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Abstract

In-context learning (ICL) enables LLMs to001
exhibit spectacular emergent capabilities in002
various scenarios. Unfortunately, introducing003
demonstrations easily makes the prompt length004
explode, bringing a significant burden to hard-005
ware. In addition, random demonstrations usu-006
ally achieve limited improvements in ICL, ne-007
cessitating demonstration selection among ac-008
cessible candidates. Previous studies introduce009
extra modules to perform demonstration com-010
pression or selection independently. In this011
paper, we propose an ICL framework Uni-012
ICL, which Unifies demonstration selection013
and compression, and final response generation014
via a single frozen LLM. UniICL leverages the015
understanding ability of well-trained LLMs to016
independently compress different demonstra-017
tions into compressed features, and then a learn-018
able projection layer converts features to LLM-019
acceptable compressed virtual tokens. Apart020
from substituting original demonstrations to021
reduce input length, virtual tokens are again022
used to select potential demonstrations. Fi-023
nally, current queries together with selected024
compressed virtual tokens are fed into the same025
frozen LLM for response generation. UniICL026
is a parameter-efficient framework that only027
contains 17M trainable parameters originating028
from the projection layer and a learnable em-029
bedding. We build UniICL upon two back-030
bones and conduct experiments over in- and031
out-domain datasets of both generative and un-032
derstanding tasks, encompassing ICL scenarios033
with plentiful and limited demonstration can-034
didates. Results show that UniICL effectively035
unifies 12× compression, demonstration selec-036
tion, and response generation, efficiently scal-037
ing up the baseline from 4-shot to 64-shot ICL038
with 24 GB CUDA allocation1.039

1The code and model will be released in the final version.

1 Introduction 040

In-context learning (ICL) (Brown et al., 2020; 041

Xie et al., 2021; Wang et al., 2023b) exhibits 042

powerful performance in practical applications 043

with the emergence of scaled-up Transformer- 044

based (Vaswani et al., 2017) Large Language Mod- 045

els (LLMs) (Wang et al., 2023c; Yang et al., 2023; 046

Wei et al., 2023; Wang et al., 2023a; Min et al., 047

2022). In ICL, the provided demonstrations acti- 048

vate the pre-training knowledge of LLMs to allow 049

them to perform well on various downstream tasks 050

such as text summarization (Wang et al., 2023c; 051

Yang et al., 2023) and text classification (Min et al., 052

2022) without gradient updating of billion param- 053

eters. Despite its significant role in the era of 054

LLMs, ICL also brings an enormous challenge 055

to the input window. Specifically, inevitably in- 056

troducing demonstrations directly causes length 057

explosion (Wang et al., 2024), bringing significant 058

memory costs and decreasing inference throughput 059

as described in Figure 8. Except for length explo- 060

sion, Liu et al. (2021) points out that the quality of 061

the selected demonstrations significantly influences 062

the ICL performance. 063

Recent efforts in modifying model architecture 064

significantly expand the input window (Zheng et al., 065

2022; Wu et al., 2022; Ding et al., 2023; Bula- 066

tov et al., 2023). However, LLMs with million 067

context windows still struggle to overcome perfor- 068

mance degradation (Liu et al., 2024). Researchers 069

also attempted to alleviate length explosion via 070

prompt pruning (Jiang et al., 2023) or soft prompts 071

(Wingate et al., 2022; Mu et al., 2023; Ge et al., 072

2023). Their main idea is to train an independent 073

compressor to compress the input into soft prompts. 074

While in selecting powerful in-context demonstra- 075

tions, Liu et al. (2021); Lu et al. (2021) scores each 076

candidate demonstration for the current queries via 077

an extra ranker, and Ram et al. (2023); Wang et al. 078

(2024) finds that a fine-tuned LLM is up to the task 079
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Figure 1: UniICL compresses candidate demonstrations into spans of compressed virtual tokens and selects
demonstrations similar to the query. Virtual tokens substitute the original demonstration together with the query, fed
to the same LLM for prediction generation.

of ranking.080

However, the standalone compressor or ranker081

inevitably incurs additional memory costs as it ne-082

cessitates simultaneous loading alongside the tar-083

get LLM. To tackle these challenges, we propose a084

framework UniICL as illustrated in Figure 1, which085

leverages the semantic understanding ability of tar-086

get LLMs developed during pre-training to com-087

press and select demonstrations. UniICL keeps the088

target LLM frozen during training to avoid catas-089

trophic forgetting and reduce training costs. Con-090

sidering the frozen LLM within UniICL function as091

both compressor and generator, UniICL is training092

efficiently and does not need to load extra com-093

pression modules, significantly reducing memory094

costs for both training and inference. As the un-095

derlying LLMs in visual language models fail to096

understand visual features without an adapter, Uni-097

ICL still requires converting compressed features098

into LLM-acceptable compressed virtual tokens.099

Apart from substituting lengthy demonstrations,100

virtual tokens are dense representations of orig-101

inal demonstrations, which can be naturally fur-102

ther applied to select potential demonstrations by103

measuring similarity. In this paper, the connector104

is a projection layer supervised-tuned under the105

language modeling objective of the generator dur-106

ing learning compression and jointly optimized by107

language modeling and contrastive objectives (He108

et al., 2020) during learning selection.109

UniICL notices the fact that demonstrations in110

the ICL are independent of each other, which is111

ignored by previous compression studies (Mu et al.,112

2023; Wingate et al., 2022; Ge et al., 2023). There- 113

fore, UniICL independently compresses demon- 114

strations and proposes to configure Demonstration 115

Bank (DB) to cache compressed virtual tokens for 116

further reusing without requiring repeated compres- 117

sion for the same demonstration. We evaluate Uni- 118

ICL which only contains 17M trainable parameters 119

on a scope of benchmarks involving linguistic ac- 120

ceptability, semantic classification, text summariza- 121

tion, and passage reranking, and UniICL achieves 122

outstanding performances. Then, the in-domain ex- 123

periments show that UniICL built upon two back- 124

bones (Vicuna and BlueLM) effectively substitutes 125

the 12× demonstrations with soft prompts, easily 126

scaling up the inner LLM from 4-shot to 64-shot. 127

Our main contributions are as follows: 128

• To our knowledge, we are the first to propose 129

an ICL framework that unifies compression, 130

selection, and generation via a single frozen 131

LLM. 132

• UniICL is a memory-friend framework that 133

enables LLMs to perform large-shot ICL on 134

consuming GPUs. 135

• UniICL proposes to configure Demonstration 136

Bank to enhance ICL efficiency, avoiding re- 137

peated compression for the same demonstra- 138

tion. 139
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2 Related Work140

2.1 Soft Prompt Compression141

Recently, researchers attempted to utilize soft142

prompts to convert actual tokens to dense-143

information virtual tokens. Mostly from a distilla-144

tion perspective, Wingate et al. (2022) aligned the145

teacher model and the student model, where the146

teacher model accepted the actual task instruction147

while the student model fed the soft prompt. The148

main drawback of this approach was the lack of149

generalization that necessitated training for each150

lexically different instruction. To tackle the gen-151

eralization problem, Mu et al. (2023) proposed to152

learn a Llama-7b to compress instruction to vir-153

tual tokens, but only compress instruction was not154

powerful enough since the demonstrations were155

much longer in practice. To compress the demon-156

strations, Chevalier et al. (2023) proposed Auto-157

Compressor to recurrently generate compressed158

virtual tokens based on a fine-tuned Llama (Zhang159

et al., 2022). However, AutoCompressor broke160

the independence of demonstrations, and the re-161

current compression increased inference latency.162

Ge et al. (2023) proposed ICAE that employed a163

LoRA-adopted Llama-7b (Touvron et al., 2023)164

to compress the processed demonstrations to com-165

pact virtual tokens, while ICAE still struggled to166

overcome quite long inputs.167

2.2 Extractive Compression168

Apart from employing soft prompts, researchers169

also endeavored to shorten prompts by extracting170

informative tokens from the original ones (Li, 2023;171

Jiang et al., 2023), namely token pruning (Kim172

et al., 2022) or token merging (Bolya et al., 2022).173

Recent works like LLMLingua (Jiang et al., 2023)174

and Selective Context (Li, 2023) shared similari-175

ties but diverged on whether to eliminate tokens176

with high or low Perplexity (PPL). LLMLingua177

emphasized tokens with high PPL, attributing them178

as more influential, resulting in achieving outstand-179

ing performance. As mentioned in their paper, ex-180

tractive compression methods encountered Out-of-181

Distribution (OoD) issues between the extractor182

and the target LLM. To reconcile this, they fine-183

tuned Alpaca-7b (Taori et al., 2023) using the Al-184

paca dataset (Taori et al., 2023) to perform the185

alignment. However, UniICL naturally bypassed186

the distribution-aligned module, since the compres-187

sor and the target LLM were the same.188

Methods Additional Compressor Compression Tool # Trainable Parameters Train Size
LLMLingua YES Pruning 7B 57k
AutoCompressor NO Soft Prompt 7B UNKNOWN
ICAE YES Soft Prompt 70M 240k
UniICL NO Soft Prompt 17M 30k

Table 1: Comparsion among recent compression meth-
ods and UniICL. Compression Tool represents the in-
volved compression technique of different methods.

3 Methodology 189

We propose UniICL, a parameter-efficient ICL 190

framework that unifies demonstration compres- 191

sion, demonstration selection, and response gen- 192

eration via a single LLM. As for the selection of 193

the underlying LLM, previous work has proved 194

that the Decoder-only model performs better than 195

the Encoder-Decoder model in prompt compres- 196

sion (Mu et al., 2023). We follow this conclusion 197

and employ popular Vicuna-7b (Zheng et al., 2023) 198

and BlueLM-7B2 (Team, 2023) as the underlying 199

backbone in UniICL. 200

We present a comparison of training costs be- 201

tween UniICL and other recent compression meth- 202

ods in Table 1. Additionally, we illustrate differ- 203

ences in formulating virtual tokens for compression 204

methods based on the soft prompt in Figure 2. 205

To explain plainly, we ideally assume the com- 206

pressor within three compression methods based on 207

soft prompts has the window limitation of L, and 208

has the same compression ratio, ignoring the length 209

of soft prompts. In the 2-shot scenario, demonstra- 210

tions D1 and D2 have a length of L. Consider- 211

ing the AutoCompressor, the concatenated demon- 212

strations will be divided back into two segments, 213

and the AutoCompressor compresses each segment 214

step-by-step, bringing two times non-parallel com- 215

pression. When it comes to ICAE, merely D1 is 216

accessible for the compressor and others will be 217

read by no means. AutoCompressor shows advan- 218

tages in the readable prompt length, but is short 219

in efficiency, while ICAE has a constant compres- 220

sion complexity but struggles to approach relatively 221

long inputs. Additionally, AutoCompressor makes 222

the compression of later demonstrations be condi- 223

tioned on the previous ones, which breaks demon- 224

stration independence in ICL. 225

Combining the advantages of AutoCompressor 226

and ICAE, UniICL compresses demonstrations in- 227

dependently and introduces virtual tokens concate- 228

nation to overcome long prompt challenges. In the 229

N -shot settings, the number of practical compres- 230

2We mainly discuss UniICL built on Vicuna-7B, the exper-
iments of BlueLM will be exhibited in Appendiex B.
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Figure 2: Differences of compression methods in formulating compressed virtual tokens in ICL.

Figure 3: Demonstration compression.

sion steps can be calculated as ⌈Nk ⌉, where k indi-231

cates that a single GPU is capable of compressing232

k demonstrations in a batch. When the GPU capac-233

ity is sufficient, k equals N , which is the scenario234

of ICAE that compresses all segments in a time235

but UniICL drops nothing, while it degenerates to236

the AutoCompressor scenario that compresses seg-237

ments step-by-step, when the GPU capacity is only238

sufficient to set k = 1.239

3.1 Demonstration Compression240

UniICL introduces memory slots [M] ∈ Rd, a241

learnable d-dimension embedding initialized from242

a rarely used embedding of the target LLM. UniICL243

activates the compression slots to absorb informa-244

tion from demonstrations in the forward propaga-245

tion of frozen Vicuna, as illustrated in Figure 3. We246

first attach k compression slots M = k × [M]247

to each demonstration Di, formatting modified248

prompt fed to the Vicuna. Then, frozen Vicuna249

Figure 4: Demonstrations selection.

forwards the modified prompts and outputs the last 250

hidden states Hi = (h1, h2, ..., hk) on top of the k 251

compression slots, dropping the others3: 252

_, H i = forward(Di ⊕M) (1) 253

Due to the attention mechanism, H i is compelled 254

to attend to the preceding actual tokens. Then, 255

UniICL inserts a projection layer to convert H i 256

into LLM-acceptable compressed virtual tokens 257

Ci = (ci1, c
i
2, ..., c

i
k): 258

cij = Wp · hij , (2) 259

where Wp is the parameters of the projection layer. 260

3.2 Demonstration Selection 261

Except for substituting the origin demonstrations 262

for generation, compressed virtual tokens Ci are 263

representative of demonstrations that can be again 264

applied for demonstration selection, as illustrated 265

3⊕ means token-level concatenation.
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in Figure 4. Specifically, given a query Q and its266

candidate demonstrations (D1, D2, ..., Dn), Uni-267

ICL obtains their latent representation after average268

pooling:269

C̄i
Q/D =

1

k

k∑
j=1

cj . (3)270

We define the i-th demonstration saliency score271

Si via the cosine similarity between Query and272

demonstrations:273

Si = cos(C̄Q, C̄
i
D). (4)274

Demonstrations are then reranked according to275

their saliency scores.276

3.3 In-context Generation277

We employ the frozen Vicuna again to generate278

responses with the guiding of concatenated vir-279

tual demonstrations and queries, as illustrated in280

Figure 5. For m-shot in-context learning, we ob-281

tain m spans of virtual tokens after demonstration282

compression and selection, denoted as C1 to Cm.283

Then, we horizontally concatenate them, keeping284

their relative position unmodified. Finally, the con-285

catenated virtual tokens together with actual infer-286

ence inputs are fed into Vicuna, performing auto-287

regressive generation as normal:288

yi = generate(C1, ..., Cm;Q; y<i) (5)289

Except for the generative manner, virtual tokens290

are conveniently transferred to close-ended evalua-291

tion for understanding tasks through providing the292

candidate answers and measuring the label space293

PPL 4, e.g. (ppl+, ppl−) for sentiment classifica-294

tion:295

y = argmin(ppl+, ppl−), (6)296

where answers with PPL closest to 1 are judged to297

be the current prediction.298

3.4 Training299

The trainable parameters in UniICL are merely300

17M originating from the projection layer Wp and301

the introduced compression slot [M]. The projec-302

tion layer is optimized with the language modeling303

objective of Vicuna to learn a base compression304

model. Then InfoNCE (He et al., 2020) joint with305

language modeling objective are used to augment306

4https://huggingface.co/docs/transformers/
perplexity

Figure 5: In-context generation.

the demonstration selection ability of the base com- 307

pression model: 308

L = Llm + Lctr. (7) 309

Specifically, we slice the source input of each train- 310

ing instance into two parts and randomly compress 311

one, denoted the compression part as xc and the 312

unmodified as xu. Afterward, we attach M to xc 313

and get virtual tokens C on top of the compression 314

slots, as described in Equ. 1 and Equ. 2. Therefore, 315

the language modeling loss Llm is obtained as: 316

Llm = − 1

|y|
∑
t=0

logP (yt|Q;C; y<t), (8) 317

where y is the reference label of the current train- 318

ing instance. Additionally, to approach the large- 319

shot settings without significant truncation, we in- 320

troduce concatenation compression. When xc ex- 321

ceeds the window limitation for compression, Uni- 322

ICL further divides xc into acceptable ranges and 323

compresses them independently to get local vir- 324

tual tokens. Then, these virtual tokens of several 325

segments will be concatenated to formulate global 326

virtual tokens to replace xc. 327

Consequently, we utilize contrastive learning for 328

selection augmentation and mine positives and neg- 329

atives as illustrated in Figure 6. Specifically, given 330

each training instance Q and n candidate demon- 331

strations (D1, D2, ..., Dn) from two non-crossing 332

training subsets, we employ Vicuna to calculate the 333

PPL concerning the golden label of Q, denoted as 334

pplQ. Then, we provide the i-th demonstration and 335

calculate PPL concerning the golden label of Q, 336

denoted as (pplDi , i ∈ [1, n]). We count pplQ as 337

the baseline and calculate candidate relative PPL 338

gains: 339

p̃plDi = pplQ − pplDi , i ∈ [1, n]. (9) 340
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Figure 6: Negatives mining pipeline.

Hence, C+
D (C−

D) is the representation of demon-341

strations D+ (D−) that furthest reduces (increases)342

pplQ as processed in Equ. 3, and the contrastive343

loss Lctr can be formulated as:344

Lctr =
exp(cos(CQ, C

+
D))

exp(cos(CQ, C
+
D)) + exp(cos(CQ, C

−
D))

.

(10)345

In particular, if all relative PPL gains are less than346

0, namely none of the candidate demonstrations347

help guide Vicuna to generate the golden label, we348

will apply the other set of candidates.349

4 Experiment350

4.1 Baselines351

Naive Vicuna-7b serves as the fundamental base-352

line fed into actual demonstrations. AutoCom-353

pressor recurrently compresses demonstrations into354

virtual tokens. We employ their Llama2-7b ver-355

sion5. LLMLingua is a coarse-to-fine demonstra-356

tion pruning method based on dropping uninforma-357

tive words. We employ their released 7b version6,358

of which compressor is a fine-tuned Llama-2. For a359

meaningful comparison, we replace target LLMs360

of LLMLingua (GPT-3.5-Turbo or Claude-v1.3)361

with the Vicuna-7b. ICAE7 compresses demon-362

strations into soft prompts via a LoRA-adapted363

Llama2-7b.364

Additionally, since selection augmentation is in-365

volved in the training of UniICL, we utilize the366

popular Sentence-BERT (S-BERT) (Reimers and367

Gurevych, 2019) as the dense retriever to construct368

an ICL pipeline for the above methods, serving as369

simple but effective selection-based baselines.370

5https://github.com/princeton-nlp/
AutoCompressors.

6https://github.com/microsoft/LLMLingua.
7https://github.com/getao/icae.

4.2 Settings 371

Considering the involved datasets and computation 372

efficiency, we set the max allowed input length 373

limit to 512 for both compression and generation. 374

For a fair comparison, we set the allowed window 375

of baselines to 512 and their compression ratio to 376

the same as UniICL. We fix the learning rate to 8e- 377

5 and use Adam as the optimizer, and the effective 378

batch size is 32 (8 GPUs data parallelism and 4 379

steps gradient accumulation). Additionally, we 380

conducted all experiments on 8*NVIDIA A5000 381

24G GPUs based on BFloat 16 data type, and we 382

set the evaluated shot to 8 for understanding tasks 383

and 5 for generative tasks for illustration because 384

of marginal ICL gains and memory costs. 385

We apply S-BERT to pre-rank and output the top 386

10 similar candidates from training sets according 387

to each inference input for all baselines. UniICL is 388

employed to perform selection among them in prac- 389

tice due to computation efficiency for high-resource 390

ICL. On the contrary, the low-resource ICL setting 391

fixes the random candidate demonstrations to 20 392

for all inference inputs, performing pre-ranking 393

and selecting as well. 394

4.3 Results 395

We comprehensively evaluate the ICL performance 396

of UniICL on the out-domain dataset CoLA, SST-2, 397

and IMDb by close-ended evaluation and ARXIV 398

by open-ended evaluation, as demonstrated in Ta- 399

ble 2. Specifically, UniICL outperforms naive 400

Vicuna-7b fed with actual candidate demonstra- 401

tions, which indicates that virtual demonstrations 402

are more efficient and informative for guiding the 403

target LLM, and UniICL outperforms all the base- 404

lines by compressing the same demonstrations pre- 405

ranked by S-BERT. Additionally, UniICL achieves 406

further performance gains after selecting demon- 407

strations via itself. Additionally, open-ended re- 408

sults indicate that virtual demonstrations still effi- 409

ciently capture semantic information for ICL guid- 410

ing, even though summarization demonstrations 411

are much longer than understanding ones. Regard- 412

ing ARXIV, the original ICL is not helpful enough 413

due to its extremely over-length document, leav- 414

ing little room for demonstrations. UniICL works 415

as expected by compressing demonstrations and 416

concatenating virtual demonstrations, and achieves 417

+2.8 R-1 gains in the 5-shot setting that selects 418

demonstrations via selection-augmented virtual to- 419

kens. 420
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Model #-shots
CoLA-dev SST-2-dev IMDb ARXIV XSum

Acc. R-1 R-2 R-L R-1 R-2 R-L

Vicuna

0-shot 56.2 91.7 92.6 34.3 9.1 27.4 19.9 5.0 13.5
1-shot 58.2 (57.4) 90.7 (90.8) 91.9 (91.0) 34.4 (33.2) 9.1 (8.5) 27.5 (26.7) 21.2 (20.4) 5.8 (5.2) 14.5 (13.9)
2-shot 62.1 (59.8) 92.1 (91.3) 91.7 (91.7) - - - - - -
5-shot 62.3 (61.9) 93.0 (91.9) 94.1 (92.5) - - - - - -

AutoCompressor
1-shot 42.1 (40.9) 85.7 (84.2) 95.0 (95.1) 27.0 (26.4) 8.4 (8.2) 26.1 (25.8) 21.3 (20.3) 6.5 (6.3) 13.7 (13.7)
2-shot 58.8 (56.3) 88.0 (86.4) 95.0 (94.6) 27.1 (26.2) 8.6 (7.9) 26.4 (25.4) 21.9 (21.4) 6.6 (6.4) 14.5 (14.1)
5-shot 59.1 (58.8) 91.3 (89.1) 94.7 (94.8) 34.5 (33.7) 9.4 (9.1) 28.7 (27.9) 22.4 (21.7) 6.9 (6.7) 14.8 (14.3)

LLMLingua
1-shot 55.5 (55.0) 89.7 (89.6) 91.0 (89.9) 33.3 (33.1) 8.9 (8.7) 27.4 (27.1) 20.5 (19.7) 5.4 (5.2) 14.5 (14.4)
2-shot 56.7 (55.7) 90.7 (90.2) 91.3 (91.0) 32.9 (32.0) 8.2 (8.1) 26.9 (25.9) 20.3 (20.0) 5.2 (5.1) 14.3 (14.1)
5-shot 57.2 (56.9) 90.6 (90.2) 90.9 (91.2) 30.1 (29.7) 7.9 (7.4) 25.3 (24.6) 19.7 (18.6) 4.9 (4.9) 14.1 (14.3)

ICAE
1-shot 30.9 (30.9) 61.0 (60.1) 85.7 (83.3) 26.8 (24.6) 8.2 (7.1) 24.7 (22.9) 23.5 (21.9) 8.5 (7.8) 20.9 (20.3)
2-shot 30.9 (30.9) 49.0 (52.8) 85.9 (85.9) 27.2 (25.5) 8.4 (7.6) 25.9 (24.3) 24.4 (23.2) 8.9 (8.4) 21.3 (20.8)
5-shot 30.9 (30.9) 54.2 (51.0) 85.7 (85.9) 28.3 (26.9) 8.7 (7.7) 26.6 (25.8) 25.3 (24.9) 9.2 (8.8) 22.5 (21.6)

UniICL
1-shot 58.7 (58.0) 92.9 (91.7) 94.3 (92.3) 35.5 (34.7) 10.5 (10.2) 28.7 (27.9) 27.7 (25.5) 10.2 (9.1) 21.2 (20.0)
2-shot 62.4 (61.0) 92.4 (91.6) 94.9 (93.3) 36.1 (35.2) 10.8 (10.4) 29.4 (28.2) 29.4 (26.8) 11.0 (9.8) 22.3 (20.9)
5-shot 62.6 (61.8) 93.1 (92.3) 94.5 (94.0) 35.8 (35.4) 10.6 (10.2) 29.5 (28.1) 30.7 (27.6) 11.3 (10.1) 22.8 (21.4)

UniICL♠

1-shot 59.1 (58.7) 93.0 (91.9) 94.5 (91.6) 34.8 (34.7) 10.4 (10.3) 28.1 (27.8) 29.1 (26.2) 10.8 (9.4) 22.2 (20.7)
2-shot 62.6 (61.2) 94.0 (93.0) 94.9 (92.3) 34.6 (34.3) 10.6 (10.4) 28.5 (28.3) 30.3 (28.9) 11.3 (10.5) 22.9 (21.7)
5-shot 63.3 (61.5) 94.7 (92.8) 95.0 (93.8) 35.6 (35.3) 11.0 (10.8) 29.1 (27.7) 31.1 (30.0) 11.7 (11.2) 23.5 (22.3)
8-shot 63.8 (62.6) 94.7 (93.1) 95.0 (94.2) - - - - - -

UniICL♠ + Lctr

1-shot 59.3 (58.9) 93.2 (92.4) 95.1 (92.8) 35.6 (35.1) 10.7 (10.5) 28.9 (28.3) 30.0 (27.9) 11.3 (10.1) 22.8 (21.5)
2-shot 62.4 (62.0) 94.5 (92.8) 94.8 (93.4) 36.8 (35.3) 10.8 (10.6) 29.6 (28.9) 30.8 (29.2) 11.4 (10.7) 23.0 (21.9)
5-shot 64.3 (61.8) 94.7 (93.4) 96.1 (94.2) 37.1 (34.9) 11.3 (11.2) 30.0 (29.3) 32.5 (30.6) 12.3 (11.8) 24.7 (23.8)
8-shot 64.7 (63.3) 94.7 (94.1) 95.6 (95.0) - - - - - -

Table 2: The high- and low-ICL results on CoLA-dev, SST-2-dev, and IMDb. Results in () represent low-resource
ICL. ♠ represents the demonstrations selected by UniICL, and the others are selected by S-BERT. +Lctr indicates
the selection augmented UniICL (optimized with Equation 7). Bold (underline) represents the best performance on
high- and low-resource ICL.

Method MS MARCO
BM25† 18.5
Vicuna 28.9
AutoCompressor 29.3
ICAE 30.2
UniICL 31.6

Table 3: Results on MS MARCO. Vicuna applies the
last hidden states of [EOS] to represent sentences in
latent space. Following the previous study, we report
MRR@10. † means citing from Liang (Wang et al.,
2022).

Furthermore, The ablation experiments of +Lctr421

show that UniICL is faced with performance degra-422

dation without Lctr and the performance gap be-423

comes larger with the number of demonstrations424

increasing. The results of BlueLM are exhibited425

in Appendiex B.426

Passage Ranking Since the virtual tokens natu-427

rally summarize semantic information of preceding428

sequences, we evaluate UniICL on the out-domain429

MS MARCO dataset in Table 3. UniICL signif-430

icantly outperforms the sparse retrieval method431

BM25 algorithm and other compression methods.432

Notably, we don’t compare UniICL with the popu-433

lar retrieval models (Reimers and Gurevych, 2019;434

Wang et al., 2024) since most of them are fine-tuned435

Figure 7: The overall sensitivity analysis of compression
ratio.

on this dataset, which is unfair for comparison. 436

5 Analysis 437

5.1 Compression Ratio 438

During training, the compression ratio is dynam- 439

ically sampled from 2 to 16. We mix up 2,000 440

instances from the in-domain validation set, 1,000 441

for XSum, and 1,000 for CICERO to select the 442

compression ratio for UniICL in Figure 7, with 443

the backbone of Vicuna and BlueLM respectively. 444

Specifically, UniICL compresses the latter cut-off 445

part while keeping the former ones uncompressed. 446
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Figure 8: The efficiency comparison between UniICL
and other compression methods in CoLA with the num-
ber of shots increasing from 0 to 64. Memory explodes
are represented as *, corresponding to the break of the
line chart.

Method GPUHours TFLOPs TMACs
Vicuna 1.5 86,20 4,309
Vicuna-1k 1.9 31,664 15,832
UniICL 1.6 22,437 11,218

Table 4: The computation efficiency of UniICL.

Therefore, we can measure the dense information447

quality of the same content with different compres-448

sion ratios by ROUGE-1 since it is more sensitive449

to token-level differences. The performance is rela-450

tive smoothing when the compression ratio changes451

from 4× to 12×. However, when it comes to 16×,452

an obvious drop occurs. Therefore, we set the com-453

pression ratio to 12 by default and apply this ratio454

to all experiments. The 512× compression ratio is455

equal to compressing anything to a single virtual456

token, due to the maximum allowed input length457

for compression being 512.458

5.2 Efficiency Analysis459

In UniICL, we incorporate an additional 17M train-460

able parameters into the 7b backbone, accounting461

for an approximate increase of 0.24%. We evalu-462

ate the memory costs inference latency of UniICL463

and other compression methods in Figure 8. With464

the help of the Demonstration Bank (DB), Uni-465

ICL will eliminate the extra latency if the selected466

demonstrations have been compressed and cached467

(UniICL+Caching). Despite this, parallel computa-468

tion facilitates the compressing process, resulting469

in minimal throughput degradation (UniICL and470

Baseline). The naive 7B LLM occurs memory ex-471

plosion for 8-shot settings and other compression472

methods perform up to 32-shot, while UniICL suc- 473

cessfully scales up to 64-shots within 24GB CUDA 474

allocation. 475

Additionally, We demonstrate the inference com- 476

putation and GPU hours in Table 4, by using 1,024 477

random legal tokens as inputs and forcing models 478

to generate 128 tokens. Notably, UniICL (with- 479

out DB) compresses the former half, and the latter 480

half is fed into the generator directly, while Vicuna 481

and Vicuna-1k are distinguished in window limi- 482

tations. Results indicate that minimal GPU hours 483

increased due to the parallel computation of for- 484

ward, although the extra compression of UniICL 485

surges the computation. Additionally, Vicuna with 486

a 1k window limitation surges both GPU hours 487

and TFLOPs because long input brings significant 488

computation and latency in generation. 489

5.3 Training Deviation 490

To quantify the performance gains brought by the 491

learnable projection layer. We tune Vicuna and 492

BlueLM with comparable parameters (17M) with 493

LoRA in Table 5, setting the rank to 32. UniICL 494

still outperforms LoRA-adapted LLMs with a 512 495

window limitation, indicating that the truncation 496

indeed brings performance degradation. 497

6 Conclusion 498

This paper proposes UniICL, a parameter-efficient 499

ICL framework that unifies demonstration selec- 500

tion, demonstration compression, and final re- 501

sponse generation via a frozen LLM. Experimental 502

results show that the generated virtual tokens sub- 503

stitute the 12× longer actual demonstrations with 504

minimal time expenditure, scaling up the number 505

of demonstrations from 4 to 64. 506

7 Limitations 507

Our study, while proposing an efficient unified ICL 508

framework for demonstration compression and se- 509

lection, still has limitations. Firstly, UniICL is 510

limited to the realm of naive ICL leaving other 511

advanced LLM prompting methods, e.g. Retrieval 512

Augment Generation (RAG) and Chain-of-Thought 513

(CoT) unexplored. Limited to the hardware, we 514

employ the underlying LLM at a scale of 7 billion 515

parameters. Larger-scale LLMs are welcome to 516

enrich our findings in future studies. 517
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A In-Domain Evaluation696

Backbone Method
XSum CICERO

R-1 R-2 R-L R-1 R-2 R-L

Vicuna-7b

Vicuna 19.9 5.0 13.5 17.3 3.3 14.3
+LoRA 25.4 7.5 17.3 28.1 10.5 25.6

Vicuna-1k 27.3 8.7 19.7 30.5 11.3 27.4
+LoRA 31.2 11.0 23.1 34.1 13.5 30.2

UniICL 30.0 10.2 22.3 32.6 12.2 28.8

BlueLM-7b

BlueLM 15.0 3.6 10.4 17.6 3.1 15.0
+LoRA 23.1 7.6 17.4 21.9 7.8 19.8

BlueLM-1k 28.1 9.9 22.8 25.1 9.2 23.1
+LoRA 30.8 10.5 24.6 31.2 10.8 27.4

UniICL 30.4 10.2 23.7 29.2 10.0 26.6

Table 5: The in-domain results and ablation studies on
XSum and CICERO. 1k represents the extending 1k
window limitation, while others have a limitation of
512.

We conduct the zero-shot in-domain generation697

evaluation on the entire test set of XSum and CI-698

CERO in Table 5 by compressing the latter half to699

virtual tokens and keeping the former unmodified.700

UniICL significantly outperforms the baselines, in-701

dicating the compressed virtual tokens can provide702

the original truncated information by recovering703

the cut-off parts after supervised fine-tuning. Al-704

though extending the window to 1k, Vicuna and705

BlueLM still underperform UniICL, indicating that706

compressed virtual tokens filter noise information707

to some extent.708

B Results on BlueLM709

We extra conduct experiments on BlueLM (Team,710

2023) to verify the generality of UniICL. We711

demonstrate the result of understanding tasks in712

Table 6, of the generative tasks in Table 7.713

Model #-shots
CoLA-dev SST-2-dev IMDb

Acc.

BlueLM

0-shot 71.6 81.2 48.8
1-shot 69.6 82.6 64.8
2-shot 70.0 87.0 65.6
5-shot 70.5 88.6 68.7

UniICL
1-shot 69.6 81.2 65.4
2-shot 68.7 82.6 67.0
5-shot 71.7 87.0 70.4

UniICL♠

1-shot 69.8 80.0 62.0
2-shot 70.1 80.8 67.0
5-shot 71.8 85.6 69.6
8-shot 72.3 87.4 69.4

UniICL♠ + Lctr

1-shot 70.1 80 69.6
2-shot 70.3 87.2 70.6
5-shot 71.1 89.2 71.0
8-shot 72.5 90.4 76.8

Table 6: The ICL results of understanding tasks with
the backbone of BlueLM.

Method #-shots
XSum ARXIV

R-1 R-2 R-L R-1 R-2 R-L

BlueLM
0-shot 15.0 3.6 10.4 30.9 7.7 24.7
1-shot 19.1 4.8 12.1 23.0 3.6 19.0

UniICL
1-shot 24.0 6.9 18.0 31.4 7.7 25.2
2-shot 25.0 7.3 18.8 30.8 7.3 24.8
5-shot 25.3 7.4 19.1 31.9 7.8 26.0

UniICL♠
1-shot 25.2 7.4 18.9 31.6 7.9 25.4
2-shot 25.4 7.6 19.1 31.9 8.0 25.6
5-shot 26.5 7.9 20.3 32.1 8.0 25.5

UniICL♠ + Lctr

1-shot 24.7 7.2 18.5 31.0 7.5 24.9
2-shot 25.1 7.4 19.0 31.2 7.7 25.1
5-shot 26.3 7.6 20.0 31.5 7.9 25.3

Table 7: The ICL results of generative tasks with the
backbone of BlueLM.

Dataset
# words

(96,512] (512,1024] (1024,1536]
XSum - 10,000 4,697
CICERO 10,000 - -
SUPER-NI - 10,000 7,000
XSum (Ctr) 5,000

Table 8: The composition training set of UniICL. (m,n]
represents the range of the number of words in each in-
stance. XSum (Ctr) is used for the second phase training
in Equation 7.

C Datasets & Metrics 714

C.1 Datasets 715

We mix up two public datasets for compression and 716

selection augmentation training, described in Ta- 717

ble 8. Additionally, UniICL achieves outstanding 718

performance on out-domain evaluation, involving 719

text summarization (Narayan et al., 2018), passage 720

ranking (Nguyen et al., 2016), sentiment classifica- 721

tion (Maas et al., 2011; Socher et al., 2013), and lin- 722

guistic acceptability (Warstadt et al., 2018), more 723

details referring to Table 9. UniICL selects demon- 724

strations from its training set in high-resource ICL, 725

and we fixed the number of candidate demonstra- 726

tions to 20 for low-resource ICL evaluation. 727

Dataset Task In-Domain # Test # Demonstrations
MS MARCO-dev Passage Ranking % 6,980 -
XSum Text Summarization ! 1,500 204,045/20
ARXIV Text Summarization % 1,500 203,037/20
CoLA-dev Lingustic Acceptability % 1,041 67,349/20
SST2-dev Sentiment Classification % 872 8,551/20
IMDb Sentiment Classification % 1,500 25,000/20

Table 9: The details of involved evaluation datasets. -
dev represents employing development set due to their
test sets are inaccessible. # Demonstrations represent
the number of demonstrations to be selected in high/low-
resource ICL settings.
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C.2 Evaluation Metrics728

ROUGE (Lin, 2004) is a widely adopted metric in729

many generative tasks that evaluate how similar the730

generated hypothesis is to the golden label. There-731

fore, ROUGE is used in our experiments to evalu-732

ate the quality responses generated conditioned on733

compressed virtual tokens, and we report the F-1734

scores of ROUGE-1, ROUGE-2, and ROUGE-L735

(abbreviated R-1, R-2, R-L in the following), and736

we employed the files2rouge 8 library in practice.737

Following the previous works, we report the accu-738

racy of close-ended evaluation and MRR@10 for739

passage ranking.740

8https://github.com/pltrdy/files2rouge.
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