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ABSTRACT

Although Kolmogorov-Arnold Networks (KAN) based on the Kolmogorov-Arnold
theorem (Kolmogorov, 1933) possess strong theoretical expressiveness, they face
severe scalability bottlenecks—specifically parameter explosion and difficulty in
capturing high-frequency features—in high-dimensional tasks. To address these
issues, we propose the Kolmogorov-Arnold-Fourier Network (KAF), which
fundamentally redefines the KAN paradigm through spectral reparameterization.
Our key contributions include: (1) proposing a fundamental basis transformation
from the local, grid-based B-spline representation to a global, adaptive spectral
representation. This shift changes the network’s inductive bias, reducing parameter
complexity from O(G) to O(1) while preserving expressiveness; (2) introducing
trainable Random Fourier Features (RFF (Tancik et al., 2020; Bracewell, 1986))
initialized via a spectral alignment strategy, which allows the model to break
the smoothness limitation of fixed kernels and accurately capture high-frequency
components; and (3) implementing an adaptive hybrid GELU-Fourier activation
mechanism that progressively enhances frequency representation during training.
Comprehensive experiments demonstrate the superiority of KAF across vision,
NLP, audio, and PDE solving tasks, achieving state-of-the-art performance (e.g.,
93.15% on CIFAR-10) with significantly improved efficiency. We will release the
source code in accordance with the review policy.

1 INTRODUCTION

The interpretability of deep neural networks (Howard et al., 2017; Han et al., 2016) has long been
one of the core challenges in the field of machine learning. The Kolmogorov-Arnold(Liu et al., 2024;
Kolmogorov, 1933) theorem states that any continuous multivariate function can be represented
through a combination of univariate functions (Mhaskar & Micchelli, 1996; Barron, 1993). This
theory provides significant inspiration for the design of interpretable neural network architectures.
Based on this theory, Kolmogorov-Arnold Networks (KAN) (Liu et al., 2024; Schmidt-Hieber, 2021)
have been proposed, which replace the fixed activation functions in traditional multilayer perceptrons
(MLPs (Rumelhart et al., 1986)) with learnable B-spline (De Boor, 1972) basis functions, theoretically
demonstrating strong expressive potential and flexibility. By introducing trainable nonlinear activation
functions, KAN enables the network to dynamically adjust the shape of the activation functions accord-
ing to the characteristics of the data, thereby enhancing the adaptability and performance of the model.
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Figure 1: Comparison between a standard GELU-
MLP and a GELU-KAF.

However, despite the significant theoretical ad-
vantages of KAN, its practical application faces
two fundamental issues that severely limit its
generalization and adoption in high-dimensional
tasks: Inefficient Parameter Utilization: The
dual-matrix architecture of KAN (i.e., the activa-
tion function matrix and the B-spline coefficient
matrix) leads to a rapid increase in the number
of parameters. Compared to traditional MLPs,
where the parameter count scales with input ×
output + bias, KAN’s parameter count grows
several times larger. This makes it challenging
to apply KAN to high-dimensional tasks such as
computer vision. The explosion in parameters
(Xu et al., 2019; Mhaskar & Micchelli, 1996;
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Barron, 1993) not only increases the storage and computational costs of the model but also signifi-
cantly reduces the efficiency of both training and inference (Tan & Le, 2020; 2021).The B-spline
(De Boor, 1972; Eldar & Unser, 2021; Aziznejad et al., 2023; Li et al., 2023; Wu et al., 2022)basis
functions employed by KAN exhibit inherent spectral limitations when performing function approxi-
mation in high-dimensional spaces. The smoothness of B-spline basis functions makes it difficult
to accurately capture high-frequency components of signals, leading to suboptimal performance
when processing data with rich spectral features, such as natural images or audio waveforms. This
limitation in spectral representation capability adversely affects the model’s performance and stability
in practical applications(Xu et al., 2019). This dilemma creates a paradox between theory and practice:
although KAN theoretically encompasses all functionalities of MLPs, its inefficiency and spectral
distortion issues force practitioners to make a trade-off between interpretability and scalability.

To address the aforementioned issues, the key challenge is balancing the inherent trade-off between
model interpretability and parameter efficiency, which has long plagued traditional neural networks.
This paper make an attempt to fundamentally redefine the traditional KAN paradigm (Bracewell,
1986). We attempt to address the bottlenecks of the Kolmogorov-Arnold theory in practical applica-
tions (i.e., the parameter explosion and insufficient high-frequency capture problems of the KAN
model), so that it can be applied to high-dimensional, large-scale modern AI tasks. Specifically, this
paper introduces an innovative neural network architecture—Kolmogorov-Arnold-Fourier Net-
works (KAF), which employs Fourier domain reparameterization and dynamic activation evolution,
aiming to bridge the gap between interpretability and parameter efficiency. Our main contributions
include: (1) proposing a fundamental basis transformation from the local, grid-based B-spline
representation (KAN) to a global, adaptive spectral representation. This shift changes the network’s
inductive bias, breaking the smoothness limitation of fixed kernels and enabling efficient high-
dimensional scaling. Consequently, we resolve the parameter explosion issue, reducing complexity
from O(din × dout × (G + K + 3)) to O(din × dout) (See Supp.3.3 and Supp.A for proof) while
preserving expressiveness; (2) We replace the traditional B-spline basis functions with trainable Ran-
dom Fourier Features. We replace the traditional B-spline basis functions with trainable Random
Fourier Features to eliminate the need for the spline coefficient matrix. An initialization strategy
based on the Central Limit Theorem (σ = 1.64) aligns the RFF spectrum with the prior knowledge
of natural signals, avoiding spectral leakage issues. This significantly enhances the model’s spectral
fidelity and expressive power in high-dimensional spaces.

We design a hybrid GELU-Fourier activation function with learnable coefficients {a, b}. During
training, these coefficients are dynamically adjusted through gradient backpropagation, enabling an
automatic transition from fixed activation functions to hybrid Fourier-symbolic representations.

2 RELATED WORK

Multi-Layer Perceptrons and Current Challenges. The design and optimization of deep
learning (Touvron et al., 2021)models remain central to machine learning research. Traditional
MLPs(Rumelhart et al., 1986), among the earliest neural networks (Han et al., 2016), offer simplicity
and scalability, with rich theoretical foundations. While ResNet (He et al., 2015b) and Transformer
(Vaswani et al., 2023) models have shown remarkable performance across various tasks, MLPs face
challenges in theoretical interpretability and practical bottlenecks. Traditional activation functions
like ReLU (Nair & Hinton, 2010; Glorot et al., 2011) and Sigmoid (Elfwing et al., 2017) often fail
to adapt to complex data, and despite their efficiency, MLPs struggle with high-frequency features
and complex distributions. Improving activation mechanisms and parameter efficiency has become
crucial for enhancing MLPs’ adaptability to high-dimensional data.

Kolmogorov-Arnold Networks and Scalability Issues. The Kolmogorov-Arnold (Fan et al., 2019)
Theorem underpins networks for approximating continuous multivariable functions. The pioneering
KAN replaced fixed activations with B-spline (De Boor, 1972) functions but faces challenges in high-
dimensional applications due to parameter explosion and GPU inefficiency. Recent improvements
include KAN-Transformer, MLP-KAN with sparse parameters, and FAN(Dong et al., 2024) with
Fourier activations, all seeking to balance interpretability with scalability. Also, Previous work (Xu
et al., 2024; Mehrabian et al., 2025; Ai et al., 2025; Rong et al., 2025; Zhou et al., 2024) has explored
the combination of Fourier and KAN architectures in different scenarios.
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Enhancing Spectral Representation with KAF. To address high-frequency modeling challenges,
Random Fourier Features (RFF (Rahimi & Recht, 2007b; Yu et al., 2016)) enable spectral domain
mapping, with variants like Learnable RFF and SIREN enhancing expressiveness. Our proposed
KAF incorporates GELU and learnable Fourier features, with scale factor control and variance
initialization. This reduces parameters while improving spectral representation. KAF maintains
KAN’s interpretability while enhancing scalability and efficiency, showing superior performance in
capturing high-frequency (Sitzmann et al., 2020) details across NLP, vision, audio, and traditional
machine learning tasks.

3 METHODOLOGY

3.1 KOLMOGOROV-ARNOLD THEOREM

The Kolmogorov-Arnold (Bracewell, 1986; Kolmogorov, 1933) theorem, proposed by Soviet mathe-
maticians Vladimir Arnold and Andrey Kolmogorov in the 1950s, states that any continuous (Maiorov
& Pinkus, 2021) multivariate function f : [0, 1]d → R can be represented as a superposition of
univariate functions:

f(x1, x2, . . . , xd) =

2d+1∑
q=1

Φq

(
d∑

p=1

ϕq,p(xp)

)
,

where Φq : R→ R and ϕq,p : [0, 1]→ R are univariate continuous functions. This theorem provides
a theoretical foundation for dimensionality reduction in high-dimensional function approximation.
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Figure 2: Pipeline of the KAF (GELU Version)
layer, where input is processed through paral-
lel GELU and Random Fourier Feature (RFF)
branches, scaled by ‘a’ and ‘b’ respectively,
summed, and then passed to a final linear projec-
tion.

In (Berner et al., 2022b; Poggio et al., 2017), the
theorem suggests that high-dimensional func-
tions can be captured through low-dimensional
(Xu et al., 2019) transformations, resembling
the hierarchical structure of neural networks.

3.2 KOLMOGOROV-ARNOLD
NETWORK (KAN)

Although the Kolmogorov-Arnold (Bracewell,
1986)theorem was proposed quite early, (KAN
(Liu et al., 2024)) is proposed according to this
theorem, demonstrating that this structure can,
in a sense, serve as an alternative to traditional
MLP models. In the KAN network, each layer
can be represented by the following formula:

f(x) = Φ ◦ x =

[
din∑
i=1

ϕ1,i(xi) · · ·
din∑
i=1

ϕdout,i(xi)

]
,

where Φ is a matrix of basis functions. This formula aligns with the form of the Kolmogorov-Arnold
theorem. However, in practical applications, they chose B-spline (Bach, 2016) basis functions as
the basis functions ϕq,p, and added an external activation function SILU to guide the update of the
KAN layer(Ramachandran et al., 2017; Elfwing et al., 2017). The formula can be expressed as

ϕ(x) = whsilu(x) + wsspline(x),

spline(x) =
∑
i

ciBi(x).

Among them, Φ represents the basis function matrix, where B-spline basis functions and the SiLU
activation function were used. However, KAN suffers from excessive parameter growth, with a
parameter count of dout × dout × (G+K + 3) + dout, far exceeding MLP’s din × dout + dout, while

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

also being computationally inefficient on GPUs and failing to capture high-frequency components,
limiting its practical applicability.

3.3 KAF: KOLMOGOROV-ARNOLD FOURIER NETWORK

In the previous discussion, we pointed out that traditional networks based on the Kolmogorov-Arnold
theorem (KAN) often face multiple challenges in practical applications. To address these issues,
we propose an alternative approach—KAF (Kolmogorov-Arnold Fourier Network). By replacing
B-spline basis functions with Random Fourier Features (RFF(Fathony et al., 2021; Tancik et al., 2020;
Bracewell, 1986)), which are more efficient for GPU acceleration, and introducing hybrid spectral
correction for the activation functions, the network retains the advantages of the Kolmogorov-Arnold
theory while achieving training efficiency and inference speed closer to that of MLPs (Rumelhart
et al., 1986). This section provides a detailed explanation of the overall architecture of the KAF
network, the utilization of Random Fourier Features within the network, the design and scaling
principles of the GELU-Fourier hybrid activation function, as well as the RFF weight initialization
strategy and the theoretical justification for σ = 1.64.

Overall Architecture. In the overall framework of KAF, we follow the core idea of the Kolmogorov-
Arnold theorem, which approximates high-dimensional target functions through the composition
of several low-dimensional learnable functions. Unlike the KAN network, which directly utilizes
B-spline basis functions, KAF employs Random Fourier Features (RFF) in each layer to perform a
nonlinear mapping of the input, and then uses linear transformations to achieve the composition of
the “outer function" and the “inner function." Specifically, the core computational process of each
KAF layer can be formulated as:

h(l) = W(l)︸ ︷︷ ︸
outer function

a(l) ⊙ GELU(x̃(l)) + b(l) ⊙ ϕ̃(x̃(l))︸ ︷︷ ︸
inner function composition

+ c(l), (1)

where: x̃(l) = LayerNorm(x(l)) is the normalized input at layer l; ϕ̃(·) represents the nonlinear
mapping based on Random Fourier Features (RFF) (detailed in Section 3.3.2); a(l),b(l) ∈ Rn are
learnable scaling parameters, used to modulate the contributions of GELU activation and RFF features,
respectively; We choose GELU as the base activation function, which empirically outperforms other
common activation functions (such as SiLU and ReLU) in our ablation experiments(see Appendix I).
W(l) ∈ Rm×n is the linear transformation weight, and c(l) ∈ Rm is the bias term.

By stacking multiple layers of the above transformation, the KAF network constructs an efficient
multi-layer approximation structure. Since RFF has excellent parallelism on GPUs, this structure
avoids the high computational burden of B-spline basis functions, significantly improving training
and inference efficiency while maintaining strong function approximation capabilities. Also, the
hybrid design of KAF fuses global Fourier features with local GELU through learnable α and β. High
α emphasizes local smoothness, high β captures global periodicity—dynamic and interpretable(See
Supp. L). At the same time, KAN’s B-spline function is local but rigid; KAF’s flexibility outweighs
this and is more adaptable to the data structure.

Random Fourier Features (RFF). Given an input space X ⊆ Rd, we define the Random Fourier
Feature (RFF(Tancik et al., 2020)) mapping as a learnable embedding from the input space to a
Reproducing Kernel Hilbert Space (RKHS(Werneburg, 2023; Aronszajn, 1950; Schölkopf & Smola,
2018)). For any input vector x ∈ X , the feature mapping is formally defined as:

z(x;W, b) =

√
2

m

[
cos(⟨x,W ⟩+ b)⊕ sin(⟨x,W ⟩+ b)

]
∈ R2m, (2)

where W ∈ Rd×m and b ∈ Rm. Here, ⟨·, ·⟩ denotes the Euclidean inner product, and ⊕ represents
the vector concatenation operation. The frequency matrix W = [w1, . . . , wm] is initialized according
to an input-dimension-adaptive spectral distribution: wij ∼ N (0, σ2/d), where σ2 represents the
empirical variance of the input data. The phase shift b is sampled from a uniform distribution
bi ∼ U [0, 2π], which ensures phase diversity, a crucial property for capturing local features of signals.
For more information on RFF convergence, gradient computation, initialization strategies, and the
number of specific Fourier features, see Appendix D and L.

This mapping comes with the following theoretical guarantees:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

- Translation Invariance: For any x, y ∈ X , as m→∞, we have E[z(x)T z(y)]→ e−
∥x−y∥2

2σ2 .

- Differentiability: The partial derivatives ∂z
∂W and ∂z

∂b have analytical expressions, enabling end-to-end
differentiation.

GELU-Fourier Hybrid Activation.

Design Motivation: To balance low-frequency smoothness and high-frequency representation capabil-
ity, we propose a hybrid activation function:

H(x) = α⊙GELU(x)︸ ︷︷ ︸
Low-Frequency Basis

+ β ⊙ V ψ(x)︸ ︷︷ ︸
High-Frequency Correction

(3)

where α, β ∈ Rd are learnable channel-wise scaling factors, V ∈ Rd×2k is the frequency-domain
projection matrix, and ⊙ represents element-wise multiplication. Initialization Strategy of KAF:

α(0) ← 1, β(0) ← ϵ1, (ϵ = 10−2), V
(0)
ij ∼ N (0, 0.01) (4)

The dynamic property of this initialization manifests in the following way: At the early stage of
training, the small initialization of the high-frequency component β ensures that its norm is much
smaller than that of the low-frequency component α, prioritizing the learning of low-frequency
features. As training progresses, the natural growth of weights allows the norm of β to increase
approximately proportionally to the training time t, thereby gradually enhancing the representation of
high-frequency features. At the same time, we conducted detailed analysis experiments to measure
the respective contributions of base activation and fourier activation in different training steps(see
Appendix L).

Implementation of the Kolmogorov-Arnold Architecture and RFF Initialization.

Theorem Definition: The Kolmogorov-Arnold representation theorem states that any continuous
function f ∈ C([0, 1]d) can be expressed as a finite composition of univariate functions:

f(x) =

2d∑
q=0

Φq

(
d∑

p=1

ϕq,p(xp)

)
, (5)

where ϕq,p : R→ R are univariate nonlinear functions, and Φq : R→ R are composition functions.

Architecture Implementation: We modularize the neural network to efficiently approximate this
mapping, establishing the following correspondences:

ϕq,p(xp) 7→ GELU
(
w(q)

p xp + b(q)p

)︸ ︷︷ ︸
Low-Frequency Basis

+β⊤
q ψRFF(xp)︸ ︷︷ ︸

High-Frequency Basis

,

Φq(·) 7→ α⊤
q Linear(·).

(6)

Here, ψRFF(xp) = [cos(ω1xp + θ1), sin(ω1xp + θ1), . . . ] represents the Random Fourier Features
(RFF), and αq,βq ∈ Rk are learnable modulation parameters. Spectral Complementarity Mechanism:
- GELU Properties: The activation function σ(wx+ b) provides a smooth gating effect in the low-
frequency domain, satisfying E[σ(wx)] ∝ N (0, 1/

√
2). - RFF Enhancement: The use of mixed-

frequency bases {cos(ωmx + θm)}Mm=1 expands spectral coverage. - Dynamic Balancing: The
learnable parameters α,β enable an adaptive trade-off:

ϕ̃(x) = α ·GELU(x) + β · ψRFF(x), (7)

where the initial values are set to α(0) = 1 and β(0) = 10−2 to ensure training stability.

RFF Initialization Strategy: To fully leverage spectral complementarity, we adopt a refined initializa-
tion scheme: - Frequency Matrix W : To ensure spectral balance and avoid bias towards low or high
frequencies, we initialize W using a scaled normal distribution(Glorot & Bengio, 2010; He et al.,
2015a):

ωij ∼ N

(
0,

γ√
din · E[∥σ(x)∥2]

)
, (8)

5
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This initialization is designed to align with the spectral distribution of the input data. The denominator
normalizes the standard deviation based on input dimensionality din and the expected squared norm
of the activation function E[∥σ(x)∥2], ensuring a stable variance propagation during training. For the
GELU activation function, why σ(x) = 1.64 will be proved later in Appendix E.

- Phase Shift b: Uniformly sampled to cover a complete period,

bi ∼ U(0, 2π). (9)

- Linear Projection Layer: Initialized using Xavier initialization,

Vij ∼ U
(
−
√

6/(din + dout),
√

6/(din + dout)
)
. (10)

Parameter and FLOPs Comparison. To evaluate the scale of parameters and computational
overhead of KAF, we compare the number of parameters and floating-point operations (FLOPs) for
KAF, KAN, and MLP in a single layer setting.

Table 6 summarizes the parameter count and FLOPs for each model. KAN exhibits the highest
parameter count due to its recursive B-spline computations, while KAF, by leveraging Random
Fourier Features (RFF), achieves a balance between parameter efficiency and spectral representation.
MLP remains the simplest in terms of computation. For the detailed derivation of these calculations,
please refer to Appendix A.

4 EXPERIMENTS

The objective of this experiment is to evaluate the performance of mainstream models when their
MLP(Rumelhart et al., 1986) or KAN components are replaced with KAF. By maintaining consistent
parameters, we conducted experiments across a variety of tasks including simple visual tasks, NLP
tasks, audio tasks, and machine learning tasks, utilizing models such as ResNet-18 (He et al., 2015b),
DeiT (Touvron et al., 2021) (from the MLP-KAN architecture), MLPmixer (Berner et al., 2022a), and
GPT-2 (Brown et al., 2020). Additionally, we tested the performance of KAF in function fitting(see
Appendix G.1) and solving differential equations(see Appendix G.2). We also compared KAF and
Methods Addressing Spectral Bias, and the experimental results showed that we still maintain the
best performance(see Appendix K). We test KAN using the pykan repository. In particular, we call
model.speed() to disable symbolic branching to ensure fair experiments. All experiments employed
either the Adam (Kingma & Ba, 2014) optimizer, with learning rates appropriately selected according
to the specific task. The experimental environment was set up with RTX 4090D GPU.

4.1 COMPREHENSIVE EVALUATION BASED ON KANBEFAIR

Based on Kanbefair (Yu et al., 2024), we conducted a comprehensive evaluation of KAF on vision
(Dosovitskiy et al., 2021), NLP (Brown et al., 2020), audio, and machine learning tasks to compare
its performance with existing models. We selected MLP (with GELU activation), KAN, FAN (Dong
et al., 2024), and GPKAN (Yang & Wang, 2024) for experimentation.

Experimental Setup. All models were trained for 40 epochs. During training, the maximum test
accuracy was recorded as the primary evaluation metric. For KAF, the key parameters included 9
grids, an activation expectation of 1.64, and GELU as the activation function. For KAN, we used
grid extension to ensure fair comparison. For MLP, we experimented with both GELU (Hendrycks &
Gimpel, 2016) and ReLU (Nair & Hinton, 2010; Glorot et al., 2011) activations. FAN’s p_ratio was
set to 0.25, and GPKAN used GELU-based initialization. We also provide T-tests in the Supp. J to
increase the statistical rigor.

Experimental Results.

As shown in Figure 3 and Table 1, we conducted a systematic comparison. The results demonstrate
that KAF consistently achieves the highest accuracy under the same parameter settings. Notably, on
challenging tasks like CIFAR10 and SVHN, KAF exhibits significant accuracy improvements. In
addition to vision tasks, Figure 5 (see Appendix F) evaluates KAF’s performance on NLP, audio, and
ML datasets, where KAF also achieves superior results.

6
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Figure 3: Compare the performance of different models (KAN, MLP, GPKAN, FAN, KAF) on simple
networks on multiple datasets. The results show that KAF can usually achieve higher accuracy with
fewer parameters.

Table 1: Comprehensive comparison of different models on various datasets. Parameters refer to the
total model size. KAN was sometimes excluded due to excessive parameter size.

Model Datasets Mixer #Param. FLOPs Top-1 Model Datasets Mixer #Param. FLOPs Top-1

ResNet/18 CIFAR-10 MLP 11.1M 0.56G 91.19 MLP_Mixer/S ImageNet1k MLP 18.2M 3.8G 63.5
ResNet/18 CIFAR-10 KAF 12.0M 0.63G 91.72 MLP_Mixer/S ImageNet1k KAF 18.8M 4.2G 64.7
ResNet/18 CIFAR-10 GPKAN 11.3M 0.56G 90.98 MLP_Mixer/S ImageNet1k GPKAN 18.8M 4.0G 62.9
ResNet/18 CIFAR-10 FAN 8M 0.42G 90.69 MLP_Mixer/S ImageNet1k FAN 15.7M 3.2G 58.2
ResNet/18 CIFAR-10 KAN Too large – – MLP_Mixer/S ImageNet1k KAN Too large – –

ViT-T/16 ImageNet1K MLP 5.7M 1.08G 72.3 MLP_KAN Cifar100 MLP 1.3M 0.12G 49.0
ViT-T/16 ImageNet1K KAF 5.9M 1.12G 73.2 MLP_KAN Cifar100 KAF 1.4M 0.15G 53.8
ViT-T/16 ImageNet1K GPKAN 5.7M 1.13G 74.6 MLP_KAN Cifar100 KAN 1.9M 0.19G 51.2
ViT-T/16 ImageNet1K FAN 4.2M 0.96G 65.7 MLP_KAN Cifar100 GPKAN 1.4M 0.14G 54.3
ViT-T/16 ImageNet1K KAN Too large – – MLP_KAN Cifar100 FAN 1.0M 0.1G 46.7

4.2 EXPERIMENTS ON USING KAF COMPONENTS IN COMPLEX VISION MODELS

To comprehensively evaluate the performance of KAF in large-scale vision models, we assess its
impact on accuracy, computation time, and generalization. We replace the original MLP or KAN
layers in architectures like ResNet-18, ViT-Tiny, MLP-Mixer-S/16, and MLP_KAN (DeiT-based)
with KAF.

Experimental Setup. We utilize CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-
1K. We conducted evaluations under two settings: (1) a Standard Setting (fixed hyperparameters)
for fair architectural comparison as shown in Table 1, and (2) an Optimized Setting (with strong
augmentations like Mixup/CutMix) to probe the SOTA limits.

SOTA Performance Analysis. While Table 1 focuses on fair comparison under strict constraints,
Table 2 demonstrates KAF’s full potential under optimized settings. Crucially, KAF demonstrates
strong scalability: KAF-ResNet-18 reaches 93.15% on CIFAR-10 (surpassing the reference SOTA
of ∼93.0%), and KAF-ViT-Tiny achieves 79.3% on ImageNet-1K, significantly outperforming
the MLP baseline (78.8%). This confirms that the gaps observed in previous baselines were due to
training constraints, and KAF effectively scales with advanced training recipes.

Strict Parameter-Matched Comparison. To verify that improvements stem from architectural
superiority rather than parameter counts, we compared KAF against a “Widened MLP” configured
to have more parameters than KAF. As shown in Table 3, even with a smaller parameter budget
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Table 2: SOTA Capability Analysis. Under optimized tuning (Mixup, CutMix, etc.), KAF matches or
exceeds SOTA reference performance, significantly boosting the MLP baseline.

Model Dataset Setting # Params Top-1 Acc (%)
ResNet-18 (MLP) CIFAR-10 Standard 11.1M 91.19
ResNet-18 (KAF) CIFAR-10 Optimized 12.0M 93.15
ViT-Tiny (MLP) ImageNet-1K Standard 5.7M 72.3
ViT-Tiny (KAF) ImageNet-1K Optimized 5.9M 79.3

(1.02M vs. 1.05M), KAF outperforms the widened MLP (56.8% vs 54.3%), highlighting its spectral
efficiency.

Table 3: Strict Parameter-Matched Comparison on CIFAR-10. KAF improves performance under
equal parameter budget.

Model Configuration Width Scale # Params Test Acc (%)
MLP (Standard) 1.0× 0.85M 54.1
MLP (Widened) ≈ 1.2× 1.05M 54.3
KAF (Ours) 1.0× 1.02M 56.8

Inference Latency Analysis. We measured real-world inference latency (batch size 1, RTX 4090D)
to address efficiency concerns. Table 4 shows that KAF is orders of magnitude faster than KAN (up
to 11.7× speedup) and maintains a latency highly comparable to MLP (only ∼0.2ms difference per
image). This validates KAF as a practical, deployment-ready alternative.

Table 4: Inference Latency Comparison. KAF resolves the speed bottleneck of KAN across both
vision and NLP tasks.

Task Backbone Model Latency Speedup vs KAN

Vision ResNet-18
MLP 3.4 ms/img -
KAN 42.1 ms/img 1.0×
KAF 3.6 ms/img 11.7×

NLP GPT-2
MLP 17.2 ms/token -
KAN 145.3 ms/token 1.0×
KAF 18.5 ms/token 7.8×

4.3 EXPERIMENTS ON LLMS WITH KAF COMPONENTS

To evaluate the potential of KAF in language models, we integrated it into the GPT-2 architecture by
replacing the Feed-Forward Network (FFN)’s MLP with KAF or KAN. We trained and evaluated the
models on large-scale text datasets like OpenWebText and Wikitext-103 to assess their impact on
language modeling quality. In the experimental setup, we used GPT-2 (Small version) as the base
model, replacing the two-layer MLP in the FFN with KAF or KAN while maintaining the same
parameter scale, and kept all other Transformer configurations (Vaswani et al., 2023), including
multi-head attention, token embeddings, and positional encoding, consistent with the official GPT-2
implementation.

Experimental Results. Table 5 shows the comparison results of GPT-2 using MLP, KAF, and KAN
as FFN components. The results demonstrate that KAF improves language modeling performance
and training efficiency. On Wikitext-103, it reduces PLL from 37.50 to 28.37 with negligible training
overhead (21h 42m vs 21h 28m). In contrast, KAN fails to converge (PLL > 39k) and suffers from
severe computational costs (304h). A similar trend is observed on OpenWebText, where KAF reduces
PLL to 13.86, highlighting its robustness and efficiency in large-scale sequence modeling compared
to unstable alternatives like KAN.
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Table 5: Comparison of GPT-2 based MLP, KAF, and KAN models on Wikitext-103 and OpenWeb-
Text: Perplexity (PLL), training time, and parameter count.

Model Dataset PLL ↓ Training Time #Param.
MLP Wikitext-103 37.50 21h 28m 117M
KAF Wikitext-103 28.37 21h 42m 128M
KAN Wikitext-103 39782 304h 06m 478M

MLP OpenWebText 17.37 62h 56m 117M
KAF OpenWebText 13.86 63h 13m 128M
KAN OpenWebText 27832 960h 19m 478M

4.4 PERFORMANCE OF KAF IN FUNCTION APPROXIMATION AND DIFFERENTIAL EQUATION
SOLVING TASKS

To comprehensively validate the capability of KAF in complex function approximation and PDE solv-
ing (Raissi et al., 2017), we designed experiments covering a wide range of complexities, dimensions,
and nonlinearities, including eight function approximation tasks to evaluate KAF’s performance
in capturing complex nonlinear relationships and four PDE-solving problems involving multiple
physical parameters to assess applicability in scientific computing, using various hyperparameter
configurations to ensure reliability and generalization. In the experimental setup, we conducted 8
function approximation and 4 PDE solving tasks (Raissi et al., 2017; Han et al., 2018), addressing
varying complexities, dimensions, and nonlinearities, training models with hidden layer sizes from 8
to 512 for up to 1000 epochs, with more detailed settings provided in the appendix. G.

4.4.1 FUNCTION APPROXIMATION TASKS

We presents the eight target functions used in the experiments (see Table 8 in Appendix G), covering
a variety of mathematical properties, including periodicity, non-linearity, high dimensionality, dis-
continuity, and chaos. The results of the experiment are shown in 6(see Appendix G). According
to the experimental data, KAF’s minimum test RMSE in most function approximation tasks is sig-
nificantly lower than that of MLP, GPKAN, and FAN, demonstrating superior fitting capability and
generalization performance. In the Bessel task, KAF achieves a test RMSE of 2.55× 10−6, which
is considerably lower than MLP’s 1.43 × 10−5. For the Highly-Nonlinear and Multi-Scale tasks,
KAF attains RMSE values of 3.18× 10−5 and 4.98× 10−5, while MLP exhibits significantly higher
errors of 1.41× 10−4 and 1.85× 10−2, respectively.

4.4.2 PDE SOLVING TASKS

As shown in Figure 7 in Appendix G, for numerical solving tasks across four types of PDEs (Poisson,
1D Wave, Heat, and Burgers), traditional MLP exhibits higher overall errors or lower stability. In
contrast, KAF, which leverages learnable approximation, generally achieves better or comparable
accuracy. For Poisson and Heat equations, both KAF and KAN significantly outperform MLP
in terms of error reduction, while FAN also maintains a comparable level of accuracy. However,
GPKAN, due to its sensitivity to parameter scale and initialization, demonstrates noticeable instability
or larger errors, highlighting its challenges in achieving robust performance under these conditions.
Overall, KAF, which incorporates learnable grid functions or compact functionals, provides greater
flexibility in function approximation for PDE-solving tasks.

4.5 ABLATION EXPERIMENT

In this section, we conducted two ablation experiments: 1) On the CIFAR-10 dataset, we used a
single-layer network to study the effectiveness and completeness of each component and strategy.
Additionally, we plotted the scaling factor curves to observe the variations of different factors during
the experiment. The detailed results are presented in Appendix L; 2) We performed function fitting
experiments on sin(x) and cos(x) in comparison with KAN and MLP (GELU/RELU) to demonstrate
that our model outperforms traditional methods in fitting periodic and high-frequency signals. The
full experimental results are shown in Appendix L.
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5 CONCLUSION

The Kolmogorov-Arnold-Fourier network (KAF) addresses the scalability and spectral limitations
of Kolmogorov-Arnold Networks (KAN) by integrating trainable random Fourier features (RFF)
and a hybrid GELU-Fourier activation mechanism. This innovative design improves parameter
efficiency and high-frequency function approximation. Experimental results demonstrate KAF’s
effectiveness across a diverse range of tasks, including vision, natural language processing (NLP),
and solving differential equations, highlighting its practicality in high-dimensional learning scenarios.
Furthermore, the learnability of RFF-based mappings is sensitive to initialization and hyperparameter
tuning, which can impact convergence stability and model performance.Future research could focus
on several promising directions. One avenue is the hybridization of KAF with larger-scale models to
further enhance its capacity and scalability. Another is the exploration of more robust initialization
schemes and adaptive optimization techniques to improve the stability of RFF-based mappings.

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human-subjects research,
the collection of personally identifiable information, or the annotation of sensitive attributes, and we
do not create any new human data. All experiments are conducted on publicly available, widely used
vision–language benchmarks, strictly under their respective licenses and terms of use.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we will make our source code publicly available upon
acceptance of the paper. This includes the implementation of all models and training scripts. The
appendix provides detailed descriptions of all experimental setups, hyperparameter choices, and
evaluation metrics. All datasets used in this study are publicly available, and we will provide detailed
data preprocessing steps. Furthermore, we will also release the pre-trained model weights to facilitate
the reproduction of our results and further research.
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A DETAILED DERIVATION OF PARAMETER QUANTITIES AND FLOPS
CALCULATIONS

A.1 KAN WITH B-SPLINES

Parameter Counting. Consider a KAN layer with B-spline order K and a grid divided into G
segments. Following the standard formulation in KAN, each edge requires approximately G+K
control points. Thus, the total parameter count is:

ParamsKAN = dindout(G+K) + dout. (11)

A.2 KAF WITH RFF

Parameter Counting. Unlike KAN, KAF decouples the grid resolution from the parameter space. A
single KAF layer consists of the following learnable components: RFF projection Wrff ∈ Rdin×M ,
phase shift brff ∈ RM , channel-wise mixing coefficients a,b ∈ Rdin , and the final linear projection
Wout.

The total parameter count becomes:
ParamsKAF = dinM +M︸ ︷︷ ︸

RFFMapping

+ 2din︸︷︷︸
MixingCoeffs

+ dindout + dout︸ ︷︷ ︸
LinearProjection

= dinM +M + 2din + dindout + dout.

(12)

FLOPs Decomposition. The total computational cost of KAF includes:

• RFF Mapping: ≈ 4dinM

• Hybrid GELU-Fourier Activation: ≈ 4dinM

• Linear Projection: 2dindout

Including a small GELU overhead:
FLOPsKAF ≈ 4dinM + 2din + 2dindout + 5din. (13)

A.3 MLP BASELINE

For comparison, a standard MLP layer:
ParamsMLP = dindout + dout, FLOPsMLP = 2dindout + 5dout. (14)

A.4 SUMMARY COMPARISON

Table 6 shows that KAF removes the dependency on grid size G, achieving O(1) complexity w.r.t.
resolution, while KAN scales linearly with G.

Table 6: Comparison of Parameter Count and FLOPs (Single Layer). KAF reduces complexity w.r.t.
G while retaining expressiveness.

Model Param Count FLOPs

KAN dindout(G+K + 3) + dout 7din + dindout[9K(G+ 1.5K) + 2G− 2.5K + 3]

KAF (Ours) dinM +M + 2din + dindout + dout 4dinM + 2din + 2dindout + 5din

MLP dindout + dout 2dindout + 5dout

B IMPLEMENTATION DETAILS

B.1 HYPERPARAMETER SETTINGS

For all experiments, we utilized the Adam optimizer. The learning rate schedules were tailored to
each task:

14
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• Vision Tasks: Initial learning rate of 1e− 3, utilizing a cosine annealing scheduler.
• PDE Solving: Initial learning rate of 1e− 3 with decay every 100 epochs.
• Language Modeling: Followed standard GPT-2 configurations with a learning rate of
6e− 4.

The specific RFF initialization scale was set to σ = 1.64 based on our theoretical derivation in
Section 3.3. The number of grids for KAN comparison was set to 5 unless otherwise specified.

B.2 COMPUTING INFRASTRUCTURE

All experiments were conducted on a single NVIDIA RTX 4090D GPU. PyTorch 2.0 was used as the
deep learning framework.

C ADDITIONAL ANALYSIS AND FAILURE MODES

C.1 SCALING LAWS

To verify whether KAF follows neural scaling laws, we analyzed the relationship between test loss
(L) and parameter count (N ). As shown in Figure 4, the results on a log-log scale exhibit a clear
linear trend, strictly following the power law L(N) ≈ CN−α. Crucially, KAF exhibits a steeper
slope (α ≈ 0.22) compared to MLP (α ≈ 0.09) and KAN (α ≈ 0.14). This mathematically confirms
that KAF is more scaling-efficient, yielding greater performance improvements for every additional
unit of parameter budget.

104 105 106 107 108

Parameter Count (Log Scale)

100

Te
st

 L
os

s 
(L

og
 S

ca
le

)

KAF scales significantly
more efficiently

Neural Scaling Laws: KAF shows superior scaling efficiency

MLP
KAN
KAF

Figure 4: Neural Scaling Laws Analysis (Test Loss vs. Parameter Count). The plot illustrates
the scaling behavior on a log-log scale. KAF (green line) demonstrates a steeper scaling slope
(α ≈ −0.22) compared to MLP (≈ −0.09) and KAN (≈ −0.14), indicating superior parameter
efficiency in reducing test loss.

C.2 FAILURE MODE ANALYSIS: PERIODICITY BIAS

A potential failure mode of pure RFF-based networks is “periodicity bias,” which can lead to poor
extrapolation on non-periodic global trends. We conducted an extrapolation task fitting f(x) = x2 to
validate the necessity of our hybrid design.

As shown in Table 7, the Pure RFF-KAN achieved low training error but suffered catastrophic failure
in extrapolation (MSE soaring to 1.1). In contrast, our KAF Hybrid architecture maintains robust
performance (9.1 × 10−4), confirming that the GELU branch effectively handles low-frequency
global trends while the Fourier branch captures high-frequency details.
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Table 7: Extrapolation Performance on Unbounded Function Approximation (f(x) = x2). Pure RFF
fails to extrapolate, while Hybrid KAF remains robust.

Model Variant Training Error (MSE) ↓ Extrapolation Error (MSE) ↓
MLP-ResNet-18 1.2× 10−4 8.7× 10−3

Pure RFF-KAN 9.8× 10−5 1.1
KAF Hybrid (Ours) 1.1 × 10−4 9.1 × 10−4

D KERNEL APPROXIMATION AND GRADIENT DERIVATION OF RANDOM
FOURIER FEATURES (RFF)

D.1 CONVERGENCE PROOF OF RFF KERNEL APPROXIMATION

Bochner’s Theorem and the Fourier Duality of Kernel Functions According to Bochner’s(Rahimi
& Recht, 2007a; Gradshteyn & Ryzhik, 2014) theorem , any translation-invariant positive definite
kernel function k(x, y) = k(x− y) can be expressed as the Fourier transform of a Gaussian measure:

k(x− y) =
∫
Rd

eiω
⊤(x−y)p(ω)dω (15)

where p(ω) is the spectral distribution corresponding to the kernel function. For the Gaussian kernel
k(x, y) = e−∥x−y∥2/(2σ2), its spectral distribution is:

p(ω) = N (ω; 0, σ−2Id). (16)

D.1.1 EXPECTATION OF INNER PRODUCT OF RANDOM FOURIER FEATURES

Define the RFF mapping:

z(x) =

√
2

m

[
cos(ω⊤

1 x+ b1), sin(ω
⊤
1 x+ b1), . . . , cos(ω

⊤
mx+ bm), sin(ω⊤

mx+ bm)
]⊤
, (17)

where ωi ∼ p(ω), bi ∼ U [0, 2π]. The expectation of the inner product is:

E
[
z(x)⊤z(y)

]
=

2

m

m∑
i=1

E
[
cos(ω⊤

i x+ bi) cos(ω
⊤
i y + bi) + sin(ω⊤

i x+ bi) sin(ω
⊤
i y + bi)

]
=

2

m

m∑
i=1

E
[
cos(ω⊤

i (x− y))
]

(using trigonometric identity)

= Eω∼p(ω)

[
2 cos(ω⊤(x− y))

]
(m→∞ converges by law of large numbers)

= Eω∼p(ω)

[
eiω

⊤(x−y) + e−iω⊤(x−y)
]

= 2 · Re
(
Eω∼p(ω)

[
eiω

⊤(x−y)
])

= 2 · Re (k(x− y)) = 2k(x− y) (since k(x− y) is a real-valued symmetric function).
(18)

However, since the original scaling factor is
√
2/m, the actual expectation of the inner product is:

E
[
z(x)⊤z(y)

]
= k(x− y). (19)
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D.1.2 ERROR BOUND AND CONVERGENCE RATE

According to Rahimi & Recht (Rahimi & Recht, 2007a), when using m random frequencies, for any
x, y ∈ X , we have:

P
(
sup
x,y

∣∣z(x)⊤z(y)− k(x, y)∣∣ ≥ ϵ) ≤ 28
(
σp diam(X )

ϵ

)2

exp

(
− mϵ2

4(d+ 2)

)
. (20)

where σp is the variance of p(ω), and diam(X ) is the diameter of the input space. Thus, the
convergence rate is:

O(1/
√
m) (21)

D.2 DIFFERENTIABILITY AND GRADIENT COMPUTATION OF RFF

D.2.1 ANALYTICAL GRADIENT EXPRESSIONS

Let ω ∈ Rd be a row of the frequency matrix W , and b be the corresponding phase shift. For an input
x ∈ Rd:

- Gradient of the cosine term:

∂

∂ω
cos(ω⊤x+ b) = −x sin(ω⊤x+ b),

∂

∂b
cos(ω⊤x+ b) = − sin(ω⊤x+ b) (22)

- Gradient of the sine term:

∂

∂ω
sin(ω⊤x+ b) = x cos(ω⊤x+ b),

∂

∂b
sin(ω⊤x+ b) = cos(ω⊤x+ b) (23)

For a matrix W ∈ Rd×m, gradients accumulate row-wise. For Wij (the i-th row, j-th column):

∂ cos(W⊤
j x+ bj)

∂Wij
= −xi sin(W⊤

j x+ bj) (24)

where Wj is the j-th column of W .

D.2.2 IMPLEMENTATION IN BACKPROPAGATION

In automatic differentiation frameworks(Baydin et al., 2018) (e.g., PyTorch), the gradient computation
for RFF follows these steps: 1. Forward pass: Compute cos(W⊤x + b) and sin(W⊤x + b). 2.
Backward pass: Using the chain rule, the gradient tensor forW is−x⊗sin(W⊤x+b) (outer product)
and x ⊗ cos(W⊤x + b). The gradient for b is directly − sin(W⊤x + b) and cos(W⊤x + b). 3.
Numerical stability: - Input normalization: Use LayerNorm or BatchNorm on x to prevent exploding
gradients. - Gradient clipping: Restrict ∥∇W ∥2 ≤ τ to avoid instability from high-frequency noise.

D.3 RFF INITIALIZATION STRATEGY DERIVATION

D.3.1 FREQUENCY SAMPLING AND KERNEL BANDWIDTH CORRESPONDENCE

The spectral distribution of the Gaussian kernel k(x, y) = e−∥x−y∥2/(2σ2) is p(ω) = N (0, σ−2Id).
Hence, frequencies should be sampled as ω ∼ N (0, σ−2Id). However, if input data is standardized
such that each dimension satisfies E[x2i ] = 1/d, then the variance of ω⊤x is:

V[ω⊤x] = E[x⊤ωω⊤x] = Tr(E[ωω⊤]E[xx⊤]) = σ−2 · Tr(Id/d) = σ−2. (25)

To make ω⊤x independent of input scale, frequency variance should be adjusted to σ−2/d, i.e.,
ωij ∼ N (0, σ−2/d).
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D.3.2 DETERMINATION OF SCALING FACTOR γ

Assuming the activation function σ(x) has an output variance of E[∥σ(x)∥2] = c, the frequency
matrix should be initialized such that:

σ−2

d
· E[∥W∥2F ] = γ2 =⇒ γ =

σ−1

√
d
. (26)

Thus, the initialization strategy is ωij ∼ N (0, γ2/d), where γ = σ−1/
√

E[∥σ(x)∥2].

E FOURIER THEORY PROOF OF GELU ACTIVATION FUNCTION
INITIALIZATION FACTOR σ = 1.64

E.1 DEFINITION AND ASSUMPTIONS

Consider an input signal x ∼ N (0, σ2), whose Fourier transform is:

F{x}(ω) =
∫ ∞

−∞
xe−iωxdx. (27)

The GELU activation function is defined as:

GELU(x) = x · Φ(x), (28)

where Φ(x) is the cumulative distribution function (CDF) of a standard normal distribution.

E.2 FOURIER TRANSFORM OF GELU

Using the differentiation property and the convolution theorem of Fourier transforms:

F{GELU(x)}(ω) = F{xΦ(x)}(ω) = i
d

dω
F{Φ(x)}(ω). (29)

The Fourier transform of Φ(x) is known:

F{Φ(x)}(ω) =
√
π

2
e−ω2/2

(
1 + erf

(
iω√
2

))
. (30)

Taking its derivative yields:

F{GELU(x)}(ω) =
√
π

2

[
−ωe−ω2/2

(
1 + erf

(
iω√
2

))
+

i√
2
e−ω2

]
. (31)

E.3 SPECTRAL ENERGY DISTRIBUTION

The spectral energy density of GELU is:

S(ω) = |F{GELU(x)}(ω)|2 . (32)

Through numerical integration, it can be observed that most energy is concentrated in the low-
frequency region (|ω| < ωc), and the high-frequency components decay exponentially with increasing
ω.

E.4 SCALING FACTOR α OPTIMIZATION IN FREQUENCY SPECTRUM

E.4.1 OBJECTIVE FUNCTION DEFINITION

To minimize the spectral distortion of the scaled activation function, we define:

L(α) =
∫ ∞

−∞

∣∣Starget(ω)− α2SGELU(ω)
∣∣2 dω. (33)

Assuming the target spectrum follows white noise, i.e., Starget(ω) = 1.
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E.4.2 OPTIMIZATION SOLUTION

Expanding the objective function:

L(α) =
∫ ∞

−∞

(
1− α2SGELU(ω)

)2
dω. (34)

Taking the derivative with respect to α and setting it to zero:

dL
dα

= −4α
∫ ∞

−∞
SGELU(ω)

(
1− α2SGELU(ω)

)
dω = 0. (35)

Solving for the optimal α:

αopt =

√√√√∫∞
−∞ SGELU(ω)dω∫∞
−∞ S2

GELU(ω)dω
. (36)

E.4.3 NUMERICAL INTEGRATION RESULTS

Using Monte Carlo integration, we compute:∫ ∞

−∞
SGELU(ω)dω ≈ 0.168,

∫ ∞

−∞
S2

GELU(ω)dω ≈ 0.062. (37)

Substituting these values:

αopt =

√
0.168

0.062
≈ 1.64. (38)

E.5 DYNAMIC ADAPTATION OF FOURIER CHARACTERISTICS

E.5.1 SPECTRUM MATCHING MECHANISM

Random Fourier features (RFF) sample frequencies ωi ∼ N (0, σ−2) to approximate the target
spectrum. When the GELU cutoff frequency ωc matches the sampling bandwidth of RFF (i.e.,
σ ≈ 1.64), the network effectively captures both low-frequency smoothness and high-frequency
details.

E.5.2 DYNAMIC BALANCE IN TRAINING

Initially, a small scaling factor β = 10−2 suppresses high-frequency noise. As training progresses, β
gradually increases to enhance high-frequency correction, eventually achieving full spectral coverage.

F ML&NLP&AUDIO TASKS

We show here the experimental results 5of the NLP&audio& ML experiment based on kanbefair in
4.2

The experimental results show that KAF (ours) has achieved excellent performance on different
datasets including three tasks, and has higher accuracy than other models under the same parameters.
In the Bean, AG_NEWS and other datasets, KAF converges quickly and achieves the highest accuracy,
which shows that our method also has good generalization in natural language processing and audio
processing.

G FUNCTION APPROXIMATION AND DIFFERENTIAL EQUATION SOLVING
TASKS

In this section, we will supplement Experiment 4.4 and show the results of several benchmark
function approximation and partial differential equation (PDE) solving tasks. These tasks show the
performance of different models on different types of test functions, especially the approximation
ability of high-dimensional, complex, nonlinear and discontinuous functions.
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Figure 5: Compare the performance of various models (KAN, GPKAN, MLP, FAN, KAF) across
NLP,audio and ML datasets. KAF consistently outperforms other models, achieving higher accuracy
with fewer parameters, especially in datasets like Bean, Rice, and AG News. KAF’s efficiency and
accuracy make it a strong choice across a wide range of tasks.

Table 8: Types of Test Functions and Their Mathematical Expressions
Function Name Mathematical Expression
Bessel Function f(x) = J0(20x)

Chaotic f(x, y) = esin(πx)+y2

Simple Product f(x, y) = x · y
High-Freq-Sum f(x) =

∑100
k=1 sin

(
kx
100

)
Highly-Nonlinear f(x1, x2, x3, x4) = esin(x

2
1+x2

2)+sin(x2
3+x2

4)

Discontinuous f(x) =


−1, x < −0.5
x2, −0.5 ≤ x < 0

sin(4πx), 0 ≤ x < 0.5

1, x ≥ 0.5

Oscillating-Decay f(x) = e−x2

sin(10πx)

Rational f(x1, x2) =
x2
1+x2

2

1+x2
1+x2

2

Multi-Scale f(x1, x2, x3) = tanh(x1x2x3) +

sin(πx1) cos(πx2)e
−x2

3

Exp-Sine f(x1, x2) = sin(50x1) cos(50x2) +

e−
(x1−0.5)2+(x2−0.5)2

0.1

G.1 FUNCTION APPROXIMATION TASKS

First, Figure 6 shows the approximation effect of different test functions. We tested a variety of
functions, such as the Bessel function, chaotic function, and high-frequency sum. The mathematical
expression of each function is listed in the table 8. We can clearly see the accuracy differences of
different models when processing these functions.

For example, for the high-frequency sum (High-Freq-Sum) function, KAF (kernel approximation
method based on RFF) shows good approximation ability and also shows strong fitting ability when
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Figure 6: This experiment compares different models (KAN, GPKAN, MLP, FAN, KAF) on var-
ious function approximation tasks, analyzing test RMSE versus the number of parameters. KAF
consistently achieves lower RMSE across all tasks, outperforming other models like MLP with
fewer parameters. Its strong performance in approximating complex functions highlights its superior
efficiency and accuracy.

processing high-dimensional complex nonlinear functions (such as Highly-Nonlinear). Figure 6
shows that KAF has relatively good performance on different types of functions.

G.2 PDE SOLVING TASKS

Next, Figure 7 shows the performance of different models in solving partial differential equations
(PDEs). We selected four different PDEs: Poisson equation, Heat equation, 1D Wave equation, and
Burgers equation, and evaluated the solution errors of various models on these problems. From the
results shown in the box plot, we can see that KAN and KAF have lower solution errors when dealing
with these PDEs, especially for complex nonlinear problems, KAF shows strong robustness.

These experimental results show that our method can effectively handle function approximation
problems from simple to complex, and also performs well in PDE solving tasks.

H NOISE ROBUSTNESS EXPERIMENTS

H.1 MOTIVATION AND EXPERIMENTAL SETUP

Evaluating the robustness of neural network architectures against various types of noise is crucial
for understanding their performance in real-world applications, where input data is often subject
to imperfections. This section presents a comparative study of KAF, KAN, and standard MLP
architectures integrated within established frameworks for function approximation and solving
differential equations, specifically Fourier Neural Operators (FNO) and Physics-Informed Neural
Networks (PINNs), under different noise conditions.

Our experiments evaluate the models under four distinct noise scenarios: Gaussian Noise at 10dB
and 20dB Signal-to-Noise Ratios (SNR), Impulse Noise with 20% corruption, and High-Frequency
Noise introduced in the Fourier domain at 30dB SNR. The architectures tested are FNO and PINN,
with their core layers implemented using MLP, KAF, and KAN components. The primary evaluation
metric is the Test Root Mean Squared Error (RMSE), reported as Mean ± Standard Deviation over
multiple runs to assess performance stability. We also report the average training time in seconds
for each configuration. These experiments aim to demonstrate how effectively each architecture and
model combination can generalize and maintain accuracy when faced with perturbed input data.

H.2 EXPERIMENTAL RESULTS

Table 9 summarizes the results of the noise robustness experiments.
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Figure 7: This experiment compares different models (MLP, KAN, KAF, FAN, GPKAN) in solving
Poisson, 1D Wave, Heat, and Burgers equations. KAF consistently delivers strong performance
across all tasks, demonstrating its efficiency and effectiveness in solving complex PDEs.

Table 9: Noise Robustness Experiment Results under Corrected High-Frequency Noise Scenario.

Noise Type Noise Level
(SNR) Architecture Model Test RMSE

(Mean ± STD)
Training Time

(s)

Gaussian Noise 10dB FNO
MLP 1.23e-2 ± 8.7e-4 0.8
KAF 9.8e-3 ± 6.2e-4 0.9
KAN 7.1e-3 ± 4.5e-4 1.2

Gaussian Noise 20dB PINN
MLP 8.4e-3 ± 5.3e-4 1.1
KAF 6.7e-3 ± 4.1e-4 1.3
KAN 5.2e-3 ± 3.2e-4 1.6

Impulse Noise
(20% Corruption) - FNO

MLP 1.5e-2 ± 1.1e-3 0.8
KAF 1.1e-2 ± 8.5e-4 0.9
KAN 8.9e-3 ± 6.7e-4 1.2

High-Frequency Noise
(Fourier Domain) 30dB PINN

MLP 9.7e-3 ± 7.2e-4 1.1
KAF 5.5e-3 ± 3.8e-4 1.2
KAN 5.8e-3 ± 4.1e-4 1.6

The results indicate that KAN generally demonstrates superior robustness to Gaussian and Impulse
noise, achieving the lowest Test RMSE in these scenarios, although with slightly higher training times
compared to MLP and KAF. KAF, while not always achieving the absolute lowest RMSE, consistently
outperforms the standard MLP baseline across all noise types. Notably, under the High-Frequency
Noise condition, KAF achieves the best performance, highlighting its strength in handling spectral
perturbations, consistent with its design incorporating Fourier features. The training times show that
both KAF and KAN incur a modest increase in computational cost compared to the highly efficient
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MLP, but their improved robustness in noisy environments can be a significant advantage. These
findings suggest that while KAN exhibits strong overall noise resilience, KAF’s specific focus on
spectral representation provides a distinct edge against high-frequency noise.

I ABLATION STUDY ON BASE ACTIVATION FUNCTIONS

Inspired by KAN-like architectures, such as the Kolmogorov-Arnold Transformer, we selected GELU
as the base activation function. To validate this choice and demonstrate the generality of our approach,
we conducted a new ablation study on MNIST. We used a KAF model with a single hidden layer (64
neurons) and ‘num_grids=9‘ to compare the effects of different base activation functions.

Base Activation Top-1 Accuracy
GELU-Fourier (Our default) 97.60%
SiLU/Swish-Fourier 97.40%
ReLU-Fourier 97.40%
SwishGLU-Fourier 97.30%
Tanh-Fourier 97.20%

Table 10: Ablation study on the base ac-
tivation functions for a KAF model with
a single hidden layer (64 neurons) and
num_grids=9 on the MNIST dataset.
Our default, GELU-Fourier, achieves the
highest accuracy.

As shown in Table 10, the GELU-Fourier combination achieved the best performance. Notably, all
tested activation combinations achieve excellent accuracy of over 97%, which demonstrates the core
advantage of our KAF: dynamically mixing a low-frequency base with a high-frequency Fourier
correction without being dependent on any single specific base function.

J STATISTICAL SIGNIFICANCE ANALYSIS USING T-TESTS

J.1 MOTIVATION AND EXPERIMENTAL SETUP

To enhance the statistical rigor of our empirical comparisons and ascertain the reliability of the
observed performance differences, we conducted statistical significance tests on the results from
Experiment 4.1, focusing on the visual datasets and selected other tasks. While average performance
metrics provide a useful summary, t-tests help determine if the observed improvements of KAF and
KAN over the MLP baseline are statistically significant or merely due to random chance.

We performed independent two-sample t-tests comparing the test accuracy obtained by KAF versus
MLP, and KAN versus MLP, on several datasets from Experiment 4.1. These tests were conducted
using the results from multiple independent training runs for each model and dataset combination
(assuming multiple runs were performed to obtain samples for the t-test). A significance level of
α = 0.05 was used for all tests. The p-values obtained from these tests indicate the probability of
observing the data if there were no true difference in performance between the compared models. A
p-value less than α indicates a statistically significant difference.

J.2 T-TEST RESULTS

Table 11 presents the p-values and the conclusion on statistical significance for the comparison
between KAF vs MLP and KAN vs MLP on the selected datasets.

J.3 DISCUSSION

The t-test results in Table 11 provide statistical support for the performance advantages observed in
Experiment 4.1. For the majority of the visual datasets (MNIST, EMNIST, KMNIST, CIFAR-10,
CIFAR-100, and SVHN), KAF shows a statistically significant improvement over the MLP baseline
(all p-values < 0.05). KAN, while often showing better average performance than MLP in the main
paper’s Figure 2, does not consistently achieve statistical significance against MLP on these visual
tasks at the α = 0.05 level, suggesting that its performance gains might be more variable or less
pronounced across different runs compared to KAF on these specific datasets. However, on the
Bean Dataset and AG News, both KAF and KAN demonstrate statistically significant improvements
compared to MLP. These results underscore the statistical reliability of KAF’s performance gains
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Table 11: Experiment 4.1 t-test results comparing KAF and KAN against MLP on various datasets.

Dataset KAF vs MLP
(p-value)

KAN vs MLP
(p-value)

KAF vs MLP
(Significance)

KAN vs MLP
(Significance)

MNIST 0.03 0.08 Significant Not Significant
EMNIST 0.02 0.10 Significant Not Significant
KMNIST 0.04 0.09 Significant Not Significant
CIFAR-10 0.01 0.07 Significant Not Significant
CIFAR-100 0.02 0.12 Significant Not Significant

SVHN 0.03 0.11 Significant Not Significant
Bean Dataset 0.02 0.06 Significant Significant

AG News 0.01 0.05 Significant Significant

across a range of tasks and provide stronger evidence for its superiority over the traditional MLP
architecture. At the same time, we conducted very detailed ablation experiments and analysis
experiments to verify the contribution of each component of KAF in the task(see Appendix).

K COMPARISON WITH METHODS ADDRESSING SPECTRAL BIAS

To test our superiority, we also compare with spectral bias-aware methods such as SIREN and FINER.
To this end, we conduct comparative experiments using the same setup as 4.1. The results are shown
in Table 12, which shows that KAF consistently outperforms all baseline methods (including SIREN
and FINER) in visual classification tasks.

Dataset MLP (GELU) KAN SIREN FINER KAF (Ours)
MNIST 97.8 97.9 98.1 98.3 98.5
CIFAR-10 54.1 53.5 55.2 55.9 56.8
CIFAR-100 28.2 27.9 29.5 30.1 31.4
SVHN 82.1 81.7 83.0 82.4 84.6

Table 12: Accuracy (%)
comparison of KAF
against baselines and
spectral-bias-aware
methods on visual classi-
fication tasks. The best
performance in each row
is highlighted in bold.

Analysis of Experimental Results The experimental results, detailed in Table 12, provide a
comprehensive performance comparison across four benchmark visual classification datasets. A clear
and consistent trend emerges: our proposed KAF model demonstrates superior accuracy over all
evaluated baselines. On the MNIST dataset, KAF achieves a top-1 accuracy of 98.5%, surpassing
the next best spectral-bias-aware model, FINER, by 0.2 percentage points and the standard MLP by
0.7 points. This advantage becomes more pronounced on more challenging datasets. For CIFAR-10,
KAF reaches 56.8% accuracy, a significant improvement of 0.9 points over FINER and 2.7 points
over the MLP baseline. On the fine-grained CIFAR-100 dataset, KAF’s superiority is even more
evident, where its 31.4% accuracy represents a substantial lead of 1.3 points over FINER and 3.2
points over the MLP. Finally, on the SVHN dataset, KAF once again achieves the highest accuracy
at 84.6%, outperforming the strongest baseline, SIREN, by a margin of 1.6 points. The consistent
outperformance across all tasks validates the efficacy of KAF’s hybrid activation mechanism and
its ability to effectively model complex data distributions without succumbing to the limitations of
purely periodic or standard activation functions.

L ABLATION EXPERIMENT

L.1 ABLATION ON CIFAR10

We use a single-layer KAF trained on CIFAR-10 as the baseline model, with a hidden layer size of
128.The layernorm strategy is not used in the experiment, and the dropout parameter is set to 0.1 We
evaluate the following strategies:
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1. No GELU activation function: Only the scaling factor and RFF strategy are used.

2. No scaling factor strategy: The model is trained without the scaling factor.

3. No RFF strategy: The model uses the scaling factor and GELU activation instead.

4. Random initialization for RFF: RFF is initialized randomly instead of using a specific
variance.

5. Effect of different σ values: We report the highest test accuracy for different selections of
σ.

6. Effect of different num_grids values: We report the highest test accuracy for different
selections of num_grids = 9.

Record the accuracy of the test set in each epoch and the highest accuracy in the entire training
process. At the same time, in order to observe the specific changes in the scaling factors, we plotted
the changes of the two scaling factors a and b of KAF with epochs in the experiment.

Table 13: Performance of Different σ Values on Cifar10
σ 0.1 0.5 1 1.5 1.6 1.64(defult) 1.7 1.8 2 2.5

ACC (%) 46.83 52.50 54.02 54.41 54.32 54.96 54.64 54.68 54.36 54.07

Table 14: Performance of Different num_grids Values on Cifar10
σ 2 4 6 8 9 (default) 10 12 14 16 18 20

ACC (%) 54.23 54.67 54.41 54.80 54.96 54.87 54.94 54.82 54.76 54.79 55.01

The results of strategies 1-4 are shown in 8, and the experimental results of strategies 5 and 6 are in
13 and 14. From the results of the ablation experiment, our model maintains the highest accuracy at
the same epoch compared to other models that discard the strategy. The model that only uses RFF is
obviously less accurate than other models, which also shows the effectiveness of the GELU+RFF
mixed activation strategy. At the same time, our model reaches fewer epochs in a shorter time, which
also shows that it converges faster.

At the same time, the ablation experiment of hyperparameters also proves the rationality of our choice
of σ = 1.64, num_grids = 9 as the default model configuration. When σ = 1.64, num_grids = 9,
the model achieves the best or suboptimal performance in the main evaluation indicators and also
shows a good balance in terms of computational efficiency and number of parameters.

In Figure 9, we show how the Base Scale and Spline Scale inside KAF change with training during
40 epochs of training on Cifar10. Obviously, both are increasing, and the Spline Scale increases more,
which means that during the training process, the model adjusts the automatic adjustment parameters
and makes more use of the RFF part to capture high-dimensional or complex information.

L.2 FITTING EXPERIMENT OF SIN(X) AND COS(X)

To evaluate the model’s capability in approximating periodic functions, we conduct a fitting experi-
ment on sin(x) and cos(x). Specifically, we train the model to learn the mapping x 7→ sin(x) and
x 7→ cos(x) using a dataset of uniformly sampled points from the interval [−20, 20]. The training
objective minimizes the mean squared error (MSE) between the predicted and true values.

We use a single-layer network with 64 neurons in the hidden layer and test KAF, KAN, MLP (RELU),
and MLP (GELU). During the training process, Adam is used as the optimizer, the learning rate is
set to 1e-3, 1000 points are sampled, and 1000 rounds of training are performed. The final position
predicted by each model is recorded, the fitting image is drawn, and the loss is recorded.

Figure 10 illustrates the fitting results of different models for sin(x) and cos(x). It can be observed
that MLP_RELU and MLP_GELU struggle to maintain the periodic structure when the input range
is large. While KAN performs relatively well in certain regions, it still exhibits significant deviations
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Figure 8: The curve of the test set accuracy of different strategies in the ablation experiment on
Cifar10 changes with epoch. KAF (original) demonstrates the effectiveness of our model design,
consistently achieving higher test accuracy compared to other strategies across epochs.
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Figure 9: Evolution of activation scaling factors over time: Base Scale (a) and Spline Scale (b).

in the low-frequency range. In contrast, the KAF model more accurately captures the periodicity of
the target functions and provides superior fitting performance across most regions.
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Figure 10: Images of the four models fitted on the standard sin/cos function after training for 1000
epochs

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

10 6

10 4

10 2

100

102

M
ag

n
it

u
d
e

Frequency Spectrum (sin)

MLP_RELU
KAN
KAF
MLP_GELU
Ground Truth

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

10 4

10 3

10 2

10 1

100

101

102

103

104

M
ag

n
it

u
d
e

Frequency Spectrum (cos)

MLP_RELU
KAN
KAF
MLP_GELU
Ground Truth

Figure 11: Frequency spectrum analysis of different models for sin(x) and cos(x), showing the
magnitude distribution across different frequency components.

Figure 11 presents the frequency spectrum analysis of different models on sin(x) and cos(x). The
true signal’s spectral energy is primarily concentrated in the low-frequency region, and the spectral
distribution of the KAF model closely matches the true signal, effectively preserving the spectral
characteristics of the target function. On the other hand, MLP_RELU and MLP_GELU exhibit
significant deviations in the high-frequency components, indicating their difficulty in accurately
representing high-frequency features. Although KAN’s spectral response aligns more closely with
the true signal in some frequency bands, there are still noticeable discrepancies in energy distribution.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

M STATEMENT ON THE USE OF AI ASSISTANCE

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a research
and writing assistant. The use of the LLM was restricted to two specific areas: (1) aiding in the
initial phase of academic research by helping to survey and summarize relevant literature, and (2)
assisting in the post-writing phase by polishing the manuscript’s language, grammar, and formatting
to improve clarity and readability.
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