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Abstract
Molecular deep learning models have achieved re-
markable success in property prediction, but they
often require large amounts of labeled data. The
challenge is that, in real-world applications, labels
are extremely scarce, as obtaining them through
laboratory experimentation is both expensive and
time-consuming. In this work, we introduce
MoleVers, a versatile pretrained molecular model
designed for various types of molecular property
prediction in the wild, i.e., where experimentally-
validated labels are scarce. MoleVers employs a
two-stage pretraining strategy. In the first stage,
it learns molecular representations from unla-
beled data through masked atom prediction and
extreme denoising, a novel task enabled by our
newly introduced branching encoder architecture
and dynamic noise scale sampling. In the sec-
ond stage, the model refines these representa-
tions through predictions of auxiliary properties
derived from computational methods, such as
the density functional theory or large language
models. Evaluation on 22 small, experimentally-
validated datasets demonstrates that MoleVers
achieves state-of-the-art performance, highlight-
ing the effectiveness of its two-stage framework
in producing generalizable molecular representa-
tions for diverse downstream properties.

1. Introduction
Experimental chemistry is the domain of small data. De-
termining the property of a molecule requires carefully de-
signed experiments, constrained by material costs, reaction
time, and specialized infrastructure. This inherent scarcity
forces chemists to extract insights from limited data points
using statistical models, computational tools, and expert in-
tuition, which in turn can be used to predict the properties of
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a novel molecule. With recent advances in deep learning, re-
searchers have increasingly turned to deep neural networks
for learning molecular property prediction directly from data
(Yang et al., 2019; Rong et al., 2020; Fang et al., 2022; Zhou
et al., 2023). However, these models typically rely on large
datasets, where thousands or more labeled molecules are
available for training. Contrasts this to real-world datasets;
of the 1,644,390 assays in the ChemBL database (Zdrazil
et al., 2024), only 6,113 assays (0.37%) contain 100 or
more labeled molecules. This discrepancy poses a chal-
lenge: how can we adapt data-hungry deep learning models
to real-world applications, where even 50 training labels are
considered plenty?

One promising solution is through unsupervised pretraining
on large, unlabeled molecular datasets, followed by fine-
tuning on specific properties using few labeled molecules.
Recent studies have explored this approach (Liu et al., 2022;
Xia et al., 2023; Zhou et al., 2023; Yang et al., 2024), demon-
strating improvements on standard molecular benchmarks.
However, these benchmarks, such as MoleculeNet (Wu et al.,
2018), contain thousands of labeled molecules—far from
the reailty of most chemistry datasets. When evaluated on
small datasets, these pretrained models often show a sig-
nificant drop in performance, sometimes only marginally
surpassing the baseline of simply predicting the mean val-
ues of the labels. Clearly, we need to rethink pretraining
strategies in order to develop molecular property prediction
models that are effective in real-world, small-data regime.

In this work, we introduce MoleVers, a versatile pretrained
model designed for molecular property prediction in data-
scarce scenarios. MoleVers is pretrained in two stages to
maximize its generalizability to various types of down-
stream properties. In the first pretraining stage, we pro-
pose a joint masked atom prediction (MAP) and extreme
denoising enabled by a novel branching encoder architec-
ture and dynamic scale sampling. The extreme denois-
ing approach allows the model to learn from a more di-
verse set of non-equilibrium configurations by utilizing a
wider range of noise scales compared with conventional
coordinate-based denoising. In the second pretraining stage,
we train MoleVers to predict auxiliary properties that are
different from, but more straightforward to obtain than the
downstream properties. These auxiliary properties can be
calculated using density functional theory (DFT) or large
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language models (LLMs). We use DFT to calculate three
auxiliary properties: HOMO, LUMO, and dipole moment.
For LLM-based auxiliary labels, we propose to use pairwise
rankings of molecular properties instead of absolute val-
ues, as we find that the LLM is more reliable at predicting
relative rankings than absolute values.

To evaluate MoleVers, we introduce a new benchmark,
Molecular Property Prediction in the Wild (MPPW). This
benchmark consists of 22 small datasets curated from the
ChemBL database (Zdrazil et al., 2024). These datasets,
most of which containing 50 or fewer training labels, span
a wide range of molecular properties from physical charac-
teristics to biological activities. We standardized the pre-
training datasets and data splits to ensure fair comparisons
between MoleVers and several state-of-the-art pretrained
models. Experimental results show that MoleVers outper-
forms all baselines in 18 out of the 22 assays and ranks
second in the remaining four, while no baseline method
consistently ranks in the top two. Moreover, MoleVers
achieves state-of-the-art performance on large datasets in
the MoleculeNet benchmark (Wu et al., 2018), highlighting
the effectiveness of our two-stage pretraining strategy.

In summary, our contributions are: (1) a two-stage pre-
training framework with a novel extreme denoising task
enabled by our branching encoder and dynamic noise scale
sampling in the first stage, and auxiliary predictions based
on DFT or LLM in the second stage, (2) a novel branch-
ing encoder architecture that facilitates the extreme denois-
ing pretraining, (3) a novel approach to utilize LLM as
a molecular property ranker for auxiliary labels genera-
tion, and (4) the MPPW benchmark, designed to reflect
real-world data limitations. Source code is available at
https://github.com/ktirta/MoleVers.

2. Related Work
Deep learning-based molecular property prediction has
demonstrated remarkable successes. Early approaches use
graph neural networks (GNNs) to learn molecular represen-
tations directly from molecular structures (Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018). GNNs
typically learn molecular representations by updating the
node (atom) and edge (bond) features through a series of
message passing across neighboring atoms. Recently, pop-
ular property prediction benchmarks such as MoleculeNet
(Wu et al., 2018) are dominated by transformer-based mod-
els (Luo et al., 2022; Zhou et al., 2023; Yang et al., 2024)
that leverage self-attention mechanisms to learn long-range
interactions between atoms in a molecule.

Parallel to advances in architecture, pretraining has emerged
as an effective strategy to improve property prediction per-
formance when labeled data is limited. By pretraining on a

large, unlabeled dataset, a model can learn robust and trans-
ferable molecular representations that generalize well to a
variety of downstream tasks. Various pretraining strategies
have been proposed, including masked predictions (Wang
et al., 2019; Xia et al., 2023; Zhou et al., 2023; Yang et al.,
2024) and contrastive learning (Liu et al., 2022; Xia et al.,
2023; Wang et al., 2022). Additionally, denoising atom co-
ordinates and pairwise distance between them (Zaidi et al.,
2023; Zhou et al., 2023; Liu et al., 2023) have been shown
to lead to strong downstream performance. Pretraining via
denoising is equivalent to learning an approximate molec-
ular force field (Zaidi et al., 2023; Liu et al., 2023), which
could explain its effectiveness for improving downstream
property prediction performance.

Our work is also related to the few-shot molecular property
prediction. Previous studies in this area (Ju et al., 2023;
Guo et al., 2021; Wang et al., 2021) often formulate the few-
shot prediction as an N-way K-shot classification problem,
where N classes of molecules are sampled from a dataset,
each with K examples. As this formulation is not directly
applicable to regression tasks, we focus our discussion in
the following sections to studies that follow the pretraining-
finetuning paradigm.

3. Two-Stage Pretraining
Our primary objective is to develop an accurate molecular
property prediction model that works in extremely small
data regimes. To address this challenge, we propose a two-
stage pretraining framework specifically designed to im-
prove the generalization capability of our model, MoleVers.
This approach enables accurate property prediction with
only a few downstream labels. In the following subsections,
we discuss the details of MoleVers including the proposed
extreme denoising pretraining, branching encoder architec-
ture, and auxiliary label generation with density functional
theory and large language models.

3.1. Stage 1: Masked Atom Prediction and Extreme
Denoising

In the first stage of our pretraining framework, we propose
to train MoleVers on a large, unlabeled dataset using a com-
bination of masked atom prediction (MAP) (Zhou et al.,
2023) and a novel extreme denoising strategy, enabled by
our branching encoder and dynamic noise scale sampling.
The following subsections provide a detailed discussion of
these components.

3.1.1. MASKED ATOM PREDICTION

Inspired by masked token prediction in natural language pro-
cessing (NLP) (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020), masked atom prediction (MAP) involves train-
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Figure 1: Illustration of pretraining stage 1 using the proposed branching encoder. The primary encoder is assigned to the
MAP branch, while another encoder with identical architecture is assigned to the denoising branch. For pretraining stage 2
and finetuning, we only keep the primary encoder and discard the denoising encoder.

ing a model to predict the correct atom types in a partially-
masked molecule. This encourages the model to learn con-
textual relationship between atom types, capturing how they
co-exist in various molecules. Multiple works (Zhou et al.,
2023; Xia et al., 2023; Yang et al., 2024) have demonstrated
the effectiveness of MAP as a pretraining task, which ulti-
mately leads to better prediction models for the downstream
datasets. Following these studies, we use MAP as one of
the two pretraining tasks in the first pretraining stage.

3.1.2. EXTREME DENOISING

To learn information from 3D structures, we employ co-
ordinate and pairwise distance denoising. Zaidi et al.
(2023) and Liu et al. (2023) have shown that denoising
tasks are equivalent to learning a molecular force field that
is approximated with a mixture of Gaussians, p(m̃) ≈
qσ(m̃) := 1

N

∑N
i=1 qσ(m̃|mi), where p(m̃) is the force

field, qσ(m̃|mi) = N (m̃;mi, σ
2), and m1,m2, ...,mN are

the equilibrium molecules in the pretraining dataset Dtrain.

Here, we propose extreme denoising, a novel pretraining
task that leverages relatively large noise scales to improve
model generalization. Our hypothesis is that using higher
noise scale values (e.g., σ = 10 instead of σ = 1) exposes
the model to a broader set of non-equilibrium molecular
configurations, ultimately improving its ability to general-
ize. However, prior studies (Zhou et al., 2023; Yang et al.,
2024; Ni et al., 2024) have reported that larger σ values of-
ten deteriorate the downstream performance. To address this
challenge, we introduce two novel components: a branching
encoder architecture which decouple the MAP and denois-
ing pipelines, and the dynamic noise scale sampling.

Decoupling MAP from Denoising. We first motivate
the design choice of our branching encoder by examining
the complexity differences of the MAP and denoising tasks.
In MAP, the model learns to map masked atoms (Amask)
to their corresponding atom logits (Â), f(Amask) = Â,
while in coordinate denoising, it learns to map noisy co-
ordinates to their original values, g(P̃ ) = P̂ . The MAP
function is relatively simpler because it maps a finite set of
inputs (atom types) to a relatively compact set of outputs
(softmax-normalized logits). In contrast, denoising deals
with continuous input and output coordinates, making it
more complex as the number of possible mappings is much
larger. When a single model handles both MAP and de-
noising, the overall complexity is dominated by the more
challenging denoising task. The downstream performance
could then be negatively affected if the model struggles to
accurately fit the complex denoising function.

To mitigate this issue, we introduce a branching encoder
architecture, shown in Figure 1, that decouples the MAP and
denoising pipelines. The branching design ensures that the
complexity of the MAP task is only minimally affected by
the denoising task. Furthermore, we propose to connect the
two encoders with an aggregator module so that information
can flow between the two pipelines.

Branching Encoder. Inspired by prior work in NLP which
have found masked prediction to often be the most effective
pretraining tasks (Lewis et al., 2020; Raffel et al., 2020), we
set the MAP encoder as the primary encoder of the model.
The primary encoder, shown in Figure 1, will be further
pretrained in the second pretraining stage (Figure 2) before
being used for downstream predictions.
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Figure 2: In pretraining stage 2 and finetuning, we keep only the primary encoder to encode the atom and pair distance
representations. A prediction head is appended to the model to predict the numerical properties of the molecules, denoted as
yreg. LLM-generated ranking labels, denoted as yrank, can be used in the second pretraining stage or during finetuning.

The branching encoder takes as input the types A ∈ ZN

and coordinates P ∈ RN×3 of the N atoms in a molecule.
Following Zhou et al. (2023) and Yang et al. (2024), each
atom type is encoded into atom representation X ∈ RN×C

where C is the number of features. The coordinates are
transformed into pair distance representation D ∈ RN×N .
During the first pretraining stage, the atom representations
are masked with a ratio of r. We denote the masked atom
representations as Xm.

To extract the molecule representation F , we feed Xm and
D into the primary MAP encoder ϕp. The logits Â that
represent the pristine atom types are then predicted with the
MAP head ψp,

F = ϕp(Xm,D), Â = ψp(F ). (1)

In the denoising branch, we inject noise sampled from a
Gaussian distribution into X and P to obtain the noisy
atom representations and coordinates,

X̃ = X + ϵ1, P̃ = P + ϵ2, (2)

ϵ1 ∼ N (0, σ2IN×1), ϵ2 ∼ N (0, σ2IN×3), (3)

To enable information flow from the denoising task to the
primary MAP encoder, we augment X̃ with an aggregated
F using a pooling with multihead attention (PMA) module
(Lee et al., 2019),

X̃aug = [X̃, ϕa(F )], G = ϕd(X̃aug, D̃, σ), (4)

(X̂, P̂ , D̂) = ψd(G), (5)

where ϕd is the denoising encoder, ϕa is the PMA aggrega-
tor, D̃ is derived from P̃ , and X̂, P̂ , D̂ are the denoising
predictions of the denoising head ψd.

Dynamic Noise Scale Sampling. Conventional coordinate-
based denoising typically employs a fixed noise scale σ

throughout the pretraining (Zaidi et al., 2023; Zhou et al.,
2023). However, we find that dynamically changing the
noise scale during pretraining improves downstream per-
formance. Instead of using a static σ, we sample it from a
uniform distribution, σ ∼ U(0, a) where a > 1. This ap-
proach effectively alters the variance of the Gaussian from
which the noise is sampled, introducing a bias toward lower
noise levels compared to a N (0, a) distribution (Figure 8).
As a result, MoleVers is exposed more frequently to eas-
ier, low-noise samples while still ocassionaly encountering
challenging, high-noise samples, leading to a more guided
learning process. In contrast, a static and low-valued σ
limits training to only easy samples, whereas a static and
high-valued σ makes difficult samples more frequent, po-
tentially hindering the model’s convergence.

3.2. Stage 2: Auxiliary Property Prediction

We further improve the generalization capability of the pri-
mary encoder by incorporating auxiliary property prediction
in the second pretraining stage. This approach is inspired
by multi-task learning (Caruana, 1997), where a model is
trained to solve both the primary task and related auxiliary
tasks at the same time. For example, in facial analysis, the
primary task might be to predict facial landmarks, while the
auxiliary tasks could be to estimate head poses and infer
facial attributes (Zhang et al., 2014). Since these tasks share
common features, the model can use the training signals
from the auxiliary tasks to improve its performance in the
primary task.

Given that molecular properties are heavily influenced by
molecular structure, it is reasonable to assume that repre-
sentations useful for predicting one type of property could
also help in predicting others. Based on this intuition, we
propose to construct an auxiliary dataset of properties that
can be computed using relatively inexpensive computational
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methods, but are not necessarily identical to the properties
in the downstream datasets. Specifically, we select highest
occupied molecular orbital (HOMO), lowest unoccupied
molecular orbital (LUMO), and dipole moment as the aux-
iliary properties because they can be accurately computed
using density functional theory (DFT). We also note that
computing the auxiliary labels with DFT is significantly
cheaper than obtaining more downstream labels via real-
world experiments.

In this second pretraining stage, the model is trained in a
supervised manner,

F = ϕp(X,D), (ŷhomo, ŷlumo, ŷdipole) = ψq(F ), (6)

where ψq is the auxiliary predictor and ŷhomo, ŷlumo, ŷdipole
are the predicted auxiliary properties. Afterward, we append
the primary predictor for the downstream property to the pri-
mary encoder and finetune the model using the downstream
dataset, as illustrated in Figure 2.

3.2.1. AUXILIARY LABEL GENERATION WITH LLM

Another promising approach in our second pretraining stage
is to leverage large language models (LLMs) to generate the
auxiliary labels. LLMs have demonstrated strong general-
ization capability across a wide range of tasks due to their
exposure to diverse pretraining data. As a result, LLMs can
be used to generate molecular property labels directly within
the downstream task space with a fraction of computational
cost of DFT.

Directly predicting the absolute values of properties using
LLMs, however, often results in lower-quality labels. In-
stead of absolute values, we propose to generate relative-
valued labels in the form of pairwise rankings of molecules.
Pairwise rankings reformulate the problem as a binary clas-
sification task, where the input consists of two molecules
and the output is either 0 or 1, indicating which molecule
has a higher value for the given property. These outputs can
then be used either as auxiliary labels in the second pretrain-
ing stage, or as additional targets during finetuning (Figure
2). We provide a more thorough discussion of LLM-based
label generation in Appendix A.1.

4. Molecular Property Prediction in the Wild
Benchmark

The majority of existing molecular property prediction
benchmarks rely on datasets with large numbers of data
points, which do not reflect real-world scenarios where such
large datasets are rare. For instance, out of 1,644,390 as-
says available in the ChemBL database, only 6,113 assays
(0.37%) contain 100 or more molecules, demonstrating the
scarcity of molecular data in the wild where the molecular
properties are validated through real-world experiments. As

a result, molecular property prediction models that perform
well on existing benchmark may struggle to maintain the
same level of performance in real-world applications where
labeled data is limited.

To address this issue, we introduce Molecular Property Pre-
diction in the Wild (MPPW), a new benchmark specifically
designed for property prediction in low-data regimes. Un-
like existing benchmarks that often assume the availability
of large and labeled datasets, the majority of datasets in the
MPPW benchmark contain 50 or fewer training samples.
This reflects the challenge faced by molecular property pre-
diction models in the wild. Specifically, we have curated 22
assays from the ChemBL database (Zdrazil et al., 2024) that
encompass a diverse set of properties that includes physi-
cal properties, toxicity, and biological activity. A detailed
description of the datasets, including their soruces, can be
found in Appendix A.3.

5. Experiments and Results
In this section, we address the following questions through
a series of experiments: (1) Does the two-stage pretraining
framework, including LLM-based generated labels, improve
the downstream performance on datasets with significantly
limited labels? (2) How does each individual pretraining
stage contribute to the improvements? (3) Is our assumption
that larger noise scales improve the generalization capability
of the model correct? (4) Does the choice of pretraining
dataset affect downstream performance? Additionally, we
investigate how significant the impact of finetuning dataset
size is to the downstream performance, for which the results
are shown in the appendix.

5.1. Experiment Settings

Datasets. We use GDB17 (Ruddigkeit et al., 2012) as the
pretraining dataset for our model and other baselines to
minimize any performance differences that might arise from
the use of higher-quality pretraining datasets. We randomly
select 1M unlabeled molecules from the 50M subset to be
used in the first pretraining stage. We then sample 130K
molecules out of the 1M subset to construct the auxiliary
datasets for the second pretraining stage. The labels for
the DFT-based auxiliary dataset are computed with Psi4
(Smith et al., 2020), while ChatGPT4o is used for the LLM-
based auxiliary dataset. We use RDKit to generate 3D
conformations from SMILES (Weininger, 1988) for models
that take 3D graphs as input.

Models & baselines. We provide evaluation results of four
baselines: state-of-the-art GNNs, GraphMVP (Liu et al.,
2022) and Mole-BERT (Xia et al., 2023), as well as state-
of-the-art transformers, Uni-Mol (Zhou et al., 2023) and
Mol-AE (Yang et al., 2024). All models are implemented in
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Figure 3: Box plot of (a) mean absolute error (↓) and (b) R2 score (↑) on the 22 assays and 3 train/test splits in the MPPW
benchmark. The whiskers extend from the box to the farthest data point lying within 1.5x the inter-quartile range from the
box. We can see that MoleVers variants, especially MoleVers, achieve the best overall performance with significant margins
in both metrics. The full results are shown in Table 9 in Appendix.
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PyTorch (Paszke et al., 2019) and trained from scratch using
publicly available source code. Afterwards, the models are
finetuned for 50 epochs on the downstream train split, and
the downstream test split performance of the last epoch is
recorded in Table 9. There are three train/test splits for each
downstream dataset in the benchmark with a 1:1 train-test
ratio. We also provide comparisons with more baselines
on large downstream datasets in Appendix A.5. More de-
tails about network architecture and training strategy are
available in Appendix A.2.

We evaluated four variants of our proposed model,
MoleVers, on the proposed MPPW benchmark. These four
variants are different in second pretraining stage and finetun-
ing strategies: (1) MoleVersD2, pretrained on 130K labels
generated by density functional theory (DFT) during the
second stage, (2) MoleVersL2, pretrained on 1M pairs of
molecule ranking with labels generated by a large language
model (LLM) during the second stage, (3) MoleVersD2L3,
pretrained on 130K DFT-generated labels during the sec-
ond stage, then additionally finetuned using LLM-based
ranking labels of the downstream test-split molecules, (4)

MoleVers, pretrained on 130K DFT-generated labels. For
this latest variant, LLM-generated ranking labels are only
used if the absolute value of the rank correlation of the LLM
predictions on the downstream training split is greater than
0.4. Note that we finetune all variants on downstream train
labels.

Evaluation metrics. We use two metrics for evaluation:
mean absolute error (MAE) and the coefficient of determi-
nation (R2). Models with perfect predictions would achieve
R2 scores of 1, while simply predicting the mean of the
labels would result in an R2 score of 0.

5.2. Results on the MPPW Benchmark

The predictive performance of the baseline models, eval-
uated on the MPPW benchmark, is presented in Figure 3
(and extensively in Table 9 in Appendix). From Figure 3,
the poor R2 scores of the baselines, all below 0.14, indicate
that their predictions are only marginally better than simply
predicting the mean values of the properties. This highlights
the need for more effective pretraining methods suited to
small-data regimes. Note that Mole-BERT performs poorly
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on a few datasets, resulting in a significantly low average
R2 score.

All variants of MoleVers outperform the baselines in terms
of both average MAE and R2 scores. Figure 4 shows that
MoleVers L2, pretrained exclusively with LLM-generated
auxiliary labels, surpasses all baselines in 10 out of the
22 assays, and ranks second in 5 of the remaining assays.
It also achieves improvements of 8.42% in average MAE
and 97.84% in average R2 score compared to the best-
performing baseline. This proves that a general-purpose
LLM can be leveraged to generate weak labels for molecu-
lar property predictions. Such an approach can be useful in
scenarios where access to more accurate tools, such as DFT,
is limited due to resource or time constraints.

However, the availability of LLM-generated auxiliary la-
bels does not always yield the optimal performance, par-
ticularly if more accurate auxiliary labels are accessible.
For example, MoleVers D2, pretrained using DFT-based
auxiliary labels, outperforms MoleVers D2L3, which incor-
porates LLM-based labels during finetuning. Nonetheless,
MoleVers D2L3 still surpasses all baselines, outperforming
them in 11 out of the 22 assays and ranking second in 8 of
the remaining assays.

Interestingly, we observed that incorporating LLM-based
labels during finetuning can improve performance in some
assays. We hypothesize that the improvement correlates
with the quality of the LLM predictions for a given as-
say. To test this hypothesis, we incorporate LLM-based
labels during finetuning only when the absolute rank cor-
relation coefficient of the LLM predictions on the training
set is above 0.4. This strategy results in our main model,
MoleVers, which outperforms the baselines in 18 out of
the 22 assays and ranks second in the remaining 4 assays.
MoleVers demonstrates improvements of 13.67% in average
MAE and 133.09% in average R2 score compared to the
best-performing baseline. Overall, these results confirm that
the two-stage pretraining framework is an effective approach
for improving downstream performance when labeled data
is extremely limited.

5.3. Ablation of Pretraining Stages

We study the influence of each pretraining stage on the down-
stream performance of MoleVers through a series of ablation
studies. We use MoleVers D2 in all of our ablation studies.
As shown in Table 1, incorporating either the first or second
pretraining stage into the pipeline always leads to better
downstream performance compared with directly training
the model on the downstream datasets. Interestingly, the
improvements vary across assays: some benefit more from
the first pretraining stage, while others see more gains from
the second pretraining stage. This variation could be due to
the auxiliary properties we have chosen–HOMO, LUMO,

Table 1: Ablation studies of our pretraining strategy. We
report the mean MAE (↓) across three train/test splits. We
can see that combining both pretraining stage 1 and stage 2
gives the best performance on the downstream datasets.

Pretrain Pretrain Assay ID

Stage 1 Stage 2 1 2 3 4

- - 0.683 0.493 3.680 0.784
✓ - 0.592 0.420 3.161 0.431
- ✓ 0.501 0.343 3.301 0.346
✓ ✓ 0.417 0.298 2.999 0.337

Table 2: Ablation studies of the proposed branching encoder
and extreme denoising. B.E. and D.D. stands for branching
encoder and dynamic denoising, respectively. We report
the mean MAE (↓) across 3 train/test splits. Combining
branching encoder with varying noise levels of a broader
range yields the best downstream performance.

B.E. D.D. Max σ Assay ID

1 2 3 4

- - 1 0.481 0.426 3.393 0.475
- - 10 0.519 0.418 3.401 0.492
✓ - 10 0.521 0.336 3.301 0.476
✓ ✓ 10 0.417 0.298 2.999 0.337

and Dipole Moment–which are more related to intrinsic
molecular properties (e.g., assay 1), rather than complex
interactions (e.g., assay 3). Overall, the combination of both
pretraining stages consistently yields the best downstream
performance across all assays.

5.4. Ablation of Branching Encoder and Extreme
Denoising

The key components that enable denoising pretraining with
higher noise levels in the first stage are the branching en-
coder and dynamic noise scale sampling. Here, we study
the impact of each component to the downstream perfor-
mance. As shown in Table 2, using a single encoder for
denoising pretraining at larger noise levels generally leads
to worse prediction performance. In contrast, the introduc-
tion of the branching encoder can mitigate this issue in
most cases. Furthermore, combining the branching encoder
with dynamic noise scale sampling consistently yields the
best downstream performace, highlighting the importance
of dynamic over static noise scales.

5.5. Impact of Noise Scale on Downstream Performance

In Section 3.1.2, we hypothesized that using larger noise
scales for the denoising tasks can improve the downstream
performance. In Table 3, we show the downstream per-
formance of MoleVers with various noise scales.Note that,
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Table 3: Effects of noise scales on downstream performance.
We report the mean MAE (↓) across three train/test splits.
Larger noise scales tend to improve the downstream perfor-
mance of MoleVers. However, using excessively large noise
scales (e.g., max. σ = 20) leads to unstable training.

Max. Noise Assay ID

Scale σ 1 2 3 4

0.1 0.944 0.414 3.321 0.443
1 0.658 0.464 3.486 0.559
3 0.592 0.420 3.161 0.431

10 0.417 0.298 2.999 0.337
20 - - - -

similar to what has been observed in a prior work (Yang
et al., 2024), the pretraining become unstable when exces-
sively larger noise scales, e.g., b = 20, are used. Therefore,
we limit our ablation to a maximum value of 10.

We can see from Table 3 that, as the maximum noise scale
increases, we observe consistent improvements in perfor-
mance. The results confirm our hypothesis that larger noise
scales could improve the downstream performance if im-
plemented carefully. This also highlights the importance of
the proposed branching encoder, which facilitates denoising
pretraining with larger noise scales.

5.6. Impact of Pretraining Dataset Quality on
Downstream Performance

In Section 4, we hypothesized that much of the performance
gains observed in previous works may stem more from the
quality of the pretraining datasets than from the pretraining
method itself. Therefore, it is important to fix the pretraining
dataset used in a benchmark. To test this, we examine two
factors: the size of the pretraining dataset and its molecular
diversity. Intuitively, a larger and more diverse set of pre-
training molecules should lead to a better pretrained model
compared to smaller pretraining datasets with less variation.

Table 4 shows the downstream performance of MoleVers
when pretrained on datasets of varying sizes in the first
stage. We observe a general trend of improved downstream
performance as the pretraining dataset size increases. One
exception occurs in Assay 2, where the model pretrained on
100K samples outperforms the one pretrained on 1M sam-
ples. However, the R2 difference between these two models
is relatively small compared to other assays, therefore, the
overall trend remains valid. Furthermore, we investigate
the impact of pretraining dataset diversity by filtering out
molecules containing specific atom types. As shown in Ta-
ble 5, downstream performance generally improves as the
molecular diversity of the pretraining dataset increases.

These results confirm that large and diverse pretraining

Table 4: Impact of dataset diversity (stage 1), measured by
the number of training samples. We report the mean MAE
(↓) across 3 train/test splits. The performance of MoleVers
improves as the number of training samples increases.

Training size Assay ID

1 2 3 4

10,000 1.152 0.498 3.660 0.611
100,000 0.629 0.409 3.205 0.549

1,000,000 0.592 0.420 3.161 0.431

Table 5: Impacts of pretraining (stage 1) dataset diversity,
measured by the variety of atom types. The number of
molecules in each dataset is fixed to 100K for a fair compar-
ison. We report the mean MAE (↓) across 3 train/test splits.
M stands for miscellaneous atom types. The downstream
performance of MoleVers improves when the number of
unique atom types in the training set increases.

Atom Types Assay ID

1 2 3 4
C N O F M.

✓ ✓ - - - 1.093 0.496 3.584 0.628
✓ ✓ ✓ - - 0.845 0.431 3.428 0.480
✓ ✓ ✓ ✓ - 0.619 0.423 3.273 0.493
✓ ✓ ✓ ✓ ✓ 0.592 0.420 3.161 0.431

datasets can improve molecular property on downstream
datasets. They also highlight the importance of standard-
izing pretraining datasets when comparing different pre-
training methods. Specifically, using the same pretraining
datasets, as was done in the MPPW benchmark, ensures
that any observed downstream performance improvements
are the results of the pretraining strategy itself rather than
variations in the pretraining dataset quality.

6. Conclusion
We addressed the challenge of molecular property prediction
in the wild—scenarios where experimentally-validated la-
bels are significantly limited—using a two-stage pretraining
strategy. In the first stage, we introduced a novel extreme de-
noising pretraining task, enabled by our branching encoder
and dynamic noise scale sampling. In the second stage, we
pretrained the model with auxiliary labels obtained through
high-accuracy methods such as density functional theory,
or more computationally efficient approaches such as large
language models. We evaluated our model on a new bench-
mark, Molecular Property Prediction in the Wild, with ex-
tremely small datasets that were chosen to reflect real-world
data limitations. Our model consistently outperforms exist-
ing baselines, making it suitable for real-world applications
where labeled data are limited.
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A. Appendix
A.1. Leveraging Large Language Models for Auxiliary Labels Generation

In this section, we discuss the use of large language models for generating auxiliary molecular property labels. In our
experiments, we employ the ChatGPT 4o model as the label generator. The model is initialized with the prompt provided in
Table 6, and a CSV file containing pairs of molecules along with the target property of interest are uploaded to the model.
The predictions are saved in a downloadable CSV file. We have encountered instances where the model either declines to
provide outputs or returns placeholder values (e.g., all 0s or 1s). In such cases, restarting the process from the initial prompt
typically resolves the issue.

Table 6: Initial prompt to the LLM.

You will be given a csv file that consists of pairs of molecules represented as SMILES strings. The user will input the
molecular property of interest in the same prompt. Your task is to (1) explain briefly what does the property mean, (2)
explain briefly in a paragraph what makes a molecule exhibit a higher value in said property, (3) based on your explanation
and existing knowledge, for each pair, rank the molecules. Output 0 if psmiles1 > psmiles2, and 1 otherwise, where psmiles is the
property of the molecule. Do not use any external tools. You should output your rank predictions as a csv file, where each
line consists of ’smiles1, smiles2, prediction’.

There are two ways to utilize LLM-generated auxiliary labels: during the second pretraining stage or during finetuning. In
MoleVers L2, we employ the LLM to predict pairwise rankings for 1 M pairs of molecules sampled from the GDB17 dataset.
The molecular properties of the first seven assays in the MPPW benchmark serve as the target properties. In MoleVers
D2L3, LLM predictions are incorporated during finetuning. First, for one assay, the LLM predicts pairwise rankings for all
molecules in the test set. Then, the regression labels from the training split and the auxiliary ranking labels from the test
split are used to finetune the model.

A.1.1. LLM AS PROPERTY RANKER OR REGRESSOR

The prompt in Table 6 can also be adapted to generate regression predictions, i.e., the absolute property values of each
molecule. However, our experiments indicate that ChatGPT 4o performs better at predicting pairwise rankings than absolute
property values. Table 7 compares the predictive performance of ChatGPT 4o for regression and ranking tasks across the
first 13 assays in the MPPW benchmark. R2 and Kendall’s τ are employed as the evaluation metrics for regression and
ranking, respectively. An ideal regression prediction would result in an R2 score of 1, whereas simply predicting the mean
would yield a score of 0. Similarly, a perfect ranking would correspond to a |τ | value of 1, while a completely randomized
ranking would score 0. As shown in the table, ChatGPT consistently achieves equal or better performance in predicting
pairwise rankings compared to absolute property values. Therefore, we use pairwise rankings as the auxiliary labels in our
main experiments rather than absolute property values.

Table 7: Comparison of ChatGPT’s predictive performance for regression (absolute property values) and pairwise ranking
(relative property values). We can see that ChatGPT consistently outputs higher-quality ranking predictions compared with
absolute value predictions.

Assay ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Regression (R2) 0.50 0.22 0.00 0.37 0.00 0.01 0.15 0.10 0.05 0.05 0.02 0.14 0.00
Ranking (|τ |) 0.50 0.34 0.04 0.44 0.06 0.08 0.17 0.11 0.08 0.24 0.05 0.23 0.13

A.1.2. EFFECTS OF LLM PREDICTION QUALITY TO THE DOWNSTREAM PREDICTION PERFORMANCE

The performance of LLM ranking predictions can be evaluated using at least three metrics: accuracy, Kendall’s τ , and the
absolute value of Kendall’s τ (|τ |). From our experiments, we observe weak correlations between MAE improvements and
the first two metrics: -0.00557 for LLM accuracy and -0.00274 for LLM’s τ . However, a much stronger correlation of
-0.30563 is observed between MAE improvements and |τ |. This indicates that there is a correlation between the quality of
LLM ranking predictions and the downstream prediction performance (higher |τ | values leads to reduction in MAE).
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Figure 5: Predictive performance comparison between ChatGPT 0-shot and ChatGPT with in-context learning across 22
assays in the MPPW benchmark. While in-context learning improves the predictive accuracy and Kendall’s tau in general,
the absolute value of Kendall’s tau remains relatively unchanged.

It is noteworthy that this relationship is not evident when using accuracy or raw τ as metrics. This can be explained by the
nature of the pairwise ranking, a binary classification task, employed during training with auxiliary labels. In this setting,
LLM-predictions of very low accuracy (e.g., 0%) or τ score (e.g., -1) provides signals that are equally strong to very high
accuracy (e.g., 100%) or τ score (e.g., +1).

To illustrate this, consider a set of LLM-generated labels with an accuracy of 50%. Such a set is equivalent to random
noise, offering no useful information. However, a set of labels with 0% accuracy, while seemingly poor by conventional
metrics, contains perfect (although inverted) information, as every prediction is consistently wrong. Similarly, a τ score of
-1 indicates a perfect reverse ranking, holding the same signal strength as a τ score of +1. For this reason, the absolute value
of Kendall’s τ (|τ |) is a more reliable predictor of downstream MAE improvements compared to raw accuracy or τ scores.

A.1.3. IN-CONTEXT LEARNING FOR LLM RANKING

One approach to improve a large language model on a given task is by providing it with relevant examples, a process also
known as in-context learning. Here, we explore the possibility of adapting ChatGPT 4o to our assays through in-context
learning. For a given assay, we provide the model with molecules from the training split, along with their corresponding
property labels. The model is then tasked with generating the auxiliary ranking labels for the test molecules.

As shown in the box plots in Figure 5, incorporating additional data generally improves both accuracy and τ values.
However, the absolute τ values remain relatively unchanged. This is because the observed improvements primarily stem
from re-aligning the LLM predictions to the pre-determined labeling convention. For example, ChatGPT might yield a
0-shot τ value of -0.26 and an in-context τ value of 0.09. In this scenario, the 0-shot model tends to predict flipped rankings
correctly, while the in-context model more accurately predicts the actual rankings. Although the in-context approach shifts
the τ value in a positive direction, the magnitude is deacreasing. As a result, the in-context model shows improvement in
overall τ , but not in absolute |τ |.

A.2. Network and Training Details

The primary and auxiliary encoders of MoleVers are built on the UniMol encoder architecture (Zhou et al., 2023). Each
encoder comprises 15 layers, with an embedding dimension of 512 and a feedforward dimension of 2048. The MAP and
denoising heads are implemented with multilayer perceptrons, while the aggregator module is implemented with pooling by
multihead attention (PMA), a cross attention-based module introduced by Lee et al. (2019). The PMA module uses a query
of size 1× 512, and takes the molecule features F as key and value. During the first pretraining stage, the model is trained
for 1 million iterations using a batch size of 32, with a masking ratio of 0.15 for the MAP task. In the second pretraining
stage, the model is trained for 50 epoch, maintaining the same batch size of 32. We employ the Adam optimizer with a
learning rate of 10-4 and utilize a polynomial decay learning rate scheduler. We run all experiments on an NVIDIA Quadro
RTX 8000 GPU.
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A.3. Details of datasets used in of the MPPW Benchmark

The Molecular Property Prediction in the Wild (MPPW) benchmark uses two types of datasets: pretraining datasets and
downstream datasets. For our first-stage pretraining, as well as in the pretraining of other models shown in Table 9, we
randomly select 1M unlabeled molecules from the GDB17 dataset (Ruddigkeit et al., 2012). For the second-stage pretraining,
we sample around 130K molecules from the 1M subset and calculate the auxiliary labels—HOMO, LUMO, and Dipole
Moment—using Psi4 (Smith et al., 2020).

For downstream evaluation, we curated 22 small datasets from the ChemBL database (Zdrazil et al., 2024), representing a
diverse set of molecular properties as detailed in Table 8. To ensure consistency across datasets, we filter out any molecules
containing atoms not present in the GDB17 dataset. As a result, only molecules containing the atoms {H, C, N, O, S, F, Cl,
Br, I} are included in the downstream datasets. For evaluation, each dataset is randomly sampled to create three train/test
splits with a 50:50 ratio, and all models in Tables 9 are assessed using these same splits. The processed datasets can be
accessed through this URL.

A.4. Details of experimental results in the MPPW benchmark

Table 9 presents the numerical values of the metrics discussed in Section 5.2. In addition to the MAE and R2 scores, we
report the Kendall rank correlation coefficient (τ ) for MoleVers and the baselines. Kendall’s τ ranges from -1 to 1, where a
perfect rank prediction yields +1, a random ranking results in 0, and a score of -1 indicates a completely inverted ranking
relative to the ground truth. The rank correlation coefficient is particularly relevant since performance optimization is a
common objective in real-world applications Identifying molecules with better properties (e.g., higher solubility, higher
activity), is therefore as important as predicting the absolute property values. To illustrate the results, we provide box plots
of τ scores in Figure 6. Similar to the MAE and R2 results, MoleVers outperforms all baselines by a substantial margin.
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Figure 6: Box plot of Kendall’s tau rank correlation coefficient (absolute values, ↑). The whiskers extend from the box to the
farthest data point lying within 1.5x the inter-quartile range from the box.

A.5. Results on Large Downstream Datasets

We further evaluate the performance of MoleVers on the MoleculeNet benchmark (Wu et al., 2018), focusing on large-scale
regression datasets such as QM7, QM8, and QM9. As shown in Table 10, MoleVers outperforms all baseline models
across all datasets, achieving the lowest MAE scores. Therefore, the proposed two-stage pretraining framework is not only
effective in low-data regimes, but also excels when abundant labeled data is available. We note, however, scenarios in which
thousands of labeled data is available is extremely rare in the real-world.
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A.6. Impact of Finetuning Dataset Size on Downstream Performance

To assess the impact of finetuning dataset size on downstream performance, we gradually reduce the number of training
labels used to finetune MoleVers, and validate it on fixed validation sets. We conduct this experiment using two large
datasets outside the MPPW benchmark, as the datasets in the benchmark contain only a limited number of molecules. As
shown in Figure 7, the MAE curves show exponential decay as the number of finetuning labels increases, while the R2

curves exhibit logarithmic growth. This demonstrates a sharp drop in prediction quality, especially when the number of
finetuning labels fall below 200. These results emphasize the inherent challenge of molecular property prediction in the wild
due to the scarcity of labeled data in real-world. The observed performance degradation with smaller datasets also highlights
the importance of an effective pretraining strategy, such as the proposed two-stage pretraining approach of MoleVers, in
mitigating the limitations imposed by limited labeled data.
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Figure 7: Predictive performance of MoleVers, averaged over 5 splits, when finetuned on two assays with varying dataset
size: (a) CHEMBL5291763, (b) CHEMBL2328568 (Zdrazil et al., 2024).
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Figure 8: Comparison of noise scale distributions when sampled using static vs. dynamic noise scales. The dynamic noise
scale sampling biases the distribution towards noise scale of lower values, but still maintain a good amount of noise scale of
higher values.
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Table 8: Details for datasets in the MPPW benchmark. We curated 22 small datasets of diverse properties from the ChemBL
database. The last two datasets are used for ablation (Section A.6).

ID ChemBL ID #Mols. Short Description Unit Reference

1 635482 100 Partition coefficient (logP) - Hansch et al. (1980)
2 4150258 99 Antimycobacterial activity against log nM Nyantakyi et al. (2018)

Mycobacterium bovis BCG ATCC
35734

3 744489 94 Antimalarial activity in Plasmodium - Kesten et al. (1992)
berghei infected mice (Mus musculus)

4 638473 48 Partition coefficient (logD7.4) - Rai et al. (1998)
5 5251479 51 Induction of mitochondrial log nM Murray et al. (2023)

uncoupling activity in rat L6 cells
assessed as increase in oxygen
consumption rate

6 778368 95 Hypolipidemic effects(plasma TG) in % Sircar et al. (1983)
male rats

7 813331 69 Inhibitory activity against log nM Vedani et al. (2000)
Tachykinin receptor 1

8 3375151 60 Antimycobacterial activity against log nM Karabanovich et al. (2014)
Mycobacterium kansasii CNCTC My
235/80

9 687437 68 Bronchodilator activity against log umol Hermecz et al. (1987)
histamine- induced spasm in kg-1

guinea pig
10 4770530 78 Cytotoxicity against human TZM-GFP log nM Wang et al. (2020)

cells
11 3282634 75 Antitumor activity against mouse L1210 log mg Denny et al. (1978)

cells transfected in ip dosed C3H/DBA2 kg-1 day-1

F1 mouse qd
12 632430 50 Partition coefficient (logP) (chloroform) - Dunn III et al. (1987)
13 950577 44 Antifungal activity against Candida - Katritzky et al. (2008)

albicans
14 984427 85 Antiviral activity against CVB2 infected log nM Tonelli et al. (2008)

in Vero76 cells
15 1862759 96 DNDI: Lipophilicity measured in -

Chromatographic hydrophobicity index
assay, pH 7.4

16 3066822 47 Dissociation constant, pKa of the - Akamatsu (2011)
compound at pH 7.3

17 3745095 84 Antifungal activity against Candida log2 ug De Monte et al. (2016)
glabrata clinical isolate ml-1

18 4835984 61 Brain to blood partition coefficient of the - Li et al. (2021)
compound

19 4888494 123 Re-testing in dose-response curve in log nM Dechering et al. (2022)
HepG2 cytotoxicity assay, at 72h

20 5043600 101 Cytotoxicity in dog MDCK cells assessed log nM Mizuta et al. (2021)
as reduction in cell viability

21 1070367 38 ABTS radical scavenging activity assessed log MU Amić & Lučić (2010)
as trolox equivalent antioxidant capacity

22 2427705 44 Half life in phosphate buffer at pH 7.4 log hour Ward et al. (2013)
at 50 uM

A 5291763 1237 Inhibition of NaV1.7 ion channel log nM (Sutherland et al., 2023)
B 2328568 1017 Inhibition of human CHRM1 log nM (Norinder & Ek, 2013)
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Table 9: Quantitative results on the MPPW benchmark. We report the mean MAE (↓), R2 (↑), and Kendall’s Tau-b across 3
train/test splits for each assay.

Assay ID GraphMVP MoleBert UniMol

MAE R2 τ MAE R2 τ MAE R2 τ

1 0.426 0.846 0.763 0.526 0.724 0.668 0.459 0.802 0.764
2 0.408 0.260 0.398 0.303 0.528 0.617 0.455 0.067 0.267
3 3.459 0.024 0.229 3.351 -0.011 0.296 3.282 0.035 0.252
4 0.329 0.716 0.725 0.429 0.500 0.619 0.522 0.186 0.573
5 0.463 -0.201 -0.093 2.277 -19.732 0.251 0.415 -0.129 0.391
6 0.269 -0.653 0.053 0.197 -0.066 0.070 0.180 -0.018 0.016
7 0.660 0.169 0.292 0.522 0.421 0.498 0.672 -0.060 0.251
8 0.810 -0.829 -0.205 3.449 -19.905 0.279 0.667 0.017 0.204
9 0.341 0.102 0.299 0.261 0.328 0.407 0.347 -0.011 0.133

10 0.238 0.285 0.398 0.418 -0.693 0.535 0.220 0.300 0.437
11 0.409 0.178 0.347 0.456 -0.107 0.258 0.428 0.019 0.362
12 0.727 0.133 0.396 0.797 0.149 0.398 0.653 0.316 0.582
13 0.630 0.051 0.147 1.148 -1.969 0.023 0.592 0.068 0.308
14 0.343 0.036 0.334 0.443 -0.351 0.430 0.330 0.132 0.381
15 0.378 0.703 0.627 0.563 0.356 0.500 0.474 0.512 0.586
16 0.753 0.357 0.455 0.784 0.351 0.471 0.946 -0.039 0.355
17 1.099 0.238 0.373 1.151 0.023 0.351 1.347 -0.390 0.220
18 0.172 0.754 0.765 0.163 0.815 0.790 0.181 0.719 0.804
19 0.305 -0.485 -0.102 0.307 -0.687 0.321 0.223 0.012 0.179
20 0.329 -0.402 0.067 0.271 0.089 0.362 0.303 0.000 0.217
21 0.343 0.622 0.680 0.375 0.532 0.583 0.589 -0.123 0.532
22 0.805 0.148 0.247 5.086 -23.570 0.600 0.616 0.251 0.438

Assay ID MolAE MoleVers

MAE R2 τ MAE R2 τ

1 0.607 0.698 0.787 0.393 0.832 0.770
2 0.356 0.305 0.502 0.298 0.516 0.554
3 3.470 -0.096 0.239 2.999 0.211 0.370
4 0.475 0.399 0.706 0.332 0.701 0.740
5 0.402 0.012 0.320 0.401 -0.134 0.336
6 0.180 -0.016 0.057 0.179 -0.016 0.059
7 0.742 -0.169 0.158 0.650 0.018 0.252
8 0.630 0.079 0.249 0.593 0.144 0.310
9 0.351 -0.042 0.194 0.339 0.034 0.220
10 0.286 -0.089 0.313 0.190 0.457 0.481
11 0.444 -0.110 0.312 0.372 0.302 0.432
12 0.649 0.425 0.560 0.536 0.538 0.598
13 0.611 0.156 0.358 0.522 0.181 0.335
14 0.328 0.093 0.368 0.295 0.287 0.454
15 0.477 0.522 0.572 0.447 0.591 0.546
16 0.874 0.058 0.451 0.748 0.278 0.557
17 1.451 -0.533 0.162 1.078 0.192 0.254
18 0.227 0.572 0.592 0.152 0.822 0.795
19 0.230 -0.130 0.243 0.220 -0.188 0.365
20 0.296 -0.046 0.203 0.235 0.347 0.220
21 0.513 0.132 0.407 0.326 0.648 0.684
22 0.654 0.068 0.214 0.519 0.369 0.463
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Table 10: Results on larger datasets. We use three large regression datasets of the MolculeNet benchmark: QM7, QM8, and
QM9. The MAE values of methods other than MoleVers are obtained from Yang et al. (2024).

.

Dataset QM7 QM8 QM9
#Molecules 6830 21789 133885

D-MPNN 103.5 0.0190 0.0081
Attentive FP 72.0 0.0179 0.0081
Pretrain-GNN 113.2 0.0200 0.0092
GROVER 94.5 0.0218 0.0099
MolCLR 66.8 0.0178 -
Uni-Mol 58.9 0.0160 0.0054
Mol-AE 53.8 0.0161 0.0053

MoleVers (ours) 51.3 0.0155 0.0050
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