

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

KOLMOGOROV-ARNOLD FOURIER NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Although Kolmogorov-Arnold Networks (KAN) based on the Kolmogorov-Arnold theorem (Kolmogorov, 1933) possess strong theoretical expressiveness, they face severe scalability bottlenecks—specifically parameter explosion and difficulty in capturing high-frequency features—in high-dimensional tasks. To address these issues, we propose the **Kolmogorov-Arnold-Fourier Network (KAF)**, which fundamentally redefines the KAN paradigm through spectral reparameterization. Our key contributions include: (1) proposing a fundamental **basis transformation** from the local, grid-based B-spline representation to a global, adaptive spectral representation. This shift changes the network’s inductive bias, reducing parameter complexity from $O(G)$ to $O(1)$ while preserving expressiveness; (2) introducing **trainable** Random Fourier Features (RFF (Tancik et al., 2020; Bracewell, 1986)) initialized via a spectral alignment strategy, which allows the model to break the smoothness limitation of fixed kernels and accurately capture high-frequency components; and (3) implementing an adaptive hybrid GELU-Fourier activation mechanism that progressively enhances frequency representation during training. Comprehensive experiments demonstrate the superiority of KAF across vision, NLP, audio, and PDE solving tasks, achieving state-of-the-art performance (e.g., 93.15% on CIFAR-10) with significantly improved efficiency. We will release the source code in accordance with the review policy.

1 INTRODUCTION

The interpretability of deep neural networks (Howard et al., 2017; Han et al., 2016) has long been one of the core challenges in the field of machine learning. The Kolmogorov-Arnold(Liu et al., 2024; Kolmogorov, 1933) theorem states that any continuous multivariate function can be represented through a combination of univariate functions (Mhaskar & Micchelli, 1996; Barron, 1993). This theory provides significant inspiration for the design of interpretable neural network architectures. Based on this theory, Kolmogorov-Arnold Networks (KAN) (Liu et al., 2024; Schmidt-Hieber, 2021) have been proposed, which replace the fixed activation functions in traditional multilayer perceptrons (MLPs (Rumelhart et al., 1986)) with learnable B-spline (De Boor, 1972) basis functions, theoretically demonstrating strong expressive potential and flexibility. By introducing trainable nonlinear activation functions, KAN enables the network to dynamically adjust the shape of the activation functions according to the characteristics of the data, thereby enhancing the adaptability and performance of the model. However, despite the significant theoretical advantages of KAN, its practical application faces two fundamental issues that severely limit its generalization and adoption in high-dimensional tasks: Inefficient Parameter Utilization: The dual-matrix architecture of KAN (i.e., the activation function matrix and the B-spline coefficient matrix) leads to a rapid increase in the number of parameters. Compared to traditional MLPs, where the parameter count scales with $\text{input} \times \text{output} + \text{bias}$, KAN’s parameter count grows several times larger. This makes it challenging to apply KAN to high-dimensional tasks such as computer vision. The explosion in parameters (Xu et al., 2019; Mhaskar & Micchelli, 1996;

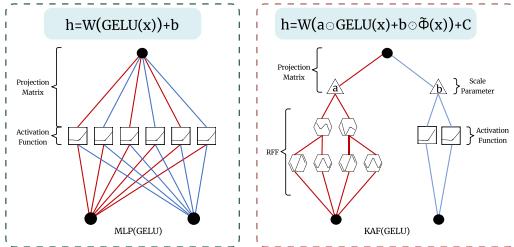


Figure 1: Comparison between a standard GELU-MLP and a GELU-KAF.

Barron, 1993) not only increases the storage and computational costs of the model but also significantly reduces the efficiency of both training and inference (Tan & Le, 2020; 2021). The B-spline (De Boor, 1972; Eldar & Unser, 2021; Aziznejad et al., 2023; Li et al., 2023; Wu et al., 2022) basis functions employed by KAN exhibit inherent spectral limitations when performing function approximation in high-dimensional spaces. The smoothness of B-spline basis functions makes it difficult to accurately capture high-frequency components of signals, leading to suboptimal performance when processing data with rich spectral features, such as natural images or audio waveforms. This limitation in spectral representation capability adversely affects the model’s performance and stability in practical applications (Xu et al., 2019). This dilemma creates a paradox between theory and practice: although KAN theoretically encompasses all functionalities of MLPs, its inefficiency and spectral distortion issues force practitioners to make a trade-off between interpretability and scalability.

To address the aforementioned issues, the key challenge is balancing the inherent trade-off between model interpretability and parameter efficiency, which has long plagued traditional neural networks. This paper make an attempt to fundamentally redefine the traditional KAN paradigm (Bracewell, 1986). We attempt to address the bottlenecks of the Kolmogorov-Arnold theory in practical applications (i.e., the parameter explosion and insufficient high-frequency capture problems of the KAN model), so that it can be applied to high-dimensional, large-scale modern AI tasks. Specifically, this paper introduces an innovative neural network architecture—**Kolmogorov-Arnold-Fourier Networks (KAF)**, which employs Fourier domain reparameterization and dynamic activation evolution, aiming to bridge the gap between interpretability and parameter efficiency. Our main contributions include: (1) proposing a fundamental **basis transformation** from the local, grid-based B-spline representation (KAN) to a global, adaptive spectral representation. This shift changes the network’s inductive bias, breaking the smoothness limitation of fixed kernels and enabling efficient high-dimensional scaling. Consequently, we resolve the parameter explosion issue, reducing complexity from $O(d_{in} \times d_{out} \times (G + K + 3))$ to $O(d_{in} \times d_{out})$ (See Supp.3.3 and Supp.A for proof) while preserving expressiveness; (2) We replace the traditional B-spline basis functions with trainable **Random Fourier Features**. We replace the traditional B-spline basis functions with trainable **Random Fourier Features** to eliminate the need for the spline coefficient matrix. An initialization strategy based on the Central Limit Theorem ($\sigma = 1.64$) aligns the RFF spectrum with the prior knowledge of natural signals, avoiding spectral leakage issues. This significantly enhances the model’s spectral fidelity and expressive power in high-dimensional spaces.

We design a hybrid GELU-Fourier activation function with learnable coefficients $\{a, b\}$. During training, these coefficients are dynamically adjusted through gradient backpropagation, enabling an automatic transition from fixed activation functions to hybrid Fourier-symbolic representations.

2 RELATED WORK

Multi-Layer Perceptrons and Current Challenges. The design and optimization of deep learning (Touvron et al., 2021) models remain central to machine learning research. Traditional MLPs (Rumelhart et al., 1986), among the earliest neural networks (Han et al., 2016), offer simplicity and scalability, with rich theoretical foundations. While ResNet (He et al., 2015b) and Transformer (Vaswani et al., 2023) models have shown remarkable performance across various tasks, MLPs face challenges in theoretical interpretability and practical bottlenecks. Traditional activation functions like ReLU (Nair & Hinton, 2010; Glorot et al., 2011) and Sigmoid (Elfwing et al., 2017) often fail to adapt to complex data, and despite their efficiency, MLPs struggle with high-frequency features and complex distributions. Improving activation mechanisms and parameter efficiency has become crucial for enhancing MLPs’ adaptability to high-dimensional data.

Kolmogorov-Arnold Networks and Scalability Issues. The Kolmogorov-Arnold (Fan et al., 2019) Theorem underpins networks for approximating continuous multivariable functions. The pioneering KAN replaced fixed activations with B-spline (De Boor, 1972) functions but faces challenges in high-dimensional applications due to parameter explosion and GPU inefficiency. Recent improvements include KAN-Transformer, MLP-KAN with sparse parameters, and FAN(Dong et al., 2024) with Fourier activations, all seeking to balance interpretability with scalability. Also, Previous work (Xu et al., 2024; Mehrabian et al., 2025; Ai et al., 2025; Rong et al., 2025; Zhou et al., 2024) has explored the combination of Fourier and KAN architectures in different scenarios.

108 **Enhancing Spectral Representation with KAF.** To address high-frequency modeling challenges,
 109 Random Fourier Features (RFF (Rahimi & Recht, 2007b; Yu et al., 2016)) enable spectral domain
 110 mapping, with variants like Learnable RFF and SIREN enhancing expressiveness. Our proposed
 111 KAF incorporates GELU and learnable Fourier features, with scale factor control and variance
 112 initialization. This reduces parameters while improving spectral representation. KAF maintains
 113 KAN’s interpretability while enhancing scalability and efficiency, showing superior performance in
 114 capturing high-frequency (Sitzmann et al., 2020) details across NLP, vision, audio, and traditional
 115 machine learning tasks.

117 3 METHODOLOGY

119 3.1 KOLMOGOROV-ARNOLD THEOREM

121 The Kolmogorov-Arnold (Bracewell, 1986; Kolmogorov, 1933) theorem, proposed by Soviet mathe-
 122 maticians Vladimir Arnold and Andrey Kolmogorov in the 1950s, states that any continuous (Maiorov
 123 & Pinkus, 2021) multivariate function $f : [0, 1]^d \rightarrow \mathbb{R}$ can be represented as a superposition of
 124 univariate functions:

$$126 \quad f(x_1, x_2, \dots, x_d) = \sum_{q=1}^{2d+1} \Phi_q \left(\sum_{p=1}^d \phi_{q,p}(x_p) \right),$$

129 where $\Phi_q : \mathbb{R} \rightarrow \mathbb{R}$ and $\phi_{q,p} : [0, 1] \rightarrow \mathbb{R}$ are univariate continuous functions. This theorem provides
 130 a theoretical foundation for dimensionality reduction in high-dimensional function approximation.

131 In (Berner et al., 2022b; Poggio et al., 2017), the
 132 theorem suggests that high-dimensional func-
 133 tions can be captured through low-dimensional
 134 (Xu et al., 2019) transformations, resembling
 135 the hierarchical structure of neural networks.

137 3.2 KOLMOGOROV-ARNOLD 138 NETWORK (KAN)

140 Although the Kolmogorov-Arnold (Bracewell,
 141 1986) theorem was proposed quite early, (KAN
 142 (Liu et al., 2024)) is proposed according to this
 143 theorem, demonstrating that this structure can,
 144 in a sense, serve as an alternative to traditional
 145 MLP models. In the KAN network, each layer
 146 can be represented by the following formula:

$$147 \quad f(\mathbf{x}) = \Phi \circ \mathbf{x} = \begin{bmatrix} \sum_{i=1}^{d_{in}} \phi_{1,i}(x_i) & \dots & \sum_{i=1}^{d_{in}} \phi_{d_{out},i}(x_i) \end{bmatrix},$$

151 where Φ is a matrix of basis functions. This formula aligns with the form of the Kolmogorov-Arnold
 152 theorem. However, in practical applications, they chose B-spline (Bach, 2016) basis functions as
 153 the basis functions $\phi_{q,p}$, and added an external activation function *SILU* to guide the update of the
 154 KAN layer (Ramachandran et al., 2017; Elfwing et al., 2017). The formula can be expressed as

$$155 \quad \phi(x) = w_h \text{silu}(x) + w_s \text{spline}(x),$$

$$157 \quad \text{spline}(x) = \sum_i c_i B_i(x).$$

160 Among them, Φ represents the basis function matrix, where B-spline basis functions and the SiLU
 161 activation function were used. However, KAN suffers from excessive parameter growth, with a
 162 parameter count of $d_{out} \times d_{out} \times (G + K + 3) + d_{out}$, far exceeding MLP’s $d_{in} \times d_{out} + d_{out}$, while

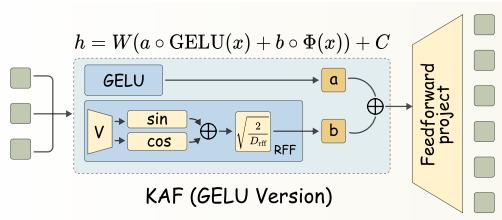


Figure 2: Pipeline of the KAF (GELU Version) layer, where input is processed through parallel GELU and Random Fourier Feature (RFF) branches, scaled by ‘a’ and ‘b’ respectively, summed, and then passed to a final linear projection.

162 also being computationally inefficient on GPUs and failing to capture high-frequency components,
 163 limiting its practical applicability.
 164

165 **3.3 KAF: KOLMOGOROV-ARNOLD FOURIER NETWORK**
 166

167 In the previous discussion, we pointed out that traditional networks based on the Kolmogorov-Arnold
 168 theorem (KAN) often face multiple challenges in practical applications. To address these issues,
 169 we propose an alternative approach—KAF (Kolmogorov-Arnold Fourier Network). By replacing
 170 B-spline basis functions with Random Fourier Features (RFF(Fathony et al., 2021; Tancik et al., 2020;
 171 Bracewell, 1986)), which are more efficient for GPU acceleration, and introducing hybrid spectral
 172 correction for the activation functions, the network retains the advantages of the Kolmogorov-Arnold
 173 theory while achieving training efficiency and inference speed closer to that of MLPs (Rumelhart
 174 et al., 1986). This section provides a detailed explanation of the overall architecture of the KAF
 175 network, the utilization of Random Fourier Features within the network, the design and scaling
 176 principles of the GELU-Fourier hybrid activation function, as well as the RFF weight initialization
 177 strategy and the theoretical justification for $\sigma = 1.64$.
 178

Overall Architecture. In the overall framework of KAF, we follow the core idea of the Kolmogorov-Arnold theorem, which approximates high-dimensional target functions through the composition of several low-dimensional learnable functions. Unlike the KAN network, which directly utilizes B-spline basis functions, KAF employs Random Fourier Features (RFF) in each layer to perform a nonlinear mapping of the input, and then uses linear transformations to achieve the composition of the “outer function” and the “inner function.” Specifically, the core computational process of each KAF layer can be formulated as:

$$\mathbf{h}^{(l)} = \underbrace{\mathbf{W}^{(l)}}_{\text{outer function}} \left(\underbrace{\mathbf{a}^{(l)} \odot \text{GELU}(\tilde{\mathbf{x}}^{(l)}) + \mathbf{b}^{(l)} \odot \tilde{\phi}(\tilde{\mathbf{x}}^{(l)})}_{\text{inner function composition}} \right) + \mathbf{c}^{(l)}, \quad (1)$$

188 where: $\tilde{\mathbf{x}}^{(l)} = \text{LayerNorm}(\mathbf{x}^{(l)})$ is the normalized input at layer l ; $\tilde{\phi}(\cdot)$ represents the nonlinear
 189 mapping based on Random Fourier Features (RFF) (detailed in Section 3.3.2); $\mathbf{a}^{(l)}, \mathbf{b}^{(l)} \in \mathbb{R}^n$ are
 190 learnable scaling parameters, used to modulate the contributions of GELU activation and RFF features,
 191 respectively; We choose GELU as the base activation function, which empirically outperforms other
 192 common activation functions (such as SiLU and ReLU) in our ablation experiments(see Appendix I).
 193 $\mathbf{W}^{(l)} \in \mathbb{R}^{m \times n}$ is the linear transformation weight, and $\mathbf{c}^{(l)} \in \mathbb{R}^m$ is the bias term.
 194

195 By stacking multiple layers of the above transformation, the KAF network constructs an efficient
 196 multi-layer approximation structure. Since RFF has excellent parallelism on GPUs, this structure
 197 avoids the high computational burden of B-spline basis functions, significantly improving training
 198 and inference efficiency while maintaining strong function approximation capabilities. Also, the
 199 hybrid design of KAF fuses global Fourier features with local GELU through learnable α and β . High
 200 α emphasizes local smoothness, high β captures global periodicity—dynamic and interpretable(See
 201 Supp. L). At the same time, KAN’s B-spline function is local but rigid; KAF’s flexibility outweighs
 202 this and is more adaptable to the data structure.
 203

Random Fourier Features (RFF). Given an input space $\mathcal{X} \subseteq \mathbb{R}^d$, we define the Random Fourier
 204 Feature (RFF(Tancik et al., 2020)) mapping as a learnable embedding from the input space to a
 205 Reproducing Kernel Hilbert Space (RKHS(Werneburg, 2023; Aronszajn, 1950; Schölkopf & Smola,
 206 2018)). For any input vector $x \in \mathcal{X}$, the feature mapping is formally defined as:

$$z(x; W, b) = \sqrt{\frac{2}{m}} [\cos(\langle x, W \rangle + b) \oplus \sin(\langle x, W \rangle + b)] \in \mathbb{R}^{2m}, \quad (2)$$

207 where $W \in \mathbb{R}^{d \times m}$ and $b \in \mathbb{R}^m$. Here, $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product, and \oplus represents
 208 the vector concatenation operation. The frequency matrix $W = [w_1, \dots, w_m]$ is initialized according
 209 to an input-dimension-adaptive spectral distribution: $w_{ij} \sim \mathcal{N}(0, \sigma^2/d)$, where σ^2 represents the
 210 empirical variance of the input data. The phase shift b is sampled from a uniform distribution
 211 $b_i \sim \mathcal{U}[0, 2\pi]$, which ensures phase diversity, a crucial property for capturing local features of signals.
 212 For more information on RFF convergence, gradient computation, initialization strategies, and the
 213 number of specific Fourier features, see Appendix D and L.
 214

215 This mapping comes with the following theoretical guarantees:

216 - Translation Invariance: For any $x, y \in \mathcal{X}$, as $m \rightarrow \infty$, we have $\mathbb{E}[z(x)^T z(y)] \rightarrow e^{-\frac{\|x-y\|^2}{2\sigma^2}}$.
 217
 218 - Differentiability: The partial derivatives $\frac{\partial z}{\partial W}$ and $\frac{\partial z}{\partial b}$ have analytical expressions, enabling end-to-end
 219 differentiation.
 220

221 **GELU-Fourier Hybrid Activation.**

222 *Design Motivation:* To balance low-frequency smoothness and high-frequency representation capability,
 223 we propose a hybrid activation function:
 224

$$225 \quad \mathcal{H}(\mathbf{x}) = \underbrace{\alpha \odot \text{GELU}(\mathbf{x})}_{\text{Low-Frequency Basis}} + \underbrace{\beta \odot \mathbf{V} \psi(\mathbf{x})}_{\text{High-Frequency Correction}} \quad (3)$$

226 where $\alpha, \beta \in \mathbb{R}^d$ are learnable channel-wise scaling factors, $\mathbf{V} \in \mathbb{R}^{d \times 2k}$ is the frequency-domain
 227 projection matrix, and \odot represents element-wise multiplication. **Initialization Strategy of KAF:**
 228

$$229 \quad \alpha^{(0)} \leftarrow \mathbf{1}, \quad \beta^{(0)} \leftarrow \epsilon \mathbf{1}, \quad (\epsilon = 10^{-2}), \quad \mathbf{V}_{ij}^{(0)} \sim \mathcal{N}(0, 0.01) \quad (4)$$

230 The dynamic property of this initialization manifests in the following way: At the early stage of
 231 training, the small initialization of the high-frequency component β ensures that its norm is much
 232 smaller than that of the low-frequency component α , prioritizing the learning of low-frequency
 233 features. As training progresses, the natural growth of weights allows the norm of β to increase
 234 approximately proportionally to the training time t , thereby gradually enhancing the representation of
 235 high-frequency features. At the same time, we conducted detailed analysis experiments to measure
 236 the respective contributions of base activation and fourier activation in different training steps(see
 237 Appendix L).
 238

239 **Implementation of the Kolmogorov-Arnold Architecture and RFF Initialization.**
 240

241 *Theorem Definition:* The Kolmogorov-Arnold representation theorem states that any continuous
 242 function $f \in C([0, 1]^d)$ can be expressed as a finite composition of univariate functions:
 243

$$244 \quad f(\mathbf{x}) = \sum_{q=0}^{2d} \Phi_q \left(\sum_{p=1}^d \phi_{q,p}(x_p) \right), \quad (5)$$

245 where $\phi_{q,p} : \mathbb{R} \rightarrow \mathbb{R}$ are univariate nonlinear functions, and $\Phi_q : \mathbb{R} \rightarrow \mathbb{R}$ are composition functions.
 246

247 *Architecture Implementation:* We modularize the neural network to efficiently approximate this
 248 mapping, establishing the following correspondences:
 249

$$250 \quad \phi_{q,p}(x_p) \mapsto \underbrace{\text{GELU}(w_p^{(q)} x_p + b_p^{(q)})}_{\text{Low-Frequency Basis}} + \underbrace{\beta_q^\top \psi_{\text{RFF}}(x_p)}_{\text{High-Frequency Basis}}, \quad (6)$$

$$251 \quad \Phi_q(\cdot) \mapsto \alpha_q^\top \text{Linear}(\cdot).$$

252 Here, $\psi_{\text{RFF}}(x_p) = [\cos(\omega_1 x_p + \theta_1), \sin(\omega_1 x_p + \theta_1), \dots]$ represents the Random Fourier Features
 253 (RFF), and $\alpha_q, \beta_q \in \mathbb{R}^k$ are learnable modulation parameters. *Spectral Complementarity Mechanism:*
 254 - GELU Properties: The activation function $\sigma(wx + b)$ provides a smooth gating effect in the low-
 255 frequency domain, satisfying $\mathbb{E}[\sigma(wx)] \propto \mathcal{N}(0, 1/\sqrt{2})$. - RFF Enhancement: The use of mixed-
 256 frequency bases $\{\cos(\omega_m x + \theta_m)\}_{m=1}^M$ expands spectral coverage. - Dynamic Balancing: The
 257 learnable parameters α, β enable an adaptive trade-off:
 258

$$259 \quad \tilde{\phi}(x) = \alpha \cdot \text{GELU}(x) + \beta \cdot \psi_{\text{RFF}}(x), \quad (7)$$

260 where the initial values are set to $\alpha^{(0)} = 1$ and $\beta^{(0)} = 10^{-2}$ to ensure training stability.
 261

262 *RFF Initialization Strategy:* To fully leverage spectral complementarity, we adopt a refined initialization
 263 scheme: - Frequency Matrix \mathbf{W} : To ensure spectral balance and avoid bias towards low or high
 264 frequencies, we initialize \mathbf{W} using a scaled normal distribution(Glorot & Bengio, 2010; He et al.,
 265 2015a):
 266

$$267 \quad \omega_{ij} \sim \mathcal{N} \left(0, \frac{\gamma}{\sqrt{d_{\text{in}} \cdot \mathbb{E}[\|\sigma(x)\|^2]}} \right), \quad (8)$$

270 This initialization is designed to align with the spectral distribution of the input data. The denominator
 271 normalizes the standard deviation based on input dimensionality d_{in} and the expected squared norm
 272 of the activation function $\mathbb{E}[\|\sigma(x)\|^2]$, ensuring a stable variance propagation during training. For the
 273 GELU activation function, why $\sigma(x) = 1.64$ will be proved later in Appendix E.

274 - Phase Shift b : Uniformly sampled to cover a complete period,
 275

$$b_i \sim \mathcal{U}(0, 2\pi). \quad (9)$$

276 - Linear Projection Layer: Initialized using Xavier initialization,
 277

$$V_{ij} \sim \mathcal{U}\left(-\sqrt{6/(d_{\text{in}} + d_{\text{out}})}, \sqrt{6/(d_{\text{in}} + d_{\text{out}})}\right). \quad (10)$$

281 **Parameter and FLOPs Comparison.** To evaluate the scale of parameters and computational
 282 overhead of KAF, we compare the number of parameters and floating-point operations (FLOPs) for
 283 KAF, KAN, and MLP in a single layer setting.

285 Table 6 summarizes the parameter count and FLOPs for each model. KAN exhibits the highest
 286 parameter count due to its recursive B-spline computations, while KAF, by leveraging Random
 287 Fourier Features (RFF), achieves a balance between parameter efficiency and spectral representation.
 288 MLP remains the simplest in terms of computation. For the detailed derivation of these calculations,
 289 please refer to Appendix A.

291 4 EXPERIMENTS

293 The objective of this experiment is to evaluate the performance of mainstream models when their
 294 MLP(Rumelhart et al., 1986) or KAN components are replaced with KAF. By maintaining consistent
 295 parameters, we conducted experiments across a variety of tasks including simple visual tasks, NLP
 296 tasks, audio tasks, and machine learning tasks, utilizing models such as ResNet-18 (He et al., 2015b),
 297 DeiT (Touvron et al., 2021) (from the MLP-KAN architecture), MLPmixer (Berner et al., 2022a), and
 298 GPT-2 (Brown et al., 2020). Additionally, we tested the performance of KAF in function fitting(see
 299 Appendix G.1) and solving differential equations(see Appendix G.2). We also compared KAF and
 300 Methods Addressing Spectral Bias, and the experimental results showed that we still maintain the
 301 best performance(see Appendix K). We test KAN using the pykan repository. In particular, we call
 302 model.speed() to disable symbolic branching to ensure fair experiments. All experiments employed
 303 either the Adam (Kingma & Ba, 2014) optimizer, with learning rates appropriately selected according
 304 to the specific task. The experimental environment was set up with RTX 4090D GPU.

305 4.1 COMPREHENSIVE EVALUATION BASED ON KANBEFAIR

307 Based on Kanbefair (Yu et al., 2024), we conducted a comprehensive evaluation of KAF on vision
 308 (Dosovitskiy et al., 2021), NLP (Brown et al., 2020), audio, and machine learning tasks to compare
 309 its performance with existing models. We selected MLP (with GELU activation), KAN, FAN (Dong
 310 et al., 2024), and GPKAN (Yang & Wang, 2024) for experimentation.

312 **Experimental Setup.** All models were trained for 40 epochs. During training, the maximum test
 313 accuracy was recorded as the primary evaluation metric. For KAF, the key parameters included 9
 314 grids, an activation expectation of 1.64, and GELU as the activation function. For KAN, we used
 315 grid extension to ensure fair comparison. For MLP, we experimented with both GELU (Hendrycks &
 316 Gimpel, 2016) and ReLU (Nair & Hinton, 2010; Glorot et al., 2011) activations. FAN's p_ratio was
 317 set to 0.25, and GPKAN used GELU-based initialization. We also provide T-tests in the Supp. J to
 318 increase the statistical rigor.

319 Experimental Results.

320 As shown in Figure 3 and Table 1, we conducted a systematic comparison. The results demonstrate
 321 that KAF consistently achieves the highest accuracy under the same parameter settings. Notably, on
 322 challenging tasks like CIFAR10 and SVHN, KAF exhibits significant accuracy improvements. In
 323 addition to vision tasks, Figure 5 (see Appendix F) evaluates KAF's performance on NLP, audio, and
 324 ML datasets, where KAF also achieves superior results.

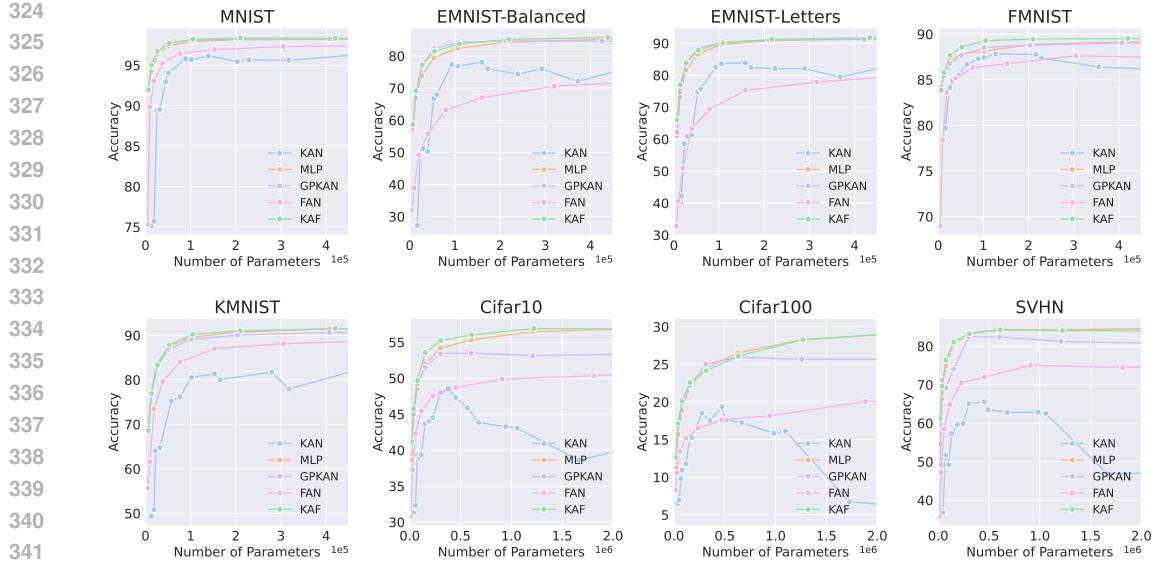


Figure 3: Compare the performance of different models (KAN, MLP, GPKAN, FAN, KAF) on simple networks on multiple datasets. The results show that KAF can usually achieve higher accuracy with fewer parameters.

Table 1: Comprehensive comparison of different models on various datasets. Parameters refer to the total model size. KAN was sometimes excluded due to excessive parameter size.

Model	Datasets	Mixer	#Param.	FLOPs	Top-1	Model	Datasets	Mixer	#Param.	FLOPs	Top-1
ResNet/18	CIFAR-10	MLP	11.1M	0.56G	91.19	MLP_Mixer/S	ImageNet1k	MLP	18.2M	3.8G	63.5
ResNet/18	CIFAR-10	KAF	12.0M	0.63G	91.72	MLP_Mixer/S	ImageNet1k	KAF	18.8M	4.2G	64.7
ResNet/18	CIFAR-10	GPKAN	11.3M	0.56G	90.98	MLP_Mixer/S	ImageNet1k	GPKAN	18.8M	4.0G	62.9
ResNet/18	CIFAR-10	FAN	8M	0.42G	90.69	MLP_Mixer/S	ImageNet1k	FAN	15.7M	3.2G	58.2
ResNet/18	CIFAR-10	KAN	Too large	—	—	MLP_Mixer/S	ImageNet1k	KAN	Too large	—	—
ViT-T/16	ImageNet1K	MLP	5.7M	1.08G	72.3	MLP_KAN	Cifar100	MLP	1.3M	0.12G	49.0
ViT-T/16	ImageNet1K	KAF	5.9M	1.12G	73.2	MLP_KAN	Cifar100	KAF	1.4M	0.15G	53.8
ViT-T/16	ImageNet1K	GPKAN	5.7M	1.13G	74.6	MLP_KAN	Cifar100	KAN	1.9M	0.19G	51.2
ViT-T/16	ImageNet1K	FAN	4.2M	0.96G	65.7	MLP_KAN	Cifar100	GPKAN	1.4M	0.14G	54.3
ViT-T/16	ImageNet1K	KAN	Too large	—	—	MLP_KAN	Cifar100	FAN	1.0M	0.1G	46.7

4.2 EXPERIMENTS ON USING KAF COMPONENTS IN COMPLEX VISION MODELS

To comprehensively evaluate the performance of KAF in large-scale vision models, we assess its impact on accuracy, computation time, and generalization. We replace the original MLP or KAN layers in architectures like ResNet-18, ViT-Tiny, MLP-Mixer-S/16, and MLP_KAN (DeiT-based) with KAF.

Experimental Setup. We utilize CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-1K. We conducted evaluations under two settings: (1) a *Standard Setting* (fixed hyperparameters) for fair architectural comparison as shown in Table 1, and (2) an *Optimized Setting* (with strong augmentations like Mixup/CutMix) to probe the SOTA limits.

SOTA Performance Analysis. While Table 1 focuses on fair comparison under strict constraints, Table 2 demonstrates KAF’s full potential under optimized settings. Crucially, KAF demonstrates strong scalability: **KAF-ResNet-18 reaches 93.15% on CIFAR-10** (surpassing the reference SOTA of $\sim 93.0\%$), and **KAF-ViT-Tiny achieves 79.3% on ImageNet-1K**, significantly outperforming the MLP baseline (78.8%). This confirms that the gaps observed in previous baselines were due to training constraints, and KAF effectively scales with advanced training recipes.

Strict Parameter-Matched Comparison. To verify that improvements stem from architectural superiority rather than parameter counts, we compared KAF against a “Widened MLP” configured to have *more* parameters than KAF. As shown in Table 3, even with a smaller parameter budget

378
 379 Table 2: SOTA Capability Analysis. Under optimized tuning (Mixup, CutMix, etc.), KAF matches or
 380 exceeds SOTA reference performance, significantly boosting the MLP baseline.

Model	Dataset	Setting	# Params	Top-1 Acc (%)
ResNet-18 (MLP)	CIFAR-10	Standard	11.1M	91.19
ResNet-18 (KAF)	CIFAR-10	Optimized	12.0M	93.15
ViT-Tiny (MLP)	ImageNet-1K	Standard	5.7M	72.3
ViT-Tiny (KAF)	ImageNet-1K	Optimized	5.9M	79.3

387
 388 (1.02M vs. 1.05M), KAF outperforms the widened MLP (56.8% vs 54.3%), highlighting its spectral
 389 efficiency.
 390

391
 392 Table 3: Strict Parameter-Matched Comparison on CIFAR-10. KAF improves performance under
 393 equal parameter budget.

Model Configuration	Width Scale	# Params	Test Acc (%)
MLP (Standard)	1.0 \times	0.85M	54.1
MLP (Widened)	\approx 1.2 \times	1.05M	54.3
KAF (Ours)	1.0 \times	1.02M	56.8

400
 401 **Inference Latency Analysis.** We measured real-world inference latency (batch size 1, RTX 4090D)
 402 to address efficiency concerns. Table 4 shows that KAF is orders of magnitude faster than KAN (up
 403 to **11.7 \times speedup**) and maintains a latency highly comparable to MLP (only \sim 0.2ms difference per
 404 image). This validates KAF as a practical, deployment-ready alternative.
 405

406 Table 4: Inference Latency Comparison. KAF resolves the speed bottleneck of KAN across both
 407 vision and NLP tasks.

Task	Backbone	Model	Latency	Speedup vs KAN
Vision	ResNet-18	MLP	3.4 ms/img	-
		KAN	42.1 ms/img	1.0 \times
		KAF	3.6 ms/img	11.7\times
NLP	GPT-2	MLP	17.2 ms/token	-
		KAN	145.3 ms/token	1.0 \times
		KAF	18.5 ms/token	7.8\times

4.3 EXPERIMENTS ON LLMs WITH KAF COMPONENTS

417 To evaluate the potential of KAF in language models, we integrated it into the GPT-2 architecture by
 418 replacing the Feed-Forward Network (FFN)’s MLP with KAF or KAN. We trained and evaluated the
 419 models on large-scale text datasets like OpenWebText and Wikitext-103 to assess their impact on
 420 language modeling quality. In the experimental setup, we used GPT-2 (Small version) as the base
 421 model, replacing the two-layer MLP in the FFN with KAF or KAN while maintaining the same
 422 parameter scale, and kept all other Transformer configurations (Vaswani et al., 2023), including
 423 multi-head attention, token embeddings, and positional encoding, consistent with the official GPT-2
 424 implementation.
 425

426 **Experimental Results.** Table 5 shows the comparison results of GPT-2 using MLP, KAF, and KAN
 427 as FFN components. The results demonstrate that KAF improves language modeling performance
 428 and training efficiency. On Wikitext-103, it reduces PLL from 37.50 to **28.37** with negligible training
 429 overhead (21h 42m vs 21h 28m). In contrast, KAN fails to converge (PLL > 39k) and suffers from
 430 severe computational costs (304h). A similar trend is observed on OpenWebText, where KAF reduces
 431 PLL to **13.86**, highlighting its robustness and efficiency in large-scale sequence modeling compared
 432 to unstable alternatives like KAN.

432
 433 Table 5: Comparison of GPT-2 based MLP, KAF, and KAN models on Wikitext-103 and OpenWeb-
 434 Text: Perplexity (PLL), training time, and parameter count.

Model	Dataset	PLL ↓	Training Time	#Param.
MLP	Wikitext-103	37.50	21h 28m	117M
KAF	Wikitext-103	28.37	21h 42m	128M
KAN	Wikitext-103	39782	304h 06m	478M
MLP	OpenWebText	17.37	62h 56m	117M
KAF	OpenWebText	13.86	63h 13m	128M
KAN	OpenWebText	27832	960h 19m	478M

443
 444 4.4 PERFORMANCE OF KAF IN FUNCTION APPROXIMATION AND DIFFERENTIAL EQUATION
 445 SOLVING TASKS
 446

447 To comprehensively validate the capability of KAF in complex function approximation and PDE solving
 448 (Raissi et al., 2017), we designed experiments covering a wide range of complexities, dimensions,
 449 and nonlinearities, including eight function approximation tasks to evaluate KAF’s performance
 450 in capturing complex nonlinear relationships and four PDE-solving problems involving multiple
 451 physical parameters to assess applicability in scientific computing, using various hyperparameter
 452 configurations to ensure reliability and generalization. In the experimental setup, we conducted 8
 453 function approximation and 4 PDE solving tasks (Raissi et al., 2017; Han et al., 2018), addressing
 454 varying complexities, dimensions, and nonlinearities, training models with hidden layer sizes from 8
 455 to 512 for up to 1000 epochs, with more detailed settings provided in the appendix. G.

456 4.4.1 FUNCTION APPROXIMATION TASKS
 457

458 We presents the eight target functions used in the experiments (see Table 8 in Appendix G), covering
 459 a variety of mathematical properties, including periodicity, non-linearity, high dimensionality, dis-
 460 continuity, and chaos. The results of the experiment are shown in 6(see Appendix G). According
 461 to the experimental data, KAF’s minimum test RMSE in most function approximation tasks is sig-
 462 nificantly lower than that of MLP, GPKAN, and FAN, demonstrating superior fitting capability and
 463 generalization performance. In the Bessel task, KAF achieves a test RMSE of 2.55×10^{-6} , which
 464 is considerably lower than MLP’s 1.43×10^{-5} . For the Highly-Nonlinear and Multi-Scale tasks,
 465 KAF attains RMSE values of 3.18×10^{-5} and 4.98×10^{-5} , while MLP exhibits significantly higher
 466 errors of 1.41×10^{-4} and 1.85×10^{-2} , respectively.

467 4.4.2 PDE SOLVING TASKS
 468

469 As shown in Figure 7 in Appendix G, for numerical solving tasks across four types of PDEs (Poisson,
 470 1D Wave, Heat, and Burgers), traditional MLP exhibits higher overall errors or lower stability. In
 471 contrast, KAF, which leverages learnable approximation, generally achieves better or comparable
 472 accuracy. For Poisson and Heat equations, both KAF and KAN significantly outperform MLP
 473 in terms of error reduction, while FAN also maintains a comparable level of accuracy. However,
 474 GPKAN, due to its sensitivity to parameter scale and initialization, demonstrates noticeable instability
 475 or larger errors, highlighting its challenges in achieving robust performance under these conditions.
 476 Overall, KAF, which incorporates learnable grid functions or compact functionals, provides greater
 477 flexibility in function approximation for PDE-solving tasks.

478 4.5 ABLATION EXPERIMENT
 479

480 In this section, we conducted two ablation experiments: 1) On the CIFAR-10 dataset, we used a
 481 single-layer network to study the effectiveness and completeness of each component and strategy.
 482 Additionally, we plotted the scaling factor curves to observe the variations of different factors during
 483 the experiment. The detailed results are presented in Appendix L; 2) We performed function fitting
 484 experiments on $\sin(x)$ and $\cos(x)$ in comparison with KAN and MLP (GELU/RELU) to demonstrate
 485 that our model outperforms traditional methods in fitting periodic and high-frequency signals. The
 full experimental results are shown in Appendix L.

486 **5 CONCLUSION**
 487

488 The Kolmogorov-Arnold-Fourier network (KAF) addresses the scalability and spectral limitations
 489 of Kolmogorov-Arnold Networks (KAN) by integrating trainable random Fourier features (RFF)
 490 and a hybrid GELU-Fourier activation mechanism. This innovative design improves parameter
 491 efficiency and high-frequency function approximation. Experimental results demonstrate KAF’s
 492 effectiveness across a diverse range of tasks, including vision, natural language processing (NLP),
 493 and solving differential equations, highlighting its practicality in high-dimensional learning scenarios.
 494 Furthermore, the learnability of RFF-based mappings is sensitive to initialization and hyperparameter
 495 tuning, which can impact convergence stability and model performance. Future research could focus
 496 on several promising directions. One avenue is the hybridization of KAF with larger-scale models to
 497 further enhance its capacity and scalability. Another is the exploration of more robust initialization
 498 schemes and adaptive optimization techniques to improve the stability of RFF-based mappings.
 499

500 **6 ETHICS STATEMENT**
 501

502 This work adheres to the ICLR Code of Ethics. Our study does not involve human-subjects research,
 503 the collection of personally identifiable information, or the annotation of sensitive attributes, and we
 504 do not create any new human data. All experiments are conducted on publicly available, widely used
 505 vision–language benchmarks, strictly under their respective licenses and terms of use.

506 **7 REPRODUCIBILITY STATEMENT**
 507

508 To ensure the reproducibility of our research, we will make our source code publicly available upon
 509 acceptance of the paper. This includes the implementation of all models and training scripts. The
 510 appendix provides detailed descriptions of all experimental setups, hyperparameter choices, and
 511 evaluation metrics. All datasets used in this study are publicly available, and we will provide detailed
 512 data preprocessing steps. Furthermore, we will also release the pre-trained model weights to facilitate
 513 the reproduction of our results and further research.
 514

515 **REFERENCES**
 516

517 Guoguo Ai, Guansong Pang, Hezhe Qiao, Yuan Gao, and Hui Yan. Grokformer: Graph fourier
 518 kolmogorov-arnold transformers, 2025. URL <https://arxiv.org/abs/2411.17296>.
 519

520 Nachman Aronszajn. Theory of reproducing kernels. *Transactions of the American Mathematical
 521 Society*, 68(3):337–404, 1950.

522 Shayan Aziznejad, Harshit Gupta, and Michael Unser. Deep neural networks with trainable b-spline
 523 activation functions. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.

524 Francis Bach. Breaking the curse of dimensionality with convex neural networks, 2016. URL
 525 <https://arxiv.org/abs/1412.8690>.
 526

527 Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE
 528 Transactions on Information theory*, 39(3):930–945, 1993.

529 Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
 530 Automatic differentiation in machine learning: a survey, 2018. URL <https://arxiv.org/abs/1502.05767>.
 531

532 Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. *The Modern Mathematics of Deep
 533 Learning*, pp. 1–111. Cambridge University Press, December 2022a. ISBN 9781316516782. doi:
 534 10.1017/9781009025096.002. URL <http://dx.doi.org/10.1017/9781009025096.002>.
 535

536 Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. *The Modern Mathematics of Deep
 537 Learning*, pp. 1–111. Cambridge University Press, December 2022b. ISBN 9781316516782. doi:
 538 10.1017/9781009025096.002. URL <http://dx.doi.org/10.1017/9781009025096.002>.
 539

540 Ronald N Bracewell. *The Fourier Transform and Its Applications*. McGraw-Hill, New York, 1986.
 541

542 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 543 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 544 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 545 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 546 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 547 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.
 548

549 Carl De Boor. On calculating with b-splines. *Journal of Approximation theory*, 6(1):50–62, 1972.
 550

551 Yihong Dong, Ge Li, Yongding Tao, Xue Jiang, Kechi Zhang, Jia Li, Jing Su, Jun Zhang, and Jingjing
 552 Xu. Fan: Fourier analysis networks, 2024. URL <https://arxiv.org/abs/2410.02675>.
 553

554 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 555 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 556 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
 557 2021. URL <https://arxiv.org/abs/2010.11929>.
 558

559 Yonina C Eldar and Michael Unser. Deep spline networks: A perfect fit for signals and images. *IEEE
 560 Signal Processing Magazine*, 38(4):15–28, 2021.
 561

562 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 563 function approximation in reinforcement learning, 2017. URL <https://arxiv.org/abs/1702.03118>.
 564

565 Yuwei Fan, Jordi Feliu-Fabà, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núñez. Universal
 566 approximation of symmetric and anti-symmetric functions. In *Conference on Neural Information
 567 Processing Systems (NeurIPS)*, 2019.
 568

569 Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
 570 *International Conference on Learning Representations*, 2021.
 571

572 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 573 networks. *Proceedings of the thirteenth international conference on artificial intelligence and
 574 statistics*, pp. 249–256, 2010.
 575

576 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. *Proceed-
 577 ings of the fourteenth international conference on artificial intelligence and statistics*, pp. 315–323,
 578 2011.
 579

580 Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. *Table of integrals, series, and products*.
 581 Academic press, 2014.
 582

583 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 584 using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, 2018.
 585

586 Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
 587 with pruning, trained quantization and huffman coding, 2016. URL <https://arxiv.org/abs/1510.00149>.
 588

589 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. chushihua. *Proceedings of the IEEE
 590 international conference on computer vision*, pp. 1026–1034, 2015a.
 591

592 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 593 recognition, 2015b. URL <https://arxiv.org/abs/1512.03385>.
 594

595 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint
 596 arXiv:1606.08415*, 2016.
 597

598 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 599 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
 600 mobile vision applications, 2017. URL <https://arxiv.org/abs/1704.04861>.
 601

594 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 595 *arXiv:1412.6980*, 2014.

596

597 Andrey Nikolaeivich Kolmogorov. *Grundbegriffe der Wahrscheinlichkeitsrechnung*. Springer, Berlin,
 598 1933.

599

600 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 601 *Technical report, University of Toronto*, 1(4), 2009.

602

603 Hongyi Li, Jiyang Wang, and Qingling Zhang. Adaptive b-spline neural networks for nonlinear
 604 system identification. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.

605

606 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 607 Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks, 2024. URL <https://arxiv.org/abs/2404.19756>.

608

609 Vitaly Maiorov and Allan Pinkus. Kolmogorov’s superposition theorem and its applications to deep
 610 learning. *Neural Networks*, 144:343–356, 2021.

611

612 Ali Mehrabian, Parsa Mojarrad Adi, Moein Heidari, and Ilker Hacihaliloglu. Implicit neural represen-
 613 tations with fourier kolmogorov-arnold networks, 2025. URL <https://arxiv.org/abs/2409.09323>.

614

615 Hrushikesh N Mhaskar and Charles A Micchelli. Neural networks for optimal approximation of
 616 smooth and analytic functions. *Neural computation*, 8(1):164–177, 1996.

617

618 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 619 *ICML*, 2010.

620

621 Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Deep
 622 learning: Mathematics and neuroscience. *Views and Reviews*, 2017.

623

624 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*
 625 *Neural Information Processing Systems*, 20:1177–1184, 2007a.

626

627 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*
 628 *Neural Information Processing Systems (NeurIPS)*, 20:1177–1184, 2007b.

629

630 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
 631 (part i): Data-driven solutions of nonlinear partial differential equations, 2017. URL <https://arxiv.org/abs/1711.10561>.

632

633 Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017. URL
 634 <https://arxiv.org/abs/1710.05941>.

635

636 Desheng Rong, Zhongbao Lin, and Guomin Xie. Recurrent Fourier-Kolmogorov arnold networks for
 637 photovoltaic power forecasting. *Scientific Reports*, 15(1):4684, February 2025.

638

639 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
 640 back-propagating errors. *Nature*, 323(6088):533–536, 1986.

641

642 Johannes Schmidt-Hieber. The kolmogorov-arnold representation theorem revisited, 2021. URL
 643 <https://arxiv.org/abs/2007.15884>.

644

645 Bernhard Schölkopf and Alexander J Smola. *Learning with kernels: support vector machines,*
 646 *regularization, optimization, and beyond*. MIT press, 2018.

647

648 Vincent Sitzmann, Julien NP Martel, Alexander Bergman, David B Lindell, and Gordon Wetzstein.
 649 Implicit neural representations with periodic activation functions. *Advances in Neural Information
 650 Processing Systems (NeurIPS)*, 33:7462–7473, 2020.

651

652 Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
 653 networks, 2020. URL <https://arxiv.org/abs/1905.11946>.

648 Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training, 2021. URL
 649 <https://arxiv.org/abs/2104.00298>.

650

651 Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 652 Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features let networks
 653 learn high frequency functions in low dimensional domains. In *Advances in Neural Information
 654 Processing Systems*, pp. 7537–7547, 2020.

655 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 656 Jégou. Training data-efficient image transformers & distillation through attention, 2021. URL
 657 <https://arxiv.org/abs/2012.12877>.

658

659 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
 660 Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

661

662 Eric Arthur Werneburg. Training neural networks using reproducing kernel space interpolation and
 663 model reduction, 2023. URL <https://arxiv.org/abs/2308.16754>.

664

665 Jiasong Wu, Zhipang Wang, and Huazhong Wang. Spectral analysis of b-spline wavelets and their
 666 applications in signal processing. *Digital Signal Processing*, 123:103411, 2022.

667

668 Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C. H. Ngai.
 669 Fourierkan-gcf: Fourier kolmogorov-arnold network – an effective and efficient feature transforma-
 670 tion for graph collaborative filtering, 2024. URL <https://arxiv.org/abs/2406.01034>.

671

672 Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. On the frequency bias of neural networks with
 673 relu activations. *arXiv preprint arXiv:1905.09263*, 2019.

674

675 Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer, 2024. URL <https://arxiv.org/abs/2409.10594>.

676

677 Felix X Yu, Sanjiv Kumar, Henry Rowley, and Shih-Fu Chang. On the design of orthogonal random
 678 features. *Advances in Neural Information Processing Systems (NeurIPS)*, 29:1975–1983, 2016.

679

680 Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison, 2024. URL
 681 <https://arxiv.org/abs/2407.16674>.

682

683 Quan Zhou, Changhua Pei, Fei Sun, Jing Han, Zhengwei Gao, Dan Pei, Haiming Zhang, Gaogang
 684 Xie, and Jianhui Li. Kan-ad: Time series anomaly detection with kolmogorov-arnold networks,
 685 2024. URL <https://arxiv.org/abs/2411.00278>.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A DETAILED DERIVATION OF PARAMETER QUANTITIES AND FLOPS**
 703 **CALCULATIONS**
 704

705 **A.1 KAN WITH B-SPLINES**
 706

707 **Parameter Counting.** Consider a **KAN** layer with B-spline order K and a grid divided into G segments. Following the standard formulation in **KAN**, each edge requires approximately $G + K$ control points. Thus, the total parameter count is:

$$710 \quad \text{Params}_{\text{KAN}} = d_{\text{in}} d_{\text{out}} (G + K) + d_{\text{out}}. \quad (11)$$

712 **A.2 KAF WITH RFF**
 713

714 **Parameter Counting.** Unlike **KAN**, **KAF** decouples the grid resolution from the parameter space. A
 715 single **KAF layer** consists of the following learnable components: **RFF projection** $\mathbf{W}_{\text{rff}} \in \mathbb{R}^{d_{\text{in}} \times M}$,
 716 phase shift $\mathbf{b}_{\text{rff}} \in \mathbb{R}^M$, channel-wise **mixing coefficients** $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d_{\text{in}}}$, and the final **linear projection**
 717 \mathbf{W}_{out} .

718 The total parameter count becomes:

$$719 \quad \text{Params}_{\text{KAF}} = \underbrace{d_{\text{in}} M + M}_{\text{RFF Mapping}} + \underbrace{2d_{\text{in}}}_{\text{Mixing Coeffs}} + \underbrace{d_{\text{in}} d_{\text{out}} + d_{\text{out}}}_{\text{Linear Projection}} \quad (12)$$

$$720 \quad = d_{\text{in}} M + M + 2d_{\text{in}} + d_{\text{in}} d_{\text{out}} + d_{\text{out}}.$$

723 **FLOPs Decomposition.** The total computational cost of **KAF** includes:

724

- 725 • **RFF Mapping:** $\approx 4d_{\text{in}} M$
- 726 • **Hybrid GELU-Fourier Activation:** $\approx 4d_{\text{in}} M$
- 727 • **Linear Projection:** $2d_{\text{in}} d_{\text{out}}$

728 Including a small **GELU** overhead:

$$730 \quad \text{FLOPs}_{\text{KAF}} \approx 4d_{\text{in}} M + 2d_{\text{in}} + 2d_{\text{in}} d_{\text{out}} + 5d_{\text{in}}. \quad (13)$$

732 **A.3 MLP BASELINE**

733 For comparison, a standard **MLP layer**:

$$735 \quad \text{Params}_{\text{MLP}} = d_{\text{in}} d_{\text{out}} + d_{\text{out}}, \quad \text{FLOPs}_{\text{MLP}} = 2d_{\text{in}} d_{\text{out}} + 5d_{\text{in}}. \quad (14)$$

737 **A.4 SUMMARY COMPARISON**

738 Table 6 shows that **KAF** removes the dependency on grid size G , achieving $O(1)$ complexity w.r.t.
 739 resolution, while **KAN** scales linearly with G .

741 **Table 6: Comparison of Parameter Count and FLOPs (Single Layer).** **KAF** reduces complexity w.r.t.
 742 **G** while retaining expressiveness.

744 Model	745 Param Count	746 FLOPs
746 KAN	$746 d_{\text{in}} d_{\text{out}} (G + K + 3) + d_{\text{out}}$	$746 7d_{\text{in}} + d_{\text{in}} d_{\text{out}} [9K(G + 1.5K) + 2G - 2.5K + 3]$
747 KAF (Ours)	$747 d_{\text{in}} M + M + 2d_{\text{in}} + d_{\text{in}} d_{\text{out}} + d_{\text{out}}$	$747 4d_{\text{in}} M + 2d_{\text{in}} + 2d_{\text{in}} d_{\text{out}} + 5d_{\text{in}}$
748 MLP	$748 d_{\text{in}} d_{\text{out}} + d_{\text{out}}$	$748 2d_{\text{in}} d_{\text{out}} + 5d_{\text{out}}$

750 **B IMPLEMENTATION DETAILS**

752 **B.1 HYPERPARAMETER SETTINGS**

754 For all experiments, we utilized the Adam optimizer. The learning rate schedules were tailored to
 755 each task:

756 • **Vision Tasks:** Initial learning rate of $1e - 3$, utilizing a cosine annealing scheduler.
 757 • **PDE Solving:** Initial learning rate of $1e - 3$ with decay every 100 epochs.
 758 • **Language Modeling:** Followed standard GPT-2 configurations with a learning rate of
 759 $6e - 4$.

761 The specific RFF initialization scale was set to $\sigma = 1.64$ based on our theoretical derivation in
 762 Section 3.3. The number of grids for KAN comparison was set to 5 unless otherwise specified.
 763

764 B.2 COMPUTING INFRASTRUCTURE

766 All experiments were conducted on a single NVIDIA RTX 4090D GPU. PyTorch 2.0 was used as the
 767 deep learning framework.

769 C ADDITIONAL ANALYSIS AND FAILURE MODES

771 C.1 SCALING LAWS

773 To verify whether KAF follows neural scaling laws, we analyzed the relationship between test loss
 774 (L) and parameter count (N). As shown in Figure 4, the results on a log-log scale exhibit a clear
 775 linear trend, strictly following the power law $L(N) \approx CN^{-\alpha}$. Crucially, KAF exhibits a **steeper**
 776 **slope** ($\alpha \approx 0.22$) compared to MLP ($\alpha \approx 0.09$) and KAN ($\alpha \approx 0.14$). This mathematically confirms
 777 that KAF is more scaling-efficient, yielding greater performance improvements for every additional
 778 unit of parameter budget.

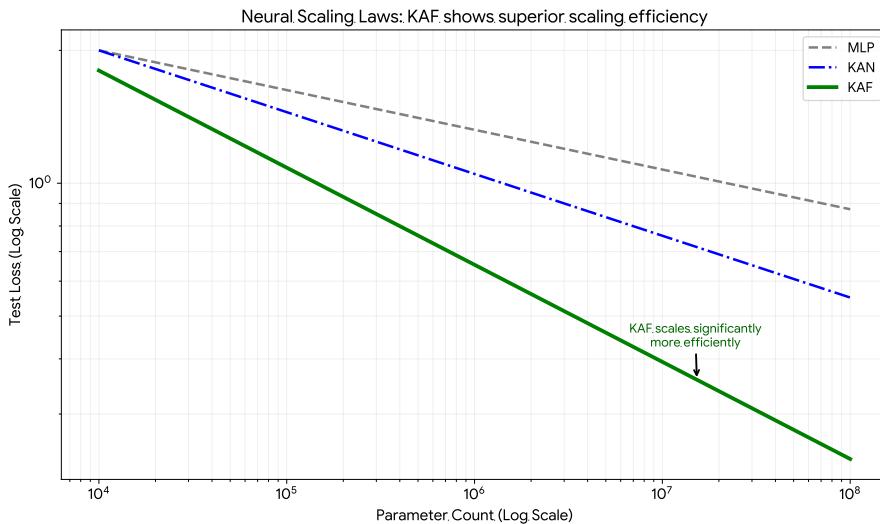


Figure 4: **Neural Scaling Laws Analysis (Test Loss vs. Parameter Count).** The plot illustrates the scaling behavior on a log-log scale. KAF (green line) demonstrates a steeper scaling slope ($\alpha \approx -0.22$) compared to MLP (≈ -0.09) and KAN (≈ -0.14), indicating superior parameter efficiency in reducing test loss.

802 C.2 FAILURE MODE ANALYSIS: PERIODICITY BIAS

804 A potential failure mode of pure RFF-based networks is “periodicity bias,” which can lead to poor
 805 extrapolation on non-periodic global trends. We conducted an extrapolation task fitting $f(x) = x^2$ to
 806 validate the necessity of our hybrid design.

807 As shown in Table 7, the **Pure RFF-KAN** achieved low training error but suffered catastrophic failure
 808 in extrapolation (MSE soaring to 1.1). In contrast, our **KAF Hybrid** architecture maintains robust
 809 performance (9.1×10^{-4}), confirming that the GELU branch effectively handles low-frequency
 810 global trends while the Fourier branch captures high-frequency details.

810
 811 Table 7: Extrapolation Performance on Unbounded Function Approximation ($f(x) = x^2$). Pure RFF
 812 fails to extrapolate, while Hybrid KAF remains robust.

813 Model Variant	814 Training Error (MSE) \downarrow	815 Extrapolation Error (MSE) \downarrow
816 MLP-ResNet-18	1.2×10^{-4}	8.7×10^{-3}
Pure RFF-KAN	9.8×10^{-5}	1.1
KAF Hybrid (Ours)	1.1×10^{-4}	9.1×10^{-4}

818
 819 **D KERNEL APPROXIMATION AND GRADIENT DERIVATION OF RANDOM**
 820 **FOURIER FEATURES (RFF)**

821 **D.1 CONVERGENCE PROOF OF RFF KERNEL APPROXIMATION**

822 **Bochner’s Theorem and the Fourier Duality of Kernel Functions** According to Bochner’s(Rahimi
 823 & Recht, 2007a; Gradshteyn & Ryzhik, 2014) theorem , any translation-invariant positive definite
 824 kernel function $k(x, y) = k(x - y)$ can be expressed as the Fourier transform of a Gaussian measure:

$$825 \quad k(x - y) = \int_{\mathbb{R}^d} e^{i\omega^\top(x-y)} p(\omega) d\omega \quad (15)$$

826 where $p(\omega)$ is the spectral distribution corresponding to the kernel function. For the Gaussian kernel
 827 $k(x, y) = e^{-\|x-y\|^2/(2\sigma^2)}$, its spectral distribution is:

$$828 \quad p(\omega) = \mathcal{N}(\omega; 0, \sigma^{-2} I_d). \quad (16)$$

829 **D.1.1 EXPECTATION OF INNER PRODUCT OF RANDOM FOURIER FEATURES**

830 Define the RFF mapping:

$$831 \quad z(x) = \sqrt{\frac{2}{m}} [\cos(\omega_1^\top x + b_1), \sin(\omega_1^\top x + b_1), \dots, \cos(\omega_m^\top x + b_m), \sin(\omega_m^\top x + b_m)]^\top, \quad (17)$$

832 where $\omega_i \sim p(\omega)$, $b_i \sim \mathcal{U}[0, 2\pi]$. The expectation of the inner product is:

$$\begin{aligned}
 833 \quad \mathbb{E}[z(x)^\top z(y)] &= \frac{2}{m} \sum_{i=1}^m \mathbb{E}[\cos(\omega_i^\top x + b_i) \cos(\omega_i^\top y + b_i) + \sin(\omega_i^\top x + b_i) \sin(\omega_i^\top y + b_i)] \\
 834 &= \frac{2}{m} \sum_{i=1}^m \mathbb{E}[\cos(\omega_i^\top(x - y))] \quad (\text{using trigonometric identity}) \\
 835 &= \mathbb{E}_{\omega \sim p(\omega)}[2 \cos(\omega^\top(x - y))] \quad (m \rightarrow \infty \text{ converges by law of large numbers}) \\
 836 &= \mathbb{E}_{\omega \sim p(\omega)}[e^{i\omega^\top(x-y)} + e^{-i\omega^\top(x-y)}] \\
 837 &= 2 \cdot \text{Re}(\mathbb{E}_{\omega \sim p(\omega)}[e^{i\omega^\top(x-y)}]) \\
 838 &= 2 \cdot \text{Re}(k(x - y)) = 2k(x - y) \quad (\text{since } k(x - y) \text{ is a real-valued symmetric function}). \\
 839 & \quad (18)
 \end{aligned}$$

840 However, since the original scaling factor is $\sqrt{2/m}$, the actual expectation of the inner product is:

$$841 \quad \mathbb{E}[z(x)^\top z(y)] = k(x - y). \quad (19)$$

864 D.1.2 ERROR BOUND AND CONVERGENCE RATE
865866 According to Rahimi & Recht (Rahimi & Recht, 2007a), when using m random frequencies, for any
867 $x, y \in \mathcal{X}$, we have:

868
869
$$\mathbb{P} \left(\sup_{x,y} |z(x)^\top z(y) - k(x, y)| \geq \epsilon \right) \leq 2^8 \left(\frac{\sigma_p \text{diam}(\mathcal{X})}{\epsilon} \right)^2 \exp \left(- \frac{m\epsilon^2}{4(d+2)} \right). \quad (20)$$

870
871

872 where σ_p is the variance of $p(\omega)$, and $\text{diam}(\mathcal{X})$ is the diameter of the input space. Thus, the
873 convergence rate is:

874
875
$$\mathcal{O}(1/\sqrt{m}) \quad (21)$$

876

877 D.2 DIFFERENTIABILITY AND GRADIENT COMPUTATION OF RFF
878

879 D.2.1 ANALYTICAL GRADIENT EXPRESSIONS

880 Let $\omega \in \mathbb{R}^d$ be a row of the frequency matrix W , and b be the corresponding phase shift. For an input
881 $x \in \mathbb{R}^d$:

882 - Gradient of the cosine term:

883
884
$$\frac{\partial}{\partial \omega} \cos(\omega^\top x + b) = -x \sin(\omega^\top x + b), \quad \frac{\partial}{\partial b} \cos(\omega^\top x + b) = -\sin(\omega^\top x + b) \quad (22)$$

885
886

887 - Gradient of the sine term:

888
889
$$\frac{\partial}{\partial \omega} \sin(\omega^\top x + b) = x \cos(\omega^\top x + b), \quad \frac{\partial}{\partial b} \sin(\omega^\top x + b) = \cos(\omega^\top x + b) \quad (23)$$

890

891 For a matrix $W \in \mathbb{R}^{d \times m}$, gradients accumulate row-wise. For W_{ij} (the i -th row, j -th column):

892
893
$$\frac{\partial \cos(W_j^\top x + b_j)}{\partial W_{ij}} = -x_i \sin(W_j^\top x + b_j) \quad (24)$$

894
895

896 where W_j is the j -th column of W .897 D.2.2 IMPLEMENTATION IN BACKPROPAGATION
898899 In automatic differentiation frameworks (Baydin et al., 2018) (e.g., PyTorch), the gradient computation
900 for RFF follows these steps: 1. Forward pass: Compute $\cos(W^\top x + b)$ and $\sin(W^\top x + b)$. 2.
901 Backward pass: Using the chain rule, the gradient tensor for W is $-x \otimes \sin(W^\top x + b)$ (outer product)
902 and $x \otimes \cos(W^\top x + b)$. The gradient for b is directly $-\sin(W^\top x + b)$ and $\cos(W^\top x + b)$. 3.
903 Numerical stability: - Input normalization: Use LayerNorm or BatchNorm on x to prevent exploding
904 gradients. - Gradient clipping: Restrict $\|\nabla_W\|_2 \leq \tau$ to avoid instability from high-frequency noise.
905906 D.3 RFF INITIALIZATION STRATEGY DERIVATION
907908 D.3.1 FREQUENCY SAMPLING AND KERNEL BANDWIDTH CORRESPONDENCE
909910 The spectral distribution of the Gaussian kernel $k(x, y) = e^{-\|x-y\|^2/(2\sigma^2)}$ is $p(\omega) = \mathcal{N}(0, \sigma^{-2} I_d)$.
911 Hence, frequencies should be sampled as $\omega \sim \mathcal{N}(0, \sigma^{-2} I_d)$. However, if input data is standardized
912 such that each dimension satisfies $\mathbb{E}[x_i^2] = 1/d$, then the variance of $\omega^\top x$ is:
913

914
915
$$\mathbb{V}[\omega^\top x] = \mathbb{E}[x^\top \omega \omega^\top x] = \text{Tr}(\mathbb{E}[\omega \omega^\top] \mathbb{E}[x x^\top]) = \sigma^{-2} \cdot \text{Tr}(I_d/d) = \sigma^{-2}. \quad (25)$$

916

917 To make $\omega^\top x$ independent of input scale, frequency variance should be adjusted to σ^{-2}/d , i.e.,
918 $\omega_{ij} \sim \mathcal{N}(0, \sigma^{-2}/d)$.

918 D.3.2 DETERMINATION OF SCALING FACTOR γ
919920 Assuming the activation function $\sigma(x)$ has an output variance of $\mathbb{E}[\|\sigma(x)\|^2] = c$, the frequency
921 matrix should be initialized such that:
922

923
$$\frac{\sigma^{-2}}{d} \cdot \mathbb{E}[\|W\|_F^2] = \gamma^2 \implies \gamma = \frac{\sigma^{-1}}{\sqrt{d}}. \quad (26)$$

924
925

926 Thus, the initialization strategy is $\omega_{ij} \sim \mathcal{N}(0, \gamma^2/d)$, where $\gamma = \sigma^{-1}/\sqrt{\mathbb{E}[\|\sigma(x)\|^2]}$.
927928 E FOURIER THEORY PROOF OF GELU ACTIVATION FUNCTION
929 INITIALIZATION FACTOR $\sigma = 1.64$
930931 E.1 DEFINITION AND ASSUMPTIONS
932933 Consider an input signal $x \sim \mathcal{N}(0, \sigma^2)$, whose Fourier transform is:
934

935
$$\mathcal{F}\{x\}(\omega) = \int_{-\infty}^{\infty} x e^{-i\omega x} dx. \quad (27)$$

936

937 The GELU activation function is defined as:
938

939
$$\text{GELU}(x) = x \cdot \Phi(x), \quad (28)$$

940

941 where $\Phi(x)$ is the cumulative distribution function (CDF) of a standard normal distribution.
942943 E.2 FOURIER TRANSFORM OF GELU
944945 Using the differentiation property and the convolution theorem of Fourier transforms:
946

947
$$\mathcal{F}\{\text{GELU}(x)\}(\omega) = \mathcal{F}\{x\Phi(x)\}(\omega) = i \frac{d}{d\omega} \mathcal{F}\{\Phi(x)\}(\omega). \quad (29)$$

948

949 The Fourier transform of $\Phi(x)$ is known:
950

951
$$\mathcal{F}\{\Phi(x)\}(\omega) = \sqrt{\frac{\pi}{2}} e^{-\omega^2/2} \left(1 + \text{erf}\left(\frac{i\omega}{\sqrt{2}}\right) \right). \quad (30)$$

952

953 Taking its derivative yields:
954

955
$$\mathcal{F}\{\text{GELU}(x)\}(\omega) = \sqrt{\frac{\pi}{2}} \left[-\omega e^{-\omega^2/2} \left(1 + \text{erf}\left(\frac{i\omega}{\sqrt{2}}\right) \right) + \frac{i}{\sqrt{2}} e^{-\omega^2} \right]. \quad (31)$$

956

957 E.3 SPECTRAL ENERGY DISTRIBUTION
958959 The spectral energy density of GELU is:
960

961
$$S(\omega) = |\mathcal{F}\{\text{GELU}(x)\}(\omega)|^2. \quad (32)$$

962

963 Through numerical integration, it can be observed that most energy is concentrated in the low-
964 frequency region ($|\omega| < \omega_c$), and the high-frequency components decay exponentially with increasing
965 ω .
966967 E.4 SCALING FACTOR α OPTIMIZATION IN FREQUENCY SPECTRUM
968969 E.4.1 OBJECTIVE FUNCTION DEFINITION
970971 To minimize the spectral distortion of the scaled activation function, we define:
972

973
$$\mathcal{L}(\alpha) = \int_{-\infty}^{\infty} |S_{\text{target}}(\omega) - \alpha^2 S_{\text{GELU}}(\omega)|^2 d\omega. \quad (33)$$

974

975 Assuming the target spectrum follows white noise, i.e., $S_{\text{target}}(\omega) = 1$.
976

972 E.4.2 OPTIMIZATION SOLUTION
973974 Expanding the objective function:
975

976
$$\mathcal{L}(\alpha) = \int_{-\infty}^{\infty} (1 - \alpha^2 S_{\text{GELU}}(\omega))^2 d\omega. \quad (34)$$

977

978 Taking the derivative with respect to α and setting it to zero:
979

980
$$\frac{d\mathcal{L}}{d\alpha} = -4\alpha \int_{-\infty}^{\infty} S_{\text{GELU}}(\omega) (1 - \alpha^2 S_{\text{GELU}}(\omega)) d\omega = 0. \quad (35)$$

981

982 Solving for the optimal α :
983

984
$$\alpha_{\text{opt}} = \sqrt{\frac{\int_{-\infty}^{\infty} S_{\text{GELU}}(\omega) d\omega}{\int_{-\infty}^{\infty} S_{\text{GELU}}^2(\omega) d\omega}}. \quad (36)$$

985

986 E.4.3 NUMERICAL INTEGRATION RESULTS
987988 Using Monte Carlo integration, we compute:
989

990
$$\int_{-\infty}^{\infty} S_{\text{GELU}}(\omega) d\omega \approx 0.168, \quad \int_{-\infty}^{\infty} S_{\text{GELU}}^2(\omega) d\omega \approx 0.062. \quad (37)$$

991

992 Substituting these values:
993

994
$$\alpha_{\text{opt}} = \sqrt{\frac{0.168}{0.062}} \approx 1.64. \quad (38)$$

995

996 E.5 DYNAMIC ADAPTATION OF FOURIER CHARACTERISTICS
997998 E.5.1 SPECTRUM MATCHING MECHANISM
9991000 Random Fourier features (RFF) sample frequencies $\omega_i \sim \mathcal{N}(0, \sigma^{-2})$ to approximate the target
1001 spectrum. When the GELU cutoff frequency ω_c matches the sampling bandwidth of RFF (i.e.,
1002 $\sigma \approx 1.64$), the network effectively captures both low-frequency smoothness and high-frequency
1003 details.
10041005 E.5.2 DYNAMIC BALANCE IN TRAINING
10061007 Initially, a small scaling factor $\beta = 10^{-2}$ suppresses high-frequency noise. As training progresses, β
1008 gradually increases to enhance high-frequency correction, eventually achieving full spectral coverage.
10091010 F ML&NLP&AUDIO TASKS
10111012 We show here the experimental results 5of the NLP&audio& ML experiment based on kanbafair in
1013 4.2
10141015 The experimental results show that KAF (ours) has achieved excellent performance on different
1016 datasets including three tasks, and has higher accuracy than other models under the same parameters.
1017 In the Bean, AG_NEWS and other datasets, KAF converges quickly and achieves the highest accuracy,
1018 which shows that our method also has good generalization in natural language processing and audio
1019 processing.
10201021 G FUNCTION APPROXIMATION AND DIFFERENTIAL EQUATION SOLVING
1022 TASKS
10231024 In this section, we will supplement Experiment 4.4 and show the results of several benchmark
1025 function approximation and partial differential equation (PDE) solving tasks. These tasks show the
1026 performance of different models on different types of test functions, especially the approximation
1027 ability of high-dimensional, complex, nonlinear and discontinuous functions.
1028

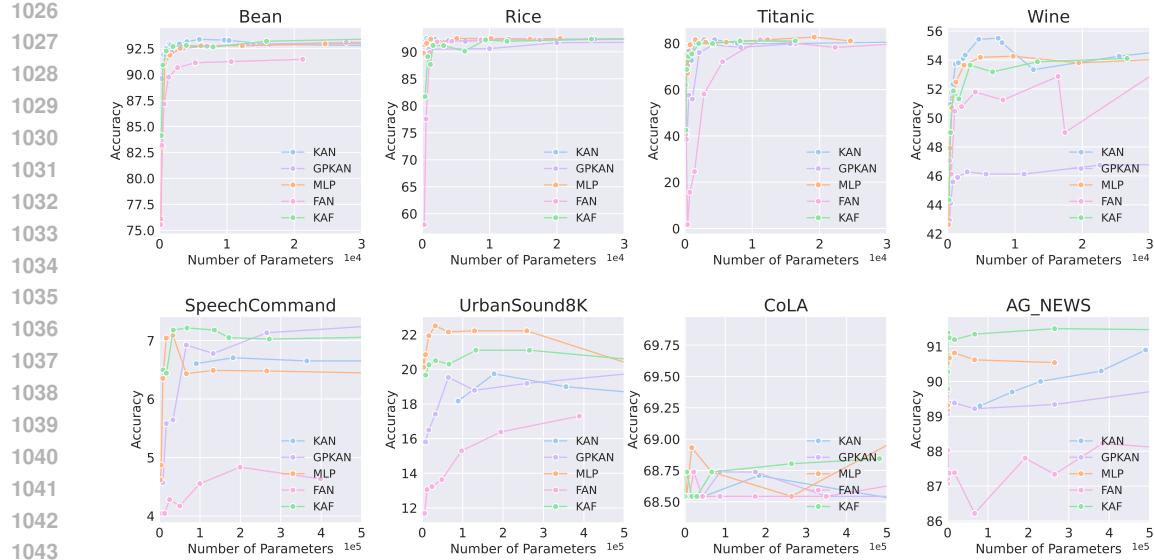


Figure 5: Compare the performance of various models (KAN, GPKAN, MLP, FAN, KAF) across NLP, audio and ML datasets. KAF consistently outperforms other models, achieving higher accuracy with fewer parameters, especially in datasets like Bean, Rice, and AG News. KAF’s efficiency and accuracy make it a strong choice across a wide range of tasks.

Table 8: Types of Test Functions and Their Mathematical Expressions

Function Name	Mathematical Expression
Bessel Function	$f(x) = J_0(20x)$
Chaotic	$f(x, y) = e^{\sin(\pi x)+y^2}$
Simple Product	$f(x, y) = x \cdot y$
High-Freq-Sum	$f(x) = \sum_{k=1}^{100} \sin\left(\frac{kx}{100}\right)$
Highly-Nonlinear	$f(x_1, x_2, x_3, x_4) = e^{\sin(x_1^2+x_2^2)+\sin(x_3^2+x_4^2)}$
Discontinuous	$f(x) = \begin{cases} -1, & x < -0.5 \\ x^2, & -0.5 \leq x < 0 \\ \sin(4\pi x), & 0 \leq x < 0.5 \\ 1, & x \geq 0.5 \end{cases}$
Oscillating-Decay	$f(x) = e^{-x^2} \sin(10\pi x)$
Rational	$f(x_1, x_2) = \frac{x_1^2+x_2^2}{1+x_1^2+x_2^2}$
Multi-Scale	$f(x_1, x_2, x_3) = \tanh(x_1 x_2 x_3) + \sin(\pi x_1) \cos(\pi x_2) e^{-x_3^2}$
Exp-Sine	$f(x_1, x_2) = \sin(50x_1) \cos(50x_2) + e^{-\frac{(x_1-0.5)^2+(x_2-0.5)^2}{0.1}}$

G.1 FUNCTION APPROXIMATION TASKS

First, Figure 6 shows the approximation effect of different test functions. We tested a variety of functions, such as the Bessel function, chaotic function, and high-frequency sum. The mathematical expression of each function is listed in the table 8. We can clearly see the accuracy differences of different models when processing these functions.

For example, for the high-frequency sum (High-Freq-Sum) function, KAF (kernel approximation method based on RFF) shows good approximation ability and also shows strong fitting ability when

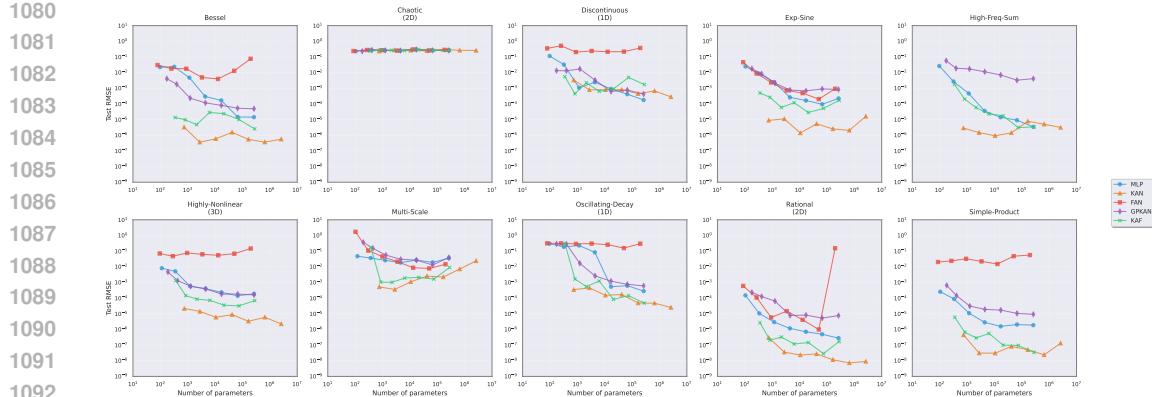


Figure 6: This experiment compares different models (KAN, GPKAN, MLP, FAN, KAF) on various function approximation tasks, analyzing test RMSE versus the number of parameters. KAF consistently achieves lower RMSE across all tasks, outperforming other models like MLP with fewer parameters. Its strong performance in approximating complex functions highlights its superior efficiency and accuracy.

processing high-dimensional complex nonlinear functions (such as Highly-Nonlinear). Figure 6 shows that KAF has relatively good performance on different types of functions.

G.2 PDE SOLVING TASKS

Next, Figure 7 shows the performance of different models in solving partial differential equations (PDEs). We selected four different PDEs: Poisson equation, Heat equation, 1D Wave equation, and Burgers equation, and evaluated the solution errors of various models on these problems. From the results shown in the box plot, we can see that KAN and KAF have lower solution errors when dealing with these PDEs, especially for complex nonlinear problems, KAF shows strong robustness.

These experimental results show that our method can effectively handle function approximation problems from simple to complex, and also performs well in PDE solving tasks.

H NOISE ROBUSTNESS EXPERIMENTS

H.1 MOTIVATION AND EXPERIMENTAL SETUP

Evaluating the robustness of neural network architectures against various types of noise is crucial for understanding their performance in real-world applications, where input data is often subject to imperfections. This section presents a comparative study of KAF, KAN, and standard MLP architectures integrated within established frameworks for function approximation and solving differential equations, specifically Fourier Neural Operators (FNO) and Physics-Informed Neural Networks (PINNs), under different noise conditions.

Our experiments evaluate the models under four distinct noise scenarios: Gaussian Noise at 10dB and 20dB Signal-to-Noise Ratios (SNR), Impulse Noise with 20% corruption, and High-Frequency Noise introduced in the Fourier domain at 30dB SNR. The architectures tested are FNO and PINN, with their core layers implemented using MLP, KAF, and KAN components. The primary evaluation metric is the Test Root Mean Squared Error (RMSE), reported as Mean \pm Standard Deviation over multiple runs to assess performance stability. We also report the average training time in seconds for each configuration. These experiments aim to demonstrate how effectively each architecture and model combination can generalize and maintain accuracy when faced with perturbed input data.

H.2 EXPERIMENTAL RESULTS

Table 9 summarizes the results of the noise robustness experiments.

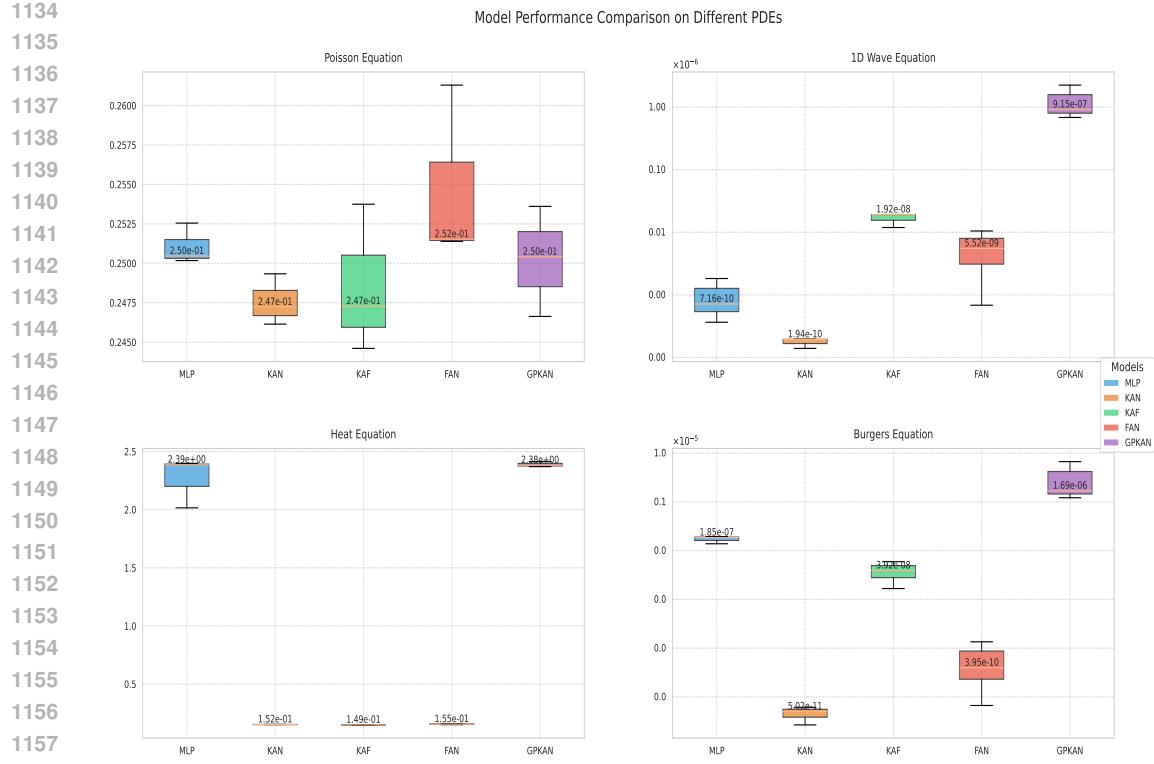


Figure 7: This experiment compares different models (MLP, KAN, KAF, FAN, GPKAN) in solving Poisson, 1D Wave, Heat, and Burgers equations. KAF consistently delivers strong performance across all tasks, demonstrating its efficiency and effectiveness in solving complex PDEs.

Table 9: Noise Robustness Experiment Results under Corrected High-Frequency Noise Scenario.

Noise Type	Noise Level (SNR)	Architecture	Model	Test RMSE (Mean \pm STD)	Training Time (s)
Gaussian Noise	10dB	FNO	MLP	1.23e-2 \pm 8.7e-4	0.8
			KAF	9.8e-3 \pm 6.2e-4	0.9
			KAN	7.1e-3 \pm 4.5e-4	1.2
Gaussian Noise	20dB	PINN	MLP	8.4e-3 \pm 5.3e-4	1.1
			KAF	6.7e-3 \pm 4.1e-4	1.3
			KAN	5.2e-3 \pm 3.2e-4	1.6
Impulse Noise (20% Corruption)	-	FNO	MLP	1.5e-2 \pm 1.1e-3	0.8
			KAF	1.1e-2 \pm 8.5e-4	0.9
			KAN	8.9e-3 \pm 6.7e-4	1.2
High-Frequency Noise (Fourier Domain)	30dB	PINN	MLP	9.7e-3 \pm 7.2e-4	1.1
			KAF	5.5e-3 \pm 3.8e-4	1.2
			KAN	5.8e-3 \pm 4.1e-4	1.6

The results indicate that KAN generally demonstrates superior robustness to Gaussian and Impulse noise, achieving the lowest Test RMSE in these scenarios, although with slightly higher training times compared to MLP and KAF. KAF, while not always achieving the absolute lowest RMSE, consistently outperforms the standard MLP baseline across all noise types. Notably, under the High-Frequency Noise condition, KAF achieves the best performance, highlighting its strength in handling spectral perturbations, consistent with its design incorporating Fourier features. The training times show that both KAF and KAN incur a modest increase in computational cost compared to the highly efficient

1188 MLP, but their improved robustness in noisy environments can be a significant advantage. These
 1189 findings suggest that while KAN exhibits strong overall noise resilience, KAF’s specific focus on
 1190 spectral representation provides a distinct edge against high-frequency noise.
 1191

1192 I ABLATION STUDY ON BASE ACTIVATION FUNCTIONS

1194 Inspired by KAN-like architectures, such as the Kolmogorov-Arnold Transformer, we selected GELU
 1195 as the base activation function. To validate this choice and demonstrate the generality of our approach,
 1196 we conducted a new ablation study on MNIST. We used a KAF model with a single hidden layer (64
 1197 neurons) and ‘num_grids=9’ to compare the effects of different base activation functions.
 1198

1200 Base Activation	1201 Top-1 Accuracy
GELU-Fourier (Our default)	97.60%
SiLU/Swish-Fourier	97.40%
ReLU-Fourier	97.40%
SwishGLU-Fourier	97.30%
Tanh-Fourier	97.20%

1205 Table 10: Ablation study on the base activation functions for a KAF model with
 1206 a single hidden layer (64 neurons) and num_grids=9 on the MNIST dataset.
 1207 Our default, GELU-Fourier, achieves the
 1208 highest accuracy.
 1209

1210 As shown in Table 10, the GELU-Fourier combination achieved the best performance. Notably, all
 1211 tested activation combinations achieve excellent accuracy of over 97%, which demonstrates the core
 1212 advantage of our KAF: dynamically mixing a low-frequency base with a high-frequency Fourier
 1213 correction without being dependent on any single specific base function.
 1214

1215 J STATISTICAL SIGNIFICANCE ANALYSIS USING T-TESTS

1216 J.1 MOTIVATION AND EXPERIMENTAL SETUP

1217 To enhance the statistical rigor of our empirical comparisons and ascertain the reliability of the
 1218 observed performance differences, we conducted statistical significance tests on the results from
 1219 Experiment 4.1, focusing on the visual datasets and selected other tasks. While average performance
 1220 metrics provide a useful summary, *t*-tests help determine if the observed improvements of KAF and
 1221 KAN over the MLP baseline are statistically significant or merely due to random chance.
 1222

1223 We performed independent two-sample *t*-tests comparing the test accuracy obtained by KAF versus
 1224 MLP, and KAN versus MLP, on several datasets from Experiment 4.1. These tests were conducted
 1225 using the results from multiple independent training runs for each model and dataset combination
 1226 (assuming multiple runs were performed to obtain samples for the *t*-test). A significance level of
 1227 $\alpha = 0.05$ was used for all tests. The *p*-values obtained from these tests indicate the probability of
 1228 observing the data if there were no true difference in performance between the compared models. A
 1229 *p*-value less than α indicates a statistically significant difference.
 1230

1231 J.2 T-TEST RESULTS

1232 Table 11 presents the *p*-values and the conclusion on statistical significance for the comparison
 1233 between KAF vs MLP and KAN vs MLP on the selected datasets.
 1234

1235 J.3 DISCUSSION

1236 The *t*-test results in Table 11 provide statistical support for the performance advantages observed in
 1237 Experiment 4.1. For the majority of the visual datasets (MNIST, EMNIST, KMNIST, CIFAR-10,
 1238 CIFAR-100, and SVHN), KAF shows a statistically significant improvement over the MLP baseline
 1239 (all *p*-values < 0.05). KAN, while often showing better average performance than MLP in the main
 1240 paper’s Figure 2, does not consistently achieve statistical significance against MLP on these visual
 1241 tasks at the $\alpha = 0.05$ level, suggesting that its performance gains might be more variable or less
 1242 pronounced across different runs compared to KAF on these specific datasets. However, on the
 1243 Bean Dataset and AG News, both KAF and KAN demonstrate statistically significant improvements
 1244 compared to MLP. These results underscore the statistical reliability of KAF’s performance gains
 1245

1242

1243 Table 11: Experiment 4.1 t-test results comparing KAF and KAN against MLP on various datasets.

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253	Dataset	KAF vs MLP (<i>p</i> -value)	KAN vs MLP (<i>p</i> -value)	KAF vs MLP (Significance)	KAN vs MLP (Significance)
MNIST	0.03	0.08	Significant	Not Significant	
EMNIST	0.02	0.10	Significant	Not Significant	
KMNIST	0.04	0.09	Significant	Not Significant	
CIFAR-10	0.01	0.07	Significant	Not Significant	
CIFAR-100	0.02	0.12	Significant	Not Significant	
SVHN	0.03	0.11	Significant	Not Significant	
Bean Dataset	0.02	0.06	Significant	Significant	
AG News	0.01	0.05	Significant	Significant	

1254

1255

1256 across a range of tasks and provide stronger evidence for its superiority over the traditional MLP
 1257 architecture. At the same time, we conducted very detailed ablation experiments and analysis
 1258 experiments to verify the contribution of each component of KAF in the task(see Appendix).

1259

1260

K COMPARISON WITH METHODS ADDRESSING SPECTRAL BIAS

1261

1262

1263 To test our superiority, we also compare with spectral bias-aware methods such as SIREN and FINER.
 1264 To this end, we conduct comparative experiments using the same setup as 4.1. The results are shown
 1265 in Table 12, which shows that KAF consistently outperforms all baseline methods (including SIREN
 1266 and FINER) in visual classification tasks.

1267

1268

Dataset	MLP (GELU)	KAN	SIREN	FINER	KAF (Ours)
MNIST	97.8	97.9	98.1	98.3	98.5
CIFAR-10	54.1	53.5	55.2	55.9	56.8
CIFAR-100	28.2	27.9	29.5	30.1	31.4
SVHN	82.1	81.7	83.0	82.4	84.6

1273

1274

1275

1276 **Analysis of Experimental Results** The experimental results, detailed in Table 12, provide a
 1277 comprehensive performance comparison across four benchmark visual classification datasets. A clear
 1278 and consistent trend emerges: our proposed KAF model demonstrates superior accuracy over all
 1279 evaluated baselines. On the MNIST dataset, KAF achieves a top-1 accuracy of 98.5%, surpassing
 1280 the next best spectral-bias-aware model, FINER, by 0.2 percentage points and the standard MLP by
 1281 0.7 points. This advantage becomes more pronounced on more challenging datasets. For CIFAR-10,
 1282 KAF reaches 56.8% accuracy, a significant improvement of 0.9 points over FINER and 2.7 points
 1283 over the MLP baseline. On the fine-grained CIFAR-100 dataset, KAF’s superiority is even more
 1284 evident, where its 31.4% accuracy represents a substantial lead of 1.3 points over FINER and 3.2
 1285 points over the MLP. Finally, on the SVHN dataset, KAF once again achieves the highest accuracy
 1286 at 84.6%, outperforming the strongest baseline, SIREN, by a margin of 1.6 points. The consistent
 1287 outperformance across all tasks validates the efficacy of KAF’s hybrid activation mechanism and
 1288 its ability to effectively model complex data distributions without succumbing to the limitations of
 1289 purely periodic or standard activation functions.

1290

1291

L ABLATION EXPERIMENT

1292

1293

L.1 ABLATION ON CIFAR10

1294

1295

We use a single-layer KAF trained on CIFAR-10 as the baseline model, with a hidden layer size of 128. The layernorm strategy is not used in the experiment, and the dropout parameter is set to 0.1. We evaluate the following strategies:

Table 12: Accuracy (%) comparison of KAF against baselines and spectral-bias-aware methods on visual classification tasks. The best performance in each row is highlighted in bold.

1296 1. **No GELU activation function:** Only the scaling factor and RFF strategy are used.
 1297 2. **No scaling factor strategy:** The model is trained without the scaling factor.
 1298 3. **No RFF strategy:** The model uses the scaling factor and GELU activation instead.
 1299 4. **Random initialization for RFF:** RFF is initialized randomly instead of using a specific
 1300 variance.
 1301 5. **Effect of different σ values:** We report the highest test accuracy for different selections of
 1302 σ .
 1303 6. **Effect of different num_grids values:** We report the highest test accuracy for different
 1304 selections of num_grids = 9.

1305 Record the accuracy of the test set in each epoch and the highest accuracy in the entire training
 1306 process. At the same time, in order to observe the specific changes in the scaling factors, we plotted
 1307 the changes of the two scaling factors a and b of KAF with epochs in the experiment.

1312 **Table 13: Performance of Different σ Values on Cifar10**

σ	0.1	0.5	1	1.5	1.6	1.64(default)	1.7	1.8	2	2.5
ACC (%)	46.83	52.50	54.02	54.41	54.32	54.96	54.64	54.68	54.36	54.07

1318 **Table 14: Performance of Different num_grids Values on Cifar10**

σ	2	4	6	8	9 (default)	10	12	14	16	18	20
ACC (%)	54.23	54.67	54.41	54.80	54.96	54.87	54.94	54.82	54.76	54.79	55.01

1322 The results of strategies 1-4 are shown in 8, and the experimental results of strategies 5 and 6 are in
 1323 13 and 14. From the results of the ablation experiment, our model maintains the highest accuracy at
 1324 the same epoch compared to other models that discard the strategy. The model that only uses RFF is
 1325 obviously less accurate than other models, which also shows the effectiveness of the GELU+RFF
 1326 mixed activation strategy. At the same time, our model reaches fewer epochs in a shorter time, which
 1327 also shows that it converges faster.

1328 At the same time, the ablation experiment of hyperparameters also proves the rationality of our choice
 1329 of $\sigma = 1.64$, $num_grids = 9$ as the default model configuration. When $\sigma = 1.64$, $num_grids = 9$,
 1330 the model achieves the best or suboptimal performance in the main evaluation indicators and also
 1331 shows a good balance in terms of computational efficiency and number of parameters.

1332 In Figure 9, we show how the Base Scale and Spline Scale inside KAF change with training during
 1333 40 epochs of training on Cifar10. Obviously, both are increasing, and the Spline Scale increases more,
 1334 which means that during the training process, the model adjusts the automatic adjustment parameters
 1335 and makes more use of the RFF part to capture high-dimensional or complex information.

1337 L.2 FITTING EXPERIMENT OF SIN(X) AND COS(X)

1339 To evaluate the model’s capability in approximating periodic functions, we conduct a fitting experi-
 1340 ment on $\sin(x)$ and $\cos(x)$. Specifically, we train the model to learn the mapping $x \mapsto \sin(x)$ and
 1341 $x \mapsto \cos(x)$ using a dataset of uniformly sampled points from the interval $[-20, 20]$. The training
 1342 objective minimizes the mean squared error (MSE) between the predicted and true values.

1343 We use a single-layer network with 64 neurons in the hidden layer and test KAF, KAN, MLP (RELU),
 1344 and MLP (GELU). During the training process, Adam is used as the optimizer, the learning rate is
 1345 set to 1e-3, 1000 points are sampled, and 1000 rounds of training are performed. The final position
 1346 predicted by each model is recorded, the fitting image is drawn, and the loss is recorded.

1347 Figure 10 illustrates the fitting results of different models for $\sin(x)$ and $\cos(x)$. It can be observed
 1348 that MLP_RELU and MLP_GELU struggle to maintain the periodic structure when the input range
 1349 is large. While KAN performs relatively well in certain regions, it still exhibits significant deviations

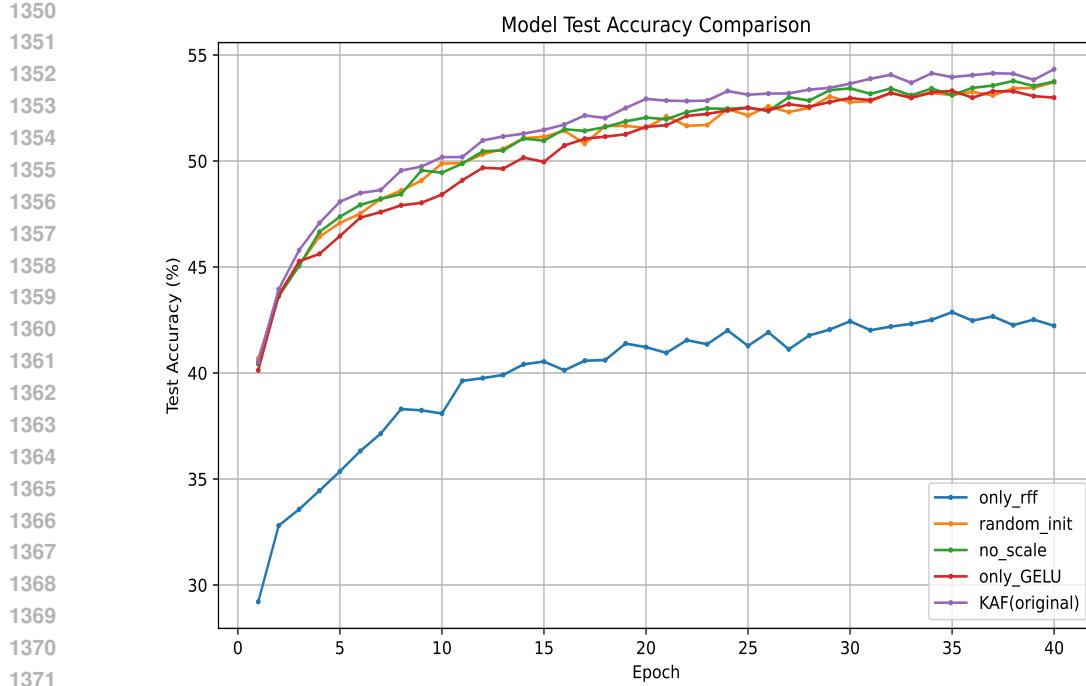


Figure 8: The curve of the test set accuracy of different strategies in the ablation experiment on Cifar10 changes with epoch. KAF (original) demonstrates the effectiveness of our model design, consistently achieving higher test accuracy compared to other strategies across epochs.

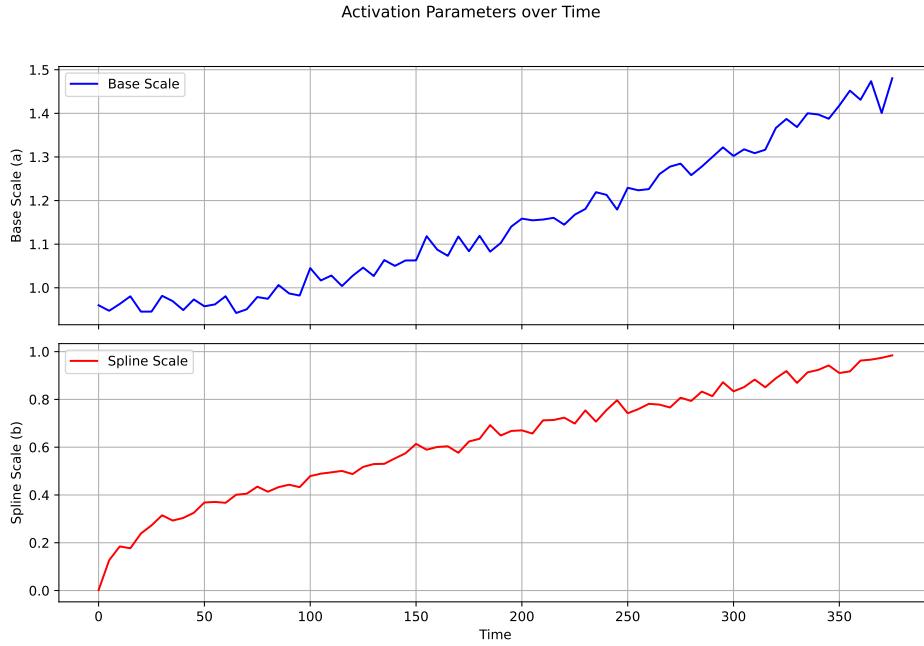


Figure 9: Evolution of activation scaling factors over time: Base Scale (a) and Spline Scale (b).

in the low-frequency range. In contrast, the KAF model more accurately captures the periodicity of the target functions and provides superior fitting performance across most regions.

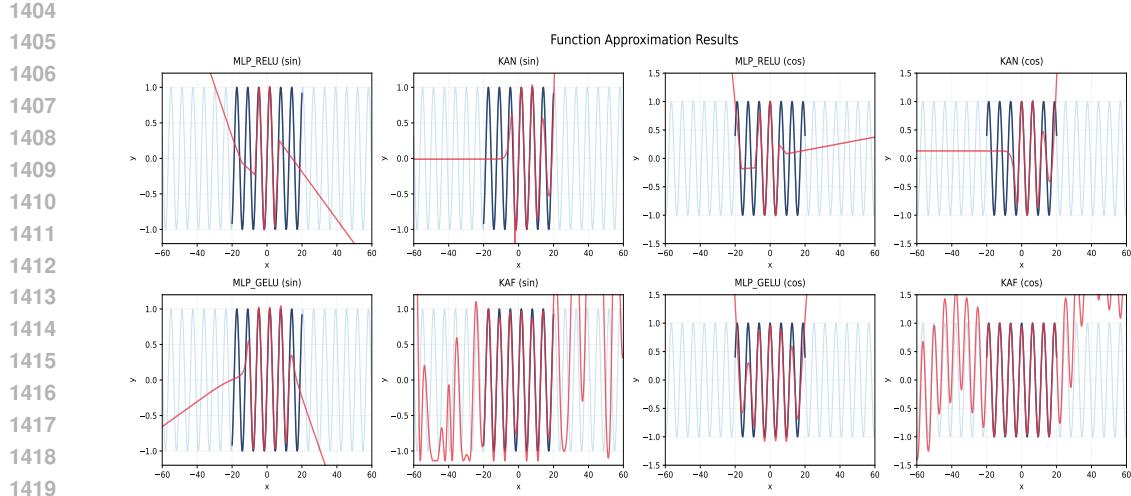


Figure 10: Images of the four models fitted on the standard \sin/\cos function after training for 1000 epochs

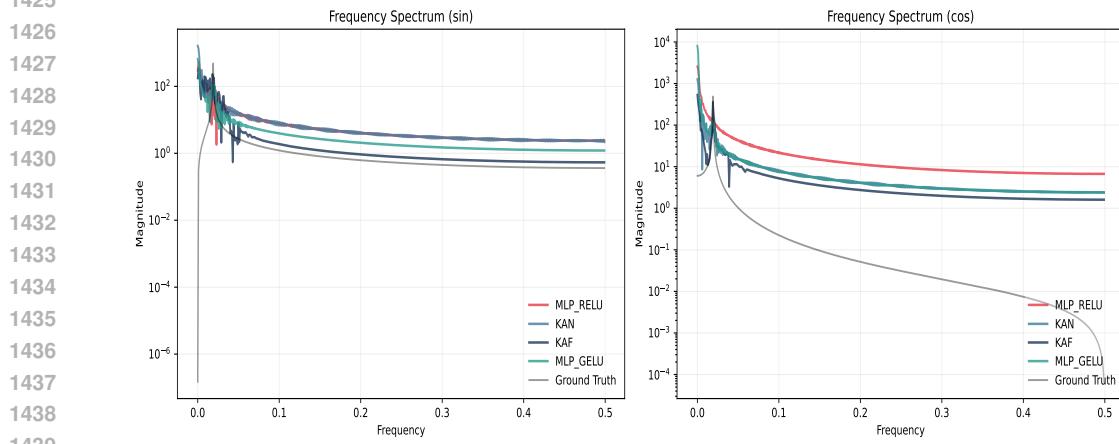


Figure 11: Frequency spectrum analysis of different models for $\sin(x)$ and $\cos(x)$, showing the magnitude distribution across different frequency components.

Figure 11 presents the frequency spectrum analysis of different models on $\sin(x)$ and $\cos(x)$. The true signal's spectral energy is primarily concentrated in the low-frequency region, and the spectral distribution of the KAF model closely matches the true signal, effectively preserving the spectral characteristics of the target function. On the other hand, MLP_RELU and MLP_GELU exhibit significant deviations in the high-frequency components, indicating their difficulty in accurately representing high-frequency features. Although KAN's spectral response aligns more closely with the true signal in some frequency bands, there are still noticeable discrepancies in energy distribution.

1458 M STATEMENT ON THE USE OF AI ASSISTANCE
14591460 In the preparation of this manuscript, we employed a Large Language Model (LLM) as a research
1461 and writing assistant. The use of the LLM was restricted to two specific areas: (1) aiding in the
1462 initial phase of academic research by helping to survey and summarize relevant literature, and (2)
1463 assisting in the post-writing phase by polishing the manuscript’s language, grammar, and formatting
1464 to improve clarity and readability.
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511