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ABSTRACT

Diffusion models have significant advantages in the field of real-world video
super-resolution and have demonstrated strong performance in past research. In
recent diffusion-based video super-resolution (VSR) models, the number of sam-
pling steps has been reduced to just one, yet there remains significant room for
further optimization in inference efficiency. In this paper, we propose FastVSR,
which achieves substantial reductions in computational cost by implementing a
high compression VAE (spatial compression ratio of 16, denoted as f16). We de-
sign the structure of the f16 VAE and introduce a stable training framework. We
employ pixel shuffle and channel replication to achieve additional upsampling.
Furthermore, we propose a lower-bound-guided training strategy, which intro-
duces a simpler training objective as a lower bound for the VAE’s performance. It
makes the training process more stable and easier to converge. Experimental re-
sults show that FastVSR achieves speedups of 111.9 times compared to multi-step
models and 3.92 times compared to existing one-step models.

1 INTRODUCTION

Video super-resolution (VSR) aims to reconstruct high-detail, high-fidelity videos from low-
resolution inputs (Jo et al., 2018; Liang et al., 2024). VSR ensures temporal consistency by lever-
aging spatial structures within frames and temporal dependencies across frames. In this work, we
focus on real-world video super-resolution (Real-VSR), where input videos are captured in natu-
ral environments and subject to unknown, time-varying degradations. Dynamic scenes introduce
large, unpredictable motions and occlusions; camera systems contribute compression artifacts, sen-
sor noise, rolling-shutter effects, and defocus blur; and degradation patterns may drift across devices
and over time (Goodfellow et al., 2014; Lucas et al., 2019). Therefore, a practical Real-VSR sys-
tem must simultaneously satisfy three requirements: (i) restore fine textures without generating
false details, (ii) maintain temporal coherence to avoid flicker and identity drift, and (iii) meet strict
latency and memory constraints for mobile capture, telepresence, surveillance, and streaming sce-
narios. Achieving all three remains highly challenging—alignment can be unstable under complex
motion, per-frame enhancements may cause temporal inconsistency, and heavyweight models limit
deployability—motivating solutions that optimize robustness and computational efficiency.

In this context, diffusion-based generative priors have proven to be particularly effective for
VideoSR. Thanks to large-scale pretraining, they can generate rich textures and generalize well to
degradations encountered in real-world scenarios (Blattmann et al., 2023; Zhang et al., 2023; Yang
et al., 2025). Recent research has developed along two complementary directions. Multi-step dif-
fusion VSR methods (Yang et al., 2024; Zhou et al., 2024; He et al., 2024; Xie et al., 2025) adapt
image/video diffusion backbones and incorporate temporal information during denoising. Current
approaches typically employ designs such as 3D convolutions, temporal layers, or optical-flow con-
straints to enforce temporal consistency, or leverage ControlNet and pretrained T2I/T2V models
to provide strong priors. In parallel, one-step methods compress the entire denoising trajectory
into a direct mapping from low resolution to high resolution (Chen et al., 2025; Sun et al., 2025).
Representative strategies include consistency distillation (Song et al., 2023) from multi-step teacher
models, flow matching (Lipman et al., 2022) with velocity supervision in latent space, and regression
objectives combined with perceptual metrics; temporal coherence is maintained through clip-wise
conditioning, shared noise schedules across frames, and lightweight temporal attention within a
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Figure 1: Left. The Multiply-Accumulate Operations (MACs) and inference time of the compo-
nents in the CogVideoX model. Right. Comparison of inference times for different diffusion-based
RealVSR models. The output size of video is 33×720×1280.

single-pass generator. Together, these studies establish diffusion models as a strong foundation for
VideoSR and motivate efficient, temporally aware designs.

Despite these advances, both approaches incur substantial inference overhead. Multi-step diffu-
sion VSR requires dozens of solver evaluations per video clip; each forward pass traverses a high-
parameter DiT or UNet combined with temporal modules and windowed context. As a result,
runtime scales with the product of the number of steps, sequence length, and output resolution.
Meanwhile, memory usage increases with cached key–value states and overlapping clips. Although
one-step methods reduce latency by compressing the sampling trajectory into a single forward pass,
their peak memory remains significant because the model must encode low-resolution frames into
latent space and decode them at high resolution. As illustrated in Fig. 1, a simple computational
analysis shows that once the denoising network is executed only once, the dominant cost shifts to the
VAE codec: high-resolution decoding (and the accompanying encoding) accounts for most of the
multiply–accumulate operations and activation footprint. This indicates that targeting the codec it-
self for compression and efficiency optimization can further accelerate inference and reduce memory
usage, while preserving the benefits of diffusion priors for spatiotemporal restoration.

Building on this analysis, we propose FastVSR, a one-step framework centered on an asymmetric
VAE to reduce the dominant codec cost and accelerate inference. Unlike conventional approaches
that first interpolate low-resolution frames to the target size and then run the diffusion backbone at
high resolution, we integrate part of the upsampling operation into the VAE codec. Specifically,
we first encode the low-resolution video clip with an f8 VAE encoder, yielding a compact latent
representation. Then we execute a one-step diffusion denoising through diffusion transformer. Sub-
sequently, an f16 VAE decoder reconstructs the output at the target spatial scale. In effect, this
constitutes indirect upsampling, governed by the scale ratio r = fdec/fenc. This asymmetric design
reduces the number of spatial tokens processed by both the VAE and the DiT, lowers activation and
cache memory usage, and confines the expensive spatial expansion to a single decoding pass, thereby
providing significant end-to-end speedup and memory savings while preserving the advantages of
diffusion priors for spatiotemporal restoration.

As shown in Fig. 1, FastVSR attains 111.9× speedup over multi-step diffusion baselines and
3.92× over prior one-step designs; at the same target resolution, peak memory usage is reduced
by 46.3%. In summary, our contributions are:

• We propose FastVSR, a one-step VideoSR framework built around an asymmetric VAE (f8
encoder / f16 decoder) that operates the diffusion transformer in a compact latent space and
performs indirect upsampling at decode time.

• We design the architecture of the f16 VAE decoder and propose a lower-bound–guided
training strategy to stably train the f16 VAE.

• Extensive experiments demonstrate 111.9×/3.92× speedups and 46.3% lower peak
memory at comparable target resolutions, with high perceptual fidelity and temporal co-
herence across diverse real-world benchmarks.
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2 RELATED WORK

2.1 DIFFUSION BASED REAL-VSR

Diffusion models have shown strong potential in Real-VSR by leveraging generative priors to
restore high-quality textures from low-resolution input. These methods can be categorized into
multi-step and one-step approaches. Multi-step methods adapt image/video diffusion backbones
and perform iterative denoising with explicit temporal modeling: Upscale-A-Video (Zhou et al.,
2024) exploits pretrained text-to-video priors with control branches to stabilize frame consistency;
MGLD-VSR (Yang et al., 2024) couples optical-flow guidance with cross/deformable attention
to align content across steps; VEnhancer (He et al., 2024) injects conditional video features via
adapters/ControlNet within short-clip windows; and STAR (Xie et al., 2025) combines windowed
context and temporal attention under DDIM/DPM-style samplers to handle complex motion. In
contrast, one-step formulations compress the entire sampling trajectory into one forward pass to
improve efficiency. Representative examples include DOVE (Chen et al., 2025) and DLoraL (Sun
et al., 2025), which fine-tune pretrained video generators to perform one-step denoising, yielding
competitive fidelity at markedly lower latency. Together, these lines of work establish diffusion as a
compelling foundation for Real-VSR, trading off progressive stability against deployment-friendly
speed while continuing to refine conditioning, alignment, and sampler design for real-world videos.

2.2 DEEP COMPRESSION VAE

Deep compression of variational autoencoders (VAEs) has proven effective for reducing the compu-
tational overhead of diffusion-based processing. By shrinking the latent space, it markedly lowers
memory footprint and accelerates both encoding and decoding. DC-AE (Lu et al., 2025) increases
the VAE compression ratio from f8 to f64 or higher, substantially cutting inference latency; how-
ever, it also requires expanding latent-channel capacity, which makes training the denoiser (e.g., DiT
or U-Net) more difficult. Diffusion-4K (Zhang et al., 2025a;b) attains an f16 VAE by introducing
additional upsampling operations and proposes a scale-consistent distillation loss. Moreover, hybrid
approaches that combine compression strategies with diffusion and other deep generative models
show strong potential for balancing performance and efficiency.

3 METHOD

In Section 3.1, we analyze the performance bottlenecks of current one-step diffusion models and
motivate FastVSR. In Section 3.2, we present the design of the FastVSR architecture. In Section 3.3,
we describe the training strategy for FastVSR.

3.1 MOTIVATION

One-step diffusion eliminates multi-iteration denoising but leaves intact the pixel↔latent coding
cost. In Real-VSR, the VAE runs at the target high resolution (HR), whereas the one-step denoiser
operates on a much smaller latent grid; empirically, run time and peak memory are therefore dom-
inated by the codec—especially the HR decoder. Consequently, upsampling LR frames to HR
before entering the VAE adds no information while disproportionately inflating the number of to-
kens and intermediate activations.

Let V =THW be the HR spatiotemporal volume and (st, ss) the VAE temporal/spatial strides (so
the latent volume is Vlat=V/(sts

2
s)). A compact scaling model is

FLOPs ≈ κEV + κT
V

sts2s
+ κDV, (1)

Actmax ≈ max
{
µEV, µT

V
sts2s

, µDV
}
, (2)

with codec constants κE , κD (encoder/decoder) and denoiser constant κT ; typically κD ≳ κE , and
κD < κT < 50κD. The decoder’s dominance follows from the ratio

FLOPsD
FLOPsT

≈ κD
κT

sts
2
s ≫ 1 (e.g., st=4, ss=8 ⇒ sts

2
s=256). (3)

Hence, after collapsing sampling to a single step, the VAE—particularly HR decode—becomes
the performance bottleneck. This motivates a codec-centric design that reduces the VAE’s HR

3
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Figure 2: FastVSR Inference pipeline and details of f16 VAE Decoder.

workload (e.g., asymmetric, deep-compressed coding and deferring resolution expansion to a single
efficient decode) to realize both speed and quality.

3.2 THE FASTVSR ARCHITECTURE

Guided by the above analysis, we adopt an asymmetric VAE with a f8 encoder and a f16 decoder.
We keep the pretrained f8 encoder frozen and only fine-tunes an f16 decoder. The encoder therefore
produces latents with the same statistics and geometry as the original model (identical channels and
strides), so the one-step transformer can be reused without retraining. Resolution expansion is dele-
gated to the decoder: it learns to map the unchanged latent grid to the target HR space via a higher
decoding stride (effective scale governed by r = fdec/fenc), implementing indirect upsampling
while preserving the latent space distribution. This separation preserves compatibility with strong
pretrained transformers, stabilizes training (no latent drift), and concentrates learning capacity where
the compute bottleneck lies—the HR decode path.

Figure 2(b) illustrates the overall design. Taking 4× super-resolution as an example, the LR clip
is first enlarged using simple 2× interpolation upsampling and then fed into the one-step denoiser.
FastVSR only requires training the f16 decoder, while the encoder and DiT remain frozen. During
inference, all settings are consistent with the pretrained one-step diffusion model. This design en-
sures that the latent space distribution remains unchanged, avoiding the overhead of retraining the
DiT, while ensuring plug-and-play compatibility of the f16 VAE.

We modify the VAE decoder head to realize the effective f16 expansion. As shown in Fig. 2(c),
a PixelShuffle(2) (Shi et al., 2016) is inserted immediately before the output layer to convert
channels into spatial resolution, providing an additional ×2 enlargement. After shuffling, we expand
the feature tensor’s channels (e.g., via duplication or a lightweight 1×1 projection), and then apply a
final output convolution to produce the decoded HR image. To accommodate this topology change,
the new output head is randomly initialized, while the remaining parts of the decoder are initialized
from the pretrained model. Then we fine-tune the full parameters of decoder.

3.3 TRAINING STRATEGY: LOWER-BOUND–GUIDED F16 VAE

Motivation. Directly training an f16 decoder with MSE+perceptual(+GAN) in Real-VSR often
leads to non-convergence and pseudo-textures. We replace adversarial supervision with an optimiz-
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Figure 3: Lower-bound guided training strategy for F16 VAE decoder.

able lower bound: two VAEs provide stable, probabilistically grounded signals through their free
energies (negative ELBO), guiding the f16-VAE toward the real data distribution.

Dual VAEs and the optimizable lower bound. We introduce two VAEs that play complementary
roles over the same reconstruction ŷ: a frozen reference VAE Vref trained on real HR data, and a
trainable lower-bound VAE Vlb fine-tuned on the current generator outputs. For a generic VAE V•
with encoder q•(z|y), decoder p•(y|z), and prior p(z), its free energy (negative ELBO) is

F•(y) = Eq•(z|y)
[
− log p•(y|z)

]
+ KL

(
q•(z|y) ∥ p(z)

)
, (4)

and satisfies the variational inequality log p•(y) ≥ −F•(y). Where • denotes a generic VAE, which
can represent either the reference VAE Vref or the lower-bound VAE Vlb. Applying this to Vref and
Vlb yields a likelihood-ratio lower bound for any y:

log
pref(y)

plb(y)
≥ − Fref(y) + Flb(y). (5)

Evaluated on reconstructions y = ŷ, the right-hand side is computable and differentiable w.r.t. ŷ, so
we define the surrogate objective

Lbound(ŷ) = Fref(ŷ) − Flb(ŷ), (6)

and minimize Lbound to increase the lower bound on log pref
plb

, pushing ŷ toward regions that the refer-
ence model assigns higher probability than the lower-bound model.

To see why this guides the f16-VAE, let qθ(y) denote the generator-induced distribution over recon-
structions for parameters θ. Taking expectations gives

Eqθ

[
log pref(y)

]︸ ︷︷ ︸
match to data via Vref

− Eqθ

[
log plb(y)

]︸ ︷︷ ︸
match to generator via Vlb

≥ − Eqθ

[
Fref(y)− Flb(y)

]
. (7)

The lower-bound VAE Vlb is trained on qθ to maximize its ELBO (equivalently, minimize Flb), so plb
tracks qθ as a variational proxy. In the idealized limit plb≈qθ,

Eqθ

[
log pref(y)

]
− Eqθ

[
log qθ(y)

]
= − KL

(
qθ ∥ pref

)
+ H(qθ), (8)

so maximizing the (tractable) lower bound effectively reduces the reverse KL between the gener-
ator and the data up to an entropy term. Replacing log qθ with the trainable surrogate log plb and
tightening its ELBO by updating Vlb yields a practical lower-bound optimization.

In practice, we couple this bound with standard pixel/perceptual terms to anchor fidelity, while
gradients from Fref and Flb flow only through ŷ (stop-grad on Vref and Vlb during the generator
update). The resulting signal ∇ŷFref − ∇ŷFlb behaves like an energy-based, margin-style critic:
the reference branch provides a “move toward real” direction, and the lower-bound branch—trained
on current outputs—provides a calibrated baseline, yielding stable, non-adversarial supervision that
improves fidelity and suppresses pseudo-textures.
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Losses. Let ŷ be the f16-VAE reconstruction and y⋆ the HR ground truth. Define the free energy
(negative ELBO) for a VAE • ∈ {ref, lb} as

F•(y) = Eq•(z|y)
[
− log p•(y|z)

]
+ KL

(
q•(z|y) ∥ p(z)

)
. (9)

The reconstruction loss and the lower-bound contrastive term are
Lrec = λMSE∥ŷ − y⋆∥22 + λperc

∥∥Φ(ŷ)− Φ(y⋆)
∥∥2
2
, Lbound = Fref(ŷ)− Flb(ŷ), (10)

and the f16-VAE objective is
Lf16 = Lrec + λb Lbound + λreg R(ŷ), (11)

where Φ(·) extracts perceptual features and R is an optional light regularizer (e.g., TV or color
consistency).

Stage A: Update F16-VAE. Let θ denote f16-VAE parameters, and ψ, ϕ the parameters of Vref

and Vlb, respectively. With ψ, ϕ frozen, we solve
min
θ

Lf16(θ), (12)

and treat Fref(ŷ) and Flb(ŷ) as functions of ŷ only (stop-grad on ψ, ϕ). By the chain rule,

∇θLf16 =
(

∂ŷ
∂θ

)⊤[
∇ŷLrec + λb

(
∇ŷFref(ŷ)−∇ŷFlb(ŷ)

)
+ λreg∇ŷR(ŷ)

]
. (13)

Here ∇ŷFref steers reconstructions toward regions of higher reference likelihood, while −∇ŷFlb

provides a complementary contrastive direction.

Stage B: Update Lower-Bound VAE. With θ, ψ frozen and ŷ treated as data, the lower-bound
VAE is updated via the standard VAE objective

min
ϕ

Llb(ϕ) = Eqϕ(z|ŷ)
[
− log pϕ(ŷ|z)

]
+ βKL

(
qϕ(z|ŷ) ∥ p(z)

)
, (14)

where β ≥ 1 (a β-VAE style coefficient) can sharpen the bound. Alternating Stage A and Stage B
tightens the lower bound and supplies a stable, non-adversarial learning signal that improves fidelity
and suppresses pseudo-textures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. The training data consist of both video and image datasets. For videos, we use REDS (Nah
et al., 2019), which contains a total of 239 high-quality sequences. For images, we use LS-
DIR (Li et al., 2023), consisting of 85k texture-rich, high-resolution images. For evaluation, we
adopt both synthetic and real-world benchmarks. The synthetic sets include UDM10 (Tao et al.,
2017), SPMCS (Yi et al., 2019), and YouHQ40 (Zhou et al., 2024), generated with the RealBa-
sicVSR (Chan et al., 2022) degradation pipeline. The real-world sets are RealVSR (Yang et al.,
2021), MVSR4x (Wang et al., 2023b), and VideoLQ (Chan et al., 2022); RealVSR and MVSR4x
provide smartphone-captured LQ–HQ pairs, while VideoLQ consists of Internet videos without HQ
references. All experiments are conducted at a ×4 upscaling factor.

Evaluation Metrics. We evaluate performance using a suite of image- and video-quality metrics.
For IQA, we report two fidelity measures: PSNR and SSIM (Wang et al., 2004), and four perceptual
metrics: LPIPS (Zhang et al., 2018), DISTS (Ding et al., 2020), MUSIQ (Ke et al., 2021) and
CLIP-IQA (Wang et al., 2023a). For VQA, we assess overall video quality with DOVER (Wu et al.,
2023). To quantify temporal consistency, we compute E∗

warp (i.e., Ewarp ×10−3) (Lai et al., 2018).
Together, these metrics provide a comprehensive evaluation of video quality.

Implementation Details. Our FastVSR is based on the text-to-video diffusion model
CogVideoX1.5 (Yang et al., 2025). The VAE encoder and the transformer are not further trained;
they are directly initialized from pretrained one-step model. We use an empty text prompt that is pre-
encoded to reduce inference overhead. Training proceeds in two stages: first, we train on the video
dataset for 20k iterations with a learning rate of 5× 10−5; then, we switch to a mixed image–video
dataset for 100k iterations with a learning rate of 5× 10−6. The resolutions are 256 px and 512 px
for the two stages, respectively. In both stages, we use the AdamW optimizer (Loshchilov et al.,
2018) with β1 = 0.9, β2 = 0.95, and β3 = 0.98.
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Table 1: Quantitative comparison with state-of-the-art methods. The best and second best results are
colored with red and blue, respectively.

RealESRGAN RealBasicVSR Upscale-A-Video MGLD-VSR VEnhancer STAR SeedVR FastVSR (ours)Dataset Metric (Wang et al., 2021) (Chan et al., 2022) (Zhou et al., 2024) (Yang et al., 2024) (He et al., 2024) (Xie et al., 2025) (Wang et al., 2025)

UDM10

PSNR ↑ 24.04 24.13 21.72 24.23 21.32 23.47 23.39 24.36
SSIM ↑ 0.7107 0.6801 0.5913 0.6957 0.6811 0.6804 0.6843 0.7184
LPIPS ↓ 0.3877 0.3908 0.4116 0.3272 0.4344 0.4242 0.3583 0.3496
DISTS ↓ 0.2184 0.2067 0.2230 0.1677 0.2310 0.2156 0.1339 0.1628
CLIP-IQA ↑ 0.4189 0.3494 0.4697 0.4557 0.2852 0.2417 0.3145 0.5947
MUSIQ ↑ 55.67 59.06 59.91 60.55 37.25 41.98 53.62 58.16
DOVER ↑ 0.7060 0.7564 0.7291 0.7264 0.4576 0.4830 0.6889 0.7638
E∗

warp ↓ 4.83 3.10 3.97 3.59 1.03 2.08 3.24 1.70

SPMCS

PSNR ↑ 21.22 22.17 18.81 22.39 18.58 21.24 21.22 22.48
SSIM ↑ 0.5613 0.5638 0.4113 0.5896 0.4850 0.5441 0.5672 0.6020
LPIPS ↓ 0.3721 0.3662 0.4468 0.3263 0.5358 0.5257 0.3448 0.3196
DISTS ↓ 0.2220 0.2164 0.2452 0.1960 0.2669 0.2872 0.1611 0.1882
CLIP-IQA ↑ 0.5238 0.3513 0.5248 0.4348 0.3188 0.2646 0.3945 0.6204
MUSIQ ↑ 66.63 66.87 69.55 65.56 42.71 36.66 62.59 69.18
DOVER ↑ 0.7490 0.6753 0.7171 0.6754 0.4284 0.3204 0.6576 0.7525
E∗

warp ↓ 5.61 1.88 4.22 1.68 1.19 1.01 1.72 1.27

YouHQ40

PSNR ↑ 22.82 22.39 19.62 23.17 19.78 22.64 21.94 22.85
SSIM ↑ 0.6337 0.5895 0.4824 0.6194 0.5911 0.6323 0.5914 0.6614
LPIPS ↓ 0.3571 0.4091 0.4268 0.3608 0.4742 0.4600 0.3474 0.3513
DISTS ↓ 0.1790 0.1933 0.2012 0.1685 0.2140 0.2287 0.1084 0.1491
CLIP-IQA ↑ 0.4704 0.3964 0.5258 0.4657 0.3309 0.2739 0.4123 0.5888
MUSIQ ↑ 60.37 65.30 67.75 62.10 59.69 34.86 60.77 65.38
DOVER ↑ 0.8572 0.7636 0.8596 0.8446 0.6957 0.5594 0.8492 0.8558
E∗

warp ↓ 5.91 3.08 6.84 3.45 0.95 2.21 3.43 1.90

RealVSR

PSNR ↑ 20.85 22.12 20.29 22.02 15.75 17.43 20.14 22.20
SSIM ↑ 0.7105 0.7163 0.5945 0.6774 0.4002 0.5215 0.6738 0.7230
LPIPS ↓ 0.2016 0.1870 0.2671 0.2182 0.3784 0.2943 0.2466 0.1830
DISTS ↓ 0.1279 0.0983 0.1425 0.1169 0.1688 0.1599 0.1185 0.0965
CLIP-IQA ↑ 0.7472 0.2905 0.4855 0.4510 0.3880 0.3641 0.2996 0.5206
MUSIQ ↑ 72.43 70.73 71.13 70.69 72.27 70.23 61.24 73.25
DOVER ↑ 0.7542 0.7636 0.7114 0.7508 0.7637 0.7051 0.6778 0.7810
E∗

warp ↓ 6.32 4.45 6.25 3.16 5.15 9.88 3.72 3.40

MVSR4x

PSNR ↑ 22.47 21.80 20.42 22.77 20.50 22.42 21.54 22.55
SSIM ↑ 0.7412 0.7045 0.6117 0.7418 0.7117 0.7421 0.6869 0.7480
LPIPS ↓ 0.4534 0.4235 0.4717 0.3568 0.4471 0.4311 0.4944 0.3430
DISTS ↓ 0.3021 0.2498 0.2673 0.2245 0.2800 0.2714 0.2229 0.2291
CLIP-IQA ↑ 0.4396 0.4118 0.6106 0.3769 0.3104 0.2674 0.2371 0.6058
MUSIQ ↑ 37.80 62.96 69.80 53.46 37.34 32.24 42.56 69.91
DOVER ↑ 0.2111 0.6846 0.7221 0.6214 0.3164 0.2137 0.3548 0.6970
E∗

warp ↓ 1.64 1.69 5.10 1.55 0.62 0.61 2.73 1.02

VideoLQ

CLIP-IQA ↑ 0.3617 0.3433 0.4132 0.3465 0.3031 0.2652 0.2359 0.4513
MUSIQ ↑ 49.84 55.62 55.04 51.00 42.35 39.66 39.10 53.11
DOVER ↑ 0.7310 0.7388 0.7370 0.7421 0.6912 0.7080 0.6799 0.7432
E∗

warp ↓ 7.58 5.97 13.47 6.79 6.50 5.96 8.34 6.92

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare FastVSR with state-of-the-art image and video super-resolution methods in the real-
world video super-resolution (Real-VSR) setting, including RealESRGAN (Wang et al., 2021), Re-
alBasicVSR (Chan et al., 2022), Upscale-A-Video (Zhou et al., 2024), MGLD-VSR (Yang et al.,
2024), VEnhancer (He et al., 2024), STAR (Xie et al., 2025), and SeedVR (Wang et al., 2025).

Quantitative Results. We present a comprehensive comparison in Table 1, where we evaluate
FastVSR across a variety of benchmarks on six datasets. Under the fixed ×4 upscaling setting, our
method consistently demonstrates strong performance while maintaining significant efficiency ad-
vantages. Specifically, in terms of perception-driven metrics, FastVSR excels: LPIPS and DISTS
values decrease (which is desirable, as lower values indicate better performance), and CLIPIQA
achieves its best performance on several datasets, suggesting that our codec design successfully
preserves high-frequency details without introducing excessive sharpening. Furthermore, the video-
level quality remains consistently high: FasterVQA and DOVER both show optimal performance on
the majority of datasets. Temporal consistency, as measured by the flow-warp errorE∗

warp, performs
well across various datasets. It reflects the robustness and accuracy of inter-frame reconstruction.
These comprehensive results collectively demonstrate that FastVSR strikes an effective and favor-
able balance between high-quality output and computational efficiency.

Qualitative Results. Figure 4 visualizes representative crops from challenging regimes—texture-
rich regions, heavily degraded scenes, and text overlays. In texture-rich areas (e.g., foliage, fab-
rics, building facades), FastVSR reconstructs fine patterns with clear edge and real details, while
avoiding hallucinated textures. Under severe degradations (compression, noise, motion blur), it
restores salient structures and suppresses blockiness and zippering, yielding visually coherent con-
tent. For text, FastVSR preserves stroke sharpness and character geometry without distortions or
mis-generation, which is crucial for readability. Temporal inspection of consecutive frames shows
reduced flicker in repetitive textures and stable object contours, consistent with the quantitative
E∗

warp gains. Additional examples, zoom-in views, and failure cases (e.g., very fast nonrigid mo-
tion) are provided in the supplementary material.
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MVSR4x: 232

LR RealBasicVSR Upscale-A-Video MGLD-VSR

VEnhancer STAR SeedVR FastVSR (ours)

VideoLQ: 004

LR RealBasicVSR Upscale-A-Video MGLD-VSR

VEnhancer STAR SeedVR FastVSR (ours)

VideoLQ: 041

LR RealBasicVSR Upscale-A-Video MGLD-VSR

VEnhancer STAR SeedVR FastVSR (ours)

Figure 4: Visual comparison on real-world datasets (MVSR4x (Wang et al., 2023b) and Vide-
oLQ (Chan et al., 2022)). The videos in VideoLQ are sourced from the Internet without high-
resolution (HQ) references.

Table 2: Efficiency comparison across diffusion-based Real-VSR methods.

Method Sampling Steps E2E Latency (s) MACs(T) Peak Memory (GB)

Upscale-A-Video 30 279.32 9,084 14.87
MGLD-VSR 50 425.23 8,528 19.64
VEnhancer 15 121.27 5,273 11.71
STAR 15 173.07 4,281 18.06
f8 VAE one-step VSR 1 14.90 504.8 60.78
FastVSR (ours) 1 3.80 125.7 32.59

Inference Efficiency. As shown in Table 2, we benchmark efficiency across four dimensions: sam-
pling steps, end-to-end (E2E) latency, compute (MACs), and peak memory, under a fixed ×4 up-
scaling setting. FastVSR employs a one-step denoising, matching the one-step baselines, and con-
trasting sharply with multi-step diffusion methods, which typically require 15 ∼ 50 steps. E2E
latency is reported as image → VAE encoder → transformer → VAE decoder → image. The video
size is 33×720×1280. In this setup, FastVSR significantly accelerates inference, achieving 111.9×
speedup over multi-step diffusion and 3.92× over one-step diffusion. In terms of compute, we mea-
sure Multiply-Accumulate Operations (MACs) per clip: FastVSR primarily reduces total MACs by
decreasing the input size for both the VAE and denoiser. At the same target resolution, peak memory
is also reduced compared to one-step baselines. This is due to the asymmetric codec design, which
defers spatial expansion to a single decoding pass and minimizes high-resolution activations. Taken
together, these results establish FastVSR as both the fastest and most memory-efficient method
among the diffusion-based Real-VSR approaches evaluated.

4.3 ABLATION STUDY

Upsample method. We compared different upsampling methods to evaluate their impact on the
performance of the f16 VAE model. Specifically, we compared PixelShuffle with nearest, bilinear,
and bicubic upsampling methods. As shown in Table 3a, while more complex upsampling methods
can improve image quality, they come at the cost of reduced inference efficiency. Furthermore, Fig.
5 illustrates the pseudo-textures introduced by different upsampling methods. PixelShuffle strikes
the best balance between image quality and inference speed.

Training Strategy. We compare our proposed training strategy with traditional methods such as
vanilla training strategy (MSE + Perceptual loss + GAN) and knowledge distillation. The vanilla

8
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Table 3: Ablation study on the effects of upsampling methods and training strategies. (a) Different
upsampling methods include nearest, bilinear, bicubic, and pixel shuffle. (b) Comparison of different
training strategies: vanilla (MSE + Perceptual loss + GAN), knowledge distillation (KD), and lower-
bound guided (LBG, ours). All experiments are conducted on the UDM10 dataset.

(a) Ablation on upsampling method

Upsampling Method nearest bilinear bicubic pixel shuffle

PSNR ↑ 22.80 23.10 24.48 24.36
LPIPS ↓ 0.3701 0.3578 0.3522 0.3496
MUSIQ ↑ 52.28 55.12 56.93 58.16
CLIP-IQA ↑ 0.4600 0.5085 0.5107 0.5947
DOVER ↑ 0.7112 0.7503 0.7809 0.7638
Inference time / s ↓ 3.799 3.806 3.833 3.802

(b) Ablation on training strategy.

Training Strategy vanilla KD LBG(ours)

PSNR ↑ 21.20 23.25 24.36
SSIM ↑ 0.5800 0.6990 0.7184
LPIPS ↓ 0.3661 0.3105 0.3496
MUSIQ ↑ 45.83 55.38 58.16
CLIP-IQA ↑ 0.4950 0.5107 0.5947
DOVER ↑ 0.7100 0.7444 0.7638

UDM10: 001 nearest bilinear bicubic pixel shuffle

Figure 5: Comparison of different upsample methods used in f16 VAE decoder.

training approach is commonly used for VAE training, where the loss includes pixel-wise MSE for
fidelity, perceptual loss for high-level feature preservation, and a GAN loss for generating realistic
textures. While this method performs well on f8 VAE, it struggles with high compression ratio VAE,
resulting in slower convergence and the introduction of pseudo-textures. On the other hand, knowl-
edge distillation, which involves training a student model by minimizing the divergence between its
output and the output of a teacher model, is another widely used approach. While distillation can
transfer knowledge from a powerful teacher, it still faces challenges related to training stability and
convergence difficulties. Moreover, distillation may not effectively capture the temporal dynamics
of video data, sometimes resulting in artifacts.

In contrast, our lower-bound guided training strategy (LBG) stabilizes the learning process by using
a dual-VAE framework, which reduces pseudo-textures and ensures better temporal coherence. By
leveraging the reference VAE as a contrastive signal, the difference between the output of the refer-
ence VAE and the lower-bound VAE is used to optimize the f16 VAE. We optimize the reconstruction
quality while maintaining alignment with the real data distribution by LBG. This approach signif-
icantly outperforms both vanilla method and knowledge distillation, offering faster convergence,
better training stability, and superior video quality in real-world scenarios. Our method also reduces
the need for extensive hyperparameter tuning, providing a more efficient and robust solution for real-
world video super-resolution tasks. Table 3b compares the performance of f16 VAE under different
training strategies. Our lower-bound guided training strategy achieves the best performance.

5 CONCLUSION

We presented FastVSR, a codec-centric approach to diffusion-based Real-VSR that identifies the
one-step bottleneck in the VAE and remedies it with an asymmetric design: a frozen f8 encoder
preserves the pretrained latent interface while a high-compression f16 decoder performs indirect
upsampling and concentrates HR computation into a single efficient pass. Coupled with a lower-
bound–guided training scheme that supplies stable, probabilistically grounded supervision without
adversarial instability, FastVSR achieves substantial end-to-end speedups—111.9× over multi-step
diffusion and 3.92× over one-step baselines—while delivering competitive fidelity, strong percep-
tual quality, and robust temporal consistency at reduced compute and memory. We expect this
codec-first perspective to generalize beyond super-resolution and, with extensions such as multi-
scale asymmetric coding, lightweight transformer adaptation, and hardware-aware compression, to
further narrow the gap between high quality and real-time deployment.
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