
Tighter Convergence Bounds for Shuffled SGD
via Primal-Dual Perspective

Xufeng Cai∗
Department of Computer Sciences
University of Wisconsin-Madison

xcai74@wisc.edu

Cheuk Yin Lin∗

Department of Computer Sciences
University of Wisconsin-Madison

cylin@cs.wisc.edu

Jelena Diakonikolas
Department of Computer Sciences
University of Wisconsin-Madison

jelena@cs.wisc.edu

Abstract

Stochastic gradient descent (SGD) is perhaps the most prevalent optimization
method in modern machine learning. Contrary to the empirical practice of sampling
from the datasets without replacement and with (possible) reshuffling at each epoch,
the theoretical counterpart of SGD usually relies on the assumption of sampling
with replacement. It is only very recently that SGD using sampling without
replacement – shuffled SGD – has been analyzed with matching upper and lower
bounds. However, we observe that those bounds are too pessimistic to explain
often superior empirical performance of data permutations (sampling without
replacement) over vanilla counterparts (sampling with replacement) on machine
learning problems. Through fine-grained analysis in the lens of primal-dual cyclic
coordinate methods and the introduction of novel smoothness parameters, we
present several results for shuffled SGD on smooth and non-smooth convex losses,
where our novel analysis framework provides tighter convergence bounds over all
popular shuffling schemes (IG, SO, and RR). Notably, our new bounds predict
faster convergence than existing bounds in the literature – by up to a factor of
O(

√
n), mirroring benefits from tighter convergence bounds using component

smoothness parameters in randomized coordinate methods. Lastly, we numerically
demonstrate on common machine learning datasets that our bounds are indeed
much tighter, thus offering a bridge between theory and practice.

1 Introduction

Originally proposed in [38], SGD has been broadly studied in the machine learning literature due to
its effectiveness in large-scale settings, where full gradient computations are often computationally
prohibitive. When applied to unconstrained finite-sum problems

min
x∈Rd

f(x), where f(x) :=
1

n

n∑
i=1

fi(x), (P)

SGD performs the update xt = xt−1 − η∇fit(xt−1) for it ∈ [n] ([n] := {1, . . . , n}), in each
iteration t. Traditional theoretical analysis for SGD builds upon the assumption of sampling it ∈ [n]
with replacement according to a fixed distribution p = (p1, . . . , pn)

⊤ over [n], which leads to

*Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:xcai74@wisc.edu
mailto:cylin@cs.wisc.edu
mailto:jelena@cs.wisc.edu

Figure 1: An illustration of the convergence behaviour of shuffled SGD for logistic regression
problems on LIBSVM datasets luke, leu and a9a, where we use step sizes from existing bounds
and our work. Due to randomness, we average over 20 runs for each plot and include a ribbon around
each line to show its variance. However, as suggested by the concentration of L̂ (see Section 4.1 and
Appendix E), the variance across multiple runs is negligible, hence the ribbons are not observable.

Eit [∇fit(xt−1)/(npit)] = ∇f(xt−1), and thus much of the (deterministic) gradient descent-style
analysis can be transferred to this setting. By contrast, no such connection between the component
and the full gradient can be established for shuffled SGD — which employs sampling without
replacement — making its analysis much more challenging. As a result, despite its fundamental
nature, there were no non-asymptotic convergence results for shuffled SGD until a very recent line
of work [2, 12, 20, 21, 30, 31, 34, 35, 42]. All existing results consider general finite sum problems,
with the same regularity condition constant (Lipschitz constant of fi or its gradient) assumed for all
the component functions. As a result, the obtained convergence bounds are typically no better than
for (full) gradient descent, and are only better than the bounds for SGD with replacement sampling if
the algorithm is run for many full passes over the data [30, 34].

Furthermore, there is a large gap between the empirical performance of shuffled SGD and the
predicted convergence rates from prior work [20, 30]. One cause for this discrepancy are overly
pessimistic bounds on the step size in prior work, which are of order 1/(nLmax), where Lmax is the
maximum smoothness constant over components fi in (P). In practice, the step sizes are tuned to
achieve better convergence bounds than predicted by the current theory. We illustrate how restrictions
on the step size affect convergence of shuffled SGD (with random permutations in each epoch) in
Fig. 1, where we plot the resulting optimality gap over full data passes when shuffled SGD is applied
to logistic regression problems on standard datasets. To compare the effect of the step size η from
prior work and our work, we choose take η = 1/(

√
2nLmax) based on [30], and η = 1/(n

√
L̂L̃)

from our work, where L̂, L̃ are our novel fine-grained, data-dependent smoothness parameters defined
in Section 3 for smooth convex finite-sum problems with linear predictors. As can be observed from
Fig. 1, larger step sizes resulting from our theory lead to faster convergence of shuffled SGD and, as
a result, our convergence bounds better predict the performance of shuffled SGD.

Building on these insights, we introduce a fined-grained theoretical analysis to transparently show
how the structure of the data and the possibly different Lipschitz constants of the component functions
or their gradients affect the performance of shuffled SGD, thus providing a better explanation of the
heuristic success of shuffled SGD in modern machine learning.

1.1 Background and related work

SGD (with replacement) has been extensively studied in many settings (see e.g., [1, 9, 10, 38] for
convex optimization). Compared to SGD, shuffled SGD usually exhibits faster convergence in
practice [8, 37], and is easier and more efficient to implement [5]. For each epoch k, shuffled SGD-
style algorithms perform incremental gradient updates based on the sample ordering (permutation of
the data points) denoted by π(k). There are three main choices of data permutations: (i) π(k) ≡ π for
some fixed permutation of [n] for all epochs, where shuffled SGD reduces to the incremental gradient
(IG) method; (ii) π(k) ≡ π̃ where π̃ is randomly chosen only once, at the beginning of the first epoch,
referred to as the shuffle-once (SO) scheme; (iii) π(k) randomly generated at the beginning of each
epoch, referred to as random reshuffling (RR).

For general smooth convex settings, the convergence of shuffled SGD has been established
only recently. For the number of epochs K sufficiently large, [31] proved a convergence rate

2

Table 1: Comparison of our results with state of the art, in terms of individual gradient oracle
complexity required to output xout with E[f(xout)− f(x∗)] ≤ ϵ, where ϵ > 0 is the target error and
x∗ is the optimal solution. Here, σ2

∗ = 1
n

∑n
i=1 ∥∇fi(x∗)∥22, D = ∥x0 − x∗∥2, and generalized

linear model refers to objectives of the form f(x) = 1
n

∑n
i=1 ℓi(a

⊤
i x) as defined in Section 3.

Parameters L̂g, L̃g are defined in Section 2 and satisfy L̂g ≤ 1
n

∑n
i=1 Li and L̃g ≤ Lmax. Parameters

L̂, L̃, and Ḡ are defined in Section 3, and are discussed in the text of this section.

PAPER COMPLEXITY ASSUMPTIONS STEP SIZE

NGUYEN ET AL. [34]
CHA ET AL. [12] (RR) O

(nLmaxD2

ϵ +
√

nLmaxσ∗D2

ϵ3/2

)
fi : Lmax-SMOOTH, CONVEX O

(
1

nLmax

)
MISHCHENKO ET AL. [30] (RR/SO) O

(nLmaxD2

ϵ +
√

nLmaxσ∗D2

ϵ3/2

)
fi : Lmax-SMOOTH, CONVEX O

(
1

nLmax

)
[Ours, Theorem 1] (RR/SO) O

(
n
√

L̂gL̃gD2

ϵ +

√
nL̃gσ∗D2

ϵ3/2

)
fi : Li-SMOOTH, CONVEX O

(
1

n
√

L̂gL̃g

)
[Ours, Theorem 2] (RR/SO) O

(
n
√

L̂L̃D2

ϵ +

√
nL̃σ∗D2

ϵ3/2

) ℓi : Li-SMOOTH, CONVEX
GENERALIZED LINEAR MODEL

O
(

1

n
√

L̂L̃

)
CHA ET AL. [12]
LOWER BOUND

(RR) Ω
(√

nLmaxσ∗D2

ϵ3/2

) fi : Lmax-SMOOTH, CONVEX,
LARGE K

O
(

1
nLmax

)

SHAMIR [42] (RR/SO) O
(B̄2G2

max
ϵ2

)

(K = 1, n = Ω(1/ϵ2)
) ℓi : Gmax-LIPSCHITZ, CONVEX

B̄-BOUNDED ITERATES, ∥ai∥ ≤ 1
GENERALIZED LINEAR MODEL

O
(

1√
n

)

[Ours, Theorem 3] (RR/SO) O
(
nḠD2

ϵ2

) ℓi : Gi-LIPSCHITZ, CONVEX
GENERALIZED LINEAR MODEL

O
(

1

n
√

ḠK

)

O(1/
√
nK) for RR, which leads to the complexity matching SGD. This result was later improved

to O(1/(n1/3K2/3)) by [12, 30, 34] for K sufficiently large and with bounded variance assumed at
the minimizer, while the same rate holds for SO [30]. These results were complemented by match-
ing lower bounds in [12], under sufficiently small step sizes as utilized in prior work. The results
in [30, 34] require restricted O(1/(nL)) step sizes and reduce to O(1/K) for small K, acquiring the
same iteration complexity as full-gradient methods. Unlike in strongly convex settings, we are not
aware of any follow-up work with improvements under small K for smooth convex settings.

The major difficulty in analyzing shuffled SGD comes from characterizing the difference between the
intermediate iterate and the iterate after one full data pass, for which current analysis (see e.g., [30]
in smooth convex settings) uses the global smoothness constant with a triangle inequality. Such a
bound may be too pessimistic and fail capturing the nuances of intermediate progress of shuffled
SGD, which leads to a small step size and large K restrictions. To provide a more fine-grained
analysis that narrows the theory-practice gap for shuffled SGD, we notice that such a proof difficulty
is reminiscent of the analysis of cyclic block coordinate methods relating the partial gradients to the
full one. This natural connection was further emphasized in studies of cyclic methods with random
permutations [24, 47]; however, these results were limited to convex quadratics. More generally, it is
possible to interpret shuffled SGD as a primal-dual method performing cyclic updates on the dual side
(see (PD) in Section 2.1 and (PL-PD) in Section 3). We note here that prior work on dual coordinate
methods [41] provided theoretical guarantees only for the algorithms that choose the dual coordinate
to optimize uniformly at random, while the cyclic variant (related to shuffled SGD) had only been
studied numerically up until this work. Further discussion of related work appears in Appendix A.

1.2 Contributions

In this work, we study the convergence rates of shuffled SGD in various settings through a unified
primal-dual perspective, making intriguing connections to cyclic coordinate methods. This analysis
framework is novel and allows us to leverage cyclic bias accumulation techniques on the dual
side to obtain fine-grained convergence bounds. The obtained bounds mirror the improvements
in randomized coordinate methods, which come from different coordinate smoothness parameters.
While coordinate methods are no better than full-gradient methods in the worst case, on typical

3

problem instances, they are much faster and the improvements come precisely from a more fine-
grained view of smoothness. We see a similar phenomenon in our analysis, which highlights the
usefulness of the fine-grained smoothness characterizations introduced in our work.

We provide improved bounds for all three popular data permutation strategies RR, SO and IG, in
smooth convex settings. When the problem objective narrows to empirical risk minimization with
linear predictors, we are able to exploit the data-dependent structure and uncouple the linear and
nonlinear parts of the objective function, allowing us to provide tighter data-dependent bounds, up to
a factor of O(

√
n). Moreover, we show that our techniques extend to non-smooth convex settings,

providing improved bounds over existing work.

We summarize our results and compare them to the state of the art in Table 1. As is standard, all
complexity results in Table 1 are expressed in terms of individual (component) gradient evaluations.
They represent the number of gradient evaluations required to construct a solution with (expected)
optimality gap ϵ, given a target error ϵ > 0.

Extensions to mini-batching and IG. When presenting our results for general finite-sum problems
(in Section 2), we consider simple updates without mini-batching for ease of presentation and to
avoid introducing excessive notation. However, we emphasize that all our results can be extended to
shuffled SGD with mini-batching. Our results are also the first to provide convergence bounds that
demonstrate benefits of mini-batching in shuffled SGD. For completeness and generality, the proofs
in the appendix are carried out for mini-batch settings with arbitrary batch sizes b ∈ {1, . . . , n}.
Thus, all the results stated in Section 2 can be recovered by setting b = 1. Moreover, our framework
can provide similar fine-grained convergence bounds for IG. However, as IG is not as commonly
used in practice compared to RR and SO and due to space constraints, we only present our results for
RR and SO in the main body and include the results for IG in the appendix.

1.3 Notation

We consider a real d-dimensional Euclidean space (Rd, ∥ · ∥) where d is finite and ∥ · ∥ is the ℓ2-norm.
For a vector x, we let xj denote its j-th coordinate. For any positive integer m, we use [m] to
denote the set {1, 2, . . . ,m}. Given a matrix A, ∥A∥ := supx∈Rd,∥x∥≤1 ∥Ax∥ denotes its operator
norm. For a positive definite matrix Λ, ∥ · ∥Λ denotes the Mahalanobis norm, ∥x∥Λ :=

√
⟨Λx,x⟩.

We use I to denote the identity matrix, and diag(v) to denote the diagonal matrix with vector v
on the main diagonal. For any j ∈ [n], we define Ij↑ as the matrix obtained from the identity
matrix I by setting the first j diagonal elements to zero, and let Ij be the matrix with only the j-th
diagonal element nonzero and equal to 1. To handle the cases with random data permutations, we
use the following definitions corresponding to the data permutation π = {π1, π2, . . . , πn} of [n]:
Aπ :=

[
aπ1

,aπ2
, . . . ,aπn

]⊤
permuting the rows based on π given a matrix A = [a1,a2, . . . ,an]

⊤,

and vπ :=
(
vπ1 ,vπ2 , . . . ,vπn

)⊤
permuting the coordinates/subvectors based on π given a vector

v = (v1,v2, . . . ,vn)⊤.

2 Primal-Dual Framework for Smooth Convex Finite-Sum Problems

Throughout this section, we make the following standard assumptions.

Assumption 1. Each fi is convex and Li-smooth, and there exists a minimizer x∗ ∈ Rd for f(x).

Assumption 1 implies that f and all component functions fi are L-smooth, where Lmax :=
maxi∈[n] Li. It also implies that each convex conjugate f∗

i is 1
Li

-strongly convex [3]. In this
section, we define Λ = diag(L1, . . . , L1︸ ︷︷ ︸

d

, . . . , Ln, . . . , Ln︸ ︷︷ ︸
d

) ∈ Rnd×nd, and slightly abuse the no-

tation to use Λπ = diag
(
Lπ1 , . . . , Lπ1︸ ︷︷ ︸

d

, . . . , Lπn , . . . , Lπn︸ ︷︷ ︸
d

)
given a permutation π of [n]. For the

permutation πk at the k-th epoch, we denote Λk = Λπk
, for brevity.

We further assume that the variance at x∗ is bounded, same as prior work [30, 34].

Assumption 2. The quantity σ2
∗ = 1

n

∑n
i=1 ∥∇fi(x∗)∥2 is bounded.

4

Algorithm 1 Shuffled SGD (Primal-Dual View, General Convex Smooth)

1: Input: Initial point x0 ∈ Rd, step size {ηk} > 0, number of epochs K > 0
2: for k = 1 to K do
3: Generate some permutation πk of [n] (either deterministic or random)
4: xk−1,1 = xk−1

5: for i = 1 to n in the ordering of πk do
6: yi

k = argmaxyi∈Rd

{〈
yi,xk−1,i

〉
− f∗

i (y
i)
}

7: xk−1,i+1 = argminx∈Rd

{〈
yi
k,x

〉
+ 1

2ηk
∥x− xk−1,i∥2

}
= xk−1,i − ηk∇f(xk−1,i)

8: end for
9: xk = xk−1,n+1, yk =

(
y1
k,y

2
k, . . . ,y

n
k

)⊤
10: end for
11: Return: x̂K =

∑K
k=1 ηkxk/

∑K
k=1 ηk

2.1 Primal-dual view of shuffled SGD

Problem (P) can be reformulated into a primal-dual form using the standard Fenchel conjugacy
argument (see, e.g., [13, 14]),

min
x∈Rd

max
y∈Rnd

{
L(x,y) := 1

n

n∑
i=1

(〈
yi,x

〉
− f∗

i (y
i)
)}

, (PD)

where we slightly abuse the notation to denote y = (y1, . . . ,yn)⊤ ∈ Rnd and f∗
i is the convex

conjugate of fi defined by f∗
i (y) = supx∈Rd

{
⟨y,x⟩−fi(x)

}
. We let yx = (y1

x, . . . ,y
n
x)

⊤ ∈ Rnd

be the conjugate pair of x ∈ Rd, i.e., yi
x = argmaxy∈Rd{⟨y,x⟩−f∗

i (y)}, and we denote y∗ = yx∗ .

Given a primal-dual pair (x,y), the primal-dual gap of (PD) is defined by Gap(x,y) =
max(u,v){L(x,v) − L(u,y)}. In particular, we consider the pair (x,y∗) for x ∈ Rd, and bound
Gapv(x,y∗) := L(x,v) − L(x∗,y∗) for an arbitrary but fixed v. To finally obtain the function
value gap f(x)− f(x∗) for (P), we only need to choose v = argmaxw L(x,w) = yx.

Using this primal-dual formulation and standard convex conjugacy arguments, we can equivalently
write the standard shuffled SGD algorithm in a primal-dual form as summarized in Algorithm 1.

Improved bounds with new smoothness constants. To prove a convergence bound for shuffled
SGD in this general setting, we first construct an upper estimate of Gapv(xk,y∗) for some fixed v
to be set later, as summarized in the following lemma.

Lemma 1. Under Assumption 1, for any k ∈ [K], the iterates {yi
k}ni=1 and {xk−1,i}n+1

i=1 generated
by Algorithm 1 satisfy

Ek ≤ ηk
n

n∑
i=1

〈
yi
k,xk − xk−1,i+1

〉
+

ηk
n

n∑
i=1

〈
vi
k − yi

k,xk − xk−1,i

〉
− ηk

2n
∥yk − vk∥2Λ−1

k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− 1

2n

n∑
i=1

∥xk−1,i+1 − xk−1,i∥2,
(1)

where Ek := ηkGapv(xk,y∗)+
1
2n∥x∗−xk∥22− 1

2n∥x∗−xk−1∥22, vk = vπ(k) , and y∗,k = y∗,π(k)

are the (block-wise) permuted vectors based on the permutation πk at the k-th epoch.

We note that the first term T1 := ηk

n

∑n
i=1

〈
yi
k,xk − xk−1,i+1

〉
from Lemma 1 can be aggregated

into the terms capturing the primal progress within one epoch and cancelled by the last term in Eq. (1).
The precise bound on T1 and its proof are provided in Lemma 10 in Appendix C.1. The second term
T2 := ηk

n

∑n
i=1

〈
vi
k − yi

k,xk − xk−1,i

〉
requires us to relate the intermediate iterate xk−1,i to the

iterate xk after one full data pass, which corresponds to a partial sum of the component gradients,
each at different iterates {xk−1,j}nj=i. In contrast to prior analyses (e.g., Mishchenko et al. [30])
using the global smoothness and triangle inequality to bound this partial sum, we provide a tighter
bound on T2 that tracks the progress of the cyclic update on the dual side, in the aggregate.

5

To simplify the notation in the following lemmas and to clearly compare our results, we introduce the
following novel definitions of smoothness constants for shuffled SGD:

L̂g
π :=

1

n2

∥∥Λ1/2
π

(∑n
i=1 Id(i−1)↑EE⊤Id(i−1)↑

)
Λ

1/2
π

∥∥
2
, L̂g = max

π
L̂g
π,

L̃g
π :=

∥∥Λ1/2
π

(∑n
i=1 I(di)EE⊤I(di)

)
Λ

1/2
π

∥∥
2
, L̃g = max

π
L̃g
π,

(2)

where I(di) =
∑di

j=d(i−1)+1 Ij and E = [Id, . . . , Id︸ ︷︷ ︸
n

]⊤ ∈ Rnd×d. Permutation-dependent quantities

L̂g
π and L̃g

π defined in (2) are obtained directly from our analysis. We remark that L̂g is bounded by
the average smoothness of f and L̃g is bounded by the max of individual smoothness constants of fi;
see more details in Appendix B. However, as we argue in later sections, these upper bounds on L̂g

π

and L̃g
π are loose in general, and so the convergence bounds based on L̂g

π and L̃g
π that we obtain align

better with the empirical performance of shuffled SGD.

Assuming that a uniformly random data shuffling strategy is used (SO or RR), the resulting bound on
T2 is summarized in Lemma 2, while its proof is deferred to Appendix B.

Lemma 2. Under Assumptions 1 and 2, for any k ∈ [K], the iterates {yi
k}ni=1 and {xk−1,i}n+1

i=1
generated by Algorithm 1 with uniformly random shuffling (RR/SO) satisfy

E[T2] ≤ E
[
η3knL̂

g
π(k)L̃

g
π(k)∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
+

η3k(n+ 1)L̃g

6
σ2
∗,

where T2 := ηk

n

∑n
i=1

〈
vi
k − yi

k,xk − xk−1,i

〉
, vk = vπ(k) and y∗,k = y∗,π(k) .

With Lemmas 1 and 2 in tow, we are ready to present the main result of this section.

Theorem 1. Under Assumptions 1 and 2, if ηk ≤ 1

n
√

2L̂g

π(k)
L̃g

π(k)

and HK =
∑K

k=1 ηk, the output

x̂K of Algorithm 1 with uniformly random (RR/SO) shuffling satisfies

E[HK(f(x̂K)− f(x∗))] ≤
1

2n
∥x0 − x∗∥22 +

K∑
k=1

η3k(n+ 1)L̃g

6
σ2
∗.

As a consequence, for any ϵ > 0, there exists a choice of a constant step size ηk = η for which

E[f(x̂K)− f(x∗)] ≤ ϵ after O
(n

√
L̂gL̃g∥x0−x∗∥2

2

ϵ +

√
nL̃gσ∗∥x0−x∗∥2

2

ϵ3/2

)
individual gradient queries.

3 Tighter Bounds for Convex Finite-Sum Problems with Linear Predictors

To study the effect of the structure of the data on the convergence of shuffled SGD, we sharpen the
focus from general finite-sum problems to convex finite-sum with linear predictors:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

ℓi(a
⊤
i x)

}
, (PL)

where ai ∈ Rd (i ∈ [n]) are data vectors and ℓi : R → R are convex and either smooth or Lipschitz
nonsmooth functions associated with the linear predictors ⟨ai,x⟩ for i ∈ [n]. In addition to their
explicit dependence on the data, it is worth noting that problems of the form (PL) cover most of the
standard convex ERM problems where shuffled SGD is commonly applied, such as support vector
machines, least absolute deviation, least squares, and logistic regression.

Problem (PL) admits an explicit primal-dual formulation using the standard Fenchel conjugacy
argument (see, e.g., [13, 14]),

min
x∈Rd

max
y∈Rn

{
L(x,y) := 1

n
⟨Ax,y⟩ − 1

n

n∑
i=1

ℓ∗i (y
i) =

1

n

n∑
i=1

(
a⊤
i xy

i − ℓ∗i (y
i)
)}

, (PL-PD)

where A = [a1,a2, . . . ,an]
⊤ ∈ Rn×d is the data matrix and ℓ∗i : R → R is the convex conjugate

of ℓi. This observation allows us to again interpret without-replacement SGD updates as cyclic

6

coordinate updates on the dual side. Note that due to the objective structure in (PL), the primal-dual
formulation (PL-PD) can decouple the linear (a⊤

i x) and the non-linear (ℓi) parts within individual
loss functions fi. We redefine the conjugate pair of x ∈ Rd to be yx = (y1

x, . . . ,y
n
x)

⊤ ∈ Rn, with
yi
x = argmaxyi∈R{yia⊤

i x− ℓ∗i (y
i)}.

In this section, we consider shuffled SGD with mini-batch estimators of size b and assume without
loss of generality that n = bm for some positive integer m. The detailed primal-dual view of shuffled
SGD adapted to (PL-PD) and mini-batch estimators is provided in Alg. 2 in Appendix C.

3.1 Smooth and convex objectives

Throughout this subsection, we make the following (standard) assumptions, corresponding to As-
sumptions 1 and 2 from Section 2.

Assumption 3. Each ℓi is convex and Li-smooth (i ∈ [n]), i.e., |ℓ′i(x)− ℓ′i(y)| ≤ Li|x− y| for any
x, y ∈ R. There exists a minimizer x∗ ∈ argminx∈Rd f(x).

We remark that Assumption 3 implies that both f and each component function fi(x) = ℓi(a
⊤
i x)

are Lmax-smooth, where Lmax = maxi∈[n] Li∥ai∥22. Assumption 3 also implies that each convex
conjugate ℓ∗i is 1

Li
-strongly convex [3]. In the following, we let Λ = diag(L1, L2, . . . , Ln), and

Λπ = diag
(
Lπ1 , Lπ2 , . . . , Lπn

)
, given a permutation π of [n].

We further assume bounded variance at x∗, same as prior work [30, 34, 45, 46].

Assumption 4. σ2
∗ := 1

n

∑n
i=1 ∥∇fi(x∗)∥2 = 1

n

∑n
i=1(ℓ

′
i(a

⊤
i x∗))

2∥ai∥22 is bounded.

Improved bounds with new smoothness constants. Our convergence bounds depend on the
smoothness parameters defined in Eq. (3) below. We provide a detailed discussion on how these
parameters relate to traditional smoothness parameters both in the worst case and on typical datasets,
in Section 4.1, with additional numerical results provided in Appendix E.

L̂π :=
1

mn

∥∥Λ1/2
π

(∑m
j=1 Ib(j−1)↑AπA

⊤
π Ib(j−1)↑

)
Λ

1/2
π

∥∥
2
, L̂ = max

π
L̂π,

L̃π :=
1

b

∥∥Λ1/2
π

(∑m
j=1 I(j)AπA

⊤
π I(j)

)
Λ

1/2
π

∥∥
2
, L̃ = max

π
L̃π,

(3)

where I(j) :=
∑bj

i=b(j−1)+1 Ii. In comparison to the smoothness constants defined in Eq. (2) for
general finite-sum problems, we note that the constants in Eq. (3) applying to generalized linear
models are tighter and more informative estimates, as the data matrix A and the smoothness constants
from the nonlinear part Λ are separated in Eq. (3). Thus, the constants L̂π and L̃π directly depend on
the data matrix, which explicitly demonstrates how the structure of the data affects the convergence of
shuffled SGD. The following theorem states the convergence of Algorithm 2 with these new refined
smoothness constants, while its proof is provided in Appendix C.

Theorem 2. Under Assumptions 3 and 4, if ηk ≤ b

n
√

2L̂
π(k) L̃π(k)

and HK =
∑K

k=1 ηk, then the

output x̂K of Alg. 1 with uniformly random (RR/SO) shuffling satisfies

E[HK(f(x̂K)− f(x∗))] ≤
b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

As a result, given ϵ > 0, there exists a constant step size ηk = η such that E[f(x̂K)− f(x∗)] ≤ ϵ

after O
(n

√
L̂L̃∥x0−x∗∥2

2

ϵ +
√

(n−b)(n+b)
n(n−1)

√
nL̃σ∗∥x0−x∗∥2

2

ϵ3/2

)
individual gradient queries.

A few remarks are in order here. When b = n, we recover the standard guarantee of gradient descent,
which serves as a sanity check as in this case the algorithm reduces to standard gradient descent.

When ϵ = Ω(
(n−b)(n+b)σ2

∗
n2(n−1)L̂

), the resulting complexity is O
(n

√
L̂L̃∥x0−x∗∥2

2

ϵ

)
. Observe that this case

can happen when either ϵ is large (compared to, say, 1/n) or when σ∗ is small (it is, in fact, possible
for σ∗ to be zero, which happens, for example, when the data rows are linearly independent). Unlike

7

in bounds from previous work, we observe from our bounds the benefit of using shuffled SGD
compared to full gradient descent, where the difference is by a factor that can be as large as

√
n, as we

have discussed in the introduction (see also Section 4). When ϵ = O(
(n−b)(n+b)σ2

∗
n2(n−1)L̂

), the second term
in our complexity bound dominates. In this case, when b = 1, we recover the state of the art results

from [12, 30, 34], while for b > 1 our bound provides the Ω
(√ n(n−1)

(n−b)(n+b) ·
L
L̃

)
-factor improvement,

providing insights into benefits from the mini-batching strategy commonly used in practice.

3.2 Extension to non-smooth convex objectives

In non-smooth settings, we make the following standard assumption.
Assumption 5. Each ℓi is convex and Gi-Lipschitz (i ∈ [n]), i.e., |ℓi(x) − ℓi(y)| ≤ Gi|x − y|
for any x, y ∈ R; thus |gi(x)| ≤ Gi where gi(x) ∈ ∂ℓi(x). There exists a minimizer x∗ ∈
argminx∈Rd f(x).

If Assumption 5 holds, each ℓi(a
⊤
i x) is also Gmax-Lipschitz with respect to x, where Gmax =

maxi∈[n] Gi∥ai∥2. To state our results, we define Γ := diag(G2
1, G

2
2, . . . , G

2
n) and Γπ =

diag
(
G2

π1
, G2

π2
, . . . , G2

πn

)
, given a data permutation π of [n].

We now extend our analysis of Algorithm 1 to convex nonsmooth Lipschitz settings, where the
conjugate functions ℓ∗i (y

i) are only convex. Proceeding as in Lemma 1, we obtain a bound on the
primal-dual gap similar to (1), but lose two retraction terms induced by smoothness. Instead of
cancelling the corresponding error terms like in the smooth case, we rely on the boundedness of the
subgradients to bound these terms under a sufficiently small step size, which is common in nonsmooth
Lipschitz settings. Similar to Section 2, we introduce the following quantities to obtain a tighter
guarantee with respect to the data matrix and Lipschitz constants

Ĝπ :=
1

mn

∥∥Γ1/2
π

(∑m
j=1 Ib(j−1)↑AπA

⊤
π Ib(j−1)↑

)
Γ
1/2
π

∥∥
2
,

G̃π :=
1

b

∥∥Γ1/2
π

(∑m
j=1 I(j)AπA

⊤
π I(j)

)
Γ
1/2
π

∥∥
2
.

We discuss the improvements in convergence from Ĝπ and G̃π in Section 4, while the convergence
of Algorithm 2 is described in Theorem 3, with its proof deferred to Appendix D.

Theorem 3. Under Assumption 5, if HK =
∑K

k=1 ηk and Ḡ = Eπ[
√

ĜπG̃π], the output x̂K of
Alg. 1 with possible uniformly random shuffling satisfies

E[HK(f(x̂K)− f(x∗))] ≤
1

2n
∥x0 − x∗∥22 +

K∑
k=1

2η2knḠ,

As a result, for any ϵ > 0, there exists a step size ηk = η such that E[f(x̂K) − f(x∗)] ≤ ϵ after
O
(nḠ∥x0−x∗∥2

2

ϵ2

)
individual gradient queries.

4 Discussion of Our New Smoothness Constants and Numerical Results

To succinctly explain where our improvements come from, we now consider (PL) where ℓi is 1-smooth
and b = 1, ignoring the gains from the mini-batch estimators (for large K) and our softer guarantee
that handles individual smoothness constants. For this specific case, L̃ = Lmax = max1≤i≤n ∥ai∥2,
and thus our results for the smooth case and the RR and SO variants match state of the art in the
second term, which dominates when there are many (K = Ω(

L2
maxD

2n
σ2
∗

)) epochs. When there are

K = O(
L2

maxD
2n

σ2
∗

) epochs in the SO and RR variants or for all regimes of K in the IG variant, the

difference between our and state of the art bounds comes from the constant L̂ that replaces Lmax,

and our improvement is by a factor
√
Lmax/L̂. Note that O(nLmax

ϵ) from prior bounds, which is the
dominating term in the small K regime, is even worse than the complexity of full gradient descent,
as the full gradient Lipschitz constant of f in this case is 1

n∥AA⊤∥2 ≤ Lmax.

8

Given a worst-case permutation π̄, and denoting by Aπ̄ the data matrix A with its rows permuted
according to π̄, our constant L̂ can be bounded above by Lmax using the following sequence of
inequalities:

L̂ = 1
n2 ∥

∑n
j=1 I(j−1)↑Aπ̄A

⊤
π̄ I(j−1)↑∥2

(i)

≤ 1
n2

∑n
j=1 ∥I(j−1)↑Aπ̄A

⊤
π̄ I(j−1)↑∥2

(ii)

≤ 1
n2

∑n
j=1 ∥Aπ̄A

⊤
π̄ ∥2

(iii)

≤ 1
n

∑n
i=1 ∥ai∥22 ≤ max1≤i≤n ∥ai∥22 = Lmax,

(4)

where (i) holds by the triangle inequality, (ii) holds because the operator norm of the matrix
I(j−1)↑AπA

⊤
π I(j−1)↑ (equal to the operator norm of the bottom right (n − j + 1) × (n − j + 1)

submatrix of AπA
⊤
π) is always at most ∥AπA

⊤
π ∥ = ∥AA⊤∥, for any permutation π, and (iii) holds

by bounding above the operator norm of a symmetric matrix by its trace. Hence L̂ is never larger
than Lmax, but can generally be much smaller, due to the sequence of inequality relaxations in (4).
While each of these inequalities can be loose, we emphasize that (iii) is almost always loose, by a
factor that can be as large as n.

As a specific example where L̂ is smaller than Lmax by a factor of n, consider the example of
Gaussian data, where we draw n i.i.d. standard Gaussian vectors from N (0, Id) and take d = n.
By standard concentration results, with high probability, all columns/rows of Aπ̄ in this case are
near-orthogonal (see, e.g., [7, Chapter]) and ∥ai∥22 ≈ d = n for all i. As a result, the operator norm
to trace inequality (iii) is loose by a factor d = n, with high probability. Note that in this example all
individual smoothness parameters of components fi are essentially the same (w.h.p.) and equal ∥ai∥22,
thus the improvement of our bound on the smoothness parameter does not come from averaging but
from the structure of the data. This observation is important for contrasting the results from Section 2
and Section 3. In particular, focusing solely on the finite sum structure and ignoring the structure of
the data matrix would provide no improvements in the resulting convergence bounds.

As further evidence, we empirically evaluate Lmax/L̂ on 15 large-scale machine learning datasets
and demonstrate that on those datasets Lmax/L̂ is of the order nα, for α ∈ [0.15, 0.96] (see Sec. 4.1
for more details), providing strong evidence of a tighter guarantee as a function of n.

For the nonsmooth settings, by a similar sequence of inequalities, we can show that Ḡ ≤ G2
max,

which can be loose by a factor 1/n due to the operator norm to trace inequality. Thus, our bound is
never worse than what would be obtained from the full subgradient method, but can match the bound
of standard SGD, or even improve1 upon it for at least some data matrices A.

4.1 Numerical results and discussion

In this section, we provide empirical evidence to support our claim about usefulness of the new
convergence bounds obtained in our work. In particular, we conduct numerical evaluations to compare
L̂ to the classical smoothness constant L on synthetic datasets and on popular machine learning
benchmark datasets.

For a more streamlined comparison and to focus on the dependence on the data matrix, we as-
sume that the loss functions ℓi all have the same smoothness constant, which leads to Lmax/L̂ =
(max1≤i≤n{∥ai∥2})/

(
1
n2 ∥

∑n
j=1 I(j−1)↑Aπ̄A

⊤
π̄ I(j−1)↑∥2

)
. Since the scale of the smoothness con-

stant of the loss functions is irrelevant for the ratio Lmax/L̂ in this case, for simplicity, we take it to
equal one. Note that assuming different smoothness constants over component loss functions would
only make our bound better compared to related work (see Eq. (3) and the discussion following it).

We also compare L̂ and Lmax on a number of benchmarking datasets from LIBSVM [15],
MNIST [17], CIFAR10 [22], and Broad Bioimage Benchmark Collection [28]. For each dataset,
we generate a uniformly random permutation π for the data matrix A and compute L̂π. We repeat
this procedure 1000 times for all datasets and display the average Lmax/L̂π in Table 2, except
for e2006train, CIFAR10, MNIST, and BBBC005 where we do 20 repetitions due to limitations of

1This is because it is possible for inequalities (i) and (ii) to be loose, in addition to (iii).

9

Table 2: The following table shows the computed values of Lmax/L̂ where L̂ is the empirical mean

of L̂π over random permutations. We note that the quantity
√

Lmax/L̂ represents the improvement
provided by the bound via our novel primal-dual perspective, compared to previous work.

DATASET #FEATURES (d) #DATAPOINTS (n) Lmax/L̂ logn Lmax/L̂ logmin(d,n) Lmax/L̂

A1A 123 1605 5.50 0.231 0.354
A9A 123 32561 5.49 0.164 0.354
BBBC005 361920 19201 18.3 0.295 0.295
BBBC010 361920 201 7.04 0.368 0.368
CIFAR10 3072 50000 10.0 0.213 0.287
DUKE 7129 44 38.0 0.962 0.962
E2006TRAIN 150360 16087 5.35 0.173 0.173
GISETTE 5000 6000 3.52 0.145 0.148
LEU 7129 38 32.8 0.960 0.960
MNIST 780 60000 19.1 0.268 0.443
NEWS20 1355191 19996 42.1 0.378 0.378
RCV1 47236 20242 111 0.475 0.475
REAL-SIM 20958 72309 194 0.471 0.529
SONAR 60 208 6.26 0.344 0.448
TMC2007 30438 21519 10.9 0.239 0.239

computation resources required for each calculation. We observe that among the datasets that we
consider, which contain all three data matrix “shapes” d >> n, d << n, and d ≈ n, our novel bound
dependent on L̂ is much tighter. For instance, for rcv1 and real-sim datasets, where d and n are of
the same order, we observe that Lmax/L̂ are approximately 111 and 194, respectively. For news20
dataset where d >> n, Lmax/L̂ ≈ 42.1. For MNIST, where d << n, Lmax/L̂ ≈ 19.1. Further
results are provided in Appendix E.

Finally, as a justification for using the empirical mean of L̂π over random permutations π in the
results displayed in Table 2, we observe in our evaluations that the values of Lmax/L̂π are fairly
concentrated around their empirical mean values. Histogram plots showing the empirical distributions
of Lmax/L̂π for each of the datasets are provided in Appendix E.

We conclude with a few additional remarks. Our results indicate that the structure of the data is
important for predicting behavior of popular machine learning methods such as variants of shuffled
SGD considered in our work, and thus should be incorporated in their study: as demonstrated in the
Gaussian data example, considering simple finite sum structure and ignoring the dependence on the
data can lead to overly pessimistic bounds. Thus it would be interesting to provide a further theoretical
study of shuffled SGD that incorporates distributional assumptions for the data. Additionally, as
mentioned in the previous paragraph, we empirically observed that permutation-dependent parameter
L̂π concentrates around its mean for permutations generated uniformly at random. Thus, it would be
interesting to consider whether our theoretical results can be strengthened to depend on the mean
value of L̂π (as opposed to maximum). We leave such considerations for future work.

Acknowledgements

This research was supported in part by the U.S. Office of Naval Research under contract number
N00014-22-1-2348.

10

References
[1] Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-

theoretic lower bounds on the oracle complexity of convex optimization. In Proc. NeurIPS’09,
2009.

[2] Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. SGD with shuffling: optimal rates without
component convexity and large epoch requirements. In Proc. NeurIPS’20, 2020.

[3] Amir Beck. First-order methods in optimization. SIAM, 2017.

[4] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[5] Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures.
Neural Networks: Tricks of the Trade: Second Edition, 2012.

[6] Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 10(3):627–642, 2000.

[7] Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Science. Cam-
bridge University Press, Cambridge, 2020. ISBN 9781108485067. doi: DOI:. URL
https://www.cambridge.org/core/books/foundations-of-data-science/
6A43CE830DE83BED6CC5171E62B0AA9E.

[8] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In
Proc. Symposium on Learning and Data Science, Paris’09, 2009.

[9] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[10] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 2015.

[11] Xufeng Cai, Chaobing Song, Stephen J Wright, and Jelena Diakonikolas. Cyclic block coor-
dinate descent with variance reduction for composite nonconvex optimization. arXiv preprint
arXiv:2212.05088, 2022.

[12] Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter lower bounds for shuffling SGD:
Random permutations and beyond. arXiv preprint arXiv:2303.07160, 2023.

[13] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145,
2011.

[14] Antonin Chambolle, Matthias J Ehrhardt, Peter Richtárik, and Carola-Bibiane Schonlieb.
Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging ap-
plications. SIAM Journal on Optimization, 28(4):2783–2808, 2018.

[15] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

[16] Christopher M De Sa. Random reshuffling is not always better. In Proc. NeurIPS’20, 2020.

[17] Li Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[18] M Gurbuzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Convergence rate of incremental gradient
and incremental Newton methods. SIAM Journal on Optimization, 29(4):2542–2565, 2019.

[19] Mert Gurbuzbalaban, Asuman Ozdaglar, Pablo A Parrilo, and Nuri Vanli. When cyclic coordi-
nate descent outperforms randomized coordinate descent. In Proc. NeurIPS’17, 2017.

[20] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats
stochastic gradient descent. Mathematical Programming, 186:49–84, 2021.

11

https://www.cambridge.org/core/books/foundations-of-data-science/6A43CE830DE83BED6CC5171E62B0AA9E
https://www.cambridge.org/core/books/foundations-of-data-science/6A43CE830DE83BED6CC5171E62B0AA9E

[21] Jeff Haochen and Suvrit Sra. Random shuffling beats SGD after finite epochs. In Proc. ICML’19,
2019.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[23] Zehua Lai and Lek-Heng Lim. Recht-ré noncommutative arithmetic-geometric mean conjecture
is false. In Proc. ICML’20, 2020.

[24] Ching-Pei Lee and Stephen J Wright. Random permutations fix a worst case for cyclic coordinate
descent. IMA Journal of Numerical Analysis, 39(3):1246–1275, 2019.

[25] Xiao Li, Zhihui Zhu, Anthony Man-Cho So, and Jason D Lee. Incremental methods for weakly
convex optimization. arXiv preprint arXiv:1907.11687, 2019.

[26] Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, and Mingyi Hong. On faster convergence of
cyclic block coordinate descent-type methods for strongly convex minimization. The Journal of
Machine Learning Research, 18(1):6741–6764, 2017.

[27] Cheuk Yin Lin, Chaobing Song, and Jelena Diakonikolas. Accelerated cyclic coordinate dual av-
eraging with extrapolation for composite convex optimization. arXiv preprint arXiv:2303.16279,
2023.

[28] Vebjorn Ljosa, Katherine L. Sokolnicki, and Anne E Carpenter. Broad bioimage benchmark
collection. https://bbbc.broadinstitute.org/image_sets, 2012. Accessed: 2023-05-
16.

[29] Olvi L Mangasarian and MV Solodov. Serial and parallel backpropagation convergence via
nonmonotone perturbed minimization. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 1993.

[30] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple
analysis with vast improvements. In Proc. NeurIPS’20, 2020.

[31] Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. SGD without replacement: Sharper
rates for general smooth convex functions. In Proc. ICML’19, 2019.

[32] Angelia Nedic and Dimitri P Bertsekas. Incremental subgradient methods for nondifferentiable
optimization. SIAM Journal on Optimization, 12(1):109–138, 2001.

[33] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[34] Lam M Nguyen, Quoc Tran-Dinh, Dzung T Phan, Phuong Ha Nguyen, and Marten Van Dijk.
A unified convergence analysis for shuffling-type gradient methods. The Journal of Machine
Learning Research, 22(1):9397–9440, 2021.

[35] Shashank Rajput, Anant Gupta, and Dimitris Papailiopoulos. Closing the convergence gap of
SGD without replacement. In Proc. ICML’20, 2020.

[36] Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean
inequality: Conjectures, case-studies, and consequences. In Proc. COLT’12, 2012.

[37] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale
matrix completion. Mathematical Programming Computation, 2013.

[38] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[39] Itay Safran and Ohad Shamir. How good is SGD with random shuffling? In Proc. COLT’20,
2020.

[40] Ankan Saha and Ambuj Tewari. On the nonasymptotic convergence of cyclic coordinate descent
methods. SIAM Journal on Optimization, 23(1):576–601, 2013.

12

https://bbbc.broadinstitute.org/image_sets

[41] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(1), 2013.

[42] Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In
Proc. NeurIPS’16, 2016.

[43] Chaobing Song and Jelena Diakonikolas. Fast cyclic coordinate dual averaging with extrapola-
tion for generalized variational inequalities. arXiv preprint arXiv:2102.13244, 2021.

[44] Ruoyu Sun and Yinyu Ye. Worst-case complexity of cyclic coordinate descent: O(n2) gap with
randomized version. Mathematical Programming, 185(1):487–520, 2021.

[45] Trang H Tran, Lam M Nguyen, and Quoc Tran-Dinh. SMG: A shuffling gradient-based method
with momentum. In Proc. ICML’21, 2021.

[46] Trang H Tran, Katya Scheinberg, and Lam M Nguyen. Nesterov accelerated shuffling gradient
method for convex optimization. In Proc. ICML’22, 2022.

[47] Stephen Wright and Ching-pei Lee. Analyzing random permutations for cyclic coordinate
descent. Mathematics of Computation, 89(325):2217–2248, 2020.

[48] Yangyang Xu and Wotao Yin. Block stochastic gradient iteration for convex and nonconvex
optimization. SIAM Journal on Optimization, 25(3):1686–1716, 2015.

[49] Yangyang Xu and Wotao Yin. A globally convergent algorithm for nonconvex optimization
based on block coordinate update. Journal of Scientific Computing, 72(2):700–734, 2017.

[50] Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H Sayed. Stochastic learning under random
reshuffling with constant step-sizes. IEEE Transactions on Signal Processing, 67(2):474–489,
2018.

[51] Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local SGD with shuffling: Tight
convergence bounds and beyond. In Proc. ICLR’22, 2022.

13

Supplementary Material
Outline. The supplementary material of the paper is organized as follows:

• Section A provides a brief survey on shuffled SGD and its related work.
• Section B presents the proofs related to the smooth convex setting from Section 2, where we only

assume each component function fi to be convex and Li-smooth.
• Section C presents the proofs related to the smooth convex setting with linear predictors from

Section 3.
• Section D presents the proofs related to the non-smooth convex setting with linear predictors from

Section 3.
• Section E presents the full details of the computational experiments performed in the paper.

A Further Related Work

In this section, we continue with the discussion on the background of shuffled SGD from Section 1.
We would like to briefly recall that shuffled SGD usually performs better in practice when compared to
SGD, and is also easier and more efficient to implement. However, in terms of the theoretical analysis,
sampling without replacement introduces the sampling bias at each iteration, making it difficult to
approximate shuffled SGD by full gradient descent. Using empirical observations, shuffled SGD
was conjectured to converge much faster than SGD with replacement, based on the noncommutative
arithmetic-geometric mean inequality conjecture [36], which was later proved to be false [16, 23]. As
a consequence, whether or not shuffled SGD can be faster than SGD at least in some regimes remained
open [8] until a breakthrough result in [20], where it was shown that for the class of smooth strongly
convex optimization problems, the convergence of the RR variant of shuffled SGD is essentially of the
order-(1/K2) for K full passes of the data (also called epochs), which is faster than order-(1/nK)
convergence of SGD for sufficiently large K. This bound for the smooth strongly convex case was
later improved under various regimes and additional assumptions [2, 21, 30, 31, 34, 42], while the
tightest of those bounds were matched by lower bounds in [12, 35, 39, 51].

Since our results are for the general (non-strongly) convex regimes, in this section we focus on the
results that apply to those (convex, smooth or nonsmooth Lipschitz) regimes. For convex nonsmooth
Lipschitz problems, we are only aware of the results in [42]. These results are only useful when the
number of data passes K is small and the number of component functions n is large, as they contain
an irreducible order- 1√

n
error, and are not directly comparable to our results.

For the IG variant of SGD without replacement (deterministic order), asymptotic convergence was
established in [6, 29], with further convergence results for both smooth and nonsmooth settings
provided in [18, 25, 30, 32, 34, 50]. As IG does not benefit from randomization, it is known to have a
worse convergence bound than RR under the Lipschitz Hessian assumption [18, 21], which was also
shown in more general settings [30].

In this paper, we viewed shuffled SGD as a primal-dual method where the updates are performed
on the dual side in a cyclic manner, thus we can leverage techniques from general cyclic methods.
However, in contrast to randomized methods (corresponding to standard SGD), cyclic methods are
usually more challenging to analyze [33], basic variants exhibit much worse worst-case complexity
than even full gradient methods [4, 19, 26, 26, 40, 44, 48, 49], with more refined results being
established only recently [11, 27, 43]. While the inspiration for our work came from these recent
results [11, 27, 43], they are completely technically disjoint. First, all these results rely on non-
standard block Lipschitz assumptions, which are not present in our work. Second, all of them leverage
proximal gradient-style cyclic updates to carry out the analysis, which is inapplicable in our case for
the cyclic updates on the dual side, as otherwise the method would not correspond to (shuffled) SGD.
Finally, [27, 43] utilize extrapolation steps, which would break the connection to shuffled SGD in our
setting, while [11] relies on a gradient descent-type descent lemma, which is impossible to establish
in our setting.

14

B Omitted Proofs From Section 2

In this section, we consider the general finite-sum setting where we assume that each component
function fi is convex and smooth, and derive the refined analysis under this setting. Here we focus
on the smooth convex problems as prior work did [30, 34], since smoothness is essential to showing
the advantage of shuffled SGD [31] over SGD, otherwise the rate of SGD is optimal. In particular,
we study the general smooth convex finite-sum problem (P)

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
, (P)

where each fi is convex and smooth. (P) is equivalent to

min
x∈Rd

max
y∈Rnd

{
L(x,y) := 1

n

n∑
i=1

(〈
yi,x

〉
− f∗

i (y
i)
)
=

1

n
⟨Ex,y⟩ − 1

n

n∑
i=1

f∗
i (y

i)
}
, (PD)

where we slightly abuse the notation in this section and use yi ∈ Rd to be the i-th d elements of
the vector y such that y = (y1, . . . ,yn)⊤ ∈ Rnd, E = [Id, . . . , Id︸ ︷︷ ︸

n

]⊤ ∈ Rnd×d is the vertical

concatenation of n identity matrices Id ∈ Rd×d and f∗
i is the convex conjugate of fi defined by

fi(x) = supyi∈Rd

〈
yi,x

〉
− f∗

i (y
i). In the following, we consider the mini-batch estimator of

batch size b, and let y(i) ∈ Rbd denote the vector comprised of the ith bd elements of y. For
simplicity and without loss of generality, we assume that n = bm for some positive integer m, so that
y = (y(1), . . . ,y(m))⊤. Note that if choosing b = 1, our setting is the same as the ones in [30, 34].
Then we have the primal-dual view of shuffled SGD scheme for general smooth convex minimization
as in Alg. 1, where E⊤

b = [Id, . . . , Id︸ ︷︷ ︸
b

]⊤ ∈ Rbd×d is the vertical concatenation of b identity matrices

Id ∈ Rd×d. Given the data permutation π(k) = {π(k)
1 , π

(k)
2 , . . . , π

(k)
n } of [n] at the k-th epoch, we

use the same notation of vk = (vπ
(k)
1 , . . . ,vπ(k)

n)⊤ ∈ Rnd, y∗,k = (y
π
(k)
1

∗ , . . . ,y
π(k)
n

∗)⊤ ∈ Rnd as in

previous sections except now each vπ
(k)
i ,y

π
(k)
i

∗ are d-dimensional subvectors. Further, we denote the
permuted smoothness constant matrices by Λk = diag(L

π
(k)
1

, . . . , L
π
(k)
1︸ ︷︷ ︸

d

, . . . , L
π
(k)
n

, . . . , L
π
(k)
n︸ ︷︷ ︸

d

) ∈

Rnd×nd, and we use I for Ind ∈ Rnd×nd throughout this section.

New smoothness constants and comparisons. We first recall the new smoothness constants for
any permutation π of [n], defined in Eq. (2):

L̂g
π :=

1

mn

∥∥Λ1/2
π

(∑m
i=1 Ibd(i−1)↑EE⊤Ibd(i−1)↑

)
Λ

1/2
π

∥∥
2
, L̂g = max

π
L̂g
π,

L̃g
π :=

1

b

∥∥Λ1/2
π

(∑m
i=1 I(di)EE⊤I(di)

)
Λ

1/2
π

∥∥
2
, L̃g = max

π
L̃g
π,

where I(di) =
∑bdi

j=bd(i−1)+1 Ij .

To compare L̂g
π and L := maxi∈[n] Li, we make use of the Kronecker product with notation ⊗

defined by

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AnnB

for two matrices A ∈ Rm×n and B ∈ Rp×q. The following lemma states a useful fact for the
Kronecker product.

Lemma 3. For square matrices A and B of sizes p and q and with eigenvalues λi (i ∈ [p]) and µj

(j ∈ [q]) respectively, the eigenvalues of A⊗B are λiµj for i ∈ [p], j ∈ [q].

15

We now use the following chain of inequalities to compare L̂g
π and L for any permutation π of [n]:

L̂g
π =

1

mn

∥∥∥Λ1/2
π

(m∑
i=1

Ibd(i−1)↑EE⊤Ibd(i−1)↑

)
Λ1/2

π

∥∥∥
2

≤ 1

n

∥∥∥Λ1/2EE⊤Λ1/2
∥∥∥
2

=
1

n

∥∥∥(lπl⊤π)⊗ Id

∥∥∥
2

(i)
=

1

n

n∑
i=1

Li ≤ L,

where we define lπ =
(√

Lπ1
,
√

Lπ2
, . . . ,

√
Lπn

)⊤
. For (i), we use Lemma 3 and notice that

the eigenvalues of Id all equal 1, while the largest eigenvalue of lπl⊤π = ∥l∥22 =
∑n

i=1 Li, so the
operator norm of (lkl⊤k)⊗ Id is

∑n
i=1 Li.

To compare L̃g
π and L, we notice that

Λ1/2
π

(∑m
i=1 I(di)EE⊤I(di)

)
Λ

1/2
π =

∑m
i=1 I(di)Λ

1/2
π EE⊤Λ

1/2
π I(di)

is a block diagonal matrix whose operator norm is the maximum of the operator norms over its
diagonal block submatrices, so we have

L̃g
π =

1

b
max
i∈[m]

∥∥∥I(di)Λ1/2
π EE⊤Λ1/2

π I(di)

∥∥∥
=

1

b
max
i∈[m]

∥∥∥I(di)((lπl⊤π)⊗ Id
)
I(di)

∥∥∥
(i)
= max

i∈[m]

1

b

b∑
j=1

Lπb(i−1)+j
≤ L,

where for (i) we use Lemma 3 for each submatrix (l
(i)
π l

(i)⊤
π) ⊗ Id and l

(i)
π =

(0, . . . , 0,
√
Lπb(i−1)+1

, . . . ,
√
Lπbi

, 0, . . . , 0)⊤. Similar to the case of generalized linear models,
the inequality is tight when b = 1 but can be loose for other values of b.

Before proceeding to the omitted proofs, we first state the following standard definitions and first-order
characterization of strong convexity, for completeness.

Definition 1. A function f : Rd → R is said to be µ-strongly convex with parameter µ > 0, if for
any x,y ∈ Rd and any λ ∈ (0, 1):

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)∥x− y∥22.

Lemma 4. Let f : Rd → R be a continuous µ-strongly convex function with µ > 0. Then, for any
x,y ∈ Rd:

f(y) ≥ f(x) + ⟨gx,y − x⟩+ µ

2
∥x− y∥22,

where gx ∈ ∂f(x), and ∂f(x) is the subdifferential of f at x.

We also include the following lemma on the variance bound under without-replacement sampling,
which is useful for our proof.

Lemma 5. Let B be the set of |B| = b samples from [n], drawn without replacement and uniformly
at random. Then, ∀x ∈ Rd,

EB

[∥∥1
b

∑
i∈B

∇fi(x)−∇f(x)
∥∥2
2

]
=

n− b

b(n− 1)
Ei

[
∥∇fi(x)−∇f(x)∥22

]
.

16

Proof. We first expand the square on the left-hand side, as follows

EB

[∥∥1
b

∑
i∈B

∇fi(x)−∇f(x)
∥∥2
2

]
=

1

b2
EB

[∑
i,i′∈B

⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩
]

=
1

b2
EB

[∑
i,i′∈B,i̸=i′

⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩
]
+

1

b
Ei

[
∥∇fi(x)−∇f(x)∥22

]
.

Since the batch B is sampled uniformly and without replacement from [n], the probability that any
pair (i, i′) from [n] with i ̸= i′ is in B is b(b−1)

n(n−1) . By the linearity of expectation, we have

EB

[∑
i,i′∈B,i̸=i′

⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩
]

= EB

[∑
i,i′∈[n],i̸=i′

1i,i′∈B ⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩
]

=
∑

i,i′∈[n],i̸=i′

EB

[
1i,i′∈B ⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩

]
=

b(b− 1)

n(n− 1)

∑
i,i′∈[n],i̸=i′

⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩ ,

where 1 is the indicator function such that 1i,i′∈B = 1 if both i, i′ ∈ B and is equal to zero otherwise.
Hence, we obtain

EB

[∥∥1
b

∑
i∈B

∇fi(x)−∇f(x)
∥∥2]

=
b− 1

bn(n− 1)

∑
i,i′∈[n],i̸=i′

⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩+ 1

b
Ei

[
∥∇fi(x)−∇f(x)∥2

]
=

b− 1

bn(n− 1)

∑
i,i′∈[n]

⟨∇fi(x)−∇f(x),∇fi′(x)−∇f(x)⟩+ n− b

b(n− 1)
Ei

[
∥∇fi(x)−∇f(x)∥2

]
(i)
=

n− b

b(n− 1)
Ei

[
∥∇jfi(x)−∇jf(x)∥2

]
,

where (i) is due to f = 1
n

∑n
i=1 fi having the finite sum structure.

Now we provide the omitted proofs from Section 2.

Lemma 6. Under Assumption 1, for any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1 generated
by Algorithm 1 satisfy

Ek ≤ ηk
n

m∑
i=1

〈
E⊤

b y
(i)
k ,xk − xk−1,i+1

〉
+

ηk
n

m∑
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,xk − xk−1,i

〉
− ηk

2n
∥yk − vk∥2Λ−1

k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− b

2n

m∑
i=1

∥xk−1,i+1 − xk−1,i∥2,
(5)

where Ek := ηkGapv(xk,y∗) +
b
2n∥x∗ − xk∥22 − b

2n∥x∗ − xk−1∥22.

Proof. We first note that based on Line 6 of Alg. 1, we have〈
E⊤

b y(i),xk−1,i

〉
−

b∑
j=1

f∗
π
(k)

b(i−1)+j

(yj) =

b∑
j=1

(〈
yj ,xk−1,i

〉
− f∗

π
(k)

b(i−1)+j

(yj)
)
.

17

Since the max problem defining yk is separable, we have for b(i− 1) + 1 ≤ j ≤ bi and i ∈ [m]

yj
k = argmax

yj∈Rd

{〈
yj ,xk−1,i

〉
− f∗

π
(k)
j

(yj)
}
,

which leads to xk−1,i ∈ ∂f∗
π
(k)
j

(yj
k). Further, since each component function f∗

j is 1
Lj

-strongly

convex thus for b(i− 1) + 1 ≤ j ≤ bi, we also have

f∗
π
(k)
j

(vj
k) ≥ f∗

π
(k)
j

(yj
k) +

〈
xk−1,i,v

j
k − yj

k

〉
+

1

2L
π
(k)
j

∥vj
k − yj

k∥
2,

which leads to

L(xk,v)

=
1

n

m∑
i=1

(〈
E⊤

b v
(i)
k ,xk−1,i

〉
−

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(vj
k)
)
+

1

n

m∑
i=1

〈
E⊤

b v
(i)
k ,xk − xk−1,i

〉

≤ 1

n

m∑
i=1

(〈
E⊤

b y
(i)
k ,xk−1,i

〉
−

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(yj
k)
)
+

1

n

m∑
i=1

〈
E⊤

b v
(i)
k ,xk − xk−1,i

〉
− 1

2n
∥yk − vk∥2Λ−1

k

.

Using the same argument, as x∗ ∈ ∂f∗
i (y

i
∗) for i ∈ [n], we have

f∗
π
(k)
i

(yi
k) ≥ f∗

π
(k)
i

(yi
∗,k) +

〈
x∗,y

i
k − yi

∗,k
〉
+

1

2L
π
(k)
i

∥yi
k − yi

∗,k∥2.

Thus,

L(x∗,y∗)

=
1

n

m∑
i=1

(〈
E⊤

b y
(i)
∗,k,x∗

〉
−

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(yj
∗,k)

)

≥ 1

n

m∑
i=1

(〈
E⊤

b y
(i)
k ,x∗

〉
−

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(yj
k)
)
+

1

2n
∥yk − y∗,k∥2Λ−1

k

=
1

n

m∑
i=1

(〈
E⊤

b y
(i)
k ,x∗

〉
+

b

2ηk
∥x∗ − xk−1,i∥2 −

b

2ηk
∥x∗ − xk−1,i∥2 −

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(yj
k)
)

+
1

2n
∥yk − y∗,k∥2Λ−1

k

.

Using the updating scheme of xk−1,i+1 and noticing that ϕi
k(x) =

〈
E⊤

b y
(i)
k ,x

〉
+ b

2ηk
∥x−xk−1,i∥2

is b
ηk

-strongly convex and minimized at xk−1,i+1, we have

〈
E⊤

b y
(i)
k ,x∗

〉
+

b

2ηk
∥x∗ − xk−1,i∥2

≥
〈
E⊤

b y
(i)
k ,xk−1,i+1

〉
+

b

2ηk
∥xk−1,i+1 − xk−1,i∥2 +

b

2ηk
∥xk−1,i+1 − x∗∥2,

18

which leads to

L(x∗,y∗) ≥
1

n

m∑
i=1

(〈
E⊤

b y
(i)
k ,xk−1,i+1

〉
+

b

2ηk
∥xk−1,i+1 − xk−1,i∥2 −

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(yi
k)
)

+
b

2nηk

m∑
i=1

(
∥xk−1,i+1 − x∗∥2 − ∥xk−1,i − x∗∥2

)
+

1

2n
∥yk − y∗,k∥2Λ−1

k

=
1

n

m∑
i=1

(〈
E⊤

b y
(i)
k ,xk−1,i+1

〉
+

b

2ηk
∥xk−1,i+1 − xk−1,i∥2 −

bi∑
j=b(i−1)+1

f∗
π
(k)
j

(yj
k)
)

+
b

2nηk

(
∥xk − x∗∥2 − ∥xk−1 − x∗∥2

)
+

1

2n
∥yk − y∗,k∥2Λ−1

k

.

Hence, combining the bounds on L(xk,v) and L(x∗,y∗) and letting

Ek := ηk
(
L(xk,v)− L(x∗,y∗)

)
+

b

2n
∥xk − x∗∥2 −

b

2n
∥xk−1 − x∗∥2,

we obtain

Ek ≤ ηk
n

m∑
i=1

〈
E⊤

b y
(i)
k ,xk−1,i − xk−1,i+1

〉
+

ηk
n

m∑
i=1

〈
E⊤

b v
(i)
k ,xk − xk−1,i

〉
− ηk

2n
∥yk − vk∥2Λ−1

k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− b

2n

m∑
i=1

∥xk−1,i+1 − xk−1,i∥2

=
ηk
n

m∑
i=1

〈
E⊤

b y
(i)
k ,xk − xk−1,i+1

〉
+

ηk
n

m∑
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,xk − xk−1,i

〉
− ηk

2n
∥yk − vk∥2Λ−1

k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− b

2n

m∑
i=1

∥xk−1,i+1 − xk−1,i∥2,

thus completing the proof.

We note that the first inner product term T1 := ηk

n

∑m
i=1

〈
E⊤

b y
(i)
k ,xk − xk−1,i+1

〉
in Eq. (5) can

be cancelled by the last negative term − b
2n

∑m
i=1 ∥xk−1,i+1 − xk−1,i∥2 therein, as precisely proved

in Lemma 10 of Appendix C. In the following subsections, we continue our analysis and handle the
remaining terms in Eq. (5) according to different shuffling and derive the final complexity.

B.1 Random reshuffling/shuffle-once schemes

We introduce the following lemma to bound the second inner product term T2 :=
ηk

n

∑m
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,xk − xk−1,i

〉
in Lemma 6 when there are random permutations.

Lemma 7. Under Assumptions 1 and 2, for any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1
generated by Algorithm 1 with uniformly random shuffling (RR/SO) satisfy

E[T2] ≤ E
[η3knL̂g

π(k)L̃
g
π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
+

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗,

where T2 := ηk

n

∑m
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,xk − xk−1,i

〉
.

19

Proof. First note that xk − xk−1,i =
∑m

j=i(xk−1,j+1 − xk−1,j) = −ηk

b

∑m
j=i E

⊤
b y

(j)
k =

−ηk

b E⊤Ibd(i−1)↑yk, so we have

ηk
n

m∑
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,xk − xk−1,i

〉
=

ηk
n

m∑
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,

m∑
j=i

(xk−1,j+1 − xk−1,j)

〉

= − η2k
bn

m∑
i=1

〈
E⊤I(di)(vk − yk),E

⊤Ibd(i−1)↑yk

〉
= −η2k

bn

m∑
i=1

〈
E⊤I(di)(vk − yk),E

⊤Ibd(i−1)↑(yk − y∗,k)
〉

︸ ︷︷ ︸
I1

−η2k
bn

m∑
i=1

〈
E⊤I(di)(vk − yk),E

⊤Ibd(i−1)↑y∗,k
〉

︸ ︷︷ ︸
I2

.

For the term I1, we use Young’s inequality with α > 0 to be set later and obtain

I1 = − η2k
bn

m∑
i=1

〈
E⊤I(di)(vk − yk),E

⊤Ibd(i−1)↑(yk − y∗,k)
〉

≤ η2k
2bnα

m∑
i=1

∥E⊤I(di)(vk − yk)∥2 +
η2kα

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑(yk − y∗,k)∥2. (6)

Further, notice that

η2kα

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑(yk − y∗,k)∥2

=
η2kα

2bn

m∑
i=1

(yk − y∗,k)
⊤Ibd(i−1)↑EE⊤Ibd(i−1)↑(yk − y∗,k)

=
η2kα

2bn
(yk − y∗,k)

⊤
(m∑

i=1

Ibd(i−1)↑EE⊤Ibd(i−1)↑

)
(yk − y∗,k)

=
η2kα

2bn
(yk − y∗,k)

⊤Λ
−1/2
k Λ

1/2
k

(m∑
i=1

Ibd(i−1)↑EE⊤Ibd(i−1)↑

)
Λ

1/2
k Λ

−1/2
k (yk − y∗,k)

≤ η2kα

2bn

∥∥∥Λ1/2
k

(m∑
i=1

Ibd(i−1)↑EE⊤Ibd(i−1)↑

)
Λ

1/2
k

∥∥∥
2
∥yk − y∗,k∥2Λ−1

k

=
η2kmα

2b
L̂g
π(k)∥yk − y∗,k∥2Λ−1

k

, (7)

where for the last inequality we use Cauchy-Schwarz inequality. Using the same argument, we can
bound

η2k
2bnα

m∑
i=1

∥E⊤I(di)(vk − yk)∥2 ≤ η2k
2bnα

∥∥∥Λ1/2
k

(m∑
i=1

I(di)EE⊤I(di)

)
Λ

1/2
k

∥∥∥
2
∥vk − yk∥2Λ−1

k

=
η2k
2nα

L̃g
π(k)∥vk − yk∥2Λ−1

k

. (8)

Thus, combining (6)–(8) and choosing α = 2ηkL̃
g
π(k) , we obtain

I1 ≤
η3kmL̂g

π(k)L̃
g
π(k)

b
∥yk − y∗,k∥2Λ−1

k

+
ηk
4n

∥vk − yk∥2Λ−1
k

.

20

For the term I2, we again apply Young’s inequality with β > 0 to be set later and obtain

I2 = − η2k
bn

m∑
i=1

〈
E⊤I(di)(vk − yk),E

⊤Ibd(i−1)↑y∗,k
〉

≤ η2kβ

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑y∗,k∥2 +
η2k

2bnβ

m∑
i=1

∥E⊤I(di)(vk − yk)∥2

≤ η2kβ

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑y∗,k∥2 +
η2kL̃

g
π(k)

2nβ
∥vk − yk∥2Λ−1

k

.

Choosing β = 2ηkL̃
g and using the fact that L̃g

π(k) ≤ L̃g , we have

I2 ≤ η3kL̃
g

bn

m∑
i=1

∥E⊤Ibd(i−1)↑y∗,k∥2 +
ηk
4n

∥vk − yk∥2Λ−1
k

.

Hence, combining the above two estimates with m = n/b, we have

T2 ≤ η3kL̃
g

bn

m∑
i=1

∥E⊤Ibd(i−1)↑y∗,k∥2 +
η3knL̂

g
π(k)L̃

g
π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

.

First, consider the RR scheme. Taking conditional expectation on both sides w.r.t. the randomness up
to but not including k-th epoch, we have

Ek[T2] ≤
η3kL̃

g

bn
Ek

[m∑
i=1

∥E⊤Ibd(i−1)↑y∗,k∥2
]

+ Ek

[η3knL̂g
π(k)L̃

g
π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
.

For the first term, since the only randomness comes from the permutation π(k), we can proceed as in
the proof of Lemma 11 and obtain

η3kL̃
g

bn
Ek

[m∑
i=1

∥E⊤Ibd(i−1)↑y∗,k∥2
]

(i)
=

η3kL̃
g

bn

m∑
i=1

Eπ(k)

[
∥E⊤Ibd(i−1)↑y∗,k∥2

]
=

η3kL̃
g

bn

m∑
i=1

(n− b(i− 1))2Eπ(k)

[∥∥∥E⊤Ibd(i−1)↑y∗,k

n− b(i− 1)

∥∥∥2]
(ii)

≤ η3kL̃
g

bn

m∑
i=1

(n− b(i− 1))2
b(i− 1)

(n− b(i− 1))(n− 1)
σ2
∗

=
η3kL̃

g(n− b)(n+ b)

6b2(n− 1)
σ2
∗,

where we use the linearity of expectation for (i), and (ii) is due to Lemma 5 and the definition
σ2
∗ = 1

n

∑n
i=1 ∥∇fi(x∗)∥2 = 1

n

∑n
i=1 ∥yi

∗∥2. Then taking expectation w.r.t. all randomness on both
sides, we obtain

E[T2] ≤ E
[η3knL̂g

π(k)L̃
g
π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
+

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Finally, we remark that the above argument for bounding the term
η3
kL̃

g

bn Ek

[∑m
i=1 ∥E⊤Ibd(i−1)↑y∗,k∥2

]
also applies to the SO scheme, in which case there is

only one random permutation at the very beginning that induces the randomness.

We state the final convergence rate and complexity in the following theorem and provide the proof
for completeness.

21

Theorem 4. Under Assumptions 1 and 2, if ηk ≤ b

n
√

2L̂g

π(k)
L̃g

π(k)

and HK =
∑K

k=1 ηk, the output

x̂K of Algorithm 1 with uniformly random (RR/SO) shuffling satisfies

E[HK(f(x̂K)− f(x∗))] ≤
b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

As a consequence, for any ϵ > 0, there exists a choice of a constant step size ηk = η for which

E[f(x̂K) − f(x∗)] ≤ ϵ after O
(n

√
L̂gL̃g∥x0−x∗∥2

2

ϵ +
√

(n−b)(n+b)
n(n−1)

√
nL̃gσ∗∥x0−x∗∥2

2

ϵ3/2

)
gradient

queries.

Proof. Combining the bounds in Lemma 10 and 2 and plugging them into Eq. (5), we obtain

E[Ek] ≤ E
[(η3knL̂g

π(k)L̃
g
π(k)

b2
− ηk

2n

)
∥yk − y∗,k∥2Λ−1

k

]
+

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

For the stepsize ηk such that ηk ≤ b

n
√

2L̂g

π(k)
L̃g

π(k)

, we have
η3
knL̂

g

π(k)
L̃g

π(k)

b2 − ηk

2n ≤ 0, thus

E[Ek] ≤
η3kL̃

g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Using our definition of Ek and telescoping from k = 1 to K, we have

E
[K∑
k=1

ηkGapv(xk,y∗)
]
≤ b

2n
∥x∗ − x0∥22 −

b

2n
E[∥x∗ − xK∥22] +

K∑
k=1

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Noticing that L(x,v) is convex in x for a fixed v, we have Gapv(x̂K ,y∗) ≤∑K
k=1 ηkGapv(xk,y∗)/HK , where x̂K =

∑K
k=1 ηkxk/HK and HK =

∑K
k=1 ηk, which leads

to

E
[
HKGapv(x̂K ,y∗)

]
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Further choosing v = yx̂K
, we obtain

E[HK

(
f(x̂K)− f(x∗)

)
] ≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃
g(n− b)(n+ b)

6b2(n− 1)
σ2
∗. (9)

To analyze the individual gradient oracle complexity, we choose constant stepsizes η ≤ b

n
√

2L̂gL̃g
,

then Eq. (9) will become

E[f(x̂K)− f(x∗)] ≤
b

2nηK
∥x0 − x∗∥22 +

η2L̃g(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Without loss of generality, we assume that b ̸= n, otherwise the method and its analysis reduce to
(full) gradient descent. We consider the following two cases:

• “Small K” case: if η = b

n
√

2L̂gL̃g
≤

(
3b3(n−1)∥x0−x∗∥2

2

n(n−b)(n+b)L̃gKσ2
∗

)1/3

, we have

E[f(x̂K)− f(x∗)]

≤ b

2nηK
∥x0 − x∗∥22 +

η2L̃g(n− b)(n+ b)

6b2(n− 1)
σ2
∗

≤

√
L̂gL̃g

√
2K

∥x0 − x∗∥22 +
1

2

((n− b)(n+ b)

n2(n− 1)

)1/3 (L̃g)1/3σ
2/3
∗ ∥x0 − x∗∥4/32

31/3K2/3
.

22

• “Large K” case: if η =
(

3b3(n−1)∥x0−x∗∥2
2

n(n−b)(n+b)L̃gKσ2
∗

)1/3

≤ b

n
√

2L̂gL̃g
, we have

E[f(x̂K)− f(x∗)] ≤
b

2nηK
∥x0 − x∗∥22 +

η2L̃g(n− b)(n+ b)

6b2(n− 1)
σ2
∗

≤
((n− b)(n+ b)

n2(n− 1)

)1/3 (L̃g)1/3σ
2/3
∗ ∥x0 − x∗∥4/32

31/3K2/3
.

Combining these two cases by setting η = min
{

b

n
√

2L̂gL̃g
,
(

3b3(n−1)∥x0−x∗∥2
2

n(n−b)(n+b)L̃gKσ2
∗

)1/3}
, we obtain

E[f(x̂K)− f(x∗)] ≤

√
L̂gL̃g

√
2K

∥x0 − x∗∥22 +
((n− b)(n+ b)

n2(n− 1)

)1/3 (L̃g)1/3σ
2/3
∗ ∥x0 − x∗∥4/32

31/3K2/3
.

Hence, to guarantee E[f(x̂K) − f(x∗)] ≤ ϵ for ϵ > 0, the total number of individual gradient
evaluations will be

nK ≥ max
{n

√
2L̂gL̃g∥x0 − x∗∥22

ϵ
,
((n− b)(n+ b)

n− 1

)1/2 23/2(L̃g)1/2σ∗∥x0 − x∗∥22
31/2ϵ3/2

}
,

as claimed.

B.2 Incremental gradient descent (IG)

In this subsection, we provide the convergence results for incremental gradient descent which does
not involve random permutations. We first prove the technical lemma below to bound the term
T2 := ηk

n

∑m
i=1

〈
E⊤

b

(
v
(i)
k − y

(i)
k

)
,xk − xk−1,i

〉
in Eq. (5) of Lemma 6.

Lemma 8. For any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1 generated by Algorithm 1 with
fixed data ordering satisfy

T2 ≤ η3kn

b2
L̂g
0L̃

g
0∥yk − y∗∥2Λ−1 +

ηk
2n

∥v − yk∥2Λ−1

+min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
.

(10)

Proof. Proceeding as in the proof of Lemma 7, we have

ηk
n

m∑
i=1

〈
E⊤

b

(
v(i) − y

(i)
k

)
,xk − xk−1,i

〉
=

ηk
n

m∑
i=1

〈
E⊤

b

(
v(i) − y

(i)
k

)
,

m∑
j=i

(xk−1,j+1 − xk−1,j)

〉

= − η2k
bn

m∑
i=1

〈
E⊤I(di)(v − yk),E

⊤Ibd(i−1)↑yk

〉
= −η2k

bn

m∑
i=1

〈
E⊤I(di)(v − yk),E

⊤Ibd(i−1)↑(yk − y∗)
〉

︸ ︷︷ ︸
I1

−η2k
bn

m∑
i=1

〈
E⊤I(di)(v − yk),E

⊤Ibd(i−1)↑y∗
〉

︸ ︷︷ ︸
I2

.

23

For both terms I1 and I2, we apply Young’s inequality with α = 2ηkL̃
g
0 and obtain

I1 ≤ η2kα

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑(yk − y∗)∥22 +
η2k

2bnα

m∑
i=1

∥E⊤I(di)(v − yk)∥22

≤ η2knα

2b2
L̂g
0∥yk − y∗∥2Λ−1 +

η2k
2nα

L̃g
0∥v − yk∥2Λ−1

=
η3kn

b2
L̂g
0L̃

g
0∥yk − y∗∥2Λ−1 +

ηk
4n

∥v − yk∥2Λ−1 , (11)

and

I2 ≤ η2kα

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 +
η2k

2bnα

m∑
i=1

∥E⊤I(di)(v − yk)∥22

≤ η2kα

2bn

m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 +
η2k
2nα

L̃g
0∥v − yk∥2Λ−1

=
η3kL̃

g
0

nb

m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 +
ηk
4n

∥v − yk∥2Λ−1 . (12)

We now show that the term η3
kL̃

g
0

nb

∑m
i=1 ∥E⊤Ibd(i−1)↑y∗∥22 is no larger than either η3

kn
b2 L̂g

0L̃
g
0∥y∗∥2Λ−1

or η3
k(n−b)2

b2 L̃g
0σ

2
∗. This is trivial when b = n as E⊤I0↑y∗ =

∑n
i=1 y

i
∗ = 0. When b < n, to show

the former one, we have
m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 ≤
∥∥∥Λ1/2

(m∑
i=1

Ibd(i−1)↑EE⊤Ibd(i−1)↑

)
Λ1/2

∥∥∥
2
∥y∗∥2Λ−1

= mnL̂g
0∥y∗∥2Λ−1 =

n2

b
L̂g
0∥y∗∥2Λ−1 .

To prove the latter one, we notice that

m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 =

m∑
i=1

∥∥∥ n∑
j=b(i−1)+1

yj
∗

∥∥∥2
2
=

m−1∑
i=0

∥∥∥ n∑
j=bi+1

yj
∗

∥∥∥2
2
=

m−1∑
i=1

∥∥∥ n∑
j=bi+1

yj
∗

∥∥∥2
2

=

m−1∑
i=1

∥∥∥ bi∑
j=1

yj
∗

∥∥∥2
2
,

using the fact that
∑n

i=1 y
i
∗ = 0. Then using Young’s inequality we obtain

m−1∑
i=1

∥∥∥ bi∑
j=1

yj
∗

∥∥∥2
2
≤

m−1∑
i=1

bi

bi∑
j=1

∥yj
∗∥22

≤ b(m− 1)

m−1∑
i=1

bi∑
j=1

∥yj
∗∥22

= b(m− 1)

m−1∑
i=1

bi∑
j=b(i−1)+1

(m− i)∥yj
∗∥22

≤ b(m− 1)2
(m−1)b∑

i=1

∥yi
∗∥22.

Further noticing that
∑(m−1)b

i=1 ∥yi
∗∥22 ≤

∑n
i=1 ∥yi

∗∥2 = nσ2
∗, we have

η3kL̃
g
0

nb

m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 ≤ η3kL̃
g
0

nb
b(m− 1)2nσ2

∗ =
η3kL̃

g
0(n− b)2

b2
σ2
∗.

24

The same bound also captures the case b = n and leads to

η3kL̃
g
0

nb

m∑
i=1

∥E⊤Ibd(i−1)↑y∗∥22 ≤ min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
. (13)

Hence, combining Eq. (11)–(13), we obtain

I2 ≤ η3kn

b2
L̂g
0L̃

g
0∥yk − y∗∥2Λ−1 +

ηk
2n

∥v − yk∥2Λ−1

+min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
,

which finishes the proof.

We are now ready to state our convergence results for IGD in the following theorem, with its proof
provided for completeness.

Theorem 5. Under Assumptions 1 and 2, if ηk ≤ b

n
√

2L̂g
0L̃

g
0

and HK =
∑K

k=1 ηk, the output x̂K of

Algorithm 1 with a fixed permutation satisfies

HK

(
f(x̂K)− f(x∗)

)
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
.

As a consequence, for any ϵ > 0, there exists a choice of a constant step size ηk = η such that

f(x̂K) − f(x∗) ≤ ϵ after O
(

n
√

L̂g
0L̃

g
0∥x0−x∗∥2

2

ϵ +
min

{√
nL̂g

0L̃
g
0∥y∗∥Λ−1 , (n−b)

√
L̃g

0σ∗

}
∥x0−x∗∥2

2

ϵ3/2

)
gradient queries.

Proof. Combining the bounds in Lemma 10 and 8 and plugging them into Eq. (5) in Lemma 6
without random permutations, we have

Ek ≤
(η3knL̂g

0L̃
g
0

b2
− ηk

2n

)
∥yk − y∗∥2Λ−1 +min

{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
.

If ηk ≤ b

n
√

2L̂g
0L̃

g
0

, we have η3
knL̂

g
0L̃

g
0

b2 − ηk

2n ≤ 0, thus

Ek ≤ min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
.

Using the definition of Ek and telescoping from k = 1 to K, we obtain

K∑
k=1

ηkGapv(xk,y∗) ≤
b

2n
∥x∗ − x0∥22 −

b

2n
∥x∗ − xK∥22

+

K∑
k=1

min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
.

Noticing that L(x,v) is convex w.r.t. x, we have Gapv(x̂K ,y∗) ≤
∑K

k=1 ηkGapv(xk,y∗)/HK ,
where x̂K =

∑K
k=1 ηkxk/HK and HK =

∑K
k=1 ηk, so we obtain

HKGapv(x̂K ,y∗) ≤
b

2n
∥x0 − x∗∥22 +

K∑
k=1

min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
,

Further choosing v = yx̂K
, we obtain

HK

(
f(x̂K)− f(x∗)

)
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

min
{η3kn

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃g
0σ

2
∗

}
.

(14)

25

To analyze the individual gradient oracle complexity, we choose constant stepsizes η ≤ b

n
√

2L̂g
0L̃

g
0

and assume b < n without loss of generality, then Eq. (14) becomes

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +min

{η2n

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1 ,

η2(n− b)2

b2
L̃g
0σ

2
∗

}
.

When L̂g
0∥y∗∥2Λ−1 ≤ (n−b)2

n σ2
∗, we set η = min

{
b

n
√

2L̂g
0L̃

g
0

,
(

b3∥x0−x∗∥2
2

2n2L̂g
0L̃

g
0K∥y∗∥2

Λ−1

)1/3}
and con-

sider the following two possible cases:

• “Small K” case: if η = b

n
√

2L̂g
0L̃

g
0

≤
(

b3∥x0−x∗∥2
2

2n2L̂g
0L̃

g
0K∥y∗∥2

Λ−1

)1/3

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2n

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1

≤

√
L̂g
0L̃

g
0√

2K
∥x0 − x∗∥22 +

(
L̂g
0L̃

g
0

)1/3∥y∗∥2/3Λ−1∥x0 − x∗∥4/32

22/3n1/3K2/3
.

• “Large K” case: if η =
(

b3∥x0−x∗∥2
2

2n2L̂g
0L̃

g
0K∥y∗∥2

Λ−1

)1/3

≤ b√
2L̂g

0L̃
g
0

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2n

b2
L̂g
0L̃

g
0∥y∗∥2Λ−1

≤
21/3

(
L̂g
0L̃

g
0

)1/3∥y∗∥2/3Λ−1∥x0 − x∗∥4/32

n1/3K2/3
.

Combining these two cases, we have

f(x̂K)− f(x∗) ≤

√
L̂g
0L̃

g
0√

2K
∥x0 − x∗∥22 +

21/3
(
L̂g
0L̃

g
0

)1/3∥y∗∥2/3Λ−1∥x0 − x∗∥4/32

n1/3K2/3
.

Hence, to guarantee E[f(x̂K) − f(x∗)] ≤ ϵ for ϵ > 0, the total number of required individual
gradient evaluations will be

nK ≥ max
{n

√
2L̂g

0L̃
g
0∥x0 − x∗∥22
ϵ

,
4n1/2

(
L̂g
0L̃

g
0

)1/2∥y∗∥Λ−1∥x0 − x∗∥22
ϵ3/2

}
. (15)

When (n−b)2

n σ2
∗ ≤ L̂g

0∥y∗∥2Λ−1 , we set η = min
{

b

n
√

2L̂g
0L̃

g
0

,
(

b3∥x0−x∗∥2
2

2n(n−b)2L̃g
0Kσ2

∗

)1/3}
and consider

the two cases as below:

• “Small K” case: if η = b

n
√

2L̂g
0L̃

g
0

≤
(

b3∥x0−x∗∥2
2

2n(n−b)2L̃g
0Kσ2

∗

)1/3

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2(n− b)2

b2
L̃g
0σ

2
∗

≤

√
L̂g
0L̃

g
0√

2K
∥x0 − x∗∥22 +

(n− b)2/3(L̃g)1/3σ
2/3
∗ ∥x0 − x∗∥4/32

22/3n2/3K2/3
.

• “Large K” case: if η =
(

b3∥x0−x∗∥2
2

2n(n−b)2L̃g
0Kσ2

∗

)1/3

≤ b

n
√

2L̂g
0L̃

g
0

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2(n− b)2

b2
L̃g
0σ

2
∗

≤ 21/3(n− b)2/3(L̃g)1/3σ
2/3
∗ ∥x0 − x∗∥4/32

n2/3K2/3
.

26

Combining these two cases, we obtain

f(x̂K)− f(x∗) ≤

√
L̂g
0L̃

g
0√

2K
∥x0 − x∗∥22 +

21/3(n− b)2/3(L̃g)1/3σ
2/3
∗ ∥x0 − x∗∥4/32

n2/3K2/3
.

To guarantee E[f(x̂K) − f(x∗)] ≤ ϵ for ϵ > 0, the total number of required individual gradient
evaluations will be

nK ≥ max
{n

√
2L̂g

0L̃
g
0∥x0 − x∗∥22
ϵ

,
4(n− b)(L̃g

0)
1/2σ∗∥x0 − x∗∥22
ϵ3/2

}
. (16)

Combining Eq. (15) and Eq. (16), we finally have

nK ≥
n
√
2L̂g

0L̃
g
0∥x0 − x∗∥22
ϵ

+min
{4n1/2

(
L̂g
0L̃

g
0

)1/2∥y∗∥Λ−1∥x0 − x∗∥22
ϵ3/2

,
4(n− b)(L̃g

0)
1/2σ∗∥x0 − x∗∥22
ϵ3/2

}
,

thus finishing the proof.

C Omitted Proofs for Smooth Convex Settting From Section 3

Before proceeding to the omitted proofs for the smooth convex settings in finite-sum with linear
predictors, we first recall its primal-dual reformulation, then state the specialized version of a primal-
dual shuffled SGD algorithm in Algorithm 2. Recall that (PL) admits an explicit reformulation using
convex conjugates of ℓi:

min
x∈Rd

max
y∈Rn

{
L(x,y) := 1

n
⟨Ax,y⟩ − 1

n

n∑
i=1

ℓ∗i (y
i) =

1

n

n∑
i=1

(
a⊤
i xy

i − ℓ∗i (y
i)
)}

(PL-PD)

where yi
x = argmaxyi∈R{yia⊤

i x− ℓ∗i (y
i)} (different from the general smooth convex finite-sum

settings in Section 2 and Appendix B). Further, for notational convenience, we assume that the
partition is ordered, in the sense that for 1 ≤ j < j′ ≤ m, maxi∈Sj i < mini′∈Sj′ i′.2 We denote by
y(j) the subvector of y ∈ Rn indexed by the elements of Sj , and by A(j) the submatrix obtained
from A ∈ Rn×d by selecting the rows indexed by Sj .

Based on the formulation (PL-PD), we view shuffled SGD as a primal-dual method with block
coordinate updates on the dual side, as summarized in Algorithm 2, for completeness. To see the
equivalence, in i-th inner iteration of k-th epoch, we first update the i-th block y

(i)
k ∈ Rb of the dual

vector yk−1 ∈ Rn based on xk−1,i as in Line 6. Since the dual update has a decomposable structure,
this maximization step corresponds to computing the (sub)gradients {ℓ′

π
(k)
j

(a⊤
π
(k)
j

xk−1,i)}bij=b(i−1)+1

at xk−1,i for the batch of individual losses indexed by {π(k)
j }bij=b(i−1)+1. Then in Line 7, we perform

a minimization step using y
(i)
k to compute xk−1,i+1 on the primal side. Combining these two

steps, we have xk−1,i+1 = xk−1,i − ηk

b

∑bi
j=b(i−1)+1 ℓ

′
π
(k)
j

(a⊤
π
(k)
j

xk−1,i)aπ
(k)
j

, which is exactly the

original primal shuffled SGD updating scheme.

2This is without loss of generality, as it can be achieved by reordering the rows in the data matrix.

27

Algorithm 2 Shuffled SGD (Primal-Dual View)

1: Input: Initial point x0 ∈ Rd, batch size b > 0, step size {ηk} > 0, number of epochs K > 0
2: for k = 1 to K do
3: Generate any permutation π(k) of [n] (either deterministic or random)
4: xk−1,1 = xk−1

5: for i = 1 to m do
6: y

(i)
k = argmaxy∈Rb

{
y⊤A

(i)
k xk−1,i −

∑b
j=1 ℓ

∗
π
(k)

b(i−1)+j

(yj)
}

7: xk−1,i+1 = argminx∈Rd

{
y
(i)⊤
k A

(i)
k x+ b

2ηk
∥x− xk−1,i∥2

}
8: end for
9: xk = xk−1,m+1, yk =

(
y
(1)
k ,y

(2)
k , . . . ,y

(m)
k

)⊤
10: end for
11: Return: x̂K =

∑K
k=1 ηkxk/

∑K
k=1 ηk

C.1 Omitted Proofs for the Random Reshuffling/Shuffle-Once Schemes

Lemma 9. Given {y(i)
k }mi=1 and {xk−1,i}m+1

i=1 generated by Algorithm 2 for k ∈ [K], let Ek :=

ηkGapv(xk,y∗) +
b
2n∥x∗ − xk∥22 − b

2n∥x∗ − xk−1∥22. If Assumption 3 holds, then

Ek ≤ ηk
n

m∑
i=1

y
(i)⊤
k A

(i)
k (xk − xk−1,i+1)

+
ηk
n

m∑
i=1

(
v
(i)
k − y

(i)
k

)⊤
A

(i)
k (xk − xk−1,i)

− ηk
2n

∥yk − vk∥2Λ−1
k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22,

(17)

Proof. By Line 6 in Alg. 2, we have y(i)
k = argmaxy∈Rb

{
y⊤A

(i)
k xk−1,i −

∑b
j=1 ℓ

∗
π
(k)

b(i−1)+j

(yj)
}

for i ∈ [m]. Notice that since

y⊤A
(i)
k xk−1,i −

b∑
j=1

ℓ∗
π
(k)

b(i−1)+j

(yj) =

b∑
j=1

(
yja⊤

π
(k)

b(i−1)+j

xk−1,i − ℓ∗
π
(k)

b(i−1)+j

(yj)
)

is separable, we have yj
k = argmaxy∈R{ya⊤

π
(k)
j

xk−1,i − ℓ∗
π
(k)
j

(y)} for b(i− 1) + 1 ≤ j ≤ bi, thus

a⊤
π
(k)
j

xk−1,i ∈ ∂ℓ∗
π
(k)
j

(yj
k). Since ℓ∗i is 1

Li
-strongly convex by Assumption 3, then by Lemma 4 we

obtain for b(i− 1) + 1 ≤ j ≤ bi

ℓ∗
π
(k)
j

(
vj
k

)
≥ ℓ∗

π
(k)
j

(yj
k) + a⊤

π
(k)
j

xk−1,i

(
vj
k − yj

k

)
+

1

2L
π
(k)
j

(
vj
k − yj

k

)2
,

which leads to

L(xk,v) =
1

n

m∑
i=1

(
v
(i)⊤
k A

(i)
k xk−1,i −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(vj
k)
)
+

1

n

m∑
i=1

v
(i)⊤
k A

(i)
k (xk − xk−1,i)

≤ 1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k xk−1,i −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)
+

1

n

m∑
i=1

v
(i)⊤
k A

(i)
k (xk − xk−1,i)

− 1

2n
∥yk − vk∥2Λ−1

k

. (18)

28

Using the same argument for L(x∗,y∗) as a⊤
j x∗ ∈ ∂ℓ∗j (y

j
∗) for j ∈ [n], we have

L(x∗,y∗) =
1

n

m∑
i=1

(
y
(i)⊤
∗,k A

(i)
k x∗ −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
∗,k)

)

≥ 1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k x∗ −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)
+

1

2n
∥yk − y∗,k∥2Λ−1

k

. (19)

Adding and substracting the term b
2nηk

∑m
i=1 ∥x∗ − xk−1,i∥22 on the R.H.S. of Eq. (19), we obtain

L(x∗,y∗) ≥
1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k x∗ +

b

2ηk
∥x∗ − xk−1,i∥22 −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)

− b

2nηk

m∑
i=1

∥x∗ − xk−1,i∥22 +
1

2n
∥yk − y∗,k∥2Λ−1

k

.

By Line 7 of Alg. 2, we have xk−1,i+1 = argminx∈Rd

{
y
(i)⊤
k A

(i)
k x + b

2ηk
∥x − xk−1,i∥22

}
. Fur-

ther noticing that ϕ(i)
k (x) := y

(i)⊤
k A

(i)
k x + b

2ηk
∥x − xk−1,i∥22 is b

ηk
-strongly convex w.r.t. x and

∇ϕ
(i)
k (xk−1,i+1) = 0, we have

ϕ
(i)
k (x∗) ≥ ϕ

(i)
k (xk−1,i+1) +

b

2ηk
∥x∗ − xk−1,i+1∥22,

which leads to

L(x∗,y∗) ≥
1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k xk−1,i+1 +

b

2ηk
∥xk−1,i+1 − xk−1,i∥22 −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)

+
b

2nηk

m∑
i=1

(
∥x∗ − xk−1,i+1∥22 − ∥x∗ − xk−1,i∥22

)
+

1

2n
∥yk − y∗,k∥2Λ−1

k

(i)
=

1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k xk−1,i+1 +

b

2ηk
∥xk−1,i+1 − xk−1,i∥22 −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)

+
b

2nηk
∥xk − x∗∥22 −

b

2nηk
∥xk−1 − x∗∥22 +

1

2n
∥yk − y∗,k∥2Λ−1

k

, (20)

where we telescope from i = 1 to m for the term
∑m

i=1

(
∥x∗ −xk−1,i+1∥22 −∥x∗ −xk−1,i∥22

)
, and

use the definitions that xk = xk−1,m+1 and xk−1 = xk−1,1 for (i).

Combining the bounds from Eq. (18) and Eq. (20) and denoting

Ek := ηk
(
L(xk,v)− L(x∗,y∗)

)
+

b

2n
∥x∗ − xk∥22 −

b

2n
∥x∗ − xk−1∥22,

we obtain

Ek ≤ ηk
n

m∑
i=1

y
(i)⊤
k A

(i)
k (xk−1,i − xk−1,i+1) +

ηk
n

m∑
i=1

v
(i)⊤
k A

(i)
k (xk − xk−1,i)

− ηk
2n

∥yk − vk∥2Λ−1
k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22

=
ηk
n

m∑
i=1

y
(i)⊤
k A

(i)
k (xk − xk−1,i+1) +

ηk
n

m∑
i=1

(v
(i)
k − y

(i)
k)⊤A

(i)
k (xk − xk−1,i)

− ηk
2n

∥yk − vk∥2Λ−1
k

− ηk
2n

∥yk − y∗,k∥2Λ−1
k

− b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22,

thus completing the proof.

29

Lemma 10. For any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1 in Algorithm 2 satisfy

T1 =
b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22 −
b

2n
∥xk−1 − xk∥22.

Proof. By Line 7 in Alg. 2, we have A
(i)⊤
k y

(i)
k = b

ηk
(xk−1,i − xk−1,i+1). Further noticing that

xk − xk−1,i+1 = −
∑m

j=i+1(xk−1,j − xk−1,j+1), we obtain

T1 :=
ηk
n

m∑
i=1

y
(i)⊤
k A

(i)
k (xk − xk−1,i+1)

= − b

n

m−1∑
i=1

m∑
j=i+1

⟨xk−1,i − xk−1,i+1,xk−1,j − xk−1,j+1⟩

=
b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥2 −
b

2n

∥∥∥ m∑
i=1

(xk−1,i − xk−1,i+1)
∥∥∥2,

thus completing the proof.

Lemma 11. Under Assumption 4, for any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1
generated by Algorithm 2 with uniformly random shuffling satisfy

E[T2] ≤ E
[η3knL̂π(k)L̃π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
+

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Proof. By Line 7 in Alg. 2, we have xk−1,i − xk−1,i+1 = ηk

b A
(i)⊤
k y

(i)
k . Using the definition of Ij↑

for 0 ≤ j ≤ n− 1 as in Section 1, we obtain

xk − xk−1,i = −
m∑
j=i

(xk−1,j − xk−1,j+1) = −ηk
b

m∑
j=i

A
(j)⊤
k y

(j)
k = −ηk

b
AkIb(i−1)↑yk.

Also, we have A(i)⊤
k (v

(i)
k −y

(i)
k) = AkI(i)(vk−yk) by the definition of I(i) in Section 3. Combining

these two observations, we have

T2 :=
ηk
n

m∑
i=1

(
v
(i)
k − y

(i)
k

)⊤
A

(i)
k (xk − xk−1,i)

= − η2k
bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑yk,A
⊤
k I(i)(vk − yk)

〉
(i)
= − η2k

bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑(yk − y∗,k),A
⊤
k I(i)(vk − yk)

〉
(21)

− η2k
bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑y∗,k,A
⊤
k I(i)(vk − yk)

〉
, (22)

where we make a decomposition w.r.t. y∗,k in (i). For the first term in Eq. (21), we use Young’s
inequality for α > 0 and have

− η2k
bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑(yk − y∗,k),A
⊤
k I(i)(vk − yk)

〉
≤ η2kα

2bn

m∑
i=1

∥A⊤
k Ib(i−1)↑(yk − y∗,k)∥22 +

η2k
2bnα

m∑
i=1

∥A⊤
k I(i)(vk − yk)∥22.

(23)

30

Expanding the squares and rearranging the terms in Eq. (23), we have

η2kα

2bn

m∑
i=1

∥A⊤
k Ib(i−1)↑(yk − y∗,k)∥22

=
η2kα

2bn

m∑
i=1

(yk − y∗,k)
⊤Ib(i−1)↑AkA

⊤
k Ib(i−1)↑(yk − y∗,k)

=
η2kα

2bn
(yk − y∗,k)

⊤
(m∑

i=1

Ib(i−1)↑AkA
⊤
k Ib(i−1)↑

)
(yk − y∗,k)

=
η2kα

2bn
(yk − y∗,k)

⊤Λ
−1/2
k Λ

1/2
k

(m∑
i=1

Ib(i−1)↑AkA
⊤
k Ib(i−1)↑

)
Λ

1/2
k Λ

−1/2
k (yk − y∗,k)

(i)

≤ η2kα

2bn

∥∥∥Λ1/2
k

(m∑
i=1

Ib(i−1)↑AkA
⊤
k Ib(i−1)↑

)
Λ

1/2
k

∥∥∥
2
∥yk − y∗,k∥2Λ−1

k

,

(24)

where we use Cauchy-Schwarz inequality for (i). Using a similar argument, we also have

η2k
2bnα

m∑
i=1

∥A⊤
k I(i)(vk − yk)∥22 ≤ η2k

2bnα

∥∥∥Λ1/2
k

(m∑
i=1

I(i)AkA
⊤
k I(i)

)
Λ

1/2
k

∥∥∥
2
∥vk − yk∥2Λ−1

k

.

By the definitions of L̂π(k) and L̃π(k) , and choosing α = 2ηkL̃π(k) in Eq. (23), we obtain

− η2k
bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑(yk − y∗,k),A
⊤
k I(i)(vk − yk)

〉
≤ η3knL̂π(k)L̃π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
4n

∥vk − yk∥2Λ−1
k

.

(25)

For the second term in Eq. (22), we apply Young’s inequality with β > 0 and proceed as above:

− η2k
bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑y∗,k,A
⊤
k I(i)(vk − yk)

〉
≤ η2kβ

2bn

m∑
i=1

∥A⊤
k Ib(i−1)↑y∗,k∥22 +

η2k
2bnβ

m∑
i=1

∥A⊤
k I(i)(vk − yk)∥22

≤ η2kβ

2bn

m∑
i=1

∥A⊤
k Ib(i−1)↑y∗,k∥22 +

η2k
2nβ

L̃π(k)∥vk − yk∥2Λ−1
k

.

Noticing that L̃π(k) ≤ L̃, we choose β = 2ηkL̃ and obtain

− η2k
bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑y∗,k,A
⊤
k I(i)(vk − yk)

〉
≤ η3kL̃

nb

m∑
i=1

∥A⊤
k Ib(i−1)↑y∗,k∥22 +

ηk
4n

∥vk − yk∥2Λ−1
k

.

(26)

Combining Eq. (25) and Eq. (26), we have

T2 ≤ η3kL̃

nb

m∑
i=1

∥A⊤
k Ib(i−1)↑y∗,k∥22 +

η3knL̂π(k)L̃π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

. (27)

We first assume the RR scheme. Taking conditional expectation w.r.t. the randomness up to but not
including k-th epoch, we have

Ek[T2] ≤
η3kL̃

nb
Ek

[m∑
i=1

∥A⊤
k Ib(i−1)↑y∗,k∥22

]
+ Ek

[η3knL̂π(k)L̃π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
.

31

For the first term η3
kL̃
nb Ek

[∑m
i=1 ∥A⊤

k Ib(i−1)↑y∗,k∥22
]
, the only randomness is from the random

permutation π(k). In this case, each term A⊤
k Ib(i−1)↑y∗,k can be considered as a sum of a batch

sampled without replacement from {yj
∗aj}j∈[n], while

∑n
j=1 y

j
∗aj = 0 as x∗ is the minimizer, we

then can use Lemma 5 and obtain

η3kL̃

nb
Ek

[m∑
i=1

∥A⊤
k Ib(i−1)↑y∗,k∥22

]
(i)
=

η3kL̃

nb

m∑
i=1

Eπ(k) [∥A⊤
k Ib(i−1)↑y∗,k∥22]

=
η3kL̃

nb

m∑
i=1

(
n− b(i− 1)

)2Eπ(k)

[∥∥∥A⊤
k Ib(i−1)↑y∗,k

n− b(i− 1)

∥∥∥2
2

]
(ii)

≤ η3kL̃

nb

m∑
i=1

(
n− b(i− 1)

)2 b(i− 1)(
n− b(i− 1)

)
(n− 1)

σ2
∗

=
η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗,

where (i) is due to the linearity of expectation, and we use our definition σ2
∗ = 1

n

∑n
j=1(y

j
∗)

2∥aj∥22 =

Ej

[
∥yj

∗aj∥22
]

for (ii). Taking expectation w.r.t. all the randomness on both sides and using the law
of total expectation, we obtain

E[T2] ≤ E
[η3knL̂π(k)L̃π(k)

b2
∥yk − y∗,k∥2Λ−1

k

+
ηk
2n

∥vk − yk∥2Λ−1
k

]
+

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

For the SO scheme, since there is only one random permutation generated at the very beginning,
we can take expectation w.r.t. all the randomness on both sides of (27), and the randomness for the
term η3

kL̃
nb E

[∑m
i=1 ∥A⊤

k Ib(i−1)↑y∗,k∥22
]

is only from the initial random permutation. So the above
argument still applies to this case, and we complete the proof.

Theorem 2. Under Assumptions 3 and 4, if ηk ≤ b

n
√

2L̂
π(k) L̃π(k)

and HK =
∑K

k=1 ηk, then the

output x̂K of Alg. 1 with uniformly random (RR/SO) shuffling satisfies

E[HK(f(x̂K)− f(x∗))] ≤
b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

As a result, given ϵ > 0, there exists a constant step size ηk = η such that E[f(x̂K)− f(x∗)] ≤ ϵ

after O
(n

√
L̂L̃∥x0−x∗∥2

2

ϵ +
√

(n−b)(n+b)
n(n−1)

√
nL̃σ∗∥x0−x∗∥2

2

ϵ3/2

)
individual gradient queries.

Proof. Combining the bounds in Lemma 10 and 11 and plugging them into Eq. (17), we obtain

E[Ek] ≤ E
[(η3knL̂π(k)L̃π(k)

b2
− ηk

2n

)
∥yk − y∗,k∥2Λ−1

k

]
+

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

For the stepsize ηk such that ηk ≤ b

n
√

2L̂
π(k) L̃π(k)

, we have
η3
knL̂π(k) L̃π(k)

b2 − ηk

2n ≤ 0, thus

E[Ek] ≤
η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Noticing that Ek = ηkGapv(xk,y∗) +
b
2n∥x∗ − xk∥22 − b

2n∥x∗ − xk−1∥22 and telescoping from
k = 1 to K, we have

E
[K∑
k=1

ηkGapv(xk,y∗)
]
≤ b

2n
∥x∗ − x0∥22 −

b

2n
E[∥x∗ − xK∥22] +

K∑
k=1

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

32

Noticing that L(x,v) is convex w.r.t. x, we have Gapv(x̂K ,y∗) ≤
∑K

k=1 ηkGapv(xk,y∗)/HK ,
where x̂K =

∑K
k=1 ηkxk/HK and HK =

∑K
k=1 ηk, which leads to

E
[
HKGapv(x̂K ,y∗)

]
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Further choosing v = yx̂K
, we obtain

E[HK

(
f(x̂K)− f(x∗)

)
] ≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

η3kL̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗. (28)

To analyze the individual gradient oracle complexity, we choose constant stepsizes η ≤ b

n
√

2L̂L̃
, then

Eq. (28) will become

E[f(x̂K)− f(x∗)] ≤
b

2nηK
∥x0 − x∗∥22 +

η2L̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗.

Without loss of generality, we assume that b ̸= n, otherwise the method and its analysis reduce to
(full) gradient descent. We consider the following two cases:

• “Small K” case: if η = b

n
√

2L̂L̃
≤

(
3b3(n−1)∥x0−x∗∥2

2

n(n−b)(n+b)L̃Kσ2
∗

)1/3

, we have

E[f(x̂K)− f(x∗)] ≤
b

2nηK
∥x0 − x∗∥22 +

η2L̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗

≤

√
L̂L̃√
2K

∥x0 − x∗∥22 +
1

2

((n− b)(n+ b)

n2(n− 1)

)1/3 L̃1/3σ
2/3
∗ ∥x0 − x∗∥4/32

31/3K2/3
.

• “Large K” case: if η =
(

3b3(n−1)∥x0−x∗∥2
2

n(n−b)(n+b)L̃Kσ2
∗

)1/3

≤ b

n
√

2L̂L̃
, we have

E[f(x̂K)− f(x∗)] ≤
b

2nηK
∥x0 − x∗∥22 +

η2L̃(n− b)(n+ b)

6b2(n− 1)
σ2
∗

≤
((n− b)(n+ b)

n2(n− 1)

)1/3 L̃1/3σ
2/3
∗ ∥x0 − x∗∥4/32

31/3K2/3
.

Combining these two cases by setting η = min
{

b

n
√

2L̂L̃
,
(

3b3(n−1)∥x0−x∗∥2
2

n(n−b)(n+b)L̃Kσ2
∗

)1/3}
, we obtain

E[f(x̂K)− f(x∗)] ≤

√
L̂L̃√
2K

∥x0 − x∗∥22 +
((n− b)(n+ b)

n2(n− 1)

)1/3 L̃1/3σ
2/3
∗ ∥x0 − x∗∥4/32

31/3K2/3
.

Hence, to guarantee E[f(x̂K) − f(x∗)] ≤ ϵ for ϵ > 0, the total number of individual gradient
evaluations will be

nK ≥ max
{n

√
2L̂L̃∥x0 − x∗∥22

ϵ
,
((n− b)(n+ b)

n− 1

)1/2 23/2L̃1/2σ∗∥x0 − x∗∥22
31/2ϵ3/2

}
,

as claimed.

C.2 Omitted Proofs for Incremental Gradient Descenet

We now provide the proof for convergence of IGD in the smooth convex settings. We first prove
the following technical lemma, which bounds the inner product term T2 := ηk

n

∑m
i=1

(
v(i) −

y
(i)
k

)⊤
A(i)(xk − xk−1,i) without random permutations involved.

33

Lemma 12. For any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1 generated by Algorithm 2
with fixed data ordering satisfy

T2 ≤ η3kn

b2
L̂0L̃0∥yk − y∗∥2Λ−1 +

ηk
2n

∥v − yk∥2Λ−1

+min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
.

(29)

Proof. Proceeding as in Lemma 11, we have

T2 :=
ηk
n

m∑
i=1

(
v(i) − y

(i)
k

)⊤
A(i)(xk − xk−1,i)

= − η2k
bn

m∑
i=1

〈
A⊤Ib(i−1)↑yk,A

⊤I(i)(v − yk)
〉

= − η2k
bn

m∑
i=1

〈
A⊤Ib(i−1)↑(yk − y∗),A

⊤I(i)(v − yk)
〉

(30)

− η2k
bn

m∑
i=1

〈
A⊤Ib(i−1)↑y∗,A

⊤I(i)(v − yk)
〉
, (31)

For both terms in Eq. (30) and Eq. (31), we use Young’s inequality for α = 2ηkL̃0 > 0 and proceed
as in Eq. (24) to obtain

− η2k
bn

m∑
i=1

〈
A⊤Ib(i−1)↑(yk − y∗),A

⊤I(i)(v − yk)
〉

≤ η2kα

2bn

m∑
i=1

∥A⊤Ib(i−1)↑(yk − y∗)∥22 +
η2k

2bnα

m∑
i=1

∥A⊤I(i)(v − yk)∥22

≤ η2knα

2b2
L̂0∥yk − y∗∥2Λ−1 +

η2k
2nα

L̃0∥v − yk∥2Λ−1

=
η3kn

b2
L̂0L̃0∥yk − y∗∥2Λ−1 +

ηk
4n

∥v − yk∥2Λ−1 (32)

and

− η2k
bn

m∑
i=1

〈
A⊤Ib(i−1)↑y∗,A

⊤I(i)(v − yk)
〉

≤ η2kα

2bn

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 +
η2k

2bnα

m∑
i=1

∥A⊤I(i)(v − yk)∥22

≤ η2kα

2bn

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 +
η2k
2nα

L̃0∥v − yk∥2Λ−1

=
η3kL̃0

nb

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 +
ηk
4n

∥v − yk∥2Λ−1 , (33)

where again we used α = 2ηkL̃0. We then prove the term η3
kL̃0

nb

∑m
i=1 ∥A⊤Ib(i−1)↑y∗∥22 in Eq. (33)

is no larger than the minimum of η3
kn
b2 L̂0L̃0∥y∗∥2Λ−1 and η3

k(n−b)2

b2 L̃0σ
2
∗. Note that when b = n, we

have A⊤I(0)↑y∗ = 0, so this term disappears. When b < n, the former one can be derived as in
Eq.(24), which gives

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 ≤
∥∥∥Λ1/2

(m∑
i=1

Ib(i−1)↑AA⊤Ib(i−1)↑

)
Λ1/2

∥∥∥
2
∥y∗∥2Λ−1 = mnL̂0∥y∗∥2Λ−1

=
n2

b
L̂0∥y∗∥2Λ−1 .

34

For the latter one, we notice that

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 =

m∑
i=1

∥∥∥ n∑
j=b(i−1)+1

yj
∗aj

∥∥∥2
2

=

m−1∑
i=0

∥∥∥ n∑
j=bi+1

yj
∗aj

∥∥∥2
2

=

m−1∑
i=1

∥∥∥ n∑
j=bi+1

yj
∗aj

∥∥∥2
2
=

m−1∑
i=1

∥∥∥ bi∑
j=1

yj
∗aj

∥∥∥2
2
,

by using the fact that
∑n

j=1 y
j
∗aj = 0. Using Young’s inequality, we have

m−1∑
i=1

∥∥∥ bi∑
j=1

yj
∗aj

∥∥∥2
2
≤

m−1∑
i=1

bi

bi∑
j=1

∥yj
∗aj∥22

≤ b(m− 1)

m−1∑
i=1

bi∑
j=1

∥yj
∗aj∥22

= b(m− 1)

m−1∑
i=1

bi∑
j=b(i−1)+1

(m− i)∥yj
∗aj∥22

≤ b(m− 1)2
(m−1)b∑

i=1

∥yj
∗aj∥22.

By the definition that σ2
∗ = 1

n

∑n
j=1 ∥y

j
∗aj∥22 and

∑(m−1)b
i=i ∥yj

∗aj∥22 ≤
∑n

j=1 ∥y
j
∗aj∥22 = nσ2

∗ , we
obtain

η3kL̃0

nb

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 ≤ η3kL̃0

b
b(m− 1)2σ2

∗ =
η3k(n− b)2

b2
L̃0σ

2
∗. (34)

Note that the bound in Eq. (34) equals to zero when b = n, which recovers the case of full gradient
descent, so we have

η3kL̃0

nb

m∑
i=1

∥A⊤Ib(i−1)↑y∗∥22 ≤ min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
. (35)

Combining Eq. (32)–(35), we obtain

T2 ≤ η3kn

b2
L̂0L̃0∥yk −y∗∥2Λ−1 +

ηk
2n

∥v−yk∥2Λ−1 +min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
,

thus finishing the proof.

Theorem 6. Under Assumptions 3 and 4, if ηk ≤ b

n
√

2L̂0L̃0

and HK =
∑K

k=1 ηk, the output x̂K of

Alg. 2 with a fixed permutation satisfies

HK

(
f(x̂K)− f(x∗)

)
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
.

As a consequence, given ϵ > 0, there exists a constant step size ηk = η such that

f(x̂K) − f(x∗) ≤ ϵ after the number of gradient queries bounded by O
(

n
√

L̂0L̃0∥x0−x∗∥2
2

ϵ +

min
{√

nL̂0L̃0∥y∗∥Λ−1 , (n−b)
√

L̃0σ∗

}
∥x0−x∗∥2

2

ϵ3/2

)
.

35

Proof. Proceeding as in Lemmas 9 and 10, but without random permutations, we have

Ek ≤ ηk
n

m∑
i=1

y
(i)⊤
k A(i)(xk − xk−1,i+1) +

ηk
n

m∑
i=1

(
v(i) − y

(i)
k

)⊤
A(i)(xk − xk−1,i)

− ηk
2n

∥yk − v∥2Λ−1 −
ηk
2n

∥yk − y∗∥2Λ−1 −
b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22

≤ ηk
n

m∑
i=1

(
v(i) − y

(i)
k

)⊤
A

(i)
k (xk − xk−1,i)−

ηk
2n

∥yk − v∥2Λ−1 −
ηk
2n

∥yk − y∗∥2Λ−1 . (36)

Using the bound in Lemma 12 and applying Eq. (29) into Eq. (36), we obtain

Ek ≤
(η3knL̂0L̃0

b2
− ηk

2n

)
∥yk − y∗∥2Λ−1 +min

{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
.

If ηk ≤ b

n
√

2L̂0L̃0

, we have η3
knL̂0L̃0

b2 − ηk

2n ≤ 0, thus

Ek ≤ min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
.

Noticing that Ek = ηkGapv(xk,y∗) +
b
2n∥x∗ − xk∥22 − b

2n∥x∗ − xk−1∥22 and telescoping from
k = 1 to K, we have

K∑
k=1

ηkGapv(xk,y∗)

≤ b

2n
∥x∗ − x0∥22 −

b

2n
∥x∗ − xK∥22 +

K∑
k=1

min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
.

Noticing that L(x,v) is convex w.r.t. x, we have Gapv(x̂K ,y∗) ≤
∑K

k=1 ηkGapv(xk,y∗)/HK ,
where x̂K =

∑K
k=1 ηkxk/HK and HK =

∑K
k=1 ηk, so we obtain

HKGapv(x̂K ,y∗) ≤
b

2n
∥x0 − x∗∥22 +

K∑
k=1

min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
,

Further choosing v = yx̂K
, we obtain

HK

(
f(x̂K)− f(x∗)

)
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

min
{η3kn

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η3k(n− b)2

b2
L̃0σ

2
∗

}
.

(37)
To analyze the individual gradient oracle complexity, we choose constant stepsizes η ≤ b

n
√

2L̂0L̃0

and assume b < n without loss of generality, then Eq. (37) becomes

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +min

{η2n

b2
L̂0L̃0∥y∗∥2Λ−1 ,

η2(n− b)2

b2
L̃0σ

2
∗

}
.

When L̂0∥y∗∥2Λ−1 ≤ (n−b)2

n σ2
∗, we set η = min

{
b

n
√

2L̂0L̃0

,
(

b3∥x0−x∗∥2
2

2n2L̂0L̃0K∥y∗∥2
Λ−1

)1/3}
and con-

sider the following two possible cases:

• “Small K” case: if η = b

n
√

2L̂0L̃0

≤
(

b3∥x0−x∗∥2
2

2n2L̂0L̃0K∥y∗∥2
Λ−1

)1/3

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2n

b2
L̂0L̃0∥y∗∥2Λ−1

≤
√
L̂0L̃0√
2K

∥x0 − x∗∥22 +
L̂
1/3
0 L̃

1/3
0 ∥y∗∥2/3Λ−1∥x0 − x∗∥4/32

22/3n1/3K2/3
.

36

• “Large K” case: if η =
(

b3∥x0−x∗∥2
2

2n2L̂0L̃0K∥y∗∥2
Λ−1

)1/3

≤ b√
2L̂0L̃0

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2n

b2
L̂0L̃0∥y∗∥2Λ−1

≤
21/3L̂

1/3
0 L̃

1/3
0 ∥y∗∥2/3Λ−1∥x0 − x∗∥4/32

n1/3K2/3
.

Combining these two cases, we have

f(x̂K)− f(x∗) ≤
√
L̂0L̃0√
2K

∥x0 − x∗∥22 +
21/3L̂

1/3
0 L̃

1/3
0 ∥y∗∥2/3Λ−1∥x0 − x∗∥4/32

n1/3K2/3
.

Hence, to guarantee E[f(x̂K) − f(x∗)] ≤ ϵ for ϵ > 0, the total number of individual gradient
evaluations will be

nK ≥ max
{n

√
2L̂0L̃0∥x0 − x∗∥22

ϵ
,
4n1/2L̂

1/2
0 L̃

1/2
0 ∥y∗∥Λ−1∥x0 − x∗∥22

ϵ3/2

}
. (38)

When (n−b)2

n σ2
∗ ≤ L̂0∥y∗∥2Λ−1 , we set η = min

{
b

n
√

2L̂0L̃0

,
(

b3∥x0−x∗∥2
2

2n(n−b)2L̃0Kσ2
∗

)1/3}
and consider

the two cases as below:

• “Small K” case: if η = b

n
√

2L̂0L̃0

≤
(

b3∥x0−x∗∥2
2

2n(n−b)2L̃0Kσ2
∗

)1/3

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2(n− b)2

b2
L̃0σ

2
∗

≤
√

L̂0L̃0√
2K

∥x0 − x∗∥22 +
(n− b)2/3L̃

1/3
0 σ

2/3
∗ ∥x0 − x∗∥4/32

22/3n2/3K2/3
.

• “Large K” case: if η =
(

b3∥x0−x∗∥2
2

2n(n−b)2L̃0Kσ2
∗

)1/3

≤ b

n
√

2L̂0L̃0

, we have

f(x̂K)− f(x∗) ≤
b

2nηK
∥x0 − x∗∥22 +

η2(n− b)2

b2
L̃0σ

2
∗

≤ 21/3(n− b)2/3L̃
1/3
0 σ

2/3
∗ ∥x0 − x∗∥4/32

n2/3K2/3
.

Combining these two cases, we obtain

f(x̂K)− f(x∗) ≤
√
L̂0L̃0√
2K

∥x0 − x∗∥22 +
21/3(n− b)2/3L̃

1/3
0 σ

2/3
∗ ∥x0 − x∗∥4/32

n2/3K2/3
.

To guarantee E[f(x̂K)− f(x∗)] ≤ ϵ for ϵ > 0, the total number of individual gradient evaluations
will be

nK ≥ max
{n

√
2L̂0L̃0∥x0 − x∗∥22

ϵ
,
4(n− b)L̃

1/2
0 σ∗∥x0 − x∗∥22
ϵ3/2

}
. (39)

Combining Eq. (38) and Eq. (39), we finally have

nK ≥ n
√
2L̂0L̃0∥x0 − x∗∥22

ϵ

+min
{4n1/2L̂

1/2
0 L̃

1/2
0 ∥y∗∥Λ−1∥x0 − x∗∥22

ϵ3/2
,
4(n− b)L̃

1/2
0 σ∗∥x0 − x∗∥22
ϵ3/2

}
,

thus finishing the proof.

37

D Omitted Proofs for Non-Smooth Convex Setting From Section 3

Before we prove Theorem 3 in convex Lipschitz settings, for completeness, we first recall the
following standard first-order characterization of convexity.
Lemma 13. Let f : Rd → R be a continuous convex function. Then, for any x,y ∈ Rd:

f(y) ≥ f(x) + ⟨gx,y − x⟩ ,
where gx ∈ ∂f(x), and ∂f(x) is the subdifferential of f at x.

The following technical lemma provides a primal-dual gap bound in convex nonsmooth settings.

Lemma 14. For any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1 generated by Algorithm 2
satisfy

Ek ≤ ηk
n

m∑
i=1

(
y
(i)⊤
k A

(i)
k (xk − xk−1,i+1) + (v

(i)
k − y

(i)
k)⊤A

(i)
k (xk − xk−1,i)

)
− b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22,
(40)

where Ek := ηk
(
L(xk,v)− L(x∗,y∗)

)
+ b

2n∥x∗ − xk∥22 − b
2n∥x∗ − xk−1∥22.

Proof. By the same argument as in the proof for Lemma 9, we know that a⊤
π
(k)
j

xk−1,i ∈ ∂ℓ∗
π
(k)
j

(yj
k)

for b(i− 1) + 1 ≤ j ≤ bi, then by Lemma 13 we have

ℓ∗
π
(k)
j

(
vj
k

)
≥ ℓ∗

π
(k)
j

(yj
k) + a⊤

π
(k)
j

xk−1,i

(
vj
k − yj

k

)
,

which leads to

L(xk,v) =
1

n

m∑
i=1

(
v
(i)⊤
k A

(i)
k xk−1,i −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(vj
k)
)
+

1

n

m∑
i=1

v
(i)⊤
k A

(i)
k (xk − xk−1,i)

≤ 1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k xk−1,i −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)
+

1

n

m∑
i=1

v
(i)⊤
k A

(i)
k (xk − xk−1,i).

(41)

Using the same argument for L(x∗,y∗) as a⊤
j x∗ ∈ ∂ℓ∗j (y

j
∗) for j ∈ [n], we have

L(x∗,y∗) =
1

n

m∑
i=1

(
y
(i)⊤
∗,k A

(i)
k x∗ −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
∗,k)

)

≥ 1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k x∗ −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)
. (42)

Adding and substracting the term b
2nηk

∑m
i=1 ∥x∗ − xk−1,i∥22 on the R.H.S. of Eq. (42), we obtain

L(x∗,y∗) ≥
1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k x∗ +

b

2ηk
∥x∗ − xk−1,i∥22 −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)

− b

2nηk

m∑
i=1

∥x∗ − xk−1,i∥22.

Denote ϕ(i)
k (x) := y

(i)⊤
k A

(i)
k x+ b

2ηk
∥x− xk−1,i∥22, which is b

ηk
-strongly convex w.r.t. x. Noticing

that xk−1,i+1 = argminx∈Rd

{
y
(i)⊤
k A

(i)
k x + b

2ηk
∥x − xk−1,i∥2

}
by Line 7 of Alg. 2, we have

∇ϕ
(i)
k (xk−1,i+1) = 0, which leads to

ϕ
(i)
k (x∗) ≥ ϕ

(i)
k (xk−1,i+1) +

b

2ηk
∥x∗ − xk−1,i+1∥22.

38

Thus, we obtain

L(x∗,y∗) ≥
1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k xk−1,i+1 +

b

2ηk
∥xk−1,i+1 − xk−1,i∥22 −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)

+
b

2nηk

m∑
i=1

(
∥x∗ − xk−1,i+1∥22 − ∥x∗ − xk−1,i∥22

)
(i)
=

1

n

m∑
i=1

(
y
(i)⊤
k A

(i)
k xk−1,i+1 +

b

2ηk
∥xk−1,i+1 − xk−1,i∥22 −

bi∑
j=b(i−1)+1

ℓ∗
π
(k)
j

(yj
k)
)

+
b

2nηk
∥xk − x∗∥22 −

b

2nηk
∥xk−1 − x∗∥22, (43)

where (i) is by telescoping
∑m

i=1

(
∥x∗−xk−1,i+1∥22−∥x∗−xk−1,i∥22

)
and using xk = xk−1,m+1

and xk−1 = xk−1,1, which both hold by definition.

Combining the bounds from Eq. (41) and Eq. (43), and denoting

Ek := ηk
(
L(xk,v)− L(x∗,y∗)

)
+

b

2n
∥x∗ − xk∥22 −

b

2n
∥x∗ − xk−1∥22,

we finally obtain

Ek ≤ ηk
n

m∑
i=1

y
(i)⊤
k A

(i)
k (xk−1,i − xk−1,i+1) +

ηk
n

m∑
i=1

v
(i)⊤
k A

(i)
k (xk − xk−1,i)

− b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22

=
ηk
n

m∑
i=1

y
(i)⊤
k A

(i)
k (xk − xk−1,i+1) +

ηk
n

m∑
i=1

(v
(i)
k − y

(i)
k)⊤A

(i)
k (xk − xk−1,i)

− b

2n

m∑
i=1

∥xk−1,i − xk−1,i+1∥22,

thus completing the proof.

Note that we can still use Lemma 10 to bound the first inner product term in Eq. (40), as we are
studying the same algorithm. The following lemma provides a bound on the second inner product
term T2 := ηk

n

∑m
i=1

(
v
(i)
k − y

(i)
k

)⊤
A

(i)
k (xk − xk−1,i) in Eq. (40).

Lemma 15. Under Assumption 5, for any k ∈ [K], the iterates {y(i)
k }mi=1 and {xk−1,i}m+1

i=1
generated by Algorithm 2 satisfy

T2 ≤
η2k

√
Ĝπ(k)G̃π(k)

b
∥yk∥2Γ−1

k

+
η2k

√
Ĝπ(k)G̃π(k)

4b
∥vk − yk∥2Γ−1

k

.
(44)

Proof. Proceeding as in Lemma 11, we have

T2 :=
ηk
n

m∑
i=1

(
v
(i)
k − y

(i)
k

)⊤
A

(i)
k (xk − xk−1,i) = −η2k

bn

m∑
i=1

〈
A⊤

k Ib(i−1)↑yk,A
⊤
k I(i)(vk − yk)

〉
.

Using Young’s inequality for some α > 0 and proceeding as in Eq. (24), we obtain

T2 ≤ η2kα

2bn

m∑
i=1

∥A⊤
k Ib(i−1)↑yk∥22 +

η2k
2bnα

m∑
i=1

∥A⊤
k I(i)(vk − yk)∥22

≤ η2knα

2b2
Ĝπ(k)∥yk∥2Γ−1

k

+
η2k
2nα

G̃π(k)∥vk − yk∥2Γ−1
k

,

39

where we use our definitions that Ĝπ(k) := 1
mn

∥∥Γ1/2
k

(∑m
j=1 Ib(j−1)↑AkA

⊤
k Ib(j−1)↑

)
Γ
1/2
k

∥∥
2

and

G̃π(k) := 1
b

∥∥Γ1/2
k

(∑m
j=1 I(j)AkA

⊤
k I(j)

)
Γ
1/2
k

∥∥
2
. It remains to choose α = 2b

n

√
G̃k

Ĝk
to finish the

proof.

We are now ready to prove Theorem 3 for the convergence of shuffled SGD in the convex nonsmooth
Lipschitz settings.

Theorem 3. Under Assumption 5, if HK =
∑K

k=1 ηk and Ḡ = Eπ[
√

ĜπG̃π], the output x̂K of
Alg. 1 with possible uniformly random shuffling satisfies

E[HK(f(x̂K)− f(x∗))] ≤
1

2n
∥x0 − x∗∥22 +

K∑
k=1

2η2knḠ,

As a result, for any ϵ > 0, there exists a step size ηk = η such that E[f(x̂K) − f(x∗)] ≤ ϵ after
O
(nḠ∥x0−x∗∥2

2

ϵ2

)
individual gradient queries.

Proof. To simplify the presentation of our analysis, we first assume ∥v∥2Γ−1 ≤ n, which will be later
verified by our choice of v = yx̂K

and Assumption 5.

Combining the bounds in Lemma 10 and 15 and plugging them into Eq. (40), we have

Ek ≤
η2k

√
Ĝπ(k)G̃π(k)

b
∥yk∥2Γ−1

k

+
η2k

√
Ĝπ(k)G̃π(k)

4b
∥vk − yk∥2Γ−1

k

(i)

≤
η2k

√
Ĝπ(k)G̃π(k)

b
∥yk∥2Γ−1

k

+
η2k

√
Ĝπ(k)G̃π(k)

2b
(∥v∥2Γ−1 + ∥yk∥2Γ−1

k

)

(ii)

≤
2η2kn

√
Ĝπ(k)G̃π(k)

b
, (45)

where we use Young’s inequality for ∥vk −yk∥2Γ−1
k

and ∥vk∥Γ−1
k

= ∥v∥2Γ−1 as v is a fixed vector for

(i), and (ii) is due to ∥yk∥2Γ−1
k

≤ n by Assumption 5 and assuming that ∥v∥2Γ−1 ≤ n. Proceeding as
the proof for Theorem 2, we first assume the RR scheme and take conditional expectation w.r.t. the
randomness up to but not including k-th epoch, then we obtain

Ek[Ek] ≤
2η2knEk

[√
Ĝπ(k)G̃π(k)

]
b

.

Since the randomness only comes from the random permutation π(k), we have

Ek[Ek] ≤
2η2knEπ[

√
ĜπG̃π]

b
.

For notational convenience, we denote Ḡ = Eπ[
√

ĜπG̃π], and further take expectation w.r.t. all the
randomness on both sides and use the law of total expectation to obtain

E[Ek] ≤
2η2knḠ

b
. (46)

For the SO scheme, there is one random permutation π generated at the very beginning such that
π(k) = π for all k ∈ [K]. So we can directly take expectation w.r.t. all the randomness on both
sides of Eq. (45), with the randomness only from π, which leads to the same bound as Eq. (46)

with E
[√

Ĝπ(k)G̃π(k)

]
= Eπ

[√
ĜπG̃π

]
. Note that for incremental gradient (IG) descent, we can let

Ḡ =
√
Ĝ0G̃0 without randomness involved, where Ĝ0 = Ĝπ(0) and G̃0 = G̃π(0) w.r.t. the initial,

fixed permutation π(0) of the data matrix A.

40

Noticing that Ek = ηkGapv(xk,y∗) +
b
2n∥x∗ − xk∥22 − b

2n∥x∗ − xk−1∥22 and telescoping from
k = 1 to K, we have

E
[K∑
k=1

ηkGapv(xk,y∗)
]
≤ b

2n
∥x∗ − x0∥22 −

b

2n
E[∥x∗ − xK∥22] +

K∑
k=1

2η2knḠ

b
.

Noticing that L(x,v) is convex wrt x, we have Gapv(x̂K ,y∗) ≤
∑K

k=1 ηkGapv(xk,y∗)/HK ,
where x̂K =

∑K
k=1 ηkxk/HK and HK =

∑K
k=1 ηk, so we obtain

E
[
HKGapv(x̂K ,y∗)

]
≤ b

2n
∥x0 − x∗∥22 +

K∑
k=1

2η2knḠ

b
.

Further choosing v = yx̂K
, which also verifies ∥v∥2Γ−1 = ∥yx̂K

∥2Γ−1 ≤ n by Assumption 5, we
obtain

E[HK(f(x̂K)− f(x∗))] ≤
b

2n
∥x0 − x∗∥22 +

K∑
k=1

2η2knḠ

b
.

To analyze the individual gradient oracle complexity, we choose constant stepsize η. Then, the above
bound becomes

E[f(x̂K)− f(x∗)] ≤
b

2nηK
∥x0 − x∗∥22 +

2nηḠ

b
.

Choosing η = b∥x0−x∗∥2

2n
√
KḠ

, we have

E[f(x̂K)− f(x∗)] ≤
2
√
Ḡ∥x0 − x∗∥2√

K
.

Hence, given ϵ > 0, to ensure E[f(x̂K) − f(x∗)] ≤ ϵ, the total number of individual gradient
evaluations will be

nK ≥ 4nḠ∥x0 − x∗∥22
ϵ2

,

thus completing the proof.

We now briefly discuss this result. The total number of individual gradient queries is O
(nḠ∥x0−x∗∥2

2

ϵ2

)
,

which appears independent of the batch size, but this is actually not the case, as the parameter
Ḡ = Eπ[

√
ĜπG̃π] depends on the block partitioning, due to Eq. (4). When b = n, as a sanity check,

we recover the standard guarantee of (full) subgradient descent, which is expected, as in this case
shuffled SGD reduces to subgradient descent. When b = 1, however, the bound is worse than the
corresponding bound for standard SGD, by a factor O(nḠ/G2). By a similar sequence of inequalities
as in Eq. (4), this factor is never worse than n, but it is typically much smaller, taking values as small
as 1. We note that it is not known whether a better bound is possible for shuffled SGD in this setting,
as the only seemingly tighter upper bound from [42] applies only for constant K, when n = Ω(1

ϵ2),
and under an additional boundedness assumption for the algorithm iterates.

E Experiment Details

We implement the computation of L̂ and Lmax in Julia, a high-performance scientific computation
programming language, and compute matrix operator norms using the default settings in the Julia
Arpack Package. However, limited by computational memory and time constraint, our selection of
datasets is focused on moderately large-scale datasets of n in the order of O(105). We also include
comparisons of small datasets such as a1a and sonar.

E.1 Evaluations of Lmax/L̃π on Synthetic Gaussian Datasets

We first study the gap between L̃π and Lmax for different batch sizes b, as shown in Figure 2. As in
Section 4.1, we focus on their dependence on the data matrix, and assume that the loss functions ℓi all
have the same smoothness constant. In this case, the ratio Lmax/L̃π that characterizes the gap between

41

https://julialang.org

L̃π and Lmax will become Lmax/L̃π = (max1≤i≤n{∥ai∥22})/
(
1
b∥

∑m
j=1 I(j)AπA

⊤
π I(j)∥2

)
. In

particular, we run experiments on standard Gaussian data of size (n, d). We fix the dimension
d = 500, and vary the number of samples with n = 100, 500, 1000, 2000. In Figure 2, we plot the
ratio Lmax/L̃π versus the batch size b for 100 different random permutations π, where the dotted
lines represent the mean values and the filled regions indicate the standard deviation of permutations.
We observe that the ratio Lmax/L̃π is concentrated around its empirical mean and exhibits bα

(α ∈ [0.74, 0.87]) growth as the batch size b increases. In particular, if we choose b =
√
n, the ratio

can be O(n0.4).

(a) n = 100 (b) n = 500

(c) n = 1000 (d) n = 2000

Figure 2: Illustrations of Lmax/L̃π for different batch size b on synthetic Gaussian data of size (n, d).

E.2 Distributions of Lmax/L̂π

In this subsection, we include histograms in Figure 3 to illustrate the spread of Lmax/L̂π with
respect to random permutations, for completeness. We observe that in all the examples Lmax/L̂π is
concentrated around its empirical mean. The following plots are normalized, with y-axis representing
the empirical probability density. The x-axis represents Lmax/L̂π .

42

a1a a9a BBBC005

BBBC010 CIFAR10 duke

e2006train gisette leu

MNIST news20 rcv1

real-sim sonar tmc2007

Figure 3: Visualization of the empirical distributions of L/L̂ for 15 large-scale datasets.

43

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly state the scope of our work and contribu-
tions, see Section 1.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, see detailed discussion in the introdcution.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

44

Justification: We state our assumptions in sections 2 and 3, and the proofs are provided in
the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose the public datasets and tools we use for the numerical
computations in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

45

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We list the details of our experiments in Section 4.1 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use various ways, including ribbon plots and histograms, to illustrate the
variance of our numerically computed values.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

46

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the details of all computational tools in Section 4.1 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a primarily theoretical work and we conform to the rules with NeurIPS
Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

47

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use public benchmarking datasets from LIBSVM [15], MNIST [17],
CIFAR10 [22], and Broad Bioimage Benchmark Collection [28], and have properly cited
and credited the asset’s creators.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

48

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

49

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

50

	Introduction
	Background and related work
	Contributions
	Notation

	Primal-Dual Framework for Smooth Convex Finite-Sum Problems
	Primal-dual view of shuffled SGD

	Tighter Bounds for Convex Finite-Sum Problems with Linear Predictors
	Smooth and convex objectives
	Extension to non-smooth convex objectives

	Discussion of Our New Smoothness Constants and Numerical Results
	Numerical results and discussion

	Further Related Work
	Omitted Proofs From Section 2
	Random reshuffling/shuffle-once schemes
	Incremental gradient descent (IG)

	Omitted Proofs for Smooth Convex Settting From Section 3
	Omitted Proofs for the Random Reshuffling/Shuffle-Once Schemes
	Omitted Proofs for Incremental Gradient Descenet

	Omitted Proofs for Non-Smooth Convex Setting From Section 3
	Experiment Details
	Evaluations of Lg on Synthetic Gaussian Datasets
	Distributions of Lg

