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Abstract

Transformer models learn to encode and de-
code an input text, and produce contextual to-
ken embeddings as a side-effect. The mapping
from language into the embedding space maps
words expressing similar concepts onto points
that are close in the space. In practice, the
reverse implication is also assumed: words cor-
responding to close points in this space are
similar or related, those that are further are not.

Does closeness in the embedding space extend
to shared properties for sentence embeddings?
We present an investigation of sentence embed-
dings and show that the geometry of their em-
bedding space is not predictive of their relative
performances on a variety of tasks.

We compute sentence embeddings in three
ways: as averaged token embeddings, as the
embedding of the special [CLS] token, and as
the embedding of a random token from the sen-
tence. We explore whether there is a corre-
lation between the distance between sentence
embedding variations and their performance on
linguistic tasks, and whether despite their dis-
tances, they do encode the same information in
the same manner.

The results show that the cosine similarity
— which treats dimensions shallowly — cap-
tures (shallow) commonalities or differences
between sentence embeddings, which are not
predictive of their performance on specific
tasks. Linguistic information is rather encoded
in weighted combinations of different dimen-
sions, which are not reflected in the geometry
of the sentence embedding space.

1 Introduction

Projecting words and larger pieces of text into an
n-dimensional space allows us to map linguistic ob-
jects into a well-defined mathematical space, with
specific metrics and operations. Building this pro-
jection relies on equating word similarity in lan-
guage with closeness between their corresponding

vectors in the embedding space, that is, the embed-
ding space is smooth (Bengio et al., 2013). The
smoothness of the embedding space comes with
several assumptions: similar or related words or
sentences will be projected to points that are close
in the space, and words or sentences correspond-
ing to points that are close in the space are similar
or related. Distance or similarity metrics in this
space are the basis for the functioning of all current
LLMs and their applications, and understanding
the topology of the embedding space can bring in-
sights both into the successes and also the failures
of these models.

Analysis of the embedding spaces of the tokens
through similarity measures have revealed that the
spaces of many LL.Ms are anisotropic, with most
words appearing in a narrow cone in this space, thus
making distance metrics less informative (Timkey
and van Schijndel, 2021; Cai et al., 2021). These
analyses are shallow: each dimension of these vec-
tors is treated independently of the other dimen-
sions. The dimensions may encode some informa-
tion at a shallow level — e.g. length, or extreme
word frequencies within the sentence (Nikolaev
and Padd, 2023b); sentence structure through the
words’ relative positions (Manning et al., 2020) —
but they do not correspond to linguistic features
such as phrase type, or semantic role. The inter-
play among embedding dimensions is complex, as
each can contribute to various linguistic features
in different measures (Bengio et al., 2013; Elhage
et al., 2022). This implies that the level at which
words and sentence embeddings share features is
not at a level that the cosine metric can detect. This
explanation may also shed light on the apparent
contradiction between the word embedding space
being anisotropic (Mimno and Thompson, 2017;
Timkey and van Schijndel, 2021; Cai et al., 2021)
while word embeddings still leading to good re-
sults on a variety of NLP tasks (e.g. (Mercatali and
Freitas, 2021; Bao et al., 2019; Chen et al., 2019)).



We present an investigation of sentence embed-
dings and show that the geometry of their embed-
ding space is not predictive of their relative per-
formances on a variety of tasks. We consider four
pretrained models from the BERT family . For
each model, we study and compare three variations
of sentence representations: the averaged token
embeddings, the embedding of the special [CLS]
token, and a random token embedding.

While the vocabulary is finite, the sentences in
a language are not. We therefore study the embed-
ding space of sentences by comparing variations
of representations for the same sentence, which
should (theoretically) be very close as they should
contain the same information. For this analysis,
we start with the commonly used method —the
cosine similarity— and establish how close these
representation variations are on a dataset of sen-
tences extracted from the ParaCrawl corpus (Bafién
et al., 2020) (Section 2.5). In the next step, we test
these sentence representations on the FlashHolmes
benchmark (Waldis et al., 2024), which contains
morphological, syntactic, semantic, discourse and
reasoning tasks, and test whether embeddings that
are close in the embedding space lead to similar
performance on linguistic tasks (Section 3). Fi-
nally, we mine for sentence structure information,
and test whether this kind of information is en-
coded consistently across the three representation
variations of a sentence (Section 4).

The results show that closeness in the embedding
space is not predictive of closeness of performance.
In particular, for ROBERTa, all representation vari-
ations of a sentence are close in the embedding
space, but their performance on the FlashHolmes
tasks are very different. For Electra and DeBERTa,
the Scrs representations are almost orthogonal
to the Spy ¢ representations, while having very
close performance on the FlashHolmes tasks, and
on deeper probing for syntactic structure.

These seemingly contradictory results between
distance in the embedding space and performance
on various tasks support the view that the geometry
of the embedding space is not a good proxy for
investigating shared information among sentence
embeddings. We discover linguistic features en-
coded through deeper combinations of weighted
dimensions. Our work sheds lights on the embed-
ding space, how linguistic information is encoded
in embeddings and that cosine similarity is a shal-
low metric that does not provide information about
(deep) shared features among words or sentences.

2 Sentence representation comparisons in
the embedding space

We investigate the embedding space of sentences,
and whether the common assumption — that close
points correspond to textual units that are similar —
is true for sentence representations.

2.1 Sentence representations

Averaged token embeddings: Sy The repre-
sentation obtained by averaging a sentence’s tokens
(without the special [CLS] and [SEP] tokens) is
frequently used as the sentence’s embedding (Niko-
laev and Pado, 2023a). This representation benefits
from the fact that the learning signal for transformer
models is stronger at the token level, with a much
weaker objective at the sentence level — next sen-
tence prediction (Devlin et al., 2019; Liu et al.,
2019), sentence order prediction (Lan et al., 2019).

The embedding of the special [CLS] token:
Scrs This representation is most commonly
used after fine-tuning for specific tasks such as
story continuation (Ippolito et al., 2020), sentence
similarity (Reimers and Gurevych, 2019), align-
ment to semantic features (Opitz and Frank, 2022).

The embedding of a random token: S7, . Us-
ing this as the sentence’s representation can reveal
how much contextual information each token em-
bedding contains.

We investigate these three variations of represent-
ing sentences in four pretrained transformer mod-
els: BERT!, RoBERTa?, DeBERTa?, and Electra®.
BERT is the baseline transformer model. RoOBERTa
is a variation of BERT with optimized training,
BPE tokenization, dynamic masking and without
a next sentence objective (Liu et al., 2019). De-
BERTA is another variation that introduces disen-
tangled attention and an optimized mask decoder
training (He et al., 2021). Unlike BERT, RoBERTa
and DeBERTa, Electra is not a masked language
model, rather implements a replaced token recogni-
tion model, predicting whether a token in the input
was produced by a generator model (Clark et al.,
2020). Electra also outperforms XL Net (Yang et al.,

1https://huggingface.co/google-bert/
bert-base-multilingual-cased
2https://huggingface.co/FacebookAI/
xlm-roberta-base
*https://huggingface.co/microsoft/
deberta-v3-base
*google/electra-base-discriminator
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2019) and MPNet (Song et al., 2020).The differ-
ences in the training regime and architecture of the
models are reflected in the relative position of the
embeddings in the embedding space (Section 2.5).

2.2 Analysis of the embedding space

Our investigation starts from shallow analyses
based on the cosine metric between variations of
sentence embeddings, tests these embeddings on
a benchmark covering different NLP tasks, and
probes for shared syntactic information, to estab-
lish whether closeness in the embedding space
means close performance on NLP tasks.

We first use the cosine metric to quantify how close
the tokens in a sentence are to each other (Section
2.4). According to the properties of the embedding
space, this provides information about how similar
the tokens are. Considering that most tokens in a
sentence are not actually similar, and that the token
embeddings are contextual, the cosine similarity
rather quantifies how much contextual information
these embeddings share.

We then use the cosine metric to quantify the dis-
tance between the three sentence representation
variations (Section 2.5). Since they represent the
same sentence, S g4/ and S¢ors encode the same
information, and the embedding space assumption
dictates that they be close in the embedding space.
ST,...4» as the encoding of only one token, encodes
less information about the sentence, and is expected
to be further apart in the embedding space from
both S 4v¢ and Scrg. We test whether these ex-
pectations are met.

In the third step, we use each variation of a sentence
representation to solve the FlashHolmes linguistic
tasks. The goal is to verify whether relative dis-
tances in the embedding space — quantified in the
previous step — are reflected in the relative perfor-
mance of the three sentence embedding variations
on the benchmark (Section 3).

Finally, we test whether the three sentence repre-
sentation variations all encode information about
the chunk structure of a sentence, and if they do,
whether it is encoded in the same way (Section 4).

2.3 Data

The dataset consists of 1000 sentences in six lan-
guages (English, French, German, Italian, Ro-
manian, Spanish) extracted from the parallel
ParaCrawl corpus (Bafién et al., 2020) (the datasets

are not parallel)’. Each sentence is represented
through the three representation variations.

2.4 Contextual information in token and word
embeddings

For each sentence s in the dataset, we compute
the cosine similarity between the embeddings of
every pair of tokens and every pair of words. The
density histogram plots are shown in Figure 1. For
BERT, the similarities among the token representa-
tions have a wider distribution, while they become
tighter and centered on a higher mean for the opti-
mized BERT variations, RoOBERTa and DeBERTa,
and for Electra. The word embeddings — as aver-
ages of their token representations — follow similar
trends. These results show that with the changes in
the models (relative to BERT), tokens and words
within the same sentence become closer in the em-
bedding space. According to the assumption that
close points correspond to similar words and vice-
versa, we must conclude that the optimizations over
the BERT base model lead to more sharing of con-
textual information among the words in a sentence.
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Figure 1: Histograms of cosine similarities for words
and tokens in 1000 English sentences (results for French,
German, Italian, Romanian and Spanish in appendix).
The y-scales are different for each subplot for better
visualization.

2.5 Distance between sentence representation
variations in the embedding space

The next step is an analysis of the distance between
the three types of embeddings —token (St ),
averaged token (S 4y @), sentence (Scrs)— for
several models from the BERT family. For each
sentence s in the dataset, we compute the cosine
between every pair of representations S 4y G(s),
Scrs(s) and St .(s). Figure 2 shows the his-
tograms of these comparisons.This analysis also

The data will be made available upon publication.
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Figure 2: Histograms of cosine similarities computed
for 1000 English sentences (results for French, German,
Italian, Romanian and Spanish in appendix). In yellow
are the distances between Sy and St ,, in blue
the distances between Scrs and St and in purple

rand’

the distances between Scrs and S g4y . The y-scales
are different for each subplot for better visualization.

shows how the sentence representations change
with the different training regimes and set-ups of
the considered models.

For all models, Sav¢ are very close to St .,
adding support to the observation from Section 2.4,
that tokens encode much contextual information.
The holistic sentence embeddings Scrg are quite
dissimilar from both S4v¢ and St , for all mod-
els except for ROBERTa. The optimized training of
RoBERTa has the effect of bringing all variations
of the sentence embeddings closer together. It is
interesting to note that Sy g are almost orthogonal
to Sqve and St , for both DeBERTa and Elec-
tra. Following the assumption of the smoothness
of the embedding space, this may indicate that the
holistic S¢rs embeddings encode different types
of information than the contextual embeddings. We
will test this in the next sections.

3 Sentence representation comparisons
on linguistics tasks

The previous analysis has shown that token em-
beddings encode much contextual information, and
they, and the averaged token embeddings, are dis-
similar from the embeddings of the special [CLS]
token. This section shows experiments that investi-
gate whether the similarities or differences noted in
the embedding space analysis are reflected in their
relative performances.

3.1 Dataset and code

We use the FlashHolmes benchmark (Waldis et al.,
2024) to test the three embedding types. There

are 216 tasks in morphology, syntax, semantics,
discourse and reasoning, code to test new models,
and a leaderboard for comparisons. The input of a
task is obtained from the specified model, and the
output is predicted using a classifier probe imple-
mented as a linear NN layer. The results on these
tasks will help determine what kind of information
the three types of embedding encode.

3.2 Performance comparisons

Figure 4 presents a summary of the performance
of the different sentence representation methods
for each task, and on the task averages.® The first
four bar groups show the number of times each
of the three sentence representation methods (rep-
resented as different shades of the model colour)
has achieved the best performance for that model.
The fifth group shows the number of times each
sentence variation for each model has had the best
overall performance. The sixth panel shows these
statistics as averages over all tasks.
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Figure 3: Comparison of embedding variations through
average performance on the FlashHolmes benchmark

On morphology, syntax and semantics the
S ava has most frequently the highest performance
for all models, while for reasoning and discourse
St...a 18 often the best. However, the results in
Figure 3 show little variation in the results on the
reasoning and discourse tasks, indicating that prob-
ably all results are close to the tasks baseline. For
the morphology, syntax and semantics tasks, the
performance of Electra’s Say¢ and Scgrs sen-
tence representations are very close in terms of
average performance, while St, . is much lower.
This seemingly contradicts the analysis in Section
2.5 which shows that S4v¢ and Scrg represen-
tations are almost orthogonal, while S 4/ and

®For detailed (task-level) results see figures 9-10 and tables
1-5 in the appendix.
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Figure 4: Statistics on the best sentence representation for each transformer, and overall for each task. The y-axis is
the count of tasks for which a method performs best. For each transformer, we count the methods that performed
best among the transformer’s variations. If all variations have the same score, we count them only if they match the

highest overall scores for the task.

St,... are very close. This supports the hypothe-
sis that the geometry of the embedding space is not
informative about the linguistic properties encoded
by the embeddings. There can be an alternative ex-
planation for the close performance of S 4y ¢ and
Scrs: they encode the same information, but in
different ways. We explore this in the next section.

Save and Scrs embeddings have high and
close performance for most task types.Compared
with the analysis of the embeddings as vectors in
the embedding space, this result is unexpected,
as for Electra and DeBERTa in particular, the
Scrs and the S 4y embeddings are almost or-
thogonal. Not only these embeddings have sim-
ilar performance, but even for variations of the
same task S 4y/g gives best results for one task,
and Scrs gives best results for the other. For
RoBERTa, where the cosine similarity between
these two variations is very high, their relative per-
formance is very different’.

4 Probing for structure

The previous experiments on a variety of mor-
phological, syntactic, semantic, discourse and rea-

"e.g. blimp_determiner_noun_agreement_with_adj_irre
gular_(1 and 2), blimp_irregular_plural_subject_verb_agree
ment_(1 and 2), blimp_principle_A_case (1 and 2),
blimp_principle_A_domain_(1 and 2)

soning tasks within the FlashHolmes benchmark
show very close performance on the S 41/ and
Scrs variations. In light of the analysis of the
relative position of embeddings in the embedding
space, these results are surprising: for Electra and
DeBERTa in particular, the two representations
seem to be almost orthogonal (see Figure 2). An
explanation could be that the same type of clues
necessary to solve these tasks is encoded in dif-
ferent manners in the two types of representations.
We test whether this is indeed the case, by focus-
ing on sentence structure. Sentence structure is
complex, relying on clues about phrase boundaries
and phrase properties. We test whether information
about sentence structure can be detected in the three
sentence representation variations, and whether it
is encoded in a similar manner. For this we use
the approach of Nastase and Merlo (2024), who
have shown that some types of structural informa-
tion — noun, prepositional, or verb phrase (chunks)
structure — is recoverable from sentence represen-
tations. We use their code and data to investigate
the sentence representations 8. Experiments that
use the training and test data encoded using the
same representation type will reveal whether the
targeted sentence structure is identifiable. Cross-

8https://github.com/CLCL—Geneva/
BLM-SNFDisentangling
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terms of average F1 scores over three runs. Detailed results in table 6 in the appendix.

representation experiments — using the training data
encoded with one type of representation, and the
test data encoded with the other two types — will
show whether the necessary information do detect
structure is encoded in the same way.

4.1 Dataset and code

The dataset consists of English sentences with
the syntactic pattern np (pp1 (pp2)) vp’, where
each np, pp1, pp2, vp can be in the singu-
lar or plural form, and the subject (np) always
agrees with the verb (vp). There are 4004 sen-
tences evenly split across the 14 chunk patterns.
An instance is built for each sentence as a triple
(in,out™, Out ™), where in is an input sentence
with chunk structure p, out™ is a sentence differ-
ent than ¢n but with the same chunk structure p,
and Out™ is a set of Nj,cqs = 7 sentences each of
which has a chunk pattern different from p (and
different from each other). The 4004 instances are
split into train:dev:test — 2576:630:798.

The system is a variational encoder-decoder. The
encoder consists of a CNN layer that splits the in-
put sentence embedding into layers of information,
which it then compresses using a linear layer into
a small latent representation. The decoder is a
mirror image of the encoder, but unlike a regular
variational auto-encoder, it does not reconstruct the
input. Sentence embeddings have 768 dimensions,
and are compressed on the latent layer to size 5.
To encourage the sentence chunk structure to be
encoded in the latent layer, each input ¢n will be de-
coded into out™ — a different sentence but with the
same chunk structure — using the V.45 sentences
with different structure than the input as contrastive
examples. While the system receives a supervision
signal — the correct output — it does not receive

°The pattern uses the BNF notation: pp; and pp2 may be
included or not, pp2 may be included only if ppl is included

explicit information about a sentence’s structure.
While there are 14 structure patterns in the data,
each instance contains 7 randomly chosen negative
instances. So with respect to the sentence structure,
there is only indirect supervision.

4.2 Performance comparison

We apply this approach to the provided sentence
data when using the Scr.s, Sav¢ and St , sen-
tence representations. We present two perspectives
of the performance: (i) in terms of F1 averages
over three runs (how well does the system perform
in building a sentence representation closest to the
correct one) shown in Figure 5 and (ii) an analysis
of the latent layer of the system, shown in Figure 6.
Despite high results on the syntactic and seman-
tic Holmes tasks, detecting the chunk structure is
not successful on the DeBERTa embeddings. This
may be because of DeBERTa’s optimized train-
ing, with disentangled attention matrices and token
embeddings with separate position and content sec-
tions, which leads to differently organized embed-
dings than BERT, RoBERTa and Electra. BERT
and Electra in particular show very high results,
with results on S7. . even higher than S¢ 5.
For the purpose of determining whether the vari-
ations in sentence representation encode the same
information in the same manner, we look at the
cross-testing results — training on one representa-
tion, and testing on the others (Figure 5). Despite
the differences revealed by the cosine similarity
analysis, where for Electra the S g representa-
tions are almost orthogonal to Sy and St .,
these experiments show that all three representa-
tions encode information about the chunk pattern
in a sentence, and moreover, this information is
encoded in the same manner. Additional support
for this hypothesis comes from the analysis of the
latent layer. Figure 6 show the tSNE projection'®

%We chose the tSNE projection because it preserves the
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Figure 6: Comparison between models using Save (O), Scrs () and St , (+) in detecting the sentence
chunk structure. tSNE plots of the latent layer vectors of the training data represented using Sav g , Scrs and
ST,..a> obtained from a model trained on the S 4y representation. The latent layer vectors are expected to encode
the targeted information, i.e. the chunk structure. We note very sharp clusters for BERT and Electra

of the latent representations obtained from a model
trained using the S 4y ¢ sentence representations.
After training on the training data represented with
S av g, we pass through the encoder the sentences
in the dataset encoded with all sentence representa-
tion variations, collect all latents and project them
in 2D using tSNE.

The results on the task and the analysis of the
latent vectors provide complementary views about
whether structural information is encoded in the
sentence embeddings. We may obtain high results
on the task (choosing the sentence with the same
structure) while for each sentence representation
the vectors are mapped into a different area in the
latent space. The tSNE plots show that in fact
the different types of sentence representations are
mapped onto shared regions. This is highly signifi-
cant: it indicates that the clues based on which the
structure is detected is encoded in a similar manner

neighbourhoods. We use the tSNE implementation from scikit-
learn, with 2 components and default parameters.

in all the three sentence representations, regard-
less of the differences among them we have noted
during the previous experiments.

Nastase et al. (2024) have shown, through exper-
iments on several languages, that sentence embed-
dings do not encode chunk structure as an abstrac-
tion, but rather linguistic clues — such as phrase
boundaries and number information — that can be
assembled into the chunk structure. Considering
this, and the results in Figure 5 and the plots in Fig-
ure 6, this indicates that the S 4y and S¢rg en-
code the information about phrase boundaries and
number in the same manner and in the same loca-
tion for BERT and Electra in particular.

5 Word and text representations in the
embedding space

The evolution of the embedding space Proce-
durally and scale-wise, we have come a long way
from the first distributional models of language in-



spired by Harris (1954) and Firth (1957), with tens
of thousands of symbolic dimensions computed
over a small (relative to what is used today) cor-
pus (Schiitze, 1992).Symbolic dimensions are inter-
pretable, but also brittle, and overlapping, and were
tackled using clustering (Pantel and Lin, 2002; Blei
et al., 2003), or dimensionality reduction (Furnas
et al., 1988; Landauer and Dumais, 1997; Jolliffe,
2002; Blei et al., 2003). Landauer and Dumais
(1997)’s approach can be viewed as 3 layer neural
network, but Bengio et al. (2003) first used a neural
network to encode the probability function of word
sequences in terms of the feature vectors of the
words in the sequence. Pre-trained word embed-
dings, started with (Mikolov et al., 2013b,a), have
been shown to encode syntactic and semantic in-
formation, as regularities in the relative position of
words in the low-dimensional vector space (Etha-
yarajh et al., 2019). Currently, contextual embed-
dings are obtained with transformer-based models
(Vaswani et al., 2017). Models from the BERT fam-
ily (Devlin et al., 2019) produce token embeddings
and sentence representations as the embedding of a
special [CLS] token. Generative language models
do not produce sentence embeddings as such, al-
though approximations can be obtained using word
definition-like prompts (Jiang et al., 2024).

Embedding dimensions encode some linguistic
information: shallow information about sentences
Nikolaev and Padé (2023b), sentence-level infor-
mation (Tenney et al., 2019), including syntactic
structure — reflected as relative positions in the em-
bedding space that parallel a syntactic tree (Hewitt
and Manning, 2019; Chi et al., 2020). Deeper ex-
ploration through simple classification probes (con-
sisting of one linear NN), has shown that predicate
embeddings contain information about their seman-
tic roles structure (Conia and Navigli, 2022; Silva
De Carvalho et al., 2023), embeddings of nouns
encode subjecthood and objecthood (Papadimitriou
et al., 2021), and syntactic and semantic informa-
tion can be teased apart (Mercatali and Freitas,
2021; Bao et al., 2019; Chen et al., 2019).

The geometry of the embedding space The em-
bedding space of tokens appears to be anisotropic
(Mimno and Thompson, 2017; Timkey and van
Schijndel, 2021; Cai et al., 2021), which can ad-
versely influence model training and fine-tuning.
Anisotropy could be caused by a few dominant di-
mensions, that can skew the similarity profile of the
space (Timkey and van Schijndel, 2021). However,

the embedding space actually contains isotropic
clusters and lower-dimensional manifolds that re-
flect word frequency properties (Cai et al., 2021).

6 Discussion and Conclusions

The output of pretrained language models provide
embeddings for individual tokens, and a holistic
sentence embedding as the embedding of a spe-
cial token. A sentence is often represented through
the averaged embeddings of its tokens, or through
this special token embedding. In the extreme, we
could even use the embedding of a random token
to represent the sentence. In this work, we ex-
plored how different, or similar, these three types
of representations are, and what kind of informa-
tion they encode. What we found is a complex
picture. Shallow analysis through cosine similar-
ity measures shows how distinct these three rep-
resentations are, and how they change relative to
each other from a baseline system (BERT) with
various optimizations (RoBERTa), internal orga-
nization changes (DeBERTa) or changes in the
training regimen (Electra) of the system. These
shallow differences or similarities are not reflected
in benchmarks on five types of NLP tasks, where
seemingly orthogonal representations lead to very
similar results on many tasks.

The close performance of the seemingly very dis-
tinct sentence representations raises another ques-
tion: do they encode similar information in a sim-
ilar manner, or the results come from exploiting
different, or differently encoded, cues? Experi-
ments in detecting a sentence’s chunk structure —
the sequence of NP/VP/PP phrases and their gram-
matical number attributes — showed that in fact
information relevant for reconstructing this struc-
ture is encoded in the same manner, as a system
trained on one sentence representation has a very
similar performance when tested on the other.

The experiments presented in this paper add to
the complex picture of what kind of information
the embeddings induced by pretrained transformer
models encode, and how. The results show that
embedding dimensions do not encode linguistic
information superficially, rather linguistic features
are encoded through more complex weighted com-
binations of features. Some of these are shared
among all tokens in a sentence, and within the
holistic sentence embedding.



7 Limitations

Synthetic data with 14 structure patterns To
study the deeper question of whether the different
sentence embedding variations encode sentence
structure the same way, we have used a synthetic
dataset, with limited variation in sentence structure,
expressed as a sequence of chunks, or phrases. In
future work we plan to investigate what level of
structure complexity can be recovered from these
embeddings, and whether at some complexity level,
differences among the embedding variations be-
comes apparent.

Raw output of transformer models We have
focused on four pretrained models from the BERT
family, and analyzed their sentence embedding
space through cosine similarity, solving tasks and
detecting sentence structure. We have excluded
from the related work and analysis sentence trans-
formers, which fine-tune sentence embeddings for
similarity. Our aim was to study the raw output of
the transformer models, and understand the prop-
erties of the different types of embeddings they
induce.

No generative language models We focused on
models form the BERT family because they explic-
itly induce sentence representations as the embed-
ding of a special token, or they can be computed
as averaged token embeddings. It was crucial for
our experiments to have several sentence represen-
tation variations to compare. Generative models
do not produce sentence embeddings. Represen-
tations approximating such representations have
been induced using word definition-like prompts
(Jiang et al., 2024; Zhang et al., 2024). Our inter-
est has been to study more fundamental properties
of transformer-based models, rather than test the
performance of sentence representation approxima-
tions.

Cosine similarity We reported analyses in terms
of cosine similarity which is the most commonly
used in the training objective. The analysis in terms
of euclidean distance did not provide additional
insights, so it was not included.
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A Words vs. token embedding similarities distribution

Figure 7 shows a comparison between the distribution of token and word similarities within the same
sentence. A tighter distribution — as displayed by RoOBERTa embeddings — indicates that all contextual
embeddings are closer to each other, and thus encode more contextual information. BERT and Electra
embeddings display distributions with larger standard deviation, indicating that there is more variation
in the information encoded in the individual tokens and words. Electra token/word distances have a
higher mean, indicating that these embeddings encode more contextual information than BERT ones. All

distributions have a high spike close to 0. These pairs include punctuation and "suffix" tokens.

Lang

BERT

DeBERTa

English

eeeeeeee

nnnnnnnnnnn

DR

French

ke bert

German

worde oberss

vorde ceberta

Italian

words. deberta

Romanian

Spanish

[ep—

Figure 7:

Cosine

similarities

histograms

glish/French/German/Italian/Romanian/Spanish.

computed for words

12

and

tokens

from

1000 En-



B Multilingual embeddings comparison

Lang

RoBERTa DeBERTa Electra

English

French

German

Italian

Romanian W .
e o

Spanish i

Figure 8: Cosine similarities histograms computed for 1000 English/French/German/Italian/Romanian/Spanish
sentences. In yellow are the distances between S 4y ¢ and S, in blue the distances between Scrs and St
and in purple the distances between Scrs and Sy .

and?’ and’

13



Morphology tasks

0.4
02
0.0

C Task results

ZubeAsTId

TIbEASTId

Zube A sTId

TabeASTId

A-dised ™

fpy-dised w1

NIRi 160 sy

ofesibe nsK

Zi6e"NAP

Tibe NP

Zunibe N

T b N

ZuiTpy-ibe

T i Tpy-i6e

2 Ipy-16e7N-1

TIpy-16e7N-

abe"N3p

Jbe iu"due

16e"pubdue

Syntactic tasks

sodx
1s1pde6 eyt
deb ey um
ISIpTIRYY UM
euTum
de6Iqns ym
de6lqo ym
Isym

Isip~deb ym
sodn
dap~aan
suen
Zbuisies sA Tyl
T Buisies™sA Tyt
15u03doy
astesTfqns asat
asieslqo aiay
auTgns
1si7lqnsjuas
adodsTidu bau
2 urewiop v i
T urewop y 10
Zasery
Teser v
v

sod

Z anissed

T anissed
o
adodsTidu
Jew o idu

(idu

bisq Y3y
OUpISITIq Y3
asierlqoy
Pi10037[SI
Ipest

suenur
anojeoydul
sisdijp
ZiequTiR
Tieq uT|R
61e"dosp
1x37Iq0"pi00d
1q7 Y3 pI00d
uTgnsTjuo>
auTlgoTu0d
Snes-A"juod
1SI"dN " dwod
annesne
uoid Igns-ase>
Guipuig

dems 6ie
nns b
doipbue
17Tans"wiue
ssed Iqns wiu
UG uOIdI6E™!
D2 AS ube
xne b A ibe
bASTIBe
dd"As76e
Isi"fpe

Yys welbz

m clectra_S-avg
= electra_CLS

Semantic tasks

RN s L

10
0.8
06
0.4
0.2
0.0 I

-04

asuaspiom
swn
Zjuenbasau
Tuenb 250
Y e uAs
Z7uenbdns
TTuenbdns
s
1dubau"juas
Juasquzs
ssep
a2y juenb

dnsTjuenb

ped™sipaxd

pasn”semid
10y semd
]
61e"paid™id
u0>7shydid
yedd
Ao™0ad
Bnsurid
yeTpawxaid
shyd sisixaid
anpTpaisixaid
129 parsieid
3u0>73576y>ud
156U id
ssod by>7d
ssod Jo by>7d
S0/ 6y>7d
aseme™d
Juasaid ised
anssed

N0 uew ppo
Zsaid idu

T said"idu
sa1d 1" 1du
12u

sod”enn 3w
Aennjaw
yon 3w
278w
duTew

ey

wo

Aurpioo
PUBTIgns 3uo>
wiueTlgns o
pubiqoTuo
wiue g0 ju0>
3s5UaY AJU0d
uApTAIu0>
wed s b
pusibie

nsqe”sI b

tasks

1C

electra_Rand

W deberta_S-avg
= deberta_CLS
deberta_Rand

14

N roberta_S-avg
- roberta_CLS
roberta_Rand

e bert_CLS
bert_Rand

Detailed results on the FlashHolmes benchmark, on morphology, syntax and semant

Figure 9



Discourse tasks

0.8
0.6
0.4
0.2
0.0
g € £ B E £ E e 2 £ £ E
& g £ o £
g 2 E 8 g 3 g : ° g 3 3
g : 2 2 iy g z :
5 s s £ g 5 E g
8 8 e
Reasoning tasks
1.0
0.8
0.6
0.4
0.0 M T ” ? T T ” ? T T ’ g T T ’
s M o M s = ° A o > A P A £ o o :
% H £ > z g 2 g g g 2 g g 2 g g g 3 2
g E g g b= 5 g g | g 2 g s A g ¢ g g
] 5 g g § £ ¢ g g g , g 5 H ) g g )
@ S g 8 z g £ @ & % < 5 5
o £ 8 & 4 53 S
& ] g g g ] ]
s ° # 5 g
s g
mmm bert S-avg  mEm roberta S-avg mmm deberta S-avg mmm electra_S-avg
e bert_CLS == roberta_CLS = deberta_CLS mem electra_CLS
bert_Rand roberta_Rand deberta_Rand electra_Rand

Figure 10: Detailed results on the FlashHolmes benchmark, on discourse and reasoning tasks
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D Probing for structure

train on  test on

BERT

RoBERTa

DeBERTa

Electra

CLS CLS
AVG

RAND

0.896 (0.088)
0.910 (0.078)
0.919 (0.070)

0.789 (0.027)
0.793 (0.026)
0.792 (0.023)

0.227 (0.058)
0.130 (0.025)
0.139 (0.019)

0.955 (0.006)
0.971 (0.003)
0.966 (0.002)

AVG CLS
AVG

RAND

1.000 (0.000)
0.999 (0.001)
1.000 (0.000)

0.943 (0.013)
0.936 (0.017)
0.939 (0.018)

0.174 (0.020)
0.325 (0.087)
0.327 (0.096)

0.999 (0.001)
0.997 (0.001)
0.999 (0.001)

RAND CLS
AVG

RAND

0.998 (0.001)
0.998 (0.002)
0.997 (0.003)

0.888 (0.009)
0.895 (0.004)
0.886 (0.005)

0.163 (0.023)
0.233 (0.048)
0.221 (0.048)

0.999 (0.001)
0.998 (0.001)
0.997 (0.003)

Table 6: Detailed results on detecting chunk structure in sentence embeddings. Averaged F1 scores (standard

deviation) over three runs.
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