al. (2021); Lu et al. (2021) scores each
candidate demonstration for the current queries via
an extra ranker, and Ram et al. (2023); Wang et al.
(2024) finds that a fine-tuned LLM is up to the task

Stepl: Compression

Sentence: One more pseudo generalization and I'm giving up. Label: acceptable —nformation Flow

Compressed

Sentence: They made him to exhaustion. Label: unacceptable

Sentence: | hope to would study in Facnce.

Information Flow > CZ

Virtual Tokens

Information Flow N
g]

Step2: Selection

Token-Level
Cor i

Sentence: | hope to would study in Facnce. ————> unaccepable

Step3: Generation

Figure 1: UnilCL compresses candidate demonstrations into spans of compressed virtual tokens and selects
demonstrations similar to the query. Virtual tokens substitute the original demonstration together with the query, fed

to the same LLM for prediction generation.

of ranking.

However, the standalone compressor or ranker
inevitably incurs additional memory costs as it ne-
cessitates simultaneous loading alongside the tar-
get LLM. To tackle these challenges, we propose a
framework UnilCL as illustrated in Figure 1, which
leverages the semantic understanding ability of tar-
get LLMs developed during pre-training to com-
press and select demonstrations. UnilCL keeps the
target LLM frozen during training to avoid catas-
trophic forgetting and reduce training costs. Con-
sidering the frozen LLM within UnilCL function as
both compressor and generator, UnilCL is training
efficiently and does not need to load extra com-
pression modules, significantly reducing memory
costs for both training and inference. As the un-
derlying LLMs in visual language models fail to
understand visual features without an adapter, Uni-
ICL still requires converting compressed features
into LL.M-acceptable compressed virtual tokens.
Apart from substituting lengthy demonstrations,
virtual tokens are dense representations of orig-
inal demonstrations, which can be naturally fur-
ther applied to select potential demonstrations by
measuring similarity. In this paper, the connector
is a projection layer supervised-tuned under the
language modeling objective of the generator dur-
ing learning compression and jointly optimized by
language modeling and contrastive objectives (He
et al., 2020) during learning selection.

UnilCL notices the fact that demonstrations in
the ICL are independent of each other, which is
ignored by previous compression studies (Mu et al.,

2023; Wingate et al., 2022; Ge et al., 2023). There-
fore, UniICL independently compresses demon-
strations and proposes to configure Demonstration
Bank (DB) to cache compressed virtual tokens for
further reusing without requiring repeated compres-
sion for the same demonstration. We evaluate Uni-
ICL which only contains 17M trainable parameters
on a scope of benchmarks involving linguistic ac-
ceptability, semantic classification, text summariza-
tion, and passage reranking, and UnilCL achieves
outstanding performances. Then, the in-domain ex-
periments show that UnilCL built upon two back-
bones (Vicuna and BlueLM) effectively substitutes
the 12 x demonstrations with soft prompts, easily
scaling up the inner LLM from 4-shot to 64-shot.
Our main contributions are as follows:

* To our knowledge, we are the first to propose
an ICL framework that unifies compression,
selection, and generation via a single frozen
LLM.

* UnilCL is a memory-friend framework that
enables LLMs to perform large-shot ICL on
consuming GPUs.

* UnilCL proposes to configure Demonstration
Bank to enhance ICL efficiency, avoiding re-
peated compression for the same demonstra-
tion.

2 Related Work

2.1 Soft Prompt Compression

Recently, researchers attempted to utilize soft
prompts to convert actual tokens to dense-
information virtual tokens. Mostly from a distilla-
tion perspective, Wingate et al. (2022) aligned the
teacher model and the student model, where the
teacher model accepted the actual task instruction
while the student model fed the soft prompt. The
main drawback of this approach was the lack of
generalization that necessitated training for each
lexically different instruction. To tackle the gen-
eralization problem, Mu et al. (2023) proposed to
learn a Llama-7b to compress instruction to vir-
tual tokens, but only compress instruction was not
powerful enough since the demonstrations were
much longer in practice. To compress the demon-
strations, Chevalier et al. (2023) proposed Auto-
Compressor to recurrently generate compressed
virtual tokens based on a fine-tuned Llama (Zhang
et al., 2022). However, AutoCompressor broke
the independence of demonstrations, and the re-
current compression increased inference latency.
Ge et al. (2023) proposed ICAE that employed a
LoRA-adopted Llama-7b (Touvron et al., 2023)
to compress the processed demonstrations to com-
pact virtual tokens, while ICAE still struggled to
overcome quite long inputs.

2.2 Extractive Compression

Apart from employing soft prompts, researchers
also endeavored to shorten prompts by extracting
informative tokens from the original ones (Li, 2023;
Jiang et al., 2023), namely token pruning (Kim
et al., 2022) or token merging (Bolya et al., 2022).
Recent works like LLMLingua (Jiang et al., 2023)
and Selective Context (Li, 2023) shared similari-
ties but diverged on whether to eliminate tokens
with high or low Perplexity (PPL). LLMLingua
emphasized tokens with high PPL, attributing them
as more influential, resulting in achieving outstand-
ing performance. As mentioned in their paper, ex-
tractive compression methods encountered Out-of-
Distribution (OoD) issues between the extractor
and the target LLM. To reconcile this, they fine-
tuned Alpaca-7b (Taori et al., 2023) using the Al-
paca dataset (Taori et al., 2023) to perform the
alignment. However, UnilCL naturally bypassed
the distribution-aligned module, since the compres-
sor and the target LLM were the same.

Methods d; | Comp Comp Tool # Trainable Parameters Train Size
LLMLingua YES Pruning 7B 57k

AutoCompressor NO Soft Prompt 7B UNKNOWN
ICAE YES Soft Prompt 70M 240k
UnilCL NO Soft Prompt 17M 30K

Table 1: Comparsion among recent compression meth-
ods and UnilCL. Compression Tool represents the in-
volved compression technique of different methods.

3 Methodology

We propose UnilCL, a parameter-efficient ICL
framework that unifies demonstration compres-
sion, demonstration selection, and response gen-
eration via a single LLM. As for the selection of
the underlying LLM, previous work has proved
that the Decoder-only model performs better than
the Encoder-Decoder model in prompt compres-
sion (Mu et al., 2023). We follow this conclusion
and employ popular Vicuna-7b (Zheng et al., 2023)
and BlueLM-7B? (Team, 2023) as the underlying
backbone in UnilCL.

We present a comparison of training costs be-
tween UnilCL and other recent compression meth-
ods in Table 1. Additionally, we illustrate differ-
ences in formulating virtual tokens for compression
methods based on the soft prompt in Figure 2.

To explain plainly, we ideally assume the com-
pressor within three compression methods based on
soft prompts has the window limitation of L, and
has the same compression ratio, ignoring the length
of soft prompts. In the 2-shot scenario, demonstra-
tions D; and D, have a length of L. Consider-
ing the AutoCompressor, the concatenated demon-
strations will be divided back into two segments,
and the AutoCompressor compresses each segment
step-by-step, bringing two times non-parallel com-
pression. When it comes to ICAE, merely D is
accessible for the compressor and others will be
read by no means. AutoCompressor shows advan-
tages in the readable prompt length, but is short
in efficiency, while ICAE has a constant compres-
sion complexity but struggles to approach relatively
long inputs. Additionally, AutoCompressor makes
the compression of later demonstrations be condi-
tioned on the previous ones, which breaks demon-
stration independence in ICL.

Combining the advantages of AutoCompressor
and ICAE, UnilCL compresses demonstrations in-
dependently and introduces virtual tokens concate-
nation to overcome long prompt challenges. In the
N-shot settings, the number of practical compres-

*We mainly discuss UniICL built on Vicuna-7B, the exper-
iments of BlueLM will be exhibited in Appendiex B.

Step-by-step
Compression

(a) Autocompressor

(b) ICAE

LLM & m’Y_J
L0000 EREEE
LM & Dy WSTJ
0000 0000
[—— HD’,_J %,—JD] ﬁ—ﬁ

(c) UnilcL

Figure 2: Differences of compression methods in formulating compressed virtual tokens in ICL.

A Y T
{ Projection Q)] }
A A A
o] [- [
@ () (m] [m]
L)

Compression Slots Xk

Figure 3: Demonstration compression.

sion steps can be calculated as [4'], where k indi-
cates that a single GPU is capable of compressing
k demonstrations in a batch. When the GPU capac-
ity is sufficient, k equals N, which is the scenario
of ICAE that compresses all segments in a time
but UnilCL drops nothing, while it degenerates to
the AutoCompressor scenario that compresses seg-
ments step-by-step, when the GPU capacity is only
sufficient to set k = 1.

3.1 Demonstration Compression

UnilCL introduces memory slots [M] € R4, a
learnable d-dimension embedding initialized from
ararely used embedding of the target LLM. UnilCL
activates the compression slots to absorb informa-
tion from demonstrations in the forward propaga-
tion of frozen Vicuna, as illustrated in Figure 3. We
first attach & compression slots M = k x [M]
to each demonstration D;, formatting modified
prompt fed to the Vicuna. Then, frozen Vicuna

High

TRanking

ity <€

> <
[o] B -
Average Pooling
7 7 7 —
A1 4] o
~ [ct [t [[ch]

Slot Activating

D Eom

Figure 4: Demonstrations selection.

forwards the modified prompts and outputs the last
hidden states H; = (hq, ho, ..., hj) on top of the k
compression slots, dropping the others:

_, H' = forward(D; © M) (D

Due to the attention mechanism, H* is compelled
to attend to the preceding actual tokens. Then,
UnilCL inserts a projection layer to convert H’
into LLM-acceptable compressed virtual tokens
C" = (c},¢h,...,c):

¢ =W, - hi,)

where W), is the parameters of the projection layer.

3.2 Demonstration Selection

Except for substituting the origin demonstrations
for generation, compressed virtual tokens C? are
representative of demonstrations that can be again
applied for demonstration selection, as illustrated

3@ means token-level concatenation.

in Figure 4. Specifically, given a query () and its
candidate demonstrations (D1, Da, ..., Dy,), Uni-
ICL obtains their latent representation after average
pooling:

R‘\PA

k
Cig/p = Z 3)
We define the i-th demonstration saliency score
S; via the cosine similarity between Query and
demonstrations:

S; = COS(CTQ, C_'};)). 4)

Demonstrations are then reranked according to
their saliency scores.

3.3 In-context Generation

We employ the frozen Vicuna again to generate
responses with the guiding of concatenated vir-
tual demonstrations and queries, as illustrated in
Figure 5. For m-shot in-context learning, we ob-
tain m spans of virtual tokens after demonstration
compression and selection, denoted as C'! to C™.
Then, we horizontally concatenate them, keeping
their relative position unmodified. Finally, the con-
catenated virtual tokens together with actual infer-
ence inputs are fed into Vicuna, performing auto-

regressive generation as normal:
yi = generate(C', ... C™; Qiy<;) (5
Except for the generative manner, virtual tokens
are conveniently transferred to close-ended evalua-
tion for understanding tasks through providing the
candidate answers and measuring the label space
PPL 4, e.g. (ppl™,ppl™) for sentiment classifica-

tion:

y = argmin(ppl ", ppl”), (6)

where answers with PPL closest to 1 are judged to
be the current prediction.

3.4 Training

The trainable parameters in UnilCL are merely
17M originating from the projection layer W, and
the introduced compression slot [M]. The projec-
tion layer is optimized with the language modeling
objective of Vicuna to learn a base compression
model. Then InfoNCE (He et al., 2020) joint with
language modeling objective are used to augment

4https://huggingface.co/docs/transformers/
perplexity

=TT
L)

3 3 1 1
EE -] -
(@)
g
Virtual Demonstrations
Concatenation

Figure 5: In-context generation.

the demonstration selection ability of the base com-
pression model:

L= Elm + Ectr- (7)

Specifically, we slice the source input of each train-
ing instance into two parts and randomly compress
one, denoted the compression part as x. and the
unmodified as z,,. Afterward, we attach M to z.
and get virtual tokens C' on top of the compression
slots, as described in Equ. 1 and Equ. 2. Therefore,
the language modeling loss L;,,, is obtained as:

1
Lim = —— Y logP(y|Q; C;y<1), (8)

lyl =

where y is the reference label of the current train-
ing instance. Additionally, to approach the large-
shot settings without significant truncation, we in-
troduce concatenation compression. When x. ex-
ceeds the window limitation for compression, Uni-
ICL further divides z. into acceptable ranges and
compresses them independently to get local vir-
tual tokens. Then, these virtual tokens of several
segments will be concatenated to formulate global
virtual tokens to replace x..

Consequently, we utilize contrastive learning for
selection augmentation and mine positives and neg-
atives as illustrated in Figure 6. Specifically, given
each training instance () and n candidate demon-
strations (D1, Da, ..., D) from two non-crossing
training subsets, we employ Vicuna to calculate the
PPL concerning the golden label of (), denoted as
ppl@. Then, we provide the i-th demonstration and
calculate PPL concerning the golden label of @,
denoted as (pplP,i € [1,n]). We count ppl? as
the baseline and calculate candidate relative PPL
gains:

p;l? = ppl? — ppl? i € [1,7].)

https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity

Relative PPL

Figure 6: Negatives mining pipeline.

Hence, C}, (C},) is the representation of demon-
strations DT (D7) that furthest reduces (increases)
ppl@ as processed in Equ. 3, and the contrastive
loss L. can be formulated as:

exp(cos(Cq, C))
exp(cos(Cq, CF)) + exp(cos(Cq, Cp))
(10)
In particular, if all relative PPL gains are less than
0, namely none of the candidate demonstrations
help guide Vicuna to generate the golden label, we
will apply the other set of candidates.

ﬁct'r -

4 Experiment

4.1 Baselines

Naive Vicuna-7b serves as the fundamental base-
line fed into actual demonstrations. AutoCom-
pressor recurrently compresses demonstrations into
virtual tokens. We employ their Llama2-7b ver-
sion’. LLMLingua is a coarse-to-fine demonstra-
tion pruning method based on dropping uninforma-
tive words. We employ their released 7b version®,
of which compressor is a fine-tuned Llama-2. For a
meaningful comparison, we replace target LLMs
of LLMLingua (GPT-3.5-Turbo or Claude-v1.3)
with the Vicuna-7b. ICAE’ compresses demon-
strations into soft prompts via a LoRA-adapted
Llama2-7b.

Additionally, since selection augmentation is in-
volved in the training of UnilCL, we utilize the
popular Sentence-BERT (S-BERT) (Reimers and
Gurevych, 2019) as the dense retriever to construct
an ICL pipeline for the above methods, serving as
simple but effective selection-based baselines.

5h’ctps ://github.com/princeton-nlp/
AutoCompressors.

6https ://github.com/microsoft/LLMLingua.

"https://github.com/getao/icae.

4.2 Settings

Considering the involved datasets and computation
efficiency, we set the max allowed input length
limit to 512 for both compression and generation.
For a fair comparison, we set the allowed window
of baselines to 512 and their compression ratio to
the same as UnilCL. We fix the learning rate to 8e-
5 and use Adam as the optimizer, and the effective
batch size is 32 (8 GPUs data parallelism and 4
steps gradient accumulation). Additionally, we
conducted all experiments on 8*NVIDIA A5000
24G GPUs based on BFloat 16 data type, and we
set the evaluated shot to 8 for understanding tasks
and 5 for generative tasks for illustration because
of marginal ICL gains and memory costs.

We apply S-BERT to pre-rank and output the top
10 similar candidates from training sets according
to each inference input for all baselines. UnilCL is
employed to perform selection among them in prac-
tice due to computation efficiency for high-resource
ICL. On the contrary, the low-resource ICL setting
fixes the random candidate demonstrations to 20
for all inference inputs, performing pre-ranking
and selecting as well.

4.3 Results

We comprehensively evaluate the ICL performance
of UniICL on the out-domain dataset CoLA, SST-2,
and IMDb by close-ended evaluation and ARXIV
by open-ended evaluation, as demonstrated in Ta-
ble 2. Specifically, UnilCL outperforms naive
Vicuna-7b fed with actual candidate demonstra-
tions, which indicates that virtual demonstrations
are more efficient and informative for guiding the
target LLM, and UnilCL outperforms all the base-
lines by compressing the same demonstrations pre-
ranked by S-BERT. Additionally, UnilCL achieves
further performance gains after selecting demon-
strations via itself. Additionally, open-ended re-
sults indicate that virtual demonstrations still effi-
ciently capture semantic information for ICL guid-
ing, even though summarization demonstrations
are much longer than understanding ones. Regard-
ing ARXIYV, the original ICL is not helpful enough
due to its extremely over-length document, leav-
ing little room for demonstrations. UnilCL works
as expected by compressing demonstrations and
concatenating virtual demonstrations, and achieves
+2.8 R-1 gains in the 5-shot setting that selects
demonstrations via selection-augmented virtual to-
kens.

https://github.com/princeton-nlp/AutoCompressors
https://github.com/princeton-nlp/AutoCompressors
https://github.com/microsoft/LLMLingua
https://github.com/getao/icae

Model #-shots CoLA-dev SST-2-dev IMDb ARXIV XSum
Acc. R-1 R-2 R-L R-1 R-2 R-L
0-shot 56.2 91.7 92.6 34.3 9.1 27.4 19.9 5.0 13.5
Vicuna 1-shot | 58.2(57.4) 90.7(90.8) 91.9(91.0) | 344 (332) 9.1(85) 275(26.7) | 21.2(204) 58(5.2) 145(13.9)
2-shot | 62.1(59.8) 92.1(91.3) 91.7(91.7) - - - - - -
S-shot | 62.3(61.9) 93.0(91.9) 94.1(92.5) - - - - - -
I-shot | 42.1 (40.9) 85.7(84.2) 95.0(95.1) | 27.0(26.4) 8.4(8.2) 26.1(25.8) | 21.3(20.3) 6.5(6.3) 13.7(13.7)
AutoCompressor | 2-shot | 58.8 (56.3) 88.0(86.4) 95.0(94.6) | 27.1(26.2) 8.6(7.9) 26.4(254) | 21.9(21.4) 6.6(6.4) 14.5(14.1)
S-shot | 59.1(58.8) 91.3(89.1) 94.7(94.8) | 34.5(33.7) 9.4(9.1) 287(279) |224(221.7) 69(6.7) 14.8(14.3)
1-shot | 55.5(55.0) 89.7(89.6) 91.0(89.9) | 33.3(33.1) 89(8.7) 274(27.1)|205(19.7) 54(52) 145(144)
LLMLingua 2-shot | 56.7 (55.7) 90.7(90.2) 91.3(91.0) | 32.9(32.0) 8.2(8.1) 26.9(259) | 20.3(20.00 52(5.1) 143(14.1)
S-shot | 57.2(56.9) 90.6(90.2) 90.9(91.2) | 30.1(29.7) 7.9(7.4) 253(24.6) | 19.7(18.6) 4949 14.1(14.3)
I-shot | 30.9 (30.9) 61.0(60.1) 85.7(83.3) | 26.8(24.6) 8.2(7.1) 24.7(22.9) | 23.5(21.9) 85(7.8) 209 (20.3)
ICAE 2-shot | 30.9(30.9) 49.0(52.8) 85.9(85.9) | 27.2(25.5) 8.4(7.6) 259(24.3) | 244(23.2) 89(84) 21.3(20.8)
S-shot | 30.9(30.9) 54.2(51.0) 85.7(85.9) | 28.3(26.9) 8.7(7.7) 26.6(25.8) | 253(249) 9.2(8.8) 22.5(21.6)
I-shot | 58.7 (58.0) 92.9(91.7) 94.3(92.3) | 35.5(34.7) 10.5(10.2) 28.7(27.9) | 27.7(25.5) 10.2(9.1) 21.2(20.0)
UnilCL 2-shot | 62.4(61.0) 92.4(91.6) 94.9(93.3) | 36.1(35.2) 10.8(10.4) 29.4(28.2) | 29.4(26.8) 11.0(9.8) 22.3(20.9)
S-shot | 62.6 (61.8) 93.1(92.3) 94.5(94.0) | 35.8(35.4) 10.6(10.2) 29.5(28.1) | 30.7 (27.6) 11.3(10.1) 22.8(21.4)
I-shot | 59.1 (58.7) 93.0(91.9) 94.5(91.6) | 34.8(34.7) 10.4(10.3) 28.1(27.8) | 29.1 (26.2) 10.8(9.4) 22.2(20.7)
UnilCL® 2-shot | 62.6(61.2) 94.0(93.0) 94.9(92.3) | 34.6 (34.3) 10.6(10.4) 28.5(28.3) | 30.3(28.9) 11.3(10.5) 22.9(21.7)
S-shot | 63.3(61.5) 94.7(92.8) 95.0(93.8) | 35.6(35.3) 11.0(10.8) 29.1(27.7) | 31.1(30.0) 11.7(11.2) 23.5(22.3)
8-shot | 63.8 (62.6) 94.7 (93.1) 95.0 (94.2) - - - - - -
1-shot | 59.3(58.9) 93.2(92.4) 95.1(92.8) | 35.6(35.1) 10.7(10.5) 28.9(28.3) | 30.0(27.9) 11.3(10.1) 22.8(21.5)
UnilCLA + .. 2-shot | 62.4(62.0) 94.5(92.8) 94.8(93.4) | 36.8(35.3) 10.8(10.6) 29.6(28.9) | 30.8(29.2) 11.4(10.7) 23.0(21.9)
ot S-shot | 64.3(61.8) 94.7(93.4) 96.1(94.2) | 37.1 (34.9) 11.3(11.2) 30.0(29.3) | 32.5(30.6) 12.3(11.8) 24.7(23.8)
8-shot | 64.7 (63.3) 94.7 (94.1) 95.6 (95.0) - - - - - -

Table 2: The high- and low-ICL results on CoLA-dev, SST-2-dev, and IMDb. Results in () represent low-resource
ICL. ® represents the demonstrations selected by UniICL, and the others are selected by S-BERT. +L., indicates
the selection augmented UnilCL (optimized with Equation 7). Bold (underline) represents the best performance on

high- and low-resource ICL.

Method MS MARCO
BM257 18.5
Vicuna 28.9
AutoCompressor 29.3
ICAE 30.2
UnilCL 31.6

Table 3: Results on MS MARCO. Vicuna applies the
last hidden states of [EOS] to represent sentences in
latent space. Following the previous study, we report
MRR@10. { means citing from Liang (Wang et al.,
2022).

Furthermore, The ablation experiments of +L.,
show that UnilCL is faced with performance degra-
dation without L., and the performance gap be-
comes larger with the number of demonstrations
increasing. The results of BlueLM are exhibited
in Appendiex B.

Passage Ranking Since the virtual tokens natu-
rally summarize semantic information of preceding
sequences, we evaluate UnilCL on the out-domain
MS MARCO dataset in Table 3. UnilCL signif-
icantly outperforms the sparse retrieval method
BM25 algorithm and other compression methods.
Notably, we don’t compare UnilCL with the popu-
lar retrieval models (Reimers and Gurevych, 2019;
Wang et al., 2024) since most of them are fine-tuned

BlueLM

28 - Vicuna

26 1

24

R-1

221

204

18 4

T T T
12x 16x 512x

Compression Ratio

Figure 7: The overall sensitivity analysis of compression
ratio.

on this dataset, which is unfair for comparison.

S Analysis

5.1 Compression Ratio

During training, the compression ratio is dynam-
ically sampled from 2 to 16. We mix up 2,000
instances from the in-domain validation set, 1,000
for XSum, and 1,000 for CICERO to select the
compression ratio for UnilCL in Figure 7, with
the backbone of Vicuna and BlueLM respectively.
Specifically, UnilCL compresses the latter cut-off
part while keeping the former ones uncompressed.

30.0

mm selfCP+Caching —e— selfcP+Caching
selfcp —e— selfcp
Baseline Baseline

275 AutoCompressor ICAE

ICAE — AutoCompressor

250 ‘\\

Monetary Limitation

225

w

ughput (iter/s)

200

Memory (GB)

Thro

Figure 8: The efficiency comparison between UnilCL
and other compression methods in CoLA with the num-
ber of shots increasing from 0 to 64. Memory explodes
are represented as *, corresponding to the break of the
line chart.

Method GPUHours TFLOPs TMACs
Vicuna 1.5 86,20 4,309

Vicuna-1k 1.9 31,664 15,832
UnilCL 1.6 22,437 11,218

Table 4: The computation efficiency of UnilCL.

Therefore, we can measure the dense information
quality of the same content with different compres-
sion ratios by ROUGE-1 since it is more sensitive
to token-level differences. The performance is rela-
tive smoothing when the compression ratio changes
from 4 x to 12x. However, when it comes to 16 X,
an obvious drop occurs. Therefore, we set the com-
pression ratio to 12 by default and apply this ratio
to all experiments. The 512 x compression ratio is
equal to compressing anything to a single virtual
token, due to the maximum allowed input length
for compression being 512.

5.2 Efficiency Analysis

In UnilCL, we incorporate an additional 17M train-
able parameters into the 7b backbone, accounting
for an approximate increase of 0.24%. We evalu-
ate the memory costs inference latency of UnilCL
and other compression methods in Figure 8. With
the help of the Demonstration Bank (DB), Uni-
ICL will eliminate the extra latency if the selected
demonstrations have been compressed and cached
(UnilCL+Caching). Despite this, parallel computa-
tion facilitates the compressing process, resulting
in minimal throughput degradation (UnilCL and
Baseline). The naive 7B LLM occurs memory ex-
plosion for 8-shot settings and other compression

methods perform up to 32-shot, while UnilCL suc-
cessfully scales up to 64-shots within 24GB CUDA
allocation.

Additionally, We demonstrate the inference com-
putation and GPU hours in Table 4, by using 1,024
random legal tokens as inputs and forcing models
to generate 128 tokens. Notably, UnilCL (with-
out DB) compresses the former half, and the latter
half is fed into the generator directly, while Vicuna
and Vicuna-1k are distinguished in window limi-
tations. Results indicate that minimal GPU hours
increased due to the parallel computation of for-
ward, although the extra compression of UnilCL
surges the computation. Additionally, Vicuna with
a 1k window limitation surges both GPU hours
and TFLOPs because long input brings significant
computation and latency in generation.

5.3 Training Deviation

To quantify the performance gains brought by the
learnable projection layer. We tune Vicuna and
BlueLLM with comparable parameters (17M) with
LoRA in Table 5, setting the rank to 32. UnilCL
still outperforms LoRA-adapted LLMs with a 512
window limitation, indicating that the truncation
indeed brings performance degradation.

6 Conclusion

This paper proposes UnilCL, a parameter-efficient
ICL framework that unifies demonstration selec-
tion, demonstration compression, and final re-
sponse generation via a frozen LLM. Experimental
results show that the generated virtual tokens sub-
stitute the 12 x longer actual demonstrations with
minimal time expenditure, scaling up the number
of demonstrations from 4 to 64.

7 Limitations

Our study, while proposing an efficient unified ICL
framework for demonstration compression and se-
lection, still has limitations. Firstly, UniICL is
limited to the realm of naive ICL leaving other
advanced LLM prompting methods, e.g. Retrieval
Augment Generation (RAG) and Chain-of-Thought
(CoT) unexplored. Limited to the hardware, we
employ the underlying LLM at a scale of 7 billion
parameters. Larger-scale LLMs are welcome to
enrich our findings in future studies.

References

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman.
2022. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev.
2023. Scaling transformer to 1m tokens and beyond
with rmt. arXiv preprint arXiv:2304.11062.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Danqgi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023.
Longnet: Scaling transformers to 1,000,000,000 to-
kens. arXiv preprint arXiv:2307.02486.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729-9738.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Woosuk Kwon, Joseph Hassoun, and Kurt
Keutzer. 2022. Learned token pruning for transform-
ers. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 784-794.

Yucheng Li. 2023. Unlocking context constraints of
Ilms: Enhancing context efficiency of llms with self-
information-based content filtering. arXiv preprint
arXiv:2304.12102.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming

few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142—150.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316-5330.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. choice, 2640:660.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following 1llama model.

BlueLM Team. 2023. Bluelm: An open multilin-
gual 7b language model. https://github.com/
vivo-ai-lab/BluelM.

https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang
Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie Zhou.
2023a. Is chatgpt a good nlg evaluator? a preliminary
study. arXiv preprint arXiv:2303.04048.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023b. Label
words are anchors: An information flow perspective
for understanding in-context learning. arXiv preprint
arXiv:2305.14160.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2022. Simlm: Pre-training with represen-
tation bottleneck for dense passage retrieval. arXiv
preprint arXiv:2207.02578.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Large
search model: Redefining search stack in the era
of llms. In ACM SIGIR Forum, volume 57, pages
1-16. ACM New York, NY, USA.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,
and Rui Xia. 2023c. Is chatgpt a good sentiment
analyzer? a preliminary study. arXiv preprint
arXiv:2304.04339.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint 1805.12471.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, et al. 2023. Zero-
shot information extraction via chatting with chatgpt.
arXiv preprint arXiv:2302.10205.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and con-
trastive conditioning for controllability and toxic-
ity reduction in language models. arXiv preprint
arXiv:2210.03162.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
arXiv preprint arXiv:2203.08913.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

10

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. 2023. Exploring the limits of chatgpt
for query or aspect-based text summarization. arXiv
preprint arXiv:2302.08081.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Lin Zheng, Chong Wang, and Lingpeng Kong. 2022.
Linear complexity randomized self-attention mecha-
nism. In International conference on machine learn-
ing, pages 27011-27041. PMLR.

A In-Domain Evaluation

XSum CICERO

Backbone Method R4 R2 RLI|R1 R2 RL
Vicuna 199 50 135]173 33 143

+LoRA 254 75 173]28.1 105 256

Vicuna-7b Vicuna-1k ~ 27.3 87 19.7 | 30.5 113 274
+LoRA 312 11.0 23.1 | 341 135 302

UnilCL 300 102 223|326 122 288

BlueLM 150 3.6 104|176 3.1 150

+LoRA 23.1 76 1741219 7.8 198

BlueLM-7b BlueLM-1k 28.1 9.9 228|251 92 23.1
+LoRA 308 105 24.6 | 312 108 274

UnilCL 304 102 237|292 100 26.6

Table 5: The in-domain results and ablation studies on
XSum and CICERO. Ik represents the extending 1k
window limitation, while others have a limitation of
512.

We conduct the zero-shot in-domain generation
evaluation on the entire test set of XSum and CI-
CERO in Table 5 by compressing the latter half to
virtual tokens and keeping the former unmodified.
UnilCL significantly outperforms the baselines, in-
dicating the compressed virtual tokens can provide
the original truncated information by recovering
the cut-off parts after supervised fine-tuning. Al-
though extending the window to 1k, Vicuna and
BluelLM still underperform UnilCL, indicating that
compressed virtual tokens filter noise information
to some extent.

B Results on BlueLM

We extra conduct experiments on BlueLM (Team,
2023) to verify the generality of UnilCL. We
demonstrate the result of understanding tasks in
Table 6, of the generative tasks in Table 7.

Model #-shots CoLA-dev SST-2-dev IMDb
Acc.

0-shot 716 812 4338

1-shot 69.6 82.6 64.8

BluelLM 2-shot 70.0 87.0 65.6
5-shot 70.5 88.6 68.7

1-shot 69.6 812 654

UnilCL 2-shot 68.7 82.6 67.0
5-shot 717 87.0 70.4

1-shot 69.8 80.0 62.0

. 2-shot 70.1 80.8 67.0
UnilCL# 5-shot 71.8 85.6 69.6
8-shot 723 87.4 69.4

1-shot 70.1 80 69.6

4 2-shot 70.3 87.2 70.6
UnilCLA + Lty 5 0 71.1 89.2 71.0
8-shot 725 90.4 76.8

Table 6: The ICL results of understanding tasks with
the backbone of BlueLM.

11

XSum ARXIV
Method #-shots R4 R2 RLI|R1 R2 RL
Oshot | 150 3.6 104|309 7.7 247
BluelM lshot | 19.1 48 121|230 36 190
Ishot | 240 69 180|314 77 252
UnilCL 2-shot | 250 7.3 188|308 7.3 24.8
5.shot | 253 7.4 191|319 7.8 260
Ishot | 252 74 189|316 79 254
UnilCL# 2-shot | 254 7.6 19.1|319 80 256
5-shot | 26,5 7.9 203|321 80 255
Ishot | 247 72 185|310 75 249
UnilCL® + Ly, 2-shot | 25.1 74 190|312 7.7 25.1
5.shot | 263 7.6 200 | 315 7.9 253

Table 7: The ICL results of generative tasks with the
backbone of BlueLM.

Dataset # words

(96,512] (512,1024] (1024,1536]
XSum - 10,000 4,697
CICERO 10,000 - -
SUPER-NI - 10,000 7,000
XSum (Ctr) 5,000

Table 8: The composition training set of UnilCL. (m,n]
represents the range of the number of words in each in-
stance. XSum (Ctr) is used for the second phase training
in Equation 7.

C Datasets & Metrics

C.1 Datasets

We mix up two public datasets for compression and
selection augmentation training, described in Ta-
ble 8. Additionally, UniICL achieves outstanding
performance on out-domain evaluation, involving
text summarization (Narayan et al., 2018), passage
ranking (Nguyen et al., 2016), sentiment classifica-
tion (Maas et al., 2011; Socher et al., 2013), and lin-
guistic acceptability (Warstadt et al., 2018), more
details referring to Table 9. UnilCL selects demon-
strations from its training set in high-resource ICL,
and we fixed the number of candidate demonstra-
tions to 20 for low-resource ICL evaluation.

Dataset Task In-Domain # Test # Demonstrations

MS MARCO-dev Passage Ranking X 6,980 -
XSum Text Summarization 4 1,500 204,045/20
ARXIV Text Summarization X 1,500 203,037/20
CoLA-dev Lingustic Acceptability X 1,041 67,349/20
SST2-dev Sentiment Classification X 872 8,551/20
IMDb Sentiment Classification X 1,500 25,000/20

Table 9: The details of involved evaluation datasets. -
dev represents employing development set due to their
test sets are inaccessible. # Demonstrations represent
the number of demonstrations to be selected in high/low-
resource ICL settings.

C.2 Evaluation Metrics

ROUGE (Lin, 2004) is a widely adopted metric in
many generative tasks that evaluate how similar the
generated hypothesis is to the golden label. There-
fore, ROUGE is used in our experiments to evalu-
ate the quality responses generated conditioned on
compressed virtual tokens, and we report the F-1
scores of ROUGE-1, ROUGE-2, and ROUGE-L
(abbreviated R-1, R-2, R-L in the following), and
we employed the files2rouge ® library in practice.
Following the previous works, we report the accu-
racy of close-ended evaluation and MRR @10 for
passage ranking.

8https://github.com/pltrdy/files2rouge.

12

https://github.com/pltrdy/files2rouge.

	Introduction
	Related Work
	Soft Prompt Compression
	Extractive Compression

	Methodology
	Demonstration Compression
	Demonstration Selection
	In-context Generation
	Training

	Experiment
	Baselines
	Settings
	Results

	Analysis
	Compression Ratio
	Efficiency Analysis
	Training Deviation

	Conclusion
	Limitations
	In-Domain Evaluation
	Results on BlueLM
	Datasets & Metrics
	Datasets
	Evaluation Metrics

