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Abstract

Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in
pre-training adapters on a multi-task training set before few-shot adaptation to test
tasks. Polytropon [Ponti et al., 2023] (Poly) jointly learns an inventory of adapters
and a routing function that selects a (variable-size) subset of adapters for each task
during both pre-training and few-shot adaptation. In this paper, we investigate
the role that adapter routing plays in its success and design new variants based on
our findings. First, we build on the intuition that finer-grained routing provides
more expressivity. Hence, we propose MHR (Multi-Head Routing), which combines
subsets of adapter parameters and outperforms Poly under a comparable parameter
budget; by only fine-tuning the routing function and not the adapters (MHR-z),
we achieve competitive performance with extreme parameter efficiency. Second,
we find that Poly/MHR performance is a result of better multi-task optimization,
rather than modular inductive biases that facilitate adapter recombination and
local adaptation, as previously hypothesized. In fact, we find that MHR exhibits
high gradient alignment between training tasks. We find that routing is most
beneficial during multi-task pre-training rather than during few-shot adaptation and
propose MHR-µ, which discards routing and fine-tunes the average of the pre-trained
adapters on each downstream tasks. This establishes MHR-µ as an effective method
for single-adapter fine-tuning. We also show that MHR-µ can be used as an effective
zero-shot transfer method by training the average of the pre-trained adapters for a
few additional steps on the multi-task training set: this yields gains up to 3% on
absolute accuracy w.r.t. the baselines.

1 Introduction

The ability to train effective models with a relatively small number of training data is of paramount
importance due to the paucity of annotated examples for most tasks. One effective few-shot learning
approach is to leverage large models pre-trained on a vast amount of unlabelled data and fine-tune
them on the few examples available for each downstream task. To reduce the memory cost of
duplicating the entire array of parameters for each downstream task, recent approaches resort to
parameter-efficient fine-tuning (PEFT) methods, such as LoRA [Hu et al., 2022], SFT [Ansell et al.,
2022], or (IA)3 [Liu et al., 2022]. These only fine-tune adapters while leaving the pre-trained model
‘frozen’.

Nevertheless, it remains unclear how to best exploit a set of training tasks to better generalize to a set
of unseen test tasks in a sample-efficient fashion, based on just a few examples. One straightforward
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Figure 1: Left: A LoRA adapter with weight AB> is trained on top of a frozen, pre-trained linear
layer W . Our method MHR partitions the A,B parameter indexes into h subsets (or heads). For
each subset, a separate routing function selects the active modules for the current task among m
copies with different parameter values, and combines them via averaging to form a task-specific
head. The heads are then concatenated to form the LoRA adapter. Using multiple heads allows for
more fine-grained mixing of task parameters with a negligible increase in overall parameter count.
Right: During few-shot adaptation, one can fine-tune only the multi-head routing parameters (MHR-z),
keeping the modules frozen, resulting in highly parameter-efficient adaptation.

solution is to perform multi-task pre-training, i.e. first train the large model on the union of the
examples from the training tasks, then fine-tune the obtained model to the test task [Liu et al.,
2022, Ye et al., 2021]. However, this solution does not take into account that test tasks may require
solving different combinations of sub-problems compared to training tasks [Vu et al., 2020], thus
failing to achieve compositional generalization [Rosenbaum et al., 2019, Ponti, 2021]. Moreover,
specializing the model towards different tasks during training may result in negative transfer, due to
their corresponding gradients being misaligned [Wang et al., 2021].

Several PEFT approaches have been proposed to enable better cross-task generalization by training
adapters (or soft prompts) on each task independently [Pfeiffer et al., 2021, Vu et al., 2021, Asai
et al., 2022, Chronopoulou et al., 2023]. Given a new test task, parameters from similar training
tasks are aggregated, which enables transfer. While solely having task-specific parameters is an
effective strategy to mitigate interference across training tasks, it also inhibits any positive transfer
within the same task pool. Polytropon (Poly) was recently proposed by Ponti et al. [2023] to address
these issues: the model assumes that task-specific adapters are learned combinations of a reusable
inventory of basis adapters or modules. In practice, each module is implemented as a LoRA [Hu et al.,
2022] adapter, which modifies a large pre-trained model, such as T5 [Raffel et al., 2020]. During
both multi-task pre-training and few-shot adaptation, Poly learns both the inventory of adapters
and a (continuously relaxed) binary task–module routing matrix, which determines which module
is active for each task. While Poly shows promising results, several questions remain unanswered:
1) Does the expressivity of the routing function matter? 2) Why do routing-based PEFT methods
yield superior performance? 3) Is routing useful during both multi-task pre-training and few-shot
adaptation?

To answer the first question, we propose a new routing function, MHR, that mixes adapters at a more
granular level. Differently from Poly, where routing decisions are made for each adapter as a whole,
in MHR we linearly combine subsets of the adapter dimensions (i.e. heads), each with different
combination coefficients. We evaluate MHR and a series of competitive baselines for few-shot task
adaptation on the T0 task suite [Sanh et al., 2022] and Super-Natural Instructions [SuperNI; Wang
et al., 2022a]. Based on our results, we report that MHR outperforms Poly and single adapter baselines.
Additionally, we show that, thanks to the increased expressivity of the routing function, it becomes
possible to fine-tune only the parameters of the routing function (and not the adapters) during few-shot
adaptation: the resulting method, MHR-z, yields competitive performance while requiring orders of
magnitude fewer parameters.

Regarding the second and third questions, we uncover that optimization during multitask pretraining
plays a key role in explaining the downstream performance of routing-based PEFT approaches.
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Specifically, we find that MHR exhibits a higher cosine similarity between gradients from different
tasks than Poly and single-adapter multi-task training. Hence, routing enables more knowledge
transfer and less interference across tasks during multi-task pre-training. This finding led us to
investigate whether routing is useful also during few-shot adaptation. It has been hypothesized [Ponti
et al., 2023] that one of the reasons behind Poly’s performance resides in the inductive bias of
the modular architecture, which allows test tasks to recombine and locally adapt the most relevant
modules. To test this hypothesis, we propose MHR-µ, where the routing function is discarded and
all available adapter parameters are averaged before few-shot adaptation. We find that MHR-µ can
recover the performance of MHR, hinting that Poly/MHR gains are only a result of better multi-task
optimization. Finally, we show that MHR-µ can also be used as an effective zero-shot transfer method
by training the average of the pre-trained adapters for a few additional steps on the multi-task training
set. This yields gains up to 3% on absolute accuracy w.r.t. to strong baselines such as T0-11B.

2 Background

In cross-task generalization, we are given a set of tasks T = {T1, .., T|T |}, with each task Ti dataset
containing a set of samples Di = {(x1, y1), ..., (xn, yn)}. The set of all tasks is partitioned into
training and test tasks, T = Ttrain ∪Teval, and the objective is to leverage data in Ttrain and transfer
knowledge to facilitate learning of the test tasks Teval. For all the methods discussed, learning takes
place in two phases, excluding the original unsupervised pre-training of the language model backbone
on a separate corpus. The first phase consists of multi-task pre-training, in which either an adapter,
such as LoRA or (IA)3, or the full backbone is trained on the set of training tasks Ttrain. The second
phase consists in few-shot adaptation, where the learned adapters are fine-tuned independently on
each test task in Teval. We follow the procedure from [Raffel et al., 2020] and formulate each task as
a text-to-text problem, enabling standard maximum-likelihood training with teacher forcing [Bengio
et al., 2015] and a cross-entropy loss.

2.1 Adapters: LoRA & (IA)3

LoRA [Hu et al., 2022] and (IA)3 [Liu et al., 2022] are two recently proposed adapter architectures
that achieve competitive trade-offs between performance and parameter efficiency [Karimi Mahabadi
et al., 2021, Liu et al., 2022]. For each linear transformation corresponding to the query (q), key (k),
value (v) and output (o) of the self-attention layers, LoRA modifies the base model parameters as
follows:

hq,k,v,o = W q,k,v,o
0 x+ s ·Aq,k,v,o(Bq,k,v,o)>x, (LoRA)

where W0 are the (frozen) weights of the pre-trained model (e.g. T5 [Raffel et al., 2020]). A,B ∈
Rd×r are low-rank learnable parameters and s ≥ 1 is a tunable scalar hyperparameter. (IA)3, on the
other hand, modifies key and value representations in self-attention element-wise, and also modifies
the feed-forward MLP (f ):

hk,v = lk,v � (W k,v
0 x); hf = (lf � γ(W f

1 x))W
f
2 , ((IA)3)

where lk,v,f ∈ Rd are learnable parameters , W f
1,2 the frozen parameters of the feed-forward layer in

the backbone, and γ a non-linearity. For clarity, we will drop the superscripts q, k, v, o in the rest of
the paper.

2.2 Polytropon: Adapter Routing

Typical adapter methods either fully share adapters across tasks or train individual adapters for each
task. Poly addresses the multi-task problem by softly sharing adapter parameters across tasks. Each
Poly layer contains 1) an inventory of adapter modules M = {φ1, . . . , φm} with |M| � |T |; 2) a
routing function r(·) that chooses which subset of the modules to combine for each task.

Each module corresponds to a LoRA adapter, where φi are its associated parameters A(i),B(i) ∈
Rd×r. r(·) is implemented as a task–module routing matrix Z ∈ R|T |×|M|. zτ = Zτ,: ∈ R|M| is
a routing vector of task Tτ , with cell Zτ,j being the probability logits of using module φj for task
Tτ in the current layer. Differently from mixture-of-experts [Fedus et al., 2022], which perform
token-level top-k routing, Z converges to a binary matrix, defining a soft partition over modules.
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Method Pre-Training Fine-Tuning Inference

Full FT d× d d× d d× d

LoRA d× 2r d× 2r d× 2r
Poly d× 2r × |M|+ |T | × |M| d× 2r × |M|+ |M| d× 2r
Poly-z d× 2r × |M|+ |T | × |M| |M| |M|
MHR-µ d× 2r × |M|+ |T | × |M| d× 2r d× 2r
MHR-z d× 2r × |M|+ |T | × |M| × h |M| × h |M| × h
MHR d× 2r × |M|+ |T | × |M| × h d× 2r × |M|+ |M| × h d× 2r

Table 1: Number of parameters (per layer) used for each method. The calculation uses LoRA as
the base adapter, modifying a linear transform in Rd×d. Note that the total number of parameters
changed by Full FT is larger, given that the method also changes parameters for layers not modified
by LoRA.

This is achieved by using a Gumbel-sigmoid distribution [Jang et al., 2017] during training, with
Ẑτ,j ∼ Gumbel(Zτ,j). At each forward pass, Poly can be defined as :

Aτ =
∑
i

αiA
(i); Bτ =

∑
i

αiB
(i) (Poly)

where αi =
Ẑτ,i∑
j Ẑτ,j

, and A(i),B(i),Aτ ,Bτ ∈ Rd×r. We normalize the mixing coefficients Ẑτ,i

for each task to ensure that the number of active modules does not affect the norm of Aτ ,Bτ . Overall,
this approach enables different subsets of modules to be activated for the current layer and combined
in a task-specific way. Following LoRA, the output of the Poly layer is added to the output of the
original layer of the frozen backbone: h = W0x+ sAτ (Bτ )>x.

During multi-task pre-training, for each query, key, value, and output projection in self-attention
layers, the parameters learned by Poly are the adapter parameters, {Ai,Bi}|M|

i=1 , and the routing
matrices Z. During fine-tuning, for each test task τ , Poly randomly initialize the routing vector
zτ ∈ R1×|M| and fine-tunes both zτ and all the modules parameters M.

3 Multi-Head Adapter Routing (MHR)

In Poly, module combination remains coarse: only linear combinations of modules are possible,
and thus the resulting aggregated adapter remains a linear function of the modules. We propose to
augment the expressivity of the module combination while keeping the parameter count similar. MHR
(Fig. 1) takes inspiration from multi-head attention [Vaswani et al., 2017]: it partitions the input
dimensions into h different disjoint subsets, performs a separate Poly-style combination for each of
them, and finally concatenates them. This corresponds to learning a different routing matrix Z for
each subset of input features, therefore enabling the model to select different adapters for different
subsets of the input dimensions. This aggregation approach is piecewise linear (i.e., linear within
disjoint intervals), which allows for more expressive combinations of modules.

In each MHR layer, the routing function is a third-order tensor Z ∈ R|T |×|M|×h, where Z:,:,h ∈
R|T |×|M| is a 2D slice of the tensor Z. A slice represents the routing matrix for each of the h heads.
Let us denote with W [k] ∈ R d

h×r the k-th partition along the rows of the matrix W ∈ Rd×r. The
adapter parameters Aτ ∈ Rd×r for task τ , and for each adapter layer, are computed as (similarly for
Bτ ):

Aτ
k =

∑
j

Aj [k] ·
Ẑτ,j,k∑
j Ẑτ,j,k

with Aτ
k ∈ R

d
h×r, (MHR)

Aτ = concat(Aτ
1 , . . . ,A

τ
h)

where concat concatenates along the first dimension. Multi-task pre-training and fine-tuning are
similar to Poly. Note that MHR results in only a negligible increase in the total amount of parameters,
since most of the parameters are contained in the LoRA weights A,B (Tab. 1).
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Routing-Only Fine-Tuning (MHR-z) Prior work [Shao et al., 2023, inter alia] has shown that
compositional generalization can be achieved by learning to (re-)combine in novel ways pre-existing
modules. We investigate whether fine-tuning the module parameters is really needed for few-shot
adaptation in the context of both Poly and MHR. Therefore, we name Poly-z and MHR-z the variants
that, during few-shot adaptation, keep the parameters of the modules learned during multi-task
pre-training fixed and just update the routing parameters Z. Crucially, this enables highly parameter-
efficient adaptation: for LoRA adapters, A and B matrices constitute the overwhelming majority of
parameters. Therefore, by freezing the A,B matrices and only updating Z, we can significantly
reduce the parameter cost when transferring knowledge to a new task.

Adapter Average Fine-Tuning (MHR-µ) To assess the importance of the routing parameters during
few-shot adaptation, we propose an additional variant of MHR, MHR-µ, which shares the same multi-
task pre-training procedure as MHR, but for each test task τ , fixes zτ = (1/|M|, . . . , 1/|M|) during
few-shot adaptation. This is equivalent to discarding the routing parameters and averaging the module
parameters into a single one before fine-tuning. Specifically, the adapter used during fine-tuning is
initialized with (similarly for Bτ ):

Aτ =
1

|M|
∑
i

A∗
i ; A

τ ∈ Rd×r (MHR-µ)

where A∗
i are the parameters of the adapters after MHR multi-task pre-training. Note that, differently

from MHR, MHR-µ fine-tunes the same amount of parameters as the single adapter baseline. Thus, any
difference in performance between the single adapter baseline and MHR-µ comes from differences in
the adapter initialization and must be due to the optimization process taking place in the multi-task
pre-training, before few-shot adaptation.

Routing Granularity In the original Poly, Ponti et al. [2023] showed that learning a routing
matrix Z for each model layer gave better performance than sharing a single Z matrix across all
layers. We therefore investigate whether this holds true also for its multi-head counterpart, MHR. In
addition, we explore intermediate approaches between one Z per layer and a single one shared for
the entire model. In particular, we consider sharing Z 1) for the adapter layers belonging to the same
Transformer block; or 2) for every block of l layers, which enables us to easily trade off expressivity
for parameter efficiency. As we will demonstrate in section 5.1, this is an efficient mechanism to
navigate this Pareto front in regimes of very small budgets of parameters per task.

4 Experiments

Our experimental evaluation aims to answer three research questions: 1) Does the expressivity of the
routing function matter? 2) Why do routing-based PEFT methods yield superior performance? 3)
Is routing useful during both multi-task pre-training and few-shot adaptation? We first present the
baselines and datasets used in our evaluation and then discuss each question in turn.1

4.1 Baselines

In addition to Poly, we compare MHR to the following baselines for task-level generalization.

LoRA/(IA)3 trains a single adapter common to all pre-training tasks, which is then fine-tuned on each
test task separately. This is arguably the most widespread approach for parameter-efficient cross-task
generalization [Liu et al., 2022, Pfeiffer et al., 2023].

AdapterSoup Chronopoulou et al. [2023] trains a different adapter for each task. The method only
averages the adapter weights of the training tasks most similar to a given test task, before proceeding
with few-shot adaptation. To compute task relatedness, we measure the cosine similarity of sentence
embeddings for each task averaged over their training dataset. Notably, unlike the methods proposed
in this paper, there is no knowledge sharing (nor interference) during multi-task pre-training as task
adapters are trained independently.

1We note that all experiments were run on a single NVIDIA A100 GPU.
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T0 Dataset Avg. Test
Backbone T5-XL
(IA)3 62.40.4
AdapterSoup 62.11.0
LoRA 66.01.6
LoRA-big 65.40.9
Poly-z 66.40.3
Poly 68.01.0
MHR-z 68.30.8
MHR 69.11.0
Backbone T0-3B
T-Few Liu et al. [2022] 66.20.5

AdapterSoup 66.10.6
LoRA 67.40.8
Poly-z 65.31.0
Poly 69.00.8
MHR-z 68.41.2
MHR 69.31.2
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Figure 2: Left: Results of few-shot adaptation on T0 dataset Sanh et al. [2022]. We report the mean
of the best validation accuracy for each test task. Subscripts correspond to standard deviation. Right:
Accuracy of PEFT methods on the T0 dataset when applied on top of T5-XL. The x-axis shows the
parameter count during the fine-tuning process.

4.2 Datasets

We test our methods on the T0 Sanh et al. [2022] evaluation suite, following the same setup as Liu
et al. [2022], and SuperNI Wang et al. [2022a], a large-scale dataset with more than 1,600 training
tasks.

T0 Tasks We follow the pre-training and fine-tuning procedure discussed in Liu et al. [2022], using
hyper-parameters and losses suggested in the public codebase for T-Few.2

All methods were tested with T5-XL Raffel et al. [2020] and T0-3B Sanh et al. [2022] as the backbone
model. Crucially, T5 is simply pre-trained on (masked) language modelling, whereas T0 is further
instruction tuned: in particular, the full model is fine-tuned on examples from multiple training tasks
that have been augmented with task instructions. To ensure fairness for all methods, we report the
median and standard deviation of the best validation accuracy for each test task across 3 seeds, when
evaluated every 50 training epochs. We treat each data subset–template pair as a unique task, yielding
a total of 313 tasks.

SuperNI To limit computational costs, we report the result on 20 out of 119 test tasks. Tasks were
chosen at random, with the requirement that at least 300 examples were available, and were equally
split into 100 training, 100 validation and 100 test examples. For every method, we perform early
stopping on the validation set. We report results with Rouge-L averaged across 3 seeds. All methods
use T5-XL [Raffel et al., 2020] as the backbone and not T0, as T0 training tasks and SuperNI test
tasks may overlap.

5 Results and Discussion

5.1 Does the expressivity of the routing function matter?

MHR outperforms PEFT approaches We start our analysis by evaluating the effectiveness of
our proposed technique when applied over a backbone that has not undergone prior training on

2https://github.com/r-three/t-few
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instruction-following data (T5-XL). As indicated in the T0 benchmark results in the top table of
Fig. 2, it is clear that multi-head routing techniques have a distinct advantage, outperforming both
single-head routing Poly by 1.1%, and surpassing standard LoRA approaches by an impressive
3.1%. We also study the impact of performing instruction tuning of the full backbone before adapter
training. To this end, we also experiment with T0-3B as a backbone. In the bottom table of Fig. 2,
we can observe that while the relative gap between MHR and baselines is smaller, multi-head routing
still manages to yield favourable results. Hence, the gains of MHR compound with other multi-task
methods such as instruction tuning. Finally, we turn our attention towards the SuperNI dataset (Tab.
2). Here, MHR continues to surpass analogous baselines.

MHR-z facilitates extreme parameter efficiency Fig. 2 (right) reveals intriguing findings regarding
MHR-z. When we restrict training to only the routing parameters Z in the original Poly, the results
are unfortunately not up to par with its version where both routing and adapters are updated. However,
when we apply the same constraint to MHR, the performance is significantly closer to the optimum
achieved in this setting. In fact, MHR-z surpasses prior baselines while simultaneously necessitating
fewer parameters for effective adaptation to new tasks. Moreover, by controlling the number of layers
which share the same Z allocation (see sec. 3), MHR-z is able to trade-off performance for parameter
efficiency, even surpassing Poly-z in settings with only 3K trainable parameters per test task (see
also § A.2.1 for a more in-depth analysis). This trend is similarly observed in the SuperNI benchmark
(Tab. 2), where updates restricted to the routing parameters yield performance on par with standard
fine-tuning. We therefore conclude that the MHR-z represents a robust approach for achieving extreme
parameter efficiency in adaptation.

SuperNI Dataset Rouge-L
LoRA 67.60.8

LoRA-big 67.20.7

Poly-z 64.60.3

Poly 67.80.8

MHR-z 68.00.2

MHR 68.50.3

Table 2: Results on SuperNI dataset. Sub-
scripts are standard deviation.

Additional routing heads is more beneficial
than extra modules In the original Poly ap-
proach, a tradeoff between capacity and param-
eter efficiency can be achieved by adding ex-
tra modules for each adapter layer. However,
this results in a linear increase in the number of
multi-task parameters, which can become im-
practical. To explore a more effective tradeoff,
we investigate the option of adding additional
routing heads instead of extra modules. Fig 3
(right) presents the comparison between the two
approaches. It demonstrates that increasing the
number of routing heads leads to better perfor-
mance compared to adding more modules. Importantly, the benefit of multi-head routing is twofold:
it provides increased expressivity for the model, while also maintaining parameter efficiency. This
finding highlights the advantage of multi-head routing as a more effective approach for balancing
expressivity and parameter count in few-shot adaptation scenarios.

T0 Dataset Avg. Test
Backbone T0-11B
T-Few Liu et al. [2022] 72.50.9

LoRA 72.31.0
Poly-z 70.00.6
Poly 74.90.6
MHR-z 72.90.8
MHR 74.70.6

Table 3: Few-shot results over 11B pa-
rameter backbones.

Routing-based methods also excel at the 11B scale We
proceed to evaluate if Poly and MHR surpass established
PEFT approaches when trained over a larger model back-
bone. To accomplish this, we employ the 11B version
of T0. As depicted in Tab. 3, routing-based methods
once again outshine standard adapter training, surpassing
our reproduction of the previous state-of-the-art in Liu
et al. [2022] by over 2%. We observe that Poly and MHR
show similar performance in standard fine-tuning, but MHR
z-tuning remains more performant in routing-only fine-
tuning. Indeed, MHR-z (221K params) outperforms Poly-z
(3.5K params) by 2.9%, while still remaining more param-
eter efficient than Liu et al. [2022] (1.1M params).

5.2 Why do routing-based PEFT methods yield superior performance?

While our proposed methods have demonstrated promising results across a broad spectrum of datasets
and varying adaptation parameter budgets, the question of why routing-based PEFT exhibits superior
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Figure 3: Left: Gradient alignment between tasks during multi-task pretraining. Right: Increasing the
number of heads offer better scaling properties than increasing the number of modules.

performance remains unanswered. In this section, we aim to uncover the key components that drive
MHR’s superior performance.

Learning the Routing Function is essential Given that Poly and MHR have access to more
parameters than standard adapters during multi-task pretraining, we investigate whether this, and
not the routing mechanism, is responsible for their superior performance. To do so, we compare
them to a baseline approach. Instead of learning the routing function, we randomly assign a binary
module allocation to each data point in a minibatch, disregarding task information. This random
routing approach, akin to Wang et al. [2022b], allows us to directly assess the influence of additional
parameters during multi-task training. At test time, the learned modules are averaged into a single
one before fine-tuning; we therefore refer to this baseline as Random-µ. On the T0 benchmark with
the T5-XL backbone, Random-µ performs similarly to a standard LoRA adapter (66.0%), while
Poly and MHR outperform it by 2% and 3.1% respectively. Therefore, we conclude that learning a
routing function is crucial, and merely increasing capacity during training does not directly lead to
improvements.

MHR fosters transfer and mitigates interference across pretraining tasks Recognizing the pivotal
role of the multi-task pretraining step in bolstering Poly’s performance, we explore the extent of
transfer and interference across training tasks. By monitoring the average gradient alignment for
each task pair (in terms of cosine similarity) throughout the training process, we are able to gauge
the level of positive transfer. As Fig. 3 (left) shows, MHR displays a greater degree of gradient cosine
similarity across tasks compared to other PEFT alternatives, including Poly. This finding suggests
that the enhanced flexibility offered by multi-head routing may serve to mitigate interference across
tasks to a larger extent than standard routing while simultaneously promoting positive transfer.

5.3 Is routing important for task generalization?
T0 Dataset Test Acc.
LoRA 66.01.6
AdapterSoup 62.11.0
Poly 68.00.8
Poly-µ 67.80.6
MHR 69.11.1
MHR-µ 69.10.9
SuperNI Rouge-L
LoRA 67.60.8
Poly 67.80.8
Poly-µ 68.30.5
MHR 68.50.6
MHR-µ 68.50.8

Table 4: Evaluating the impact of modular
adaptation at test time.

We assessed the importance of routing during pre-
training. We now proceed to verify whether it is
important to learn routing during few-shot adapta-
tion, too. Poly-µ and MHR-µ consistently outper-
form LoRA, and match the performance of Poly / MHR
(Tab. 4). This demonstrates that, for few-shot adap-
tation, the average of the pre-trained modules pro-
vides a better initialization than learning an adapter
shared across all the tasks during pre-training. The
consistently superior performance of Poly-µ with
respect to Random-µ and AdapterSoup stresses the
importance of routing during multi-task pre-training
(but not during adaptation), which provides an effec-
tive adapter initialization for few-shot learning. This
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Method Zero-Shot Test on 11 Held-out Tasks
k = 0 k = 1000 k = 5000 k = 10000

Backbone T5-XL
LoRA 56.5 56.0 56.1 55.7
Poly-µ 46.0 53.0 56.8 56.3
MHR-µ 48.0 58.0 57.1 56.3

Backbone T0-11B [Sanh et al., 2022] 61.0
LoRA 61.2 61.6 61.5 61.5
Poly-µ 62.1 63.6 63.9 64.4
MHR-µ 63.5 64.5 64.5 64.4

Table 5: Zero-shot performance for MHR and the baselines, reported as the average over the 11
evaluation datasets from Sanh et al. [2022]. To obtain these zero-shot results, we average the learnt
Poly/MHR adapters before performing k additional fine-tuning steps on the multi-task pretraining
data. This effectively enables zero-shot transfer to downstream tasks using the same amount of
parameters/flops as the baseline LoRA. MHR outperform baseline LoRA by up to 3% absolute
accuracy points on T0-11B.

finding could potentially inspire future work for improving meta-learning and weight-averaging
approaches [Izmailov et al., 2018].

MHR-µ excels at zero-shot learning For many downstream tasks of interest, additional labelled
data may not be available. In such settings, it is unclear how to leverage MHR-µ and Poly-µ methods.
To address this, we fine-tune the average of the multi-task trained adapters on the multi-task pre-
training data (instead of using the downstream few-shot data), for an additional k steps. The results
are presented in Table 5. We find that without any additional fine-tuning (k = 0), averaging the
adapters does not yield good results. This is due to a potential mismatch between adapters learned
via task-specific routing, and the uniform routing strategy. We can observe that when fine-tuning
the average of the adapters on the multi-task pre-training data for an additional k steps, MHR-µ
show strong performance when evaluated in a zero-shot manner. For a fair comparison, we also
additionally fine-tune LoRA for the same number of additional steps. Our best model achieves a
zero-shot performance of 64.5 on top of T0-11B, achieving an absolute gain of 3.5% accuracy points.

6 Related Work

Multi-task learning is effective for low-resource tasks [Wei et al., 2022, Aribandi et al., 2022, Sanh
et al., 2022], as knowledge can be borrowed from similar tasks by sharing the model parameters. Multi-
task learning has also been applied across languages and modalities [Ponti et al., 2019, Bugliarello
et al., 2022]. In the context of NLP, several families of methods enable learning new tasks from
a limited set of labelled examples. Few-shot in-context learning [ICL; Brown et al., 2020], where
examples of a new task are concatenated into an input prompt, enables models to generalize to unseen
tasks without any gradient-based training. Such approaches are however sensitive to the prompt
format and example ordering [Zhao et al., 2021]. More importantly, ICL methods incur a significant
compute overhead, as for every prediction, the full set of examples must be processed by the model
[Liu et al., 2022]. To remedy this, many parameter-efficient fine-tuning (PEFT) methods have been
proposed as an alternative to ICL, where a small number of new parameters are added over the frozen
pretrained network. To name a few, LoRA [Hu et al., 2022] injects learnable low-rank matrices into
each Transformer layer. Alternatively, the learnable matrix can be sparse, selecting nonzero shifts via
the Lottery-Ticket hypothesis [Ansell et al., 2021] or via their approximate Fisher information [Sung
et al., 2021]. Finally, prefix-tuning methods [Li and Liang, 2021] prepend learnable embeddings to
the input or intermediate representations to specialize the model towards a downstream task.

Modular networks partition their parameters into several expert modules, each of them specialized
to handle specific sub-tasks [Jacobs et al., 1991, Kirsch et al., 2018]. Modular networks are an
appealing solution to the problem of adapting to unseen tasks [Corona et al., 2021], as the model
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can leverage its existing modules and recombine them in a novel way, thus achieving systematic
generalization [Bahdanau et al., 2019]. They have also been tested in learning scenarios with data
presented sequentially [Ostapenko et al., 2021], and with changing environments Goyal et al. [2021].
In NLP, mixture-of-experts (MoE) models [Shazeer et al., 2017, Fedus et al., 2022], where a learned
gating mechanism routes token representations to appropriate experts (Feed-Forward layers), have
shown success in scaling the number of parameters while retaining time efficiency. This results in
higher performance when compared to their dense counterparts using a similar compute budget.

7 Conclusions

In this paper, we tackle the challenge of generalizing to new tasks based on a few examples after multi-
task pre-training. Specifically, we focus on Polytropon [Ponti et al., 2023], a model where each task
is associated with a subset of adapters by a routing function. We investigate how varying the level of
control afforded by the routing function impacts performance on two comprehensive benchmarks for
multi-task learning, T0 and Super-Natural Instructions. First, a newly proposed variant of the routing
function, where multiple heads are responsible for different subsets of input dimensions, improves
consistently over all other baselines, including LoRA and (IA)3 adapters. Second, we identify the
cause of the success of routing in its ability to prevent interference between tasks, as it yields a better
alignment between their gradients. Third, we find that simple averaging of all multi-task pre-trained
adapters before few-shot adaptation to new tasks provides comparable performance, thus offering
state-of-the-art performance for single-adapter few-shot learning. Multi-head routing demonstrates
the importance of fine-grained adapter selection for sample-efficient generalization and holds promise
to improve other modular methods, such as Mixtures of Experts [MoEs; Fedus et al., 2022] in future
research.
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A Appendix

A.1 Additional Results

More detailed numbers on the T0 Sanh et al. [2022] and SuperNI Wang et al. [2022a] datasets
using different backbones, and different adapter layouts over the base model are found in Table
6. Multi-Task params is the number of additional parameters that must be conserved after

Model Multi-Task Params Adaptation Params Avg. Test

T0 Dataset

Backbone T5-XL-LM
Multi-Task Full Finetuning + LoRA 2.8B 2.2M 68.9x.x

(IA)3 540K 540K 62.40.4

AdapterSoup 84M 2.2M 62.11.0

LoRA 2.2M 2.2M 66.01.6

LoRA-big 35M 35M 65.40.9

Poly-z 17M 3.5K 66.40.3

Poly 17M 2.2M 68.01.0

MHR-z (64 h) 17M 220K 68.30.8

MHR (64 h) 17M 2.2M 69.11.0

Backbone T0-3B
T-Few Liu et al. [2022] 540K 540K 66.20.5

AdapterSoup 84M 2.2M 66.10.6

LoRA 2.2M 2.2M 67.40.8

LoRA-big 35M 35M 68.00.8

Poly-z 17M 3.5K 65.31.0

Poly 17M 2.2M 69.00.8

MHRz (64 h) 17M 220K 68.41.2

MHR (8 h) 17M 2.2M 69.31.2

Backbone T0-3B light version : (k, v, ff layers only)
l-LoRA (rank 1) 934K 934K 66.20.9

l-LoRA (rank 16) 15M 15M 67.61.1

AdapterSoup (l-LoRA) 35M 934K 64.91.0

l-Poly-z 7.5M 2.1K 62.91.2

l-Poly 7.5M 934K 68.00.5

l-MHRz (32 h) 7.5M 74K 66.81.1

l-MHR (8 h) 7.5M 934K 68.50.7

SuperNI Dataset Rouge-L

Backbone T5-XL-LM light version : (k, v, ff layers only)
l-LoRA 934K 934K 67.60.8

l-LoRA-big 18M 18M 67.20.7

l-Poly-z 7.5M 2.1K 64.60.3

l-Poly 7.5M 934K 67.80.8

l-MHRz (64 h) 7.5M 147K 68.00.2

l-MHR (8 h) 7.5M 934K 68.50.3

Table 6: (top) Results on T0 dataset Sanh et al. [2022], we report the mean of the best validation
accuracy for each test task, when evaluated every 50 train epochs. T-Few is our reproduction of the
results in Liu et al. [2022]. LoRA-big means a LoRA adapter with a larger rank. (bottom) Results on
SuperNatural Instructions dataset.

multi-task pretraining to enable transfer to a downstream task. Adaptation Params refer to the
number of parameters required to learn a new downstream task. For e.g. Poly and MHR, the multi-task
parameters includes the learned modules, but not the routing over the training tasks, as these are not
required for transfer on a new task. Moreover, variants which average the learned modules prior to
fine-tuning (MHR-µ and Poly-µ) will have both multi-task and adaptation parameters equal to that of
a single shared adapter, since after multi-task pretraining one can average the modules.
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A.2 Navigating the parameter efficiency / performance trade-off of tuning only the routing

Here we provide additional results on how different routing based methods can be more expressive
when only learning a new routing function (over frozen modules) to adapt to a new task.
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Figure 4: Different ways to control the expressivity of routing based methods. Left : In Polytropon,
one can only add additional modules, resulting in a linear parameter increase. Right : In MHR,
additional heads only introduce routing matrices Z, resulting in a negligible parameter increase.

In Fig. 4 (left), we see that in order to build more expressive routing functions Z, in Poly one can
only do so by increasing the number of skills at each layer. However, this has a significant impact on
the number of multi-task parameters which much be kept in order to perform few-shot transfer. MHR
on the other hand, can increase routing capacity in a much more parameter efficient way.

A.2.1 On the granularity of routing tensor in MHR

Here we provide additional results when modifying the granularity of Z for MHR. We see that one can
easily trade-off more parameters for better performance.
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B Broader Impact

In our work, we focus on advancing parameter-efficient fine-tuning methods for cross-task general-
ization. While our research primarily addresses technical challenges and performance improvements,
when applying such methods, it is crucial to consider the potential negative societal impacts. Specif-
ically, we believe that prior to applying our proposed adaptation method, critically examining the
potential biases and ethical implications of the underlying large language model, and the data itself
must be properly addressed. This includes issues related to fairness, privacy, and the spread of
misinformation.
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