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Abstract

Human brain achieves dynamic stability-plasticity balance through synaptic home-
ostasis, a self-regulatory mechanism that stabilizes critical memory traces while
preserving optimal learning capacities. Inspired by this biological principle, we
propose SPICED: a neuromorphic framework that integrates the synaptic home-
ostasis mechanism for unsupervised continual EEG decoding, particularly ad-
dressing practical scenarios where new individuals with inter-individual variability
emerge continually. SPICED comprises a novel synaptic network that enables
dynamic expansion during continual adaptation through three bio-inspired neural
mechanisms: (1) critical memory reactivation, which mimics brain functional
specificity, selectively activates task-relevant memories to facilitate adaptation; (2)
synaptic consolidation, which strengthens these reactivated critical memory traces
and enhances their replay prioritizations for further adaptations and (3) synap-
tic renormalization, which are periodically triggered to weaken global memory
traces to preserve learning capacities. The interplay within synaptic homeostasis
dynamically strengthens task-discriminative memory traces and weakens detrimen-
tal memories. By integrating these mechanisms with continual learning system,
SPICED preferentially replays task-discriminative memory traces that exhibit
strong associations with newly emerging individuals, thereby achieving robust
adaptations. Meanwhile, SPICED effectively mitigates catastrophic forgetting by
suppressing the replay prioritization of detrimental memories during long-term
continual learning. Validated on three EEG datasets, SPICED show its effec-
tiveness. More importantly, SPICED bridges biological neural mechanisms and
artificial intelligence through synaptic homeostasis, providing insights into the
broader applicability of bio-inspired principles. The source code is available at
https://github.com/xiaobaben/SPICED.
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1 Introduction

During long-term learning and memorization, the human brain dynamically balances information
preservation (i.e., stability) and knowledge acquisition (i.e., plasticity) through a self-regulatory
mechanism termed synaptic homeostasis [[1H3]. This homeostasis process coordinates two com-
plementary neural mechanisms: synaptic consolidation, which stabilizes critical memory traces,
and synaptic renormalization, which preserves brain learning capacities [4-10]. The homeostatic
interplay between synaptic consolidation and renormalization sustains neural stability-plasticity equi-
librium, enabling the brain to dynamically adapt to novel environmental demands and learning tasks.
This biological principle provides critical insights into overcoming stability-plasticity dilemma
and catastrophic forgetting in artificial continual learning systems, especially in non-stationary
continual brain decoding scenarios where the pretrained source model is required to adapt to unseen
individuals continuously.

For advancing brain decoding research and applications, brain-computer interface (BCI) technology
has become instrumental. As the most widely adopted non-invasive BCI technique, electroencephalog-
raphy (EEG) captures scalp-recorded electrophysiological activity with high temporal resolution,
making it particularly valuable in both practical and clinical applications (e.g., sleep staging, de-
pression diagnosis) [11H15]. However, most EEG-based models trained on static datasets exhibit
limited generalizability to unseen subjects due to substantial inter-individual variability, hindering
their applicability in real-world scenarios where new ones are encountered continually. This problem
can be reduced to continual EEG decoding, wherein EEG models need to dynamically assimilate
new knowledge while retaining consolidated prior representations. Nevertheless, critical challenges
persist on continual EEG decoding: (1) How to enhance model plasticity to enable robust adaptation
to each newly emerging individual? (2) How to prevent catastrophic forgetting by suppressing the
accumulation of detrimental memory traces during the long-term continual learning ?

Motivated by synaptic homeostasis principles, we leverage the biological synaptic plasticity to
develop the neuromorphic framework to address the aforementioned challenges in continual EEG
decoding. Here, we propose a novel Synaptic Homeostasis-Inspired framework for Unsupervised
Continual EEG Decoding, called SPICED, emulating the brain’s mechanisms for processing contin-
uous information streams. The core of SPICED consists of a biologically inspired synaptic network
comprising multiple interconnected synaptic nodes, with each node storing individual-specific
information. Upon encountering a new individual, the synaptic network dynamically incorporates
an individual-specific new node and selectively establishes synaptic connections with pre-existing
nodes. For challenge (1), we adopt the synaptic consolidation mechanism which can automatically
and selectively reinforce critical task-discriminative memory traces, to enhance the model plasticity
to continuously emerging new individuals. To this end, we need to decide which memory traces
are important, and then consolidate them. Specifically, we introduce critical memory reactivation
mechanism guided by brain’s functional specificity to select and replay the important memory trace.
During each adaptation, we identify task-discriminative synaptic nodes that are relevant to the indi-
vidual adaptation, and selectively reactivate them to retrieve memory traces strongly associated with
the target individual for replay. We further stabilize these reactivated synaptic nodes by strengthening
their connections shown in Fig. [T|(a). As a result, these repeatedly reactivated task-discriminative
memory traces undergo progressive consolidation, enhancing their replay prioritization to facilitate
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Figure 1: Synaptic consolidation and renormalization mechanisms. (a) Task-driven synaptic con-
solidation via critical connection strengthening. (b) Stability-preserving synaptic renormalization
through connection strength downscaling.



robust adaptation to novel individuals. For challenge (2), we adopt the synaptic renormalization
mechanism which can maintain a balance of synaptic strength, and restore the ability to learn novel
sequences, to suppress the interference from detrimental memory traces. As illustrated in Fig. [T{b),
SPICED periodically triggers global downscaling to weaken synaptic connection, preserving the
network’s learning capacity. The synergistic balance between synaptic consolidation and renormal-
ization in SPICED enables strengthening the task-discriminative memory traces and weakening the
redundant noisy memories. By consequently suppressing the replay prioritization of detrimental
memories during each individual adaptation, SPICED effectively mitigates catastrophic forgetting
caused by error accumulation during long-term continual learning. Our contributions are as follows:

* We propose SPICED, a neuromorphic framework comprising a bio-inspired synaptic net-
work that integrates the synaptic homeostasis mechanism for unsupervised continual
EEG decoding. SPICED achieves robust adaptation to novel individuals while preventing
catastrophic forgetting in long-term learning scenarios.

* We model the synaptic homeostasis between consolidation and renormalization, selec-
tively stabilizing task-discriminative memory traces while suppressing interference from
redundant noisy memories, achieving balanced network plasticity.

* Validated across three mainstream EEG tasks, SPICED enables continuous dynamic expan-
sion of synaptic networks while maintaining homeostatic balance, thereby achieving robust
performance to novel unseen individuals.

2 Related Work

2.1 Synaptic Homeostasis

Synapses, which bridge pre-synaptic and post-synaptic neurons, function as the essential units for
information storage within the brain. Under synaptic homeostasis, their strength and connectivity
are dynamically regulated to encode information while preserving circuit stability [[1H3|[16]. During
active learning states, task-specific neuronal ensembles are selectively recruited through cortical
functional specificity, wherein environmental stimuli activate discrete neuronal populations aligned
with behavioral demands [17H19]. This recruitment triggers the activity-dependent long-term
potentiation (LTP) driven synaptic consolidation that selectively strengthens synapses within
engaged circuits, thereby stabilizing newly encoded memories[9} 20, 21]. Following learning, during
slow-wave sleep (0.5-4 Hz), long-term depression (LTD) driven synaptic renormalization globally
downscales synaptic strength, preferentially weakening nonessential connections formed during
wakefulness|[[10}122].

2.2 Synaptic-Inspired Continual Learning

Continual learning (CL) aims to enable artificial systems to incrementally acquire knowledge from
continuous data streams. Numerous CL methods, such as the regularization-based [23H27], the
parameter isolation based [28H30] and the rehearsal-based [31H34] methods, have been developed
to mitigate catastrophic forgetting. Recent efforts have integrated synaptic plasticity principles
into parameter adaptation and memory consolidation during CL process, demonstrating improved
stability-plasticity trade-offs [35-42]]. However, these methods only partially emulate neurobiological
mechanisms, often necessitating architectural modifications or intrusive adjustments to core learning
processes. In contrast, the SPICED framework introduces a novel learning paradigm that biologically
emulates synaptic homeostasis through an auxiliary synaptic network, achieving model structural
independence while preserving task-specific adaptability and interference suppression capabilities.

2.3 Continual EEG Decoding

Numerous deep learning methods have been proposed for EEG decoding across diverse tasks [43H47]].
However, parameters of these EEG-based models are typically fixed after training, limiting their
generalization ability to new subjects encountered in clinics. This limitation has motivated recent
efforts to explore individual-specific continual EEG decoding algorithms in supervised paradigm [48-
50]. Zhou et al. [51] introduces an unsupervised individual continual learning (i.e., UICL paradigm)
framework tailored for real-world deployment. It incrementally adapts model to unseen individuals



N5 N2 Individual ID N5 NZ )4 N5

Initial Feature \A,/ T
Individual Model x Joint
Replay Samples N Traini
N1 i N1 N7 NI . raining
Sy.na'pse:q(Node ID: Sim > n - \
(Similarity, Strength)} I\ %
o2 AN d ]
N6 N4 INFO N6 gm0 (e - Model
% usmn
N3 N4 N3 N4 N3
(a) Synaptic Network Initialization (b) Synaptic Node Incorporation (¢) Critical Memory Reactivation
Model
Saving
N5 /NZ N5
N1 \l N7
Continual
Adaptation Synaptic Strength ll i
< o o= (NG ynaptic Streng i Synaptic Strength 7
\ N}/__N4 = Na
(f) Expanded Synaptic Network (e) Synaptic Renormalization (d) Synaptic Consolidation

Figure 2: The workflow of SPICED, a synaptic homeostasis-inspired framework for continual EEG
decoding. (a) Synaptic network initialization: Constructing individual-specific nodes and initial
feature-based synaptic connections. (b-e) Adaptive synaptic dynamics for novel subjects: (b) Synaptic
node incorporation: Incremental integration of new individuals; (c) Critical memory reactivation:
Replay of critical task-related memories; (d) Synaptic consolidation: Selective strengthening of
task-relevant connections; (e) Synaptic renormalization: Global downscaling of synaptic strengths.
(f) Expanded network evolution: Expanded synaptic network after continual individual adaptations.

while retaining consolidated knowledge from prior adaptations. Our work is based on the setting of
the proposed UICL paradigm.

3 Methodology

3.1 Overview

To emulate synaptic homeostasis in the human brain, we consider each subject as a distinct domain
and represent individuals as nodes with one-to-one correspondence to record their unique information
(e.g., individual ID, initial feature (i.e., handcrafted features), corresponding model, replayed samples,
and synaptic connections). Formally, given multiple labeled individual domains (i.e., source domain)

Ds={X%, Vs’ }N1 with Ns subjects, we first utilize the labeled source domain data to pretrain
an EEG model and initialize the synaptic network as illustrated in Fig. [(a). Specifically, we
calculate and store each individual’s initial feature by extracting features across the time, frequency,
and time—frequency domains, with detailed descriptions provided in the Appendix [A] We measure
inter-nodes initial feature similarity via weighted cosine similarity described as follows:
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where 2*, z/, z/ denote the EEG features vectors in the time, frequency and time-frequency do-
mains,respectively, and wy, wt, wir denote their corresponding weights. We define a connection
threshold &, such that synaptic connections are established between nodes whose pairwise similarity
exceeds ¢, with initial synaptic strength s;; set to 1. Based on inter-nodes similarity, we perform
node-wise initialization of the source synaptic network. Then, given multiple unlabeled sequential
individual target domains DT={X}};\Z comprising A7 subjects, SPICED continuously adapts to
unseen individual target domains by expanding its synaptic network through: (i) incremental node in-
tegration, (ii) critical memory reactivation, and (iii) balanced synaptic consolidation-renormalization,
as illustrated in Fig. |Zkb-e). Following BrainUICL [51]], after each adaptation to a new individual,
we store high-confidence pseudo-labels and its corresponding model in individual-specific synaptic
nodes for further memory replay. Notably, we preserve all labeled samples from source-domain



individuals in their corresponding synaptic nodes. Through continuous integration of new nodes
and assimilation of novel knowledge, the synaptic network progressively enhances its robustness
shown in Fig. [2(f). Meanwhile, with the interplay of synaptic consolidation and renormalization,
critical memories are continuously consolidated while redundant noisy memories are progressively
suppressed during continual decoding.

3.2 Synaptic Network Initialization

To validate the effectiveness of our SPICED framework, we utilize identical EEG-based model
architectures for each downstream EEG task. Specifically, the model integrates a feature extractor for
capturing EEG features, a temporal encoder for learning temporal dependencies from EEG sequences,
and a classifier adapted to the output requirements of different downstream tasks. Prior to synaptic
network initialization, we pre-train the task-specific EEG model on source domains. The detailed
model architecture and pre-training process are described in the Appendix [B] For each source domain
individual, we initialize their synaptic nodes by storing their initial feature, labeled samples, and
the pre-trained model. Subsequently, we selectively establish synaptic connections between nodes
based on pairwise weighted cosine similarity, and store the synaptic information (e.g., similarity and
synaptic strength) for subsequent processing.

3.3 Synaptic Node Incorporation

Upon the arrival of a new individual, we first initialize its personal synaptic node (i.e., ID and
initial feature). It then traverses pre-existing nodes in the synaptic network to compute pairwise
similarity between their initial feature. If the similarity exceeds a predefined connection threshold
&, we establish their inter-nodes connections with an initial strength of 1, and we update the node’s
synaptic data (e.g., Synapses: {Nodel: {similarity: 0.5, strength: 1}}).

3.4 Synaptic Consolidation

Human brain leverages its functional specificity to activate task-aligned neuronal ensembles during
external stimulation [[17,|18]. This neurobiological mechanism ensures cognitive efficiency while
enabling adaptive flexibility to address novel environmental demands. Inspired by this mechanism,
we introduce the Critical Memory Reactivation to activate task-relevant memory traces into ongoing
individual-specific adaptation. To determine which nodes to reactivate, we introduce a synaptic
importance coefficient to measure connection significance between nodes N; and ; as follows:
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Here, Z(N;,N;) denotes the importance of node N relative to node N;. S(z;,z;) denotes the
similarity between A; and ;. §; denotes the average synaptic connection strength of node A/,
reflecting the global activation status of its associated neural pathways within the synaptic network.
And « denotes the importance weight of inter-nodes similarity.

3.4.1 Critical Data Replay

We calculate and rank the importance coefficient of synaptic connections for the current node in
descending order. To prioritize the activation of the most relevant memories, we select top-K node
samples via importance-weighted sampling for weighted replay.

3.4.2 Critical Model Fusion

In traditional continual learning paradigms, the incremental model M at the i-th step is derived
from training on the prior model M;_1, exclusively dependent on knowledge consolidated during
the terminal phase of prior training cycles. In contrast, the human brain selectively recruits task-
aligned neuronal assemblies during cognitive processing, integrating information streams from
all historical experiences without dependence on a single network state. This biological insight
motivates the integration of synaptic networks to determine optimal activation strategies. Specifically,
for the current i-th individual, we select the top-K synaptic nodes based on importance coefficient



ranking. Then we initialize the fusion model M through weighted aggregation of corresponding
top-K node model parameters, as detailed below:
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Following the BrainUICL, we clone a guidance model from the fused model M, and conduct self-
supervised training on newly added individual samples using this guidance model, as detailed in the
Appendix [C] The guidance model generates high-quality pseudo-labels with predicted probabilities

surpassing a predefined threshold 7. Then, pseudo-labeled samples undergo joint training with
incremental samples via cross-entropy loss, as formulated below:
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where (3 is a hyper-parameter controlling the weight of the loss function, while y. and yr_ represent
the pseudo-labels of incremental individual samples and the ground-truth labels of replayed top-
K node’s samples, respectively. Following joint training, the fusion model M; is used to predict
incremental samples, and generates high-confidence pseudo-labeled samples. Both the pseudo-labeled
samples and the fine-tuned model M; are stored in node N; to for future memory replay. Notably, if
no synaptic connections exist for a new node, during the model fusion phase, we perform fusion
using the three most similar node models based on inter-nodes similarity. The fused model is then
directly applied to self-supervised learning for adaptation without employing replay strategies.

3.4.3 Critical Connection Consolidation

Upon completion of incremental individual adaptation, the SPICED conducts synaptic consolidation
to simulate activity-dependent long-term potentiation (LTP) mechanisms, stabilizing the task-relevant
node memories reactivated in critical memory reactivation. Specifically, we only strengthen the
synaptic strengths of the top-K activated nodes, as described below:

Here, 4 indexes the top-K activated nodes, j indexes all nodes connected to node N; and ~y represents
the consolidation coefficient governing synaptic strength amplification. In biological neural systems,
synaptic strength does not increase indefinitely with repeated activation due to metabolic
homeostasis constraints. Studies indicate that synaptic efficacy typically saturates at 150-300%
of baseline levels [52H54]. In SPICED, we impose an upper limit of 3 on synaptic strength (with a
baseline strength of 1) to align computational efficiency with biological plausibility.

Algorithm 1: SPICED framework for Unsupervised Individual Continual Learning

Input: {5, s} (A1)

Output: Synaptic Network Sy

Synaptic Network Initialization:

Pretrain the source model M using { X%, Vi}

Initialize the Sy using {X%, V&1 and My, guided by inter-individual similarity Eq. @)
Unsupervised Individual Continual Learning:

for i < 1to N+ do

Initialize the synaptic node A; for incremental individual and incorporate it into Sy
Compute the top-K most critical nodes for all nodes relative to N; according to Eq. (2).
Weightedly replay samples from the top-K nodes.

Aggregate the top-K models via weighted fusion to obtain model M, by Eq. (3).
Generate the guiding model M, copied from the model M,;

Optimize M, by minimizing Eq. (7) and generate confident pseudo labels

Optimize M; by minimizing Eq. (4)

Incorporate the high-confidence pseudo-labeled samples (2\,’71'—, y’é—) and model M, into NV;.
Strengthen the synaptic strength of top-K activated nodes according to Eq. (3).

Weaken the synaptic strength of global nodes according to Eq. (6).

end




3.5 Synaptic Renormalization

The proposed SPICED periodically triggers synaptic renormalization to simulate sleep-dependent
long-term depression (LTD) mechanisms, globally weakening synaptic connection strengths. Inspired
by the Ebbinghaus forgetting curve [55], which models the temporal decay of human memory
retention, we formalize node-specific dynamic renormalization rates to regulate synaptic strength in a
time-dependent manner, as detailed below:
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where V denotes the set of all synaptic nodes, j indexes all nodes connected to node N; and A
is the decay factor. Notably, upon initialization of the i-th new node, the time step ¢; is set to 1.
During global synaptic renormalization Eq. (6), ¢; is incremented by 1 for all nodes. However,
when the current node is activated and undergoes synaptic consolidation Eq. (3)) , ¢; is reset to 1.
This mechanism ensures that infrequently activated nodes exhibit accelerated forgetting (higher
decay rates), while frequently stabilized nodes maintain lower forgetting rates, aligning with
neurobiological learning principles. The homeostasis interplay between synaptic consolidation and
renormalization effectively consolidates critical information and enhances model adaptability to novel
individuals. Meanwhile, it suppresses the redundant information, thereby preventing catastrophic
forgetting caused by error accumulation. The overall algorithm is illustrated in Algorithm [T}

4 Experiment
4.1 Experimental Setup

Table 1: Overview of downstream BCI tasks and datasets.

BCI Tasks Datasets  # Subjects  Rate  # Channels Duration # Samples  Label

I. Sleep Staging ISRUC 100 200Hz 8 30s 89,240 5-class

II. Emotion Recognition FACED 123 250Hz 32 10s 10,332 9-class
III. Motor Imagery Physionet 109 160Hz 64 4s 9,837 4-class

We selected three mainstream EEG-based task datasets for validation: ISRUC [56], FACED [57]] and
Physionet-MI [58]] shown in Tab. |1} Each dataset comprises at least 100 subjects, enabling effective
evaluation of the SPICED framework’s performance under long-term UICL scenarios. Detailed
dataset descriptions and preprocessing procedures are provided in Appendix [D} while more detailed
experimental settings, including hyper-parameters and CL training details, are listed in Appendix

Each dataset is partitioned into a pretraining set (i.e., source domain) for pre-training the source
model and an incremental set (i.e., target domain) for evaluating the performance of the SPICED
framework in unsupervised individual continual learning (i.e., continual EEG decoding) scenario. For
each novel individual in the incremental set, model performance is evaluated using Accuracy (ACC)
and Macro-F1 (MF1) metrics both before and after individual domain adaptation, as defined follows:

N
1 1
Accuracy = N E 1(y; = 4i) Macro-F1 = c
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Notably, for the i-th incremental individual, the SPICED framework initializes model M by integrat-
ing information across the holistic synaptic network, rather than relying on the last incremental
model M;_; from preceding temporal states.

4.2 Results and Analysis
4.2.1 Overall Performance

We have evaluated the SPICED framework on three different downstream EEG datasets. Specifically,
we set varying source-target (i.e., pretrain-incremental) dataset splits (source proportions: 10%-
50%) to evaluate the long-term continual EEG decoding performance of the SPICED framework
under few-shot pre-training conditions. Notably, the input order of incremental individuals directly



Table 2: Overview performance of SPICED on three downstream EEG tasks under different source-
target individuals splits (e.g., “10%” denotes that 10% of subjects are used to pretrain the source
model, with the remaining 90% serving as incremental individuals). Notably, distinct synaptic
connection thresholds ¢ were configured for the three datasets, while consistency was maintained
across all other hyper-parameters.

ISRUC (£ = 0.1) FACED (£ = 0.4) Physionet-MI ({ = 0.5)
Average ACC Average MF1 Average ACC Average MF1 Average ACC Average MF1
Mo M; Mo M; Mo M; Mo M; Mo M; Mo M;

10% 568 62.6+1.35(5.41) 484 554+151(7.01) 23.5 25.7+0.10(2.21) 195 22.7+0.17(321) 40.6 43.4+0.44 (2.87) 362 42.0+0.46 (5.81)
20% 57.3 69.2+0.45 (1191) 44.1 61.7+0.66 (17.61) 268 32.8+0.77(6.01) 23.8 30.8+1.12(7.01) 420 453+0.20 (3.31) 38.8 43.8+0.21 (5.01)
30% 668 75.6+0.13(8.87) 605 71.4+£0.07(10.99) 317 4374051 (1201) 27.2 41.7+0.58 (14.51) 422 48.7+£0.17(6.51) 37.9 47.9:+0.24 (10.07)
40% 735 T7.840.35(@4.31) 686 T2.3+£0.43(3.71) 384 4844032 (10.01) 355 46.2+0.46 (10.71) 47.7 50.7£0.14 3.01) 448 49.6+0.13 (4.81)
50% 650 T74.540.39(9.51) 585 69.240.37 (10.71) 434 48.9+0.42(541) 417 47.04£0.50 (5.31) 479 524+0.11(4.51) 445 51.2+0.14 (6.71)

ISRUC FACED Physionet-MI

Figure 3: The visualization of the expanded synaptic network across ISRUC, FACED and Physionet-
MI datasets, with connection thresholds ¢ set to 0.1, 0.4, and 0.5, respectively. Notably, each point
corresponds to an individual synaptic node, while dashed lines denote synaptic connections between
nodes. Node size and dashed line thickness are proportional to the number of synaptic connections
associated with each node.

influences synaptic network expansion trajectories during long-term continual decoding. Therefore,
for each source-target domain split ratio, we maintained consistent dataset partitioning while
altering the input order of incremental individuals across five repetitions, so as to evaluate the
statistical reliability of experimental results. For incremental individuals, we report their personal
performance of the initial source model M and the domain-adapted individual model M;, as
detailed in Tab. 2] Experimental results demonstrate that the SPICED framework maintains robust
performance in long-term unsupervised individual continuous EEG decoding scenarios under few-shot
supervised pre-training conditions. Furthermore, the SPICED framework demonstrates consistent
stability across varying input order of incremental individuals, reflected in low standard deviations of
accuracy and macro-F1 metrics. Besides, it is worth noting that for resting-state sleep datasets such
as ISRUC, significant inter-individual variability in initial features necessitates a lower connection
threshold ¢ to enhance synaptic connection density. Conversely, for the task-based datasets such as
FACED and PhysioNet-MI, the individual initial features exhibit lower variability under identical
task stimuli. Therefore, we set & much higher to filter redundant homogeneous synaptic connections
while preserving individual-discriminative connections. We employed t-SNE [59] to visualize the
expanded synaptic networks across three datasets shown in Fig. [3| Central nodes (i.e., larger-sized
ones) exhibit dense synaptic connections with high strength (i.e., thicker dashed lines), suggesting
frequent activation and consolidation processes during continual learning to facilitate adaptation
to new individuals. In contrast, peripheral nodes (i.e., smaller-sized ones) exhibit sparse or absent
synaptic connections, reflecting deviations of their initial features from dataset-level characteristics,
thus being classified as outliers. Synaptic renormalization prioritized weakening these connections
to mitigate noise introduced during critical memory reactivation, thereby enhancing training stability.

4.2.2 Comparison with Other Methods

We have compared our method with other existing methods at different source domain proportions:
MMD [60]: a UDA method that minimizes the Maximum Mean Discrepancy between feature
distributions. EWC [23]]: a classical regularization-based CL method. UCL-GV [61]]: a contrastive
alignment method for continual domain adaptation. ReSNT [48]: a dynamic memory evolution
based method for continual EEG decoding. CoUDA [62]: a recent method for continual domain



Table 3: Accuracy performance comparison with other methods at different source domain proportions.
Each method was evaluated under the same dataset partitioning, with five runs conducted per method
by randomly shuffling the input order of the incremental set to enable statistical evaluation.

ISRUC FACED Physionet-MI
10% 30% 50% 10% 30% 50% 10% 30% 50%

MMD 57.0£0.47 70.2+0.83 68.2£1.00 24.1+0.24 39.0+1.48 19.1£2.59 37.3+0.34 44.1+0.38 47.9+0.54
EwWC 60.6+0.71 71.3+0.49 72.5+0.39 22.3+0.36 39.5+0.94 48.7+0.66 42.8+1.19 47.3+0.58 50.2+0.43
UCL-GV  52.5+1.16 72.5+0.32 73.9+0.29 25.0+0.43 41.4+1.50 22.843.64 33.1+0.35 39.7+#0.22 45.5+0.71
ReSNT  56.4+0.70 71.3+0.89 72.1+0.69 14.1+x1.66 33.3+8.10 23.6+3.29 35.9+1.49 44.1+0.50 48.8+0.28
CoUDA  52.740.44 73.3+x0.23 72.3+0.94 23.9+0.16 39.2+1.06 22.5+2.61 41.6+0.25 44.2+0.31 51.4+0.16
BrainUICL 56.9+0.46 74.8+0.11 73.6+0.29 21.2+2.04 33.8+2.90 20.2+3.46 43.1+0.33 48.3+0.38 52.5+0.36
SPICED  62.6£1.35 75.6+0.13 74.5£0.39 25.740.10 43.7£0.51 48.9£0.42 43.4+0.44 48.7£0.17 52.4+0.11

adaptation. BrainUICL [51]: a dynamic framework designed for unsupervised continual EEG
decoding. We implemented these methods based on our setting. Notably, each method was evaluated
under the same dataset partitioning, with five repeats conducted per method by randomly shuffling
the input order of the incremental set to enable statistical evaluation. The experimental results
indicate that our SPICED method not only outperforms existing approaches but also exhibits superior
robustness. This is attributed to SPICED’s mechanism of leveraging critical memory across the
holistic synaptic network for individual adaptation, rather than exclusively depending on the latest
model M;_ as in conventional continual domain adaptation paradigms. Such strategy substantially
alleviates the disruptive effects of outlier shifts within the continual learning trajectory on the current
individual. For instance, while BrainUICL achieves performance comparable to SPICED in certain
experimental settings, it exhibits significantly degraded performance in several scenarios (e.g., 10%
source proportion on ISRUC, 50% source proportion on FACED).

4.2.3 Interplay Analysis of Varying Hyper-parameters \ and v

The interplay between synaptic consolidation and renormalization collectively facilitates synaptic
homeostasis. In this section, we conduct hyper-parameter studies on the synaptic renormalization
decay factor \ and consolidation coefficient v on the ISRUC dataset, as depicted in Fig. [d The left
sub-figure visualizes the variations in synaptic renormalization rate across distinct A values. As A
increases, the rate of decline in renormalization diminishes progressively with step increments. The
experimental results demonstrate that the SPICED framework achieves optimal performance when A
is set to 30 and ~ to 1.3. This parameterization ensures a stabilized synaptic renormalization decay
profile and moderate consolidation. This balance prevents synaptic strength collapse from transient
suppression or explosion from recurrent activation.

Renormalization Rate
e e e o =
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Macro-F1
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Figure 4: Analysis of synaptic renormalization decay factor A and consolidation coefficient -y on the
ISRUC dataset with 30% source domain proportion. The left sub-figure illustrates the variation in
synaptic renormalization rate across different decay factor A values.

4.2.4 Dynamics of the Average Synaptic Strength

In this section, we visualize the dynamics of average synaptic connection strength in source domain
nodes across three datasets during unsupervised continual domain adaptation, with all nodes initialized
to an average synaptic strength of 1. As shown in Fig. [5] experimental results demonstrate that
as the synaptic network expands, the dynamics of average synaptic strength changes exhibit a
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Figure 5: Dynamics of average synaptic connection strength in source domain nodes during synaptic
network expansion: with color-coded trajectories indicating post-expansion potentiation or depression
compared to initial strength.

consistent pattern across three datasets. Critical nodes undergo persistent strengthening of their
synaptic strength (i.e., blue lines), thereby enhancing their influence in subsequent learning tasks
such as adaptation to new individuals. This persistent consolidation mechanism mimics neural LTP,
where short-term memory representations are gradually consolidated from the hippocampus into
cortical long-term engrams. Conversely, redundant connections undergo progressive weakening
through synaptic renormalization (i.e., red lines), mitigating noise-induced disruptions during domain
adaptation. This process mirrors the LTD-driven passive forgetting mechanism in the brain, which
dynamically reallocates cognitive resources by suppressing task-irrelevant or low-salience information.
In summary, our synaptic homeostasis-inspired SPICED framework enables long-term continual
learning by consolidating task-discriminative features and suppressing redundant noise. It synergizes
with the subsequent functionally specialized critical memory activation module to jointly enable
robust unsupervised continual EEG decoding.

More detailed visualization experiments are provided in the Appendix [F| [Hl And more detailed
additional studies are listed in Appendix [G] [Il J]

5 Conclusion

In this work, we propose SPICED—a neuromorphic framework integrating synaptic homeostasis
principles for unsupervised continual EEG decoding in non-stationary scenarios. SPICED comprises
a novel synaptic network that enables dynamic expansion during continual adaptation via three
biologically inspired mechanisms. First, we introduced critical memory reactivation to selectively
activate task-relevant memory for replay during each adaptation. Second, we adopt the synaptic
consolidation to strengthen these critical memory traces. Third, we adopt the synaptic renormalization
to periodically weaken inter-node connection strengths globally. The synergistic balance between
these bio-inspired mechanisms enables robust adaptation to each newly emerging individual and
prevention of catastrophic forgetting during long-term continual EEG decoding. SPICED achieves
robust performance across three downstream EEG tasks. More discussion about implications and
limitations is provided in Appendix [[]
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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proof.
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by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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Answer: [Yes]

Justification: We have provided a detailed description of the algorithm in the main text,
and also presented the pseudo-code of the algorithm. We have submitted supplementary
materials(including source codes), and the dataset is open-source to facilitate reproduction.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted supplementary materials(including source codes), and the
dataset is open-source to facilitate reproduction.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided detailed training details and parameter settings.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have provided statistical verification for the experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
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Justification: The focus of our work does not lie in computing resources.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper conforms to the Code of Ethics of the
Conference on Neural Information Processing Systems (NeurIPS).

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have explored the positive impacts that our work will bring to future
brain-inspired endeavors.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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image generators, or scraped datasets)?

Answer: [NA]
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our paper does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Initial Feature Extraction

In this work, the synaptic network construction is driven by inter-individual similarity matching of
initial features, with synaptic connections formed when pairwise initial feature similarity exceeds
a predefined threshold £. Thus, the extraction of individual initial feature constitutes a critical
prerequisite for the framework. We extract individual-specific initial EEG features from raw signals
via channel-wise feature engineering across three dimensions—time domain, frequency domain,
and time-frequency domain. Time Domain Feature: For each EEG channel, we extract the mean,
variance, kurtosis, skewness, and Hjorth parameters (mobility and complexity) as initial time-domain
features. Frequency Domain Feature: For each EEG channel, we extract the power spectral density
(PSD) across five frequency bands (i.e., § (0.5-4Hz), 6 (4-8Hz), « (8-13)Hz, 3 (13-30Hz), v (30-
45Hz)) as initial frequency-domain features. Time-Frequency Domain Feature: For each EEG
channel, we extract wavelet energy features as initial time-frequency domain features. Following
channel-wise feature extraction, inter-channel normalization is applied to the initial feature vectors to
mitigate scaling discrepancies caused by dimensional heterogeneity across features.

B More Details for Experimental Settings on Pre-training

To validate the effectiveness of the SPICED framework across diverse downstream EEG tasks, we
employ a uniform model architecture comprising three core components: (1) a feature extractor
composed of multiple layers of CNN, (2) a Transformer-based encoder for contextual representation
learning, and (3) a task-specific classifier composed of multiple fully connected layers. The detailed
model parameters and pre-trained settings are summarized in Table. [

Table 4: Hyper-parameters of the pre-trained model and detailed pre-training configurations. For the
Conv1D layer, the parameter from left to right corresponds to: filters , kernel size , and stride.

Epoch 100
Learning Rate le-4
Optimizer AdamW
Pre-training Adam (3 (0.5, 0.99)
Weight Decay 3e-4
Batch 32
Dropout 0.1
Clipping gradient norm 1
1-th ConvlD (64, 50, 6)
1-th MaxPool 1D 8,8)
2-th ConvlD (128, 8)
CNN Blocks 3-th ConvID (256, 8)
4-th ConvlD (512, 8)
4-th MaxPool1D 4.4
Layers 3
Transformer Hidden Dimension 512
Heads 8
Feed-forward dimension 2048
1-th Linear Layer (encoder output, 256)
Classifier 2-th Linear Layer (256, 128)
3-th Linear Layer (128, task-specific output)

C More Details for Self-Supervised Learning

Following the BrainUICL framework, we apply a self-supervised learning (SSL) method on newly
incremental individual to fine-tune the guided model cloned from the initial fusion model M;, so as
to generate high-confidence pseudo-labels for subsequent joint-training. Specifically, we employ the
Contrastive Predictive Coding (CPC) [63]] algorithm to adapt the feature extractor and encoder to
the data distribution of new individuals by predicting future EEG sequences using prior contextual
information. Formally, given a latent EEG sequences H = {hg, h1, ha, h3, ..., ht, heq1, hego, heys}
encoded by the feature encoder, we instantiate a Transformer encoder as an autoregressive model
to encode the early-stage sequential representation H,<; into a contextual vector c;. Subsequently,
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multiple linear layers are initialized to predict future EEG representations {h¢41, h¢12, hiy3} condi-
tioned on ¢, formulated as z;1 = fi(c¢) for k=1, 2, 3, where z;1 denotes the predicted time steps
for hy41. Then we employ the contrastive loss to update the feature extractor and encoder as follows:

o e (i(e)
Feve = o0 e (W fulc0)))

] N

D More Details for Dataset Preparation

ISRUC is a publicly sleep dataset comprising three sub-groups. In this study, we employ sub-groupl
of the ISRUC dataset, comprising 100 all-night polysomnography (PSG) recordings from adult
subjects. The EEG signals were acquired using six channels (F3-A2, C3-A2, O1-A2, F4-Al, C4-Al,
and O2-A1) with a sampling frequency of 200 Hz. Additionally, two electrooculography (EOG)
channels (E1-M2 and E2-M1) were included as input modalities. All EEG and EOG signals are were
bandpass filtered (0.3 Hz—45 Hz) and resampled to 100 Hz. The signals are segmented into 30-second
epochs, which are manually annotated by sleep experts into five sleep stages (Wake, N1, N2, N3,
and REM) in accordance with the American Academy of Sleep Medicine (AASM) [64] guidelines.
Following previous sleep studies [65]], we formulate the sleep staging task as a sequence-to-sequence
classification problem, with a sequence length of 20 corresponding to 10-minute sleep epochs (20 x
30-second epochs). Notably, subjects 8 and 40 were excluded due to incomplete channels.

FACED is a large-scale, high-resolution affective computing dataset that encompasses nine distinct
emotional states: amusement, inspiration, joy, tenderness, anger, fear, disgust, sadness, and neutral. It
comprises recordings from 123 participants, with each session captured via a 32-channel EEG system
at a sampling frequency of 250 Hz. All signals were segmented into 10-second epochs for analysis,
and the full cohort of 123 recordings was utilized for experimental evaluation.

Physionet-MI is a motor imagery EEG dataset encompassing four distinct movement categories—left
fist, right fist, both fists, and both feet—derived from 109 participant recordings. Each recording
contains 64-channel EEG signals with a sampling frequency of 160 Hz. All recordings were
partitioned into 4-second epochs for analysis. Notably, subjects 38, 88, 89, 92, 100 and 104 were
excluded due to incomplete channels.

E More Details for Experimental Settings on Continual Learning

The detailed continual learning configurations and synaptic network hyper-parameters are summarized
in Table

Table 5: Detailed continual learning configurations and hyper-parameters of the synaptic network.

SSL Epoch 10
CL Epoch 10
SSL Learning Rate le-7
CL Learning Rate le-7
Continual Learning Optimizer AdamW
Adam g (0.5,0.99)
Weight Decay 3e-4
Batch 32
Dropout 0.1
ISRUC Connection Threshold & 0.1
FACED Connection Threshold & 0.4
Physionet-MI Connection Threshold 0.5
Time Domain Weight w, 0.9
. Frequency Domain Weight w 1.5
Synaptic Network Time—l%‘eque}rllcy Domain V\%ei ghtf wif 12
Importance Weight av 0.2
Top-K 15
Pseudo Label confidence threshold 7 0.9
Loss Function Weight 3 0.7
Renormalization Decay Factor A 30
Consolidation Factor ~y 1.3
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F Synaptic Network Visualization under Varying Connection Thresholds

Connection Threshold = 0.1 Connection Threshold = 0.2 Connection Threshold = 0.3
e P pelivanii

Connection Threshold = 0.6

Figure 6: Visualization of the expanded synaptic network in the ISRUC dataset.

Connection Threshold = 0.1 Connection Threshold = 0.2 Connection Threshold = 0.3

v

Connection Threshold = 0.6

Figure 7: Visualization of the expanded synaptic network in the FACED dataset.

Connection Threshold = 0.1 Connection Threshold = 0.2 Connection Threshold = 0.3

¥

Connection Threshold = 0.4

Figure 8: Visualization of the expanded synaptic network in the Physionet-MI dataset.
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Table 6: Overview of varying connection threshold ¢ experiment performance with 30% source
domain proportion.

¢ ISRUC FACED Physionet-MI
Average ACC  Average MF1  Average ACC  Average MF1  Average ACC  Average MF1
0.1 75.5 71.1 43.7 41.8 48.7 47.86
0.2 74.9 70.7 439 42.0 48.8 47.92
0.3 75.0 71.0 43.6 41.5 48.6 47.75
0.4 74.1 70.0 44.2 42.3 48.6 47.71
0.5 73.4 69.4 43.7 41.5 48.9 48.11
0.6 73.9 69.7 43.5 41.4 48.7 47.77

We have visualized the synaptic networks derived from three datasets under varying connection
thresholds &, as depicted in the Fig. [6] Fig. [7] and Fig. In the ISRUC resting-state sleep
dataset, significant inter-individual variability in initial features causes a sharp reduction in synaptic
connections as the connection threshold increases. To preserve synaptic connection diversity, we
configured a lower threshold (i.e., £ = 0.1 ). In contrast, for task-based datasets such as FACED and
Physionet-MI, identical stimuli elicit initial features that result in an overabundance of redundant
synaptic connections at low thresholds (i.e., £ < 0.3).Consequently, dataset-specific thresholds were
established to filter low-quality synaptic connections. Detailed experimental results for the connection
thresholds are summarized in Tab. |6l The results demonstrate that the SPICED framework achieves
optimal performance across all datasets under these dataset-specific thresholds. Notably, visualization
analyses reveal that synaptic network connection densities converge to a consistent level (i.e., the
subplots highlighted by red boxes) when the optimal thresholds are applied for each dataset.

G Hyper-parameter Analysis of Importance Weight o

In this section, we investigate the importance weight « to quantify the influence of inter-node similarity
and average synaptic connection strength on node importance, as formulas in Eq. (2). As shown in Fig.
[ the experimental results demonstrate that SPICED achieves superior performance across datasets
with smaller « values (where inter-node similarity receives lower weighting) compared to scenarios
with larger « values (where average synaptic connection strength is assigned reduced weights). To
sum op, the average synaptic connection strength of target nodes exerts a greater influence on node
importance compared to inter-node similarity, as evidenced by the following reasons. First, inter-node
similarity is derived from individual initial features and remains unaffected by subsequent learning
processes, thereby lacking the flexibility to dynamically assess node importance. Second, the average
synaptic connection strength dynamically evolves through synaptic consolidation and renormalization,
enabling a more accurate reflection of a node’s significance within the synaptic network. A higher
average synaptic connection strength signifies greater generalizability of node samples, and activating
such nodes enhances the model’s adaptability to new individuals. Based on the aforementioned
analysis, we uniformly set « to 0.2 for all datasets.

ISRUC FACED Physionet-MI
=
75.0 3 3 $ 343 49.0

0 43-5{{§iiiiii48‘5Ei{i{iiii
7z.o.iiiiiiii42.0+%EE§;}§Eij::%%+i+ii%i

70.5

Metric Value

40.5
0.1 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 07 08 09

Figure 9: The analysis of hyper-parameter « on different datasets with 30% source domain proportion.
The horizontal axis represents the values of «, ranging from 0.1 to 0.9 with a step size of 0.1.

H Visualization of the Synaptic Network Expansion Process

In this section, we visualize the dynamic synaptic network expansion processes across the ISRUC,
FACED, and Physionet-MI datasets under varying source domain proportions, as illustrated in Fig.
[I0} [T1) and Fig. [I2] Observations from the visualizations reveal that certain critical nodes during the
early stages of synaptic network expansion (i.e., larger node sizes) may gradually lose significance
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Figure 10: Overview of the synaptic network dynamic expansion process on the ISRUC dataset.

Synaptic Network Expansion Stage - 0% Synaptic Network Expansion Stage - 20% Synaptic Network Expansion Stage - 40%
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Figure 11: Overview of the synaptic network dynamic expansion process on the FACED dataset.

Synaptic Network Expansion Stage - 0% Synaptic Network Expansion Stage - 20% Synaptic Network Expansion Stage - 40%

Figure 12: Overview of the synaptic network dynamic expansion process on the Physionet-MI dataset.

as the network expands, triggering synaptic consolidation and renormalization. Conversely, nodes
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initially less prominent (i.e., smaller node sizes) may gain increasing importance through progressive
integration and connections with newly added nodes. This finding demonstrates that the proposed
synaptic network is less susceptible to source domain node initialization, while exhibiting both
stability and robustness.

I Ablation Study

To investigate the effectiveness of synaptic consolidation and synaptic renormalization in SPICED, we
conducted an ablation study. The ablated methods are as follows: w/o SR: only synaptic consolidation
is adopted; w/o SC: only synaptic renormalization is adopted; SPICED: the framework with all
components. Experimental results demonstrate that SPICED’s performance degrades in the absence
of either synaptic consolidation or synaptic renormalization. This further underscores the critical
importance of synaptic homeostasis, arising from the interplay between synaptic consolidation and
renormalization, to the SPICED framework—highlighting the indispensability of both mechanisms.

765 ISRUC 448 FACED 490 Physionet-MI -
o756 x 442 T 48.6 1
S 747 B | 48.21
O 73.8 £3 T 43.1 i 47.81
<729 426 47.41

72.0 ‘ ‘ ‘ 420 ‘ ‘ ‘ 47.0 ‘ |7_|

73.0 43.0 48.5
=722 422 T 48.01 I
714 414] 1 T 1 475
& 706 406 1L I 4701 ]

69.81 [F I 39.8 46.51

69.0 39.0 46.0 [ 1]

[ wosrR [ woSC [ SPICED

Figure 13: Overview performance comparison with ablated methods at 30% source domain pro-
portions. Each ablated method was evaluated under the same dataset partitioning, with five runs
conducted per method by randomly shuffling the input order of the incremental set to enable statistical
evaluation.

J Computational Cost and Resource Requirement

As shown in the Tab. the reported average time per individual includes the full adaptation
process: synaptic node incorporation, critical memory reactivation, model training (including synaptic
consolidation and weight renormalization) and evaluation. The reported storage refers to the disk
storage usage per individual. These results demonstrate that SPICED achieves efficient adaptation
with manageable computational overhead. And our model is trained on a single machine equipped
with an Intel Core 19 10900K CPU and eight NVIDIA RTX 3080 GPUs.

Table 7: The computational and storage cost per individual.

ISRUC FACED  Physionet-MI

Average Cost (minutes) 4.42+0.55 4.16+0.64 4.23+0.63
Storage (M) 47.1 53.7 43.7

K Robustness Study

In this section, we evaluate the robustness of SPICED by adding Gaussian noise scaled to 1%, 5%,
and 10% of the original signal’s standard deviation during training phase (i.e., progressively noisier
conditions). As shown in the Tab. [§] SPICED demonstrates its robustness to such perturbations.
Specifically, on ISRUC, SPICED maintains an ACC of 73.8% and MF1 of 70.1% under 10% noise
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condition, exhibiting only marginal degradation compared to the clean setting. On FACED, the
performance of SPICED remains nearly invariant across all noise levels. And on Physionet-MI,
SPICED shows virtually no performance drop across all noise levels, with fluctuations well within the
standard error. These results indicate that SPICED is inherently robust to noisy EEG inputs and can
effectively tolerate moderate input perturbations without significant performance loss—a desirable
property for real-world deployment in low-resource or ambulatory monitoring scenarios.

Table 8: The robustness study of SPICED on three downstream EEG tasks under 30% source domain
proportion.

ISRUC FACED Physionet-MI
ACC MF1 ACC MF1 ACC MF1
My M; Mo M; Mo M; Mo M; Mo M; Mo M;

1% Noise  66.8 74.0+£0.24 60.5 70.2+0.21 31.7 43.1£041 27.2 40.840.40 422 48.7£0.14 37.9 47.8+0.12
5% Noise  66.8 74.2+0.08 60.5 70.4+0.21 31.7 43.2+0.29 272 40.9+0.36 422 48.6+0.14 37.9 47.8+0.14
10% Noise 66.8 73.840.26 60.5 70.1+0.24 31.7 43.0+0.21 27.2 40.8+0.24 422 48.7+0.05 37.9 47.8+0.08
Clean EEG 66.8 75.6+0.13 60.5 71.4+0.07 31.7 43.7+0.51 27.2 41.7+0.58 422 48.7+0.17 37.9 47.9+0.24

L Discussion

L.1 Implications

Our work bridges neurobiological principles with artificial continual learning through three
key advances: (1) Mechanistic translation—formalizing synaptic homeostasis into a neuromor-
phic framework that balance stability-plasticity dilemma via biologically grounded consolidation-
renormalization dynamics; (2) BCI innovation—enabling individual-specific synaptic network ex-
pansion to address inter-individual variability in EEG decoding, supporting continual individual
adaptation; (3) Generalizability proof—validated across three different EEG tasks, we demonstrate
that bio-inspired synaptic homeostasis mechanism enhances both plasticity for novel individuals and
robustness against error accumulation.

L.2 Limitations and Future Work

In this work, we explores a synaptic homeostasis-inspired framework for unsupervised continual EEG
decoding and validates its efficacy across diverse downstream EEG tasks, demonstrating promising
performances. However, the following limitations remain: First, modern neuroscience is still at an
early stage of understanding the brain, with many neurobiological mechanisms poorly characterized.
Consequently, the proposed SPICED framework only approximates the fundamental principles of
synaptic homeostasis and does not model deeper neurobiological mechanisms. Second, we adopted a
unified initial feature extraction paradigm across different EEG tasks without accounting for inter-task
variability in EEG features. Task-specific feature extraction strategies could potentially enable more
accurate quantification of inter-individual similarity. In future work, we aim to further investigate
neurobiological mechanisms and explore brain-inspired algorithms in broader domains to bridge the
gap between biological neural mechanisms and artificial intelligence systems.
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