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Abstract

Artificial Neural Networks (ANNs) have revolutionized data compression by ef-
fectively learning nonlinear transformations directly from data. The Nonlinear
Transform Coding (NTC) framework has demonstrated notable success in achiev-
ing favorable rate–distortion trade-offs, particularly for real-world multimedia
such as image and video. Despite this progress, fundamental questions remain
about whether NTC can compress various types of input sources optimally, and
if not, where and why it falls short. To investigate these questions, we focus
on simpler, closed-form sources where optimal compression strategies are well-
characterized using tools from information theory. Reviewing key failure modes in
NTC-based compressors from the literature points to a common underlying issue:
their difficulty in learning high-frequency and discontinuous functions, leading
to suboptimal compression performance compared to the information-theoretic
optimum in certain setups. We also review several remedies that alleviate these
failure modes, including a new one based on Fourier embeddings. By drawing a
connection between these suboptimalities, our work provides a unified and fresh
perspective on understanding them, thereby representing a step toward improving
neural data compression.

1 Introduction

Artificial Neural Networks (ANNs) have demonstrated remarkable versatility across diverse tasks,
revolutionizing many fields such as computer vision and natural language processing. Their ability to
learn complex and nonlinear relationships makes them particularly effective for data compression,
where they can represent high-dimensional data compactly while maintaining reasonable distortion
(fidelity) values. Leveraging this capability, the Nonlinear Transform Coding (NTC) framework [1],
which encompasses most published neural compressors [e.g., 2–4], has emerged as a highly com-
petitive approach for lossy compression, particularly for image and video data [5, 6]. Unlike the
Karhunen–Loève Transform or the Discrete Cosine Transform, which are limited to linear trans-
formations, NTC leverages the universal function approximation capability of ANNs [7, 8] for
nonlinear dimensionality reduction, learning all transforms directly from data and achieving superior
rate–distortion trade-offs, especially for multimedia sources.

Despite the ongoing success story of NTC, fundamental questions remain: Is the compression perfor-
mance of NTC optimal or near-optimal? Can the learning capabilities of NTC-based compressors be
improved further? To address these questions, we turn our attention to simpler source models and
consider the problem through an information-theoretic lens. This involves comparing the compression
performance achieved by NTC against known theoretical limits. The advantage of focusing on these
simpler synthetic sources is that, unlike real-world image and video data, their optimal compression
strategies and/or rate–distortion trade-offs can be explicitly characterized using tools from information
theory. By comparing NTC’s performance against these theoretical benchmarks, its potential failure
modes can be identified.



To understand how NTC handles different compression setups, we first examine compression of
several stylized source models that reveal both its strengths and weaknesses; we refer to this first
setting as the point-to-point (i.e., one encoder, one decoder) case. One such source is the sawbridge
process [9], for which NTC compresses the process optimally. We then consider more complex
sources, such as the circle and ramp processes [10], both of which introduce circular topologies, and
for which naively using NTC-based compressors results in performance degradation. We examine
modifications to NTC that enable it to compress these sources more effectively and, in some cases,
near-optimally. The failures are apparently tied to the circular topologies, which necessitate sharp
discontinuities in either the encoder or decoder transforms. This is in line with the observation that
neural networks have an inherent smoothness bias [11–14].

Separately, a similar limitation of NTC has been observed in the context of distributed compres-
sion [15–17] (i.e., multiple encoders). In such scenarios, the encoders are able to send only partial
information, because what is missing can be recovered at the decoder side due to known correlations
between the various sources. Here, the failure modes of NTC [18, Sec. 2] appear to be connected
with the technique of binning [19], which is an effective strategy to reduce the compression rate for
typical correlation patterns. Binning groups together source realizations appearing in distant regions,
which translates to discontinuities in the encoder transform, similar to the circular setups mentioned
above. Likewise, we discuss remedies that enhance NTC’s compression performance in distributed
setups by replacing the Euclidean/continuous latent space with a categorical one [20, 18]. The two
failure cases thus appear to have the same fundamental root cause, which we discuss further in the
final section.

2 The Point-to-Point Case

The conceptual basis for classical compression algorithms such as linear transform coding (as
in JPEG), is the rate–distortion theory of stationary Gaussian sources with mean-squared error
(MSE) distortion [21, Sec. 4.5.2]. This theory asserts that nonlinear transforms are not needed;
linear decorrelating transforms combined with entropy-coded quantization is close to optimal [22,
Sec. 5.6.2]. The fact that, for images, NTC provides superior compression to methods that follow this
architecture indicates that new source models are needed to explain the effectiveness of NTC and to
identify its limitations.

Given that the distribution of natural images has long been suspected to be supported by a low-
dimensional manifold in pixel-space [e.g., 23], it is reasonable to conjecture that ANN-based com-
pressors excel at compressing sources with low-dimensional manifold structure in a high-dimensional
ambient space. Hence, it is natural to consider simple source models that exhibit similar structure. To
this end, Wagner and Ballé [9] propose considering the sawbridge process, which was previously
studied in the survey by Donoho et al. [24]. This process is characterized by a jump from the “rail” t
to the “rail” t− 1 at a random time over [0, 1]. More precisely, let U be uniformly distributed over
[0, 1] and define the continuous-time process as:

X(t) = t− 1(t ≥ U) t ∈ [0, 1]. (1)

Since the process is completely determined by the realization of U , the set of realizations form a 1-D
curved manifold in function space. Wagner and Ballé characterize the optimal one-shot compression
performance for this source under an MSE distortion measure, and they find that an NTC-based
compressor trained on sawbridge realizations empirically achieves this optimal performance [9].

Curiously, they find that this does not extend to other, similar sources. The ramp source, obtained by
applying a random cyclic shift to the function t 7→ t− 1/2 over the interval [0, 1], is defined as:

Y (t) = [(t+ U) mod 1]− 1/2 t ∈ [0, 1]. (2)

Here, the manifold of realizations is again one-dimensional, but now it forms a circle. Bhadane et
al. [10] characterize the optimal one-shot compression performance and show that the encoder should
send a quantized version of U to the decoder, which should then output the minimum mean-squared
error estimate of the ramp process {X(t)}1t=0 given this information. They find that NTC-based
compressors with 1-D latent spaces are optimal at low rates but not at high rates (Fig. 1b).

Bhadane et al. note that the reason this source is difficult for NTC compressors to handle can be
understood by considering an even simpler source, namely the circle, where data points are distributed
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Figure 1: Results of training NTC. (a) Quantized encoder output vs. angle U for the circle and 1-D
latent, taken from [10, Fig. 4a]. Even ignoring the effects of quantization, the encoder is not invertible
because its implementation of the step discontinuity is insufficiently steep. (b) Rate–distortion curves
for the ramp. Dashed black: theoretical lower bound [10]. Solid black: theoretical upper bound on
the optimal performance [10]. Blue: NTC without the aid of Fourier features [10, Fig. 3]. Orange:
NTC with decoder provided random Fourier features of the 1-D latent (proposed, Sec. 2.2).

uniformly along a unit circle: X⃗ = [cos(2πU) sin(2πU)]. This process exhibits “low-dimensional
structure in high-dimensional space” in that the dimension of the manifold is one while the dimension
of the ambient space is two. An optimal one-shot compressor for this source is to communicate a
uniform quantization of U [10]. NTC-based compressors with a 1-D latent space are not optimal for
this source at high rate, and the reason is illustrative. To approach optimality, at the encoder side,
NTC must learn to implement the map X⃗ 7→ h(U) for some invertible function h(·). The issue is that
the map X⃗ 7→ h(U) must be discontinuous if h(·) is invertible, but, as hypothesized by Bhadane et
al., the neural network at the encoder can only implement continuous maps. For simplicity, assuming
h(·) to be identity, the function X⃗ 7→ U has a step discontinuity around X⃗ = (1, 0). In practice, the
training process learns a smoothed version of this function, which means the nonlinear transform at
the encoder is not invertible (Fig. 1a). Therefore, the decoder cannot determine the source realization
even if no quantization is performed. At low rate, this identifiability problem is dominated by the
quantization error and has a negligible effect. At high rate, however, it prevents NTC from achieving
the optimal performance [10, Fig. 1]. For the ramp, the problem turns out to be similar (Fig. 1b)
but now with the roles of the encoder and decoder reversed. It is trivial for the encoder to learn a
map X 7→ h(U) for some invertible function h(·): the coordinate function X 7→ X(t0) serves this
purpose for any fixed time t0. The problem is that for any time t1, the map U 7→ X(t1) has a step
discontinuity, so the decoder has to implement many discontinuous functions (one for each time
sample at the output).

2.1 Adding Latent Dimensions and Increasing Batch Size

Bhadane et al. [10] show that for the circle, the problem of the discontinuity at the encoder can
be alleviated by moving to a 2-D latent space. The idea is that one latent can convey how far the
source realization is from a pole, and the other can be used to transmit a single bit indicating which
hemisphere the point is in. This approach does not solve the problem for the ramp, however [10,
Fig. 3]. Tancik et al. [11] argue via a neural tangent kernel analysis that stochastically trained
ANNs are biased towards smoothness because they learn low-frequency functions quickly and high-
frequency functions slowly. In line with this, Bhadane et al. also show that increasing the batch size
helps close the gap to optimality [10, Fig. 1], as it reduces stochasticity of the training process, and
hence the smoothness bias.

2.2 Expanding the Source Space with Fourier Embeddings

Following the remedy originally discussed by Tancik et al. [11], we can also expedite the learning
of high-frequency functions by supplying random Fourier features of the input to the ANNs. The
desired functions are then easier to synthesize from the inputs available to the network.
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In the context of the ramp, we propose a new approach. Instead of supplying the ANN at the decoder
with the (1-D) latent variable Y as in [10], we now input the vector:

(cos(a1Y ), cos(a2Y ), . . . , cos(amY )), (3)

where the parameters a1, . . . , am are i.i.d. N (0, σ2), and m and σ2 > 0 are hyperparameters. We
find that the performance is sensitive to the choice of m and σ2, but with appropriate choices of these
hyperparameters the performance can be made quite close to the optimal rate–distortion trade-off for
the ramp [10, Thm. 5] (Fig. 1b).

The two sources for which this phenomenon arises, the circle and the ramp, both take the form of
circular manifolds. This raises the question of whether the phenomenon is peculiar to sources with
circular symmetry. In the next section, we shall see that when one moves from the point-to-point
setting to distributed scenarios, then similar issues arise even for Gaussian sources.

3 The Distributed Case: Side Information at the Decoder

Distributed compression considers the problem of efficiently compressing correlated sources from
encoders that do not directly communicate with each other, but whose outputs are decoded jointly [15].
While the theory predicts substantial improvements in compression efficiency over point-to-point
setups, practical implementations have lagged, primarily due to the challenge of handling complex
correlations between and within the sources [17]. Here, we focus on a lossy compression setup
characterized by Wyner and Ziv [16], which represents a simpler special case where the decoder has
lossless access to a correlated source, the side information, yet still captures the core challenges of
distributed compression. Note that the Wyner–Ziv (W-Z) rate–distortion (R-D) bound has been well
characterized for Gaussian sources with linear correlation under the MSE distortion metric in the
asymptotic regime [16], i.e., when compressing many source realizations at the same time.

To evaluate how NTC performs in a W-Z setup, Ozyilkan et al. [18] consider a simple test
case involving a one-shot compression setting (i.e., compressing one source realization at a
time) where the decoder has access to a version of the source corrupted by additive noise.
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Figure 2: Lossy compression with
decoder-only side information, the
Wyner–Ziv setup, in the one-shot
regime.

Specifically, let X be the input to the encoder and Y the side
information available at the decoder (Fig. 2), where both are
zero-mean, stationary Gaussian memoryless sources. The cor-
relation model is given by X = Y + N , having independent
Y ∼ N(0, 1.0) and N ∼ N(0, 0.1).

By evaluating various learned compressors operating under
different trade-offs, Ozyilkan et al. [18] report that, at low rates,
the NTC-based framework achieves slightly better performance
than the R-D bound of the setup without side information (Fig. 4
in the Appendix). Analyzing the transform functions recovered
by these NTC models reveals that this class of neural compressors learns exactly symmetric groupings
around (x = 0) in the source space at low rates, allowing it to make limited use of the side information
(Fig. 5 in the Appendix). However, at higher rates, Ozyilkan et al. find no evidence of grouping in
the source space (not shown) and as a result, the NTC-based compressor performs not much better
the R-D bound without side information (Fig. 4).

Analogous to, but independent of the point-to-point case (Sec. 2), the authors attribute this suboptimal
performance to NTC’s inability to learn discontinuous many-to-one functions. However, in the
present case, the necessity for discontinuities does not arise from source topology, but is likely
linked to binning. While the W-Z achievability proof is non-constructive by nature, it involves
random binning arguments, and existing constructive approaches to distributed compression are also
based on binning [25]. Since binning is intrinsically discontinuous, this suggests that a practical
distributed compressor may need to learn discontinuous functions to achieve efficient compression.
The two solutions proposed by Ozyilkan et al. are to replace the Euclidean latent space of NTC with
a categorical space.

3.1 Concrete Distribution for Continuous Relaxation

In [20], the encoder is a structured vector quantizer, parameterized by a neural network. This network
outputs a vector (α1, . . . , αK), where K is the length of the codebook, and the quantization index
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(a) Neural distributed compressor us-
ing Concrete distribution [26], taken
from [20, Fig. 2a].
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(b) Neural distributed compressor
using variational ECVQ formula-
tion, taken from [18, Fig. 5a].

Figure 3: Visualizations
of the learned encoder out-
put u and neural decoder
x̂ = gϕ(u, y) for the Gaus-
sian Wyner–Ziv setup. The
dashed lines are quantiza-
tion boundaries, with col-
ors representing unique val-
ues of u. The decoding
function is shown for each
value of u using the cor-
responding color. Both
models outperform the rate–
distortion function without
side information (Fig. 4).

is chosen as u = argmaxi αi, i.e., the largest element of this vector. This enables the encoder to
recover the equivalent of discontinuous maps in NTC: For the same index k to be chosen in disjoint
regions of the source space (for example, yellow regions as in Fig. 3(a)), the map x 7→ αk (where x
is a realization of X) can still be a smooth function. The decoder is given by another neural network
gϕ(u, y) parameters ϕ, outputting the reconstruction x̂.

However, since the argmax operation is not differentiable, training of this model using stochastic
gradient descent (SGD) is a challenge. The authors leverage the Concrete distribution [26], a proxy
for the argmax which is both stochastic and soft, making it differentiable. Instead of yielding a
single quantization index u, they obtain a distribution over the interior of the K-simplex, defined
using a softmax function as:

Uk =
exp((αk +Gk) / t)∑K
i=1 exp((αi +Gi) / t)

, (4)

where Gk are i.i.d. samples from a standard Gumbel distribution. Here, t is a temperature parameter
that controls the degree of relaxation, allowing the sampling process to smoothly transition from soft
to hard as t → 0+. However, even at t = 0, Uk is still a distribution over quantization indices, which
represents a mismatch between training and inference.

As shown in the visualization of the learned compressor obtained with this formulation in Fig. 3(a), it
enables the learned compressor to recover binning behavior, as evidenced by the periodic grouping in
the source space, in contrast to the strictly symmetric grouping achieved by NTC (Fig.5). This leads
to improved compression performance, as illustrated in Fig. 4, by making more efficient use of side
information Y during the compression of X .

3.2 Variational Entropy-Constrained Vector Quantization (ECVQ)

In [18], the encoder is of the form of a classical entropy-coded vector quantizer (ECVQ) [27],
choosing the best possible codeword by exhaustively evaluating all options, while the decoder is still
implemented by a neural network. This clearly enables the encoder to implement arbitrary maps.

For a given X = x, Ozyilkan et al. [18] set the encoder function as:

u = argmin
k∈K

Ep(y|x)

[
− log pξ(k)︸ ︷︷ ︸

rate

+λ · d(x, gϕ(k, y))︸ ︷︷ ︸
distortion

]
, (5)

where gϕ(k, y) is the decoder, as above, and pξ(k) =
exp ξk∑K
i=1 exp ξi

represents the entropy model, where
ξ denotes a vector of unnormalized probabilities. Here, λ > 0 controls the trade-off and d(·, ·) is a
distortion measure, which is MSE for the quadratic-Gaussian WZ case that the authors considered.
This solution explicitly enumerates all possible quantization indices k. Note that the encoder function
in Eq. (5) does not have any learnable parameters of its own, but depends on the probability model
and the decoding function, which makes it trainable using SGD.

Figs. 3(b) and 4 visualize the learned compressor obtained by optimizing an objective based on
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Eq. (5), and show its corresponding R-D performance, respectively. As seen in Fig. 3(b), this learned
compressor again exhibits binning behavior, which explains its improved R-D performance over
NTC.

4 Discussion

In the previous sections, we summarized the difficulties arising from using NTC to compress sources
with circular topology (Sec. 2), as well as using it in distributed scenarios which favor binning
(Sec. 3). Here, we establish a link between the two observations: Namely, that within the standard
NTC framework, both circular topologies and binning require either the encoder or the decoder
transform to implement discontinuous functions. The inability to learn these functions is likely
a consequence of what is called the spectral bias of ANNs [28, 12, 13] in the learning literature,
which induces a learning bias towards low-frequency modes and thereby, favors learning smooth
functions instead [11, 14]. In many applications, the bias towards smooth functions may actually be
beneficial, as it helps prevent overfitting when training data is sparse. However, as observed, this
learning bias can also negatively affect the compression performance of NTC. In fact, transform
coding is not the only domain affected by this phenomenon: Similar issues have been observed in
the use of autoencoders for anomaly detection in high-energy physics, where circular or rotational
invariances arise naturally [29]. Esmaeili et al. [30] more generally discuss difficulties learning
circular geometries in the context of variational autoencoders.

So, what can be done to improve NTC in this regard? The measures presented above can be effective,
but represent only partial remedies. While adding a latent dimension is effective for the circle source
(discontinuity in the encoder), it does not help with the ramp (discontinuity in the decoder) (Sec. 2.1).
Increasing the batch size and Fourier embeddings help, in that they ameliorate spectral bias, but they
still do not allow the network to implement true discontinuities (Sec. 2.2). They also come at the cost
of increased computational complexity, during training or inference, respectively; may not be feasible
when there is limited training data; and may also lead to more overfitting. In the context of image
compression, however, the neural networks in question are typically relatively small while the data
sets are relatively large, making overfitting less of a concern.

Switching from a continuous to a categorical latent space is equivalent to moving from transform
coding towards unstructured vector quantization, with the promise that discontinuous maps between
the source space and the code space are easily implemented. However, when the encoder is com-
pletely unstructured (Sec. 3.2), i.e., searches for the best codeword exhaustively, it inherits classical
limitations of VQ: It fails to scale to higher bit rates, as its maximum rate is upper bounded by log2 M ,
where M is the (pre-determined) codebook size. The codebook size cannot be arbitrarily increased,
as the computational complexity of the exhaustive search grows exponentially with M . Furthermore,
if we try to mitigate this by structuring the encoder, for example using a neural network, we are
still left with training difficulties: the loss function of the formulation using Concrete distribution
(Sec. 3.1) is not a good approximation of the true objective (the rate–distortion Lagrangian). In
order to mitigate the inevitable bias in the objective, tuning hyperparameters such as the temperature
value t in Eq. (4) is essential [26]. Finally, all algorithms for fitting vector quantizers are sensitive
to initialization [31], which includes classical ones like the Lloyd iteration [32], as well as the ones
reviewed above [20, 18].

While our present work does introduce one additional way to mitigate the problem (Fourier features),
the solutions presented here do not provide a universal fix to NTC that retains all the desirable
properties of a learned compressor alluded to above. Yet, we believe that there is value in drawing
these connections between the independently observed issues in the point-to-point case and the
distributed case, in that it unifies the thinking about what may be the cause of the failures. As such, it
may help in finding better solutions going forward.

On a higher level, it is also worth noting that analyzing suboptimalities of data compression of
synthetic sources benefits from exact or near-exact converse bounding techniques, which, while not
always being constructive, tell us how close practical methods are to optimality. This information-
theoretic approach might be transferable to other machine learning techniques, where it otherwise
may be unclear how to identify suboptimalities.
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A Appendix
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neural distributed compressor using variational ECVQ formulation in [18]

neural distributed compressor using Concrete distribution in [20] (Fig. 3(a))

NTC-based compressor w/ side information

NTC-based compressor w/ side information visualized in Fig. 5

asymptotic R-D w/o side information + 1.53 dB

asymptotic R-D w/o side information

asymptotic R-D Wyner–Ziv + 1.53 dB
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Figure 4: Rate–distortion (R-D) performances obtained with neural distributed compressors us-
ing Concrete distribution [20], variational entropy-constrained vector quantization (ECVQ) for-
mulation [18], and an NTC-based compressor with side information [18][Sec. 2]. The quadratic-
Gaussian Wyner–Ziv setup is considered, where X = Y + N with independent Y ∼ N(0, 1.0)
and N ∼ N(0, 0.1). The empirical results are plotted versus the lossy compression without side
information and Wyner–Ziv R-D bounds, both of which assume that the blocklength of the sources
is asymptotically large. 1.53 dB refers to the mean-squared error gap that the entropy-constrained
scalar (one-shot) lattice quantizer is subjected to in a high-rate regime [33], due to space-filling loss
(also known as cubic loss [34]). Figure is adopted from [18, Fig. 6a].
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Figure 5: Visualization (best viewed in color) of an NTC-based compressor with side information,
where the neural encoder output is u = ⌊fθ(x)⌉ and the neural decoder output is x̂ = gϕ(u, y)
(see Eq. 1 in [18]), where fθ and gϕ are learned encoder (analysis), fθ, and decoder (synthesis) gϕ
functions, with parameters θ and ϕ, respectively. As in Fig. 4, The quadratic-Gaussian Wyner–Ziv
setup is considered, where X = Y +N with independent Y ∼ N(0, 1.0) and N ∼ N(0, 0.1). The
dashed horizontal lines are quantization boundaries, and the colors between boundaries represent
unique values of u. The decoding function is depicted as separate plots for each value of u, using
the same color assignment. The visualized model achieves −13.96 dB at 2.07 bits, yielding better
rate–distortion (R-D) performance than the R-D function without side information (Fig. 4). Figure is
taken from [18, Fig. 9].
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