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ABSTRACT

Modeling long-range spatiotemporal dynamics in functional Magnetic Resonance
Imaging (fMRI) remains a key challenge due to the high dimensionality of the
four-dimensional signals. Prior voxel-based models, although demonstrating ex-
cellent performance and interpretation capabilities, are constrained by prohibitive
memory demands and thus can only capture limited temporal windows. To ad-
dress this, we propose TABLeT (Two-dimensionally Autoencoded Brain Latent
Transformer), a novel approach that tokenizes fMRI volumes using a pre-trained
2D natural image autoencoder. Each 3D fMRI volume is compressed into a com-
pact set of continuous tokens, enabling efficient long-sequence modeling with a
simple Transformer encoder. Across large-scale benchmarks including the UK-
Biobank (UKB), Human Connectome Project (HCP), and ADHD-200 datasets,
TABLeT outperforms existing models in multiple tasks, while demonstrating sub-
stantial gains in computational and memory efficiency over the state-of-the-art
voxel-based method. Furthermore, we demonstrate that TABLeT can be pre-
trained with a self-supervised masked token modeling approach, improving down-
stream tasks’ performance. Our findings suggest a promising approach for scal-
able spatiotemporal modeling of brain activity.

1 INTRODUCTION

The human brain is a spatiotemporal dynamic system whose activity can be non-invasively mea-
sured using functional magnetic resonance imaging (fMRI). A large body of work has leveraged
fMRI to investigate functional connectivity patterns for tasks such as neurological disorder diagno-
sis or demographic attribute prediction (Kawahara et al., 2017; Kan et al., 2022; Popov et al., 2024;
Malkiel et al., 2022; Kim et al., 2023; Caro et al., 2024; Dong et al., 2024). Existing approaches can
be broadly divided into two categories: ROI-based methods and voxel-based methods.

ROI-based methods first define a set of regions of interest (ROIs) based on anatomical segmentation
(Power et al., 2011), extract their corresponding time-series signals, and then compute functional
connectivity (FC) matrices as model inputs. Although this approach is computationally efficient for
managing the high dimensionality of fMRI data, it has several limitations: performance strongly
depends on the choice of ROIs, fine-grained 3D spatial structures may be lost, and aggressive com-
pression can discard informative signals. To overcome these limitations, voxel-based methods such
as TFF (Malkiel et al., 2022) and SwiFT (Kim et al., 2023) have been proposed. These methods
directly process raw 4D fMRI data, thereby preserving spatial and temporal information, while also
allowing detailed interpretation as they directly operate on the given image. However, due to the
massive scale of fMRI volumes, the temporal length that could be simultaneously processed by the
model is severely restricted (e.g., TFF and SwiFT use only 20 timesteps at once), potentially miss-
ing informative long-range temporal dynamics, and limiting use for tasks that require longer-range
interactions, such as the infraslow BOLD–LFP coupling and global arousal waves that unfold over
tens of seconds (Pan et al., 2013; Raut et al., 2021).

In this work, we aim to improve voxel-based fMRI modeling by tokenizing fMRI volumes into a
compact set of continuous tokens, thereby enabling Transformers (Vaswani et al., 2017) to model
substantially longer temporal sequences. To this end, we paid attention to the remarkable perceptual
information preservation capability of the Deep Compression Autoencoder (DCAE) (Chen et al.,
2025) and aimed to leverage it, as it effectively tokenizes a 256× 256 2D natural image into just 64
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continuous tokens (a compression ratio of 32). Motivated by this, we ask whether a high-performing
2D autoencoder trained on natural images can serve as an effective tokenizer for 4D fMRI data.

Our findings reveal that such an autoencoder can indeed be applied to tokenize fMRI volumes. By
rearranging the tokens extracted from each 2D slice of a 3D fMRI volume, we compress an entire
volume into only 27 continuous tokens, thereby dramatically reducing the input size and enabling
efficient long-sequence modeling with a simple Transformer encoder-based architecture. We dub
our method TABLeT, Two-dimensionally Autoencoded Brain Latent Transformer, which achieves
superior performance compared to both ROI-based and voxel-based baselines on demographic at-
tribute prediction and attention-deficit hyperactivity disorder (ADHD) diagnosis tasks, while dras-
tically saving memory and computation costs compared to the voxel-based baseline. Moreover, we
show that TABLeT benefits from a self-supervised masked token modeling approach that pre-trains
the model on unlabeled fMRI data, further boosting downstream task performance beyond models
trained from scratch.

2 RELATED WORK

ROI-Based Methods. ROI-based methods parcellate the brain into ROIs and average the BOLD
signals within each. The signals are transformed into FC matrices by computing the correlation
between the time series of the ROIs. BrainNetCNN (Kawahara et al., 2017) treats the FC matrix as
a 2D image and uses edge-to-edge, edge-to-node, and node-to-graph convolutional filters to utilize
topological locality in ROI-based networks. Brain Network Transformer (Kan et al., 2022) adapts
the Transformer architecture to process FC matrices as graphs of ROIs. meanMLP (Popov et al.,
2024) is a lightweight MLP-based model that applies the same MLP repeatedly across parcellated
fMRI time-series and averages the resulting embeddings across time before a final classification
layer. Brain-JEPA (Dong et al., 2024) is a joint-embedding predictive architecture (JEPA) model
pretrained on parcellated fMRI with spatiotemporal masking and gradient-based positioning. Even
though computationally efficient, they are inherently limited by the strong pre-processing step that
turns brain signals into FC matrices; it is heavily influenced by the choice of ROIs, and during the
process, structural information as well as other signals can be discarded.

Voxel-Based Methods. Voxel-based methods process 4D fMRI volumes, enabling end-to-end
learning of spatiotemporal features without ROI aggregation. TFF (Malkiel et al., 2022) operates on
entire 4D volumes using a two-phase approach: self-supervised pretraining to reconstruct 3D vol-
umes and fine-tuning. It captures fine-grained spatiotemporal dynamics, enabling transfer learning
from unlabeled data. SwiFT (Kim et al., 2023) extends the Swin Transformer to 4D fMRI volumes
with a 4D window multi-head self-attention mechanism and absolute positional embeddings. Voxel-
based methods are free from the issues with ROI-based models; however, they are burdened with a
higher memory and computation load, as they need to deal with high-dimensional data.

Self-Supervised Pretraining. Self-supervised learning (SSL) has emerged as a powerful pre-
training framework for vision models, enabling scalable representation learning from unlabeled
datasets. MAE (He et al., 2022) introduces an asymmetric encoder-decoder architecture, where
a high portion of input image patches are masked. Visible patches are encoded by Vision Trans-
former (ViT), and the decoder reconstructs the masked patches in pixel space. MAE demonstrated
superior downstream task transfer, such as classification and segmentation. SimMIM (Xie et al.,
2022) proposes a masked image modeling (MIM) framework using hierarchical transformers and
a simple linear prediction head. VideoMAE (Tong et al., 2022) extends the MAE framework to
videos by randomly applying masks on spatio-temporal cubes across spatio-temporal dimensions.
The model reconstructs the masked cubes, learning dynamics, and long-range interactions.

Deep Compression Autoencoder. Deep Compression Autoencoder (DCAE) (Chen et al., 2025)
introduces an autoencoder framework for accelerating high-resolution diffusion models through ex-
treme spatial compression ratios of up to 128×. DCAE achieves superior reconstruction quality at
high compression levels by residual autoencoding. Residual autoencoding utilizes non-parametric
shortcuts that enable the model to learn residuals. The encoder downsample blocks adapt a space-
to-channel operation, and the decoder upsample blocks use a channel-to-space operation. These
non-parametric operations effectively preserve information without learned parameters.
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Figure 1: In TABLeT, each frame of the fMRI timeseries is tokenized by a 2D autoencoder, and the
resulting tokens are processed by a Transformer.

3 METHOD

3.1 TOKENIZATION OF FMRI WITH 2D NATURAL IMAGE AUTOENCODER

To develop a more efficient approach for voxel-based fMRI modeling, our goal was to design a
tokenizer that could substantially compress fMRI voxels while minimizing information loss. We
chose to employ the encoder part of an autoencoder, since it can handle tokenization while preserv-
ing coarse spatial topology. A straightforward strategy would be training an autoencoder directly
on fMRI data. However, this approach is both computationally prohibitive and data hungry because
reliable training may require large sample sizes that are rarely available in medical imaging. More-
over, the resulting models often generalize poorly, as fMRI characteristics vary across scanners and
acquisition protocols.

To circumvent these challenges, we sought a training-free tokenization scheme that also preserves
the fidelity of the original signal. Inspired by the recent advances in image autoencoders, we hy-
pothesized that such models could also serve as effective tokenizers for fMRI volumes. Among
existing options, we adopt DCAE, which achieves strong compression while maintaining image
details. Specifically, we employ the unmodified dc-ae-f32c32-in-1.0 checkpoint provided by Chen
et al. (2025) for all 2D natural image DCAE experiments.
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We first compared the reconstruction performance, on fMRI brain data, of an off-the-shelf 2D natural
image DCAE (hereafter 2D DCAE) with a 3D DCAE trained directly on fMRI data (hereafter 3D
DCAE), as detailed in Sec. 4.4. One important thing to note is that fMRI data are timeseries of 3D
images, while the 2D DCAE only operates with 2D images. Therefore, we slice the data into 2D
images and independently feed them into the autoencoder. Surprisingly, the pre-trained 2D DCAE
produced higher-quality reconstructions despite never being trained on fMRI. Based on this finding,
we propose to tokenize each 3D volume independently using the 2D DCAE encoder and apply this
procedure across the entire fMRI sequence, as described below.

Tokenization of a 3D Volume with Slicing. Each fMRI frame is a 3D volume X ∈ R1×D×H×W .
The single channel is first duplicated across three channels to simulate an RGB structure, giving
X ∈ R3×D×H×W . One spatial dimension is then chosen as the slicing axis, so the volume becomes
a stack of 2D images. For example, if we slice by the depth axis, the volume is treated as D images
of shape R3×H×W . Each image slice is compressed independently into a latent representation Z ∈
RC′× H

32×
W
32 , where the factor of 32 is the DCAE’s spatial compression ratio.

Aggregation of 3 Axes. This procedure is repeated for all three slicing axes, producing three
latent volumes: ZD ∈ RD×C′× H

32×
W
32 , ZH ∈ RH×C′× D

32×
W
32 , ZW ∈ RW×C′× D

32×
H
32 . As

we want to align the three possible latent volumes, the latents are grouped and concatenated
along the uncompressed dimension (the slicing axis) by patches of size 32, reshaping them to
Zpatch,D,Zpatch,H ,Zpatch,W ∈ R32C′× D

32×
H
32×

W
32 . This yields D

32 × H
32 × W

32 tokens for each slic-
ing variation, where each token corresponds to a position in the downsampled 3D grid and has a
hidden dimension 32C ′. The tokens from the three variations are then concatenated with the tokens
from other variations that belong to the same spatial position, resulting in D

32 × H
32 × W

32 tokens per
frame with hidden dimension 96C ′. In our case, H = W = D = 96 and C ′ = 32, which means
each 3D volume of shape (1, 96, 96, 96) is tokenized into 27 tokens with an embedding dimension
of 3072. Finally, we note that tokenization is performed only once, and the tokens are cached for
later use, making its computational cost negligible compared to the subsequent training process.

3.2 TABLET MODEL ARCHITECTURE

To capture the spatiotemporal dynamics of tokenized fMRI sequences, we design a simple yet effec-
tive Transformer encoder (Vaswani et al., 2017), naming the pipeline TABLeT (Two-dimensionally
Autoencoded Brain Latent Transformer). The architecture is built on a standard Transformer en-
coder backbone and integrates several modern components commonly adopted in large language
models (Qwen et al., 2025; Grattafiori et al., 2024). In particular, we adopt grouped query attention
(Ainslie et al., 2023) to efficiently handle long sequences, along with the rotary positional encoding
(Su et al., 2024). In addition, we employ F.scaled dot product attention from PyTorch
(Paszke et al., 2019), which offers both speed and memory savings. Before being fed into the Trans-
former, fMRI tokens are normalized and projected into a lower-dimensional embedding space via a
linear layer. A [CLS] token is prepended to the sequence, followed by an additional normalization
step to enhance training stability. Unless stated otherwise, the model is composed of 12 Trans-
former layers with 14 attention heads and 2 key–value heads, processing sequences of tokens from
256 volumes at once (T = 256). We randomly sampled 256 frames from the entire sequence of each
subject at every training iteration, while for validation, we used all of the frames by partitioning the
sequence and averaging the outputs across partitions, following Kim et al. (2023).

3.3 SELF-SUPERVISED PRE-TRAINING WITH MASKED TOKEN MODELING

Taking inspiration from SimMIM (Xie et al., 2022), we leverage a masked token modeling approach
to pre-train the Transformer encoder of TABLeT. The idea is to encourage the model to learn mean-
ingful spatiotemporal representations from partially observed fMRI sequences. Starting from the
tokens created by the 2D DCAE, we randomly mask some of the tokens by replacing them with a
[MASK] token. From the partially masked input tokens, we task the Transformer encoder to predict
the masked tokens by passing the output tokens through a linear prediction head that reconstructs
the input tokens. The model is trained through an L1 loss exclusively on the masked tokens:
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L =
1

Ω(ZM )
||yM − ZM ||1 (1)

Where Z,y ∈ R96C′× D
32×

H
32×

W
32 are the input tokens and the predicted tokens, respectively. The

subscript M denotes the set of masked tokens, and Ω counts the number of elements (thus the
number of masked tokens). We used a masking ratio of 0.5 as the default in our experiments.

Even though it is possible to use a typical masked image modeling approach by masking the brain
volume directly, we chose masked token modeling as it is much more computationally efficient, and
it still performs well in practice, as we do not change the DCAE encoder during fine-tuning.

Masking Strategy. We mask the input tokens with a learnable mask token, following masked
modeling approaches such as BERT (Devlin et al., 2019), BEiT (Bao et al., 2022), and SimMIM
(Xie et al., 2022). Also, instead of masking the tokens in a completely random manner, the same
masking pattern from a single frame is repeated across different frames, similar to the tube masking
strategy found within VideoMAE (Tong et al., 2022). This is a measure to prevent the model from
“cheating” by looking at tokens in the same location from different frames during reconstruction.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTING

Datasets. We used resting-state fMRI data from 8,178 middle-aged and older adults from UK-
Biobank (UKB) (Sudlow et al., 2015), from 1,061 healthy young adults in the Human Connectome
Project (HCP) (Smith et al., 2013), and from 533 children and adolescents, including both individu-
als diagnosed with ADHD and healthy controls, included in ADHD-200 (Bellec et al., 2017).

For UKB and HCP, we used the preprocessed data provided by UK-Biobank (Miller et al., 2016;
Alfaro-Almagro et al., 2018) and HCP (Smith et al., 2013), which goes through the preprocessing
pipeline including bias field reduction, skull-stripping, cross-modality registration, and spatial nor-
malization to the MNI space (Evans et al., 1993). For ADHD-200, we used the fMRIPrep (Esteban
et al., 2019; 2020) processed data from Bellec et al. (2017) and regressed out nuisance variables us-
ing cosine bases, six motion parameters, and aCompCor components. Following Kim et al. (2023),
we set each fMRI volume to the shape of (96, 96, 96) by cropping out the background and padding
appropriately, and we apply global z-normalization following Malkiel et al. (2022).

We split UKB and HCP using stratified sampling: by age and sex for UKB, and by age, sex, and
intelligence score for HCP. For the ADHD-200 dataset, we performed stratified sampling based on
diagnosis labels and image acquisition sites, following Kan et al. (2022). We generated four different
random stratified splits, and for all of the splits, the training, validation, and test sets were assigned
in a 0.7:0.15:0.15 ratio. For the ADHD-200 dataset, we experimented with three random training
seeds for each split to ensure reliable results, given the relatively small size of the dataset.

Prediction Targets and Evaluation Metrics. We considered sex and age for both UKB and HCP,
intelligence (CogTotalComp-AgeAdj) for HCP, and diagnosis for ADHD-200. The continuous
targets (age, intelligence) are z-normalized using with the training set. Classification tasks were eval-
uated with accuracy, AUC (Area Under ROC Curve), and F1 score. Regression tasks were evaluated
with MAE (Mean Absolute Error), MSE (Mean Squared Error), and ρ (Pearson’s correlation).

Baselines. We considered five ROI-based models as our baseline: XGBoost (eXtreme Gradient
Boosting) (Chen & Guestrin, 2016), BrainNetCNN (Kawahara et al., 2017), Brain Network Trans-
former (BNT) (Kan et al., 2022), meanMLP (Popov et al., 2024), and Brain-JEPA (Dong et al.,
2024). For the Brain-JEPA, we considered a model trained from scratch for a fair comparison. To
preprocess the data, we first construct the FC matrix using a total of 450 ROIs, comprising 400 ROIs
from the Schaefer-400 atlas (Schaefer et al., 2018) and 50 additional ROIs from the Tian-Scale III
atlas (Tian et al., 2020). For the XGBoost model, we used the upper-triangular part of the FC matrix
as the input. We followed the preprocessing pipeline of Brain-JEPA for its experiments.
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For the voxel-based baselines, we adopted TFF (Malkiel et al., 2022) and SwiFT (Kim et al., 2023),
the state-of-the-art voxel-based model. We reproduced the original model with 20 input time frames
(T = 20) for both of them. We also extended SwiFT to our hardware limit (T = 50) to observe
possible gains from a longer temporal context; alongside the number of input time frames, the
temporal window size was also extended from 4 to 10.

4.2 MAIN RESULTS

Table 1: Performance comparison to baselines on classification and regression tasks. The best results
are bolded and the second best results are underlined.

Method
UKB ADHD-200

Sex Age Diagnosis
ACC AUC F1 MSE MAE ρ ACC AUC F1

XGBoost 84.1 0.916 0.830 0.698 0.686 0.553 62.3 0.650 0.555
BrainNetCNN 91.7 0.969 0.912 0.597 0.618 0.647 59.2 0.640 0.545
BNT 92.4 0.980 0.919 0.540 0.588 0.685 63.6 0.677 0.624
meanMLP 87.7 0.949 0.919 0.672 0.662 0.586 56.8 0.617 0.532
Brain-JEPA1 86.8 0.943 0.862 0.688 0.669 0.574 – – –
TFF (T = 20) 98.3 0.998 0.982 0.440 0.525 0.760 63.3 0.700 0.608
SwiFT (T = 20) 97.4 0.998 0.972 0.366 0.480 0.800 63.3 0.603 0.623
SwiFT (T = 50) 98.1 0.999 0.980 0.364 0.477 0.802 63.9 0.701 0.627
TABLeT (T = 256) 97.7 0.998 0.976 0.340 0.466 0.814 65.8 0.729 0.630

Method
HCP

Sex Age Intelligence
ACC AUC F1 MSE MAE ρ MSE MAE ρ

XGBoost 82.2 0.890 0.837 0.859 0.769 0.296 0.908 0.779 0.292
BrainNetCNN 86.3 0.937 0.866 0.847 0.749 0.372 0.967 0.788 0.286
BNT 86.3 0.935 0.872 0.794 0.719 0.444 0.920 0.778 0.318
meanMLP 84.5 0.915 0.855 0.846 0.751 0.370 0.887 0.767 0.340
Brain-JEPA 73.9 0.809 0.761 0.814 0.746 0.369 0.959 0.799 0.171
TFF (T = 20) 88.1 0.937 0.892 0.888 0.779 0.246 0.898 0.767 0.312
SwiFT (T = 20) 93.1 0.978 0.937 0.776 0.719 0.450 0.940 0.782 0.297
SwiFT (T = 50) 92.2 0.972 0.929 0.764 0.699 0.460 0.865 0.758 0.354
TABLeT (T = 256) 93.8 0.987 0.943 0.773 0.705 0.473 0.835 0.741 0.392

Tab. 1 presents experimental results comparing the performance of different models on a training-
from-scratch setting, and the second-order statistics are detailed in Sec. C. The results demonstrate
that TABLeT outperforms baseline methods, including both ROI-based and voxel-based approaches,
across four tasks and three datasets, with only marginal gains on the HCP-Age task and competitive
performance against voxel-based baselines on the UKB-Sex task.

Interestingly, the results of SwiFT (T = 20, 50) and TABLeT indicate a positive association be-
tween temporal window length and performance in intelligence prediction and ADHD diagnosis,
suggesting that modeling longer temporal variability may be particularly advantageous for these
tasks. Sec. 4.6 expands on this observation with a more detailed study.

4.3 EFFECT OF PRE-TRAINING ON DOWNSTREAM TASKS

Tab. 2 shows the effectiveness of the masked token pre-training strategy described in Sec. 3.3. We
first pre-trained TABLeT on a large UKB dataset with a 9:1 training and validation split. We then
fine-tuned the model on HCP and ADHD-200 to simulate a transfer learning setting. For fine-
tuning, we only used 10 epochs for HCP and 5 epochs for ADHD-200, which is considerably lower
compared to training from scratch.

The results demonstrate that the pre-training of TABLeT indeed contributes to the improvement of
downstream task performance, albeit with varying amounts of success depending on the dataset.

1Since the ADHD-200 dataset contains fMRI data with varying repetition time (TR) values and fewer than
160 frames, the default frame number used in Brain-JEPA, we were unable to conduct experiments.
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Table 2: Performance comparison between TABLeT trained from scratch (TFS) and fine-tuned (FT)
on HCP and ADHD-200.

Model
HCP ADHD-200

Sex Age Intelligence Diagnosis
ACC AUC F1 MSE MAE ρ MSE MAE ρ ACC AUC F1

TABLeT TFS 93.8 0.987 0.943 0.773 0.705 0.473 0.835 0.741 0.392 65.8 0.729 0.630
TABLeT FT 95.3 0.986 0.958 0.650 0.655 0.552 0.796 0.732 0.435 65.8 0.722 0.639
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Figure 3: Reconstruction Quality of 3D DCAE and 2D DCAE.

4.4 COMPARISON OF 2D NATURAL IMAGE DCAE AND 3D FMRI-TRAINED DCAE
HC

P
GT 3D DCAE 2D DCAE

AD
HD

-2
00

Figure 2: Visualization of reconstructions from
3D DCAE and 2D DCAE.

Reconstruction Quality. To evaluate the
suitability of different tokenizers, we compared
the reconstruction performance of 2D DCAE
and 3D DCAE directly on fMRI data. Specif-
ically, we computed PSNR and SSIM for each
3D volume and then averaged the results across
all time steps and subjects. We also compared
the difference in FC matrix between the orig-
inal fMRI data (FCorig) and its reconstruction
(FCrecon): ||FCorig − FCrecon||F . 3D DCAE was
trained with the UKB dataset; a detailed train-
ing procedure is provided in Sec. B. To assess
generalizability, we deliberately excluded HCP
and ADHD-200 from the training set. The re-
constructions from the three slicing axes were
averaged for 2D DCAE.

Remarkably, the 2D DCAE achieved higher reconstruction quality than the 3D DCAE trained di-
rectly on fMRI data. We believe that this finding suggests that the 2D DCAE preserves the infor-
mation in fMRI data more effectively than the 3D DCAE without additional fine-tuning, indicating
its potential as an effective tokenizer for fMRI data. As a side note, we also attempted to fine-tune
the 2D DCAE with fMRI data while freezing different parts of the autoencoder, but discovered
that any fine-tuning consistently harmed the reconstruction quality. We presume this is because our
fMRI dataset is relatively small and homogeneous compared to the dataset the model is trained for,
potentially harming generic filters crucial for the model’s generalization capabilities.

Training Performance. We also compared models trained with latents from the 3D DCAE and
the 2D DCAE. As shown in Tab. 1, both models achieve competitive performance, with the 2D
DCAE outperforming the 3D counterpart in most cases.

Table 3: Performance comparison between TABLeT with latents from 3D DCAE and 2D DCAE on
HCP and ADHD-200.

Tokenizer
HCP ADHD-200

Sex Age Intelligence Diagnosis
ACC AUC F1 MSE MAE ρ MSE MAE ρ ACC AUC F1

3D DCAE 92.2 0.973 0.929 0.767 0.693 0.475 0.869 0.755 0.387 65.8 0.711 0.644
2D DCAE 93.8 0.987 0.943 0.773 0.705 0.473 0.835 0.741 0.392 65.8 0.729 0.630
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4.5 MEMORY AND COMPUTATIONAL EFFICIENCY

As the development of TABLeT was motivated by the goal of making a fast and efficient voxel-
based model, here we conduct a quantitative analysis to compare the memory and computational
efficiency between TABLeT and SwiFT. To ensure a fair comparison, all tests were performed on
a single GPU, and the batch size of both models was fixed to 4. We were only able to run SwiFT
up to T = 50 due to memory limitations. At T = 50, compared to SwiFT, TABLeT is 7.33 times
more memory efficient, and trains 3.8 times faster. With a similar memory budget (∼30GB), T can
be extended nearly tenfold between SwiFT (T = 40) and TABLeT (T = 384).

OOM

7.33× memory

(a) Peak memory allocation

OOM

3.80× time

(b) Training time per epoch

Figure 4: Comparison of (a) memory and (b) training time, between TABLeT and SwiFT.

4.6 ADDITIONAL ABLATION STUDIES

Effect of Aggregation of Three Axes. We examined the effect of axis aggregation to better under-
stand its effect: we compared models trained with fMRI tokens derived from a single axis alongside
the model with aggregated tokens. As shown in Tab. 4, the performance of TABLeT varies de-
pending on the chosen axis for single-axis models. In contrast, our aggregated version consistently
achieves strong performance across tasks, eliminating the dependence on any particular slicing axis.
These results represent why we chose to aggregate all three axes instead of using a single axis.

Table 4: Effect of the choice of slicing axis and aggregation of the three axes on classification and
regression tasks. The best results are bolded and the second best results are underlined.

Axis
UKB

Sex Age
ACC AUC F1 MSE MAE ρ

Sagittal 97.3±0.9 0.996±0.001 0.971±0.009 0.369±0.015 0.486±0.010 0.796±0.008
Coronal 97.1±0.4 0.996±0.002 0.969±0.004 0.435±0.012 0.525±0.008 0.756±0.009

Axial 97.3±0.4 0.997±0.000 0.971±0.004 0.410±0.020 0.509±0.014 0.771±0.013

All 97.7±0.2 0.998±0.000 0.976±0.002 0.340±0.011 0.466±0.010 0.814±0.009

Axis
HCP

Sex Age
ACC AUC F1 MSE MAE ρ

Sagittal 91.3±3.6 0.972±0.017 0.920±0.033 0.783±0.111 0.721±0.041 0.458±0.076

Coronal 93.6±1.7 0.981±0.007 0.941±0.015 0.855±0.053 0.745±0.023 0.376±0.048

Axial 92.3±3.0 0.979±0.008 0.930±0.028 0.748±0.056 0.711±0.015 0.470±0.040

All 93.8±0.9 0.987±0.003 0.943±0.008 0.773±0.077 0.705±0.038 0.473±0.053

Axis
HCP ADHD-200

Intelligence Diagnosis
MSE MAE ρ ACC AUC F1

Sagittal 0.842±0.058 0.744±0.028 0.401±0.060 65.8±2.3 0.715±0.026 0.633±0.032

Coronal 0.850±0.057 0.749±0.029 0.381±0.065 63.5±3.1 0.707±0.036 0.621±0.040

Axial 0.896±0.070 0.773±0.033 0.309±0.072 64.3±2.5 0.713±0.022 0.622±0.034

All 0.835±0.053 0.741±0.028 0.392±0.062 65.8±3.5 0.728±0.020 0.630±0.038
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(a) HCP-Intelligence

50 80 128 256
Number of input time frames
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0.720

0.725

AU
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F1

0.6150
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0.6200
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0.6250
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F1

(b) ADHD-200

Figure 5: Performance of TABLeT on HCP-Intelligence and ADHD-200 with varying T .

Effect of T . As shown in Tab. 1, modeling longer-range temporal dynamics can improve perfor-
mance on the HCP-Intelligence and ADHD diagnosis tasks. To explore this further, we varied the
T of TABLeT and evaluated the corresponding performance. Interestingly, Fig. 5 reveals a clear
positive trend between performance and T . We believe that investigating the relationship between
T and model performance across diverse tasks represents a promising direction for future research.

4.7 INTERPRETATION RESULTS

mPFC
PCC/PCu

Thal.

Figure 6: IG map of TABLeT.

One advantage of voxel-based methods is that the models are in-
terpretable, since the entire process from voxel to prediction is
differentiable. To test the interpretability of TABLeT, we used In-
tegrated Gradients (IG) (Sundararajan et al., 2017) for visualiza-
tion of highly contributing areas for sex-classification. We used
female test subjects in the HCP-Sex task who are correctly classi-
fied with TABLeT with high confidence (≥ 75%), and computed
the IG map of the first frame from each subject, then averaged it.

Fig. 6 shows that TABLeT mainly focuses on the medial pre-
frontal gyrus (mPFC), posterior cingulate cortex (PCC), pre-
cuneus (PCu), and thalamus (Thal.), where the regions are im-
plicated in brain sex difference literature (Ficek-Tani et al., 2023;
Ryali et al., 2024; Weis et al., 2020; Salinas et al., 2012).

5 CONCLUSION & LIMITATIONS

We presented TABLeT, a simple and efficient framework that leverages a 2D autoencoder trained on
natural images to tokenize fMRI volumes. This tokenization enables long-range temporal modeling
with Transformers while substantially reducing memory and computational costs. Experiments on
UKB, HCP, and ADHD-200 demonstrated that TABLeT achieves competitive or superior perfor-
mance compared to both ROI-based and voxel-based baselines. In addition, pretraining of TABLeT
with masked token modeling further improved downstream task performance.

Despite these advantages, our study has several limitations. First, TABLeT tokenizes each frame
of the fMRI time series independently. While effective, this process may disrupt subtle temporal
dynamics. Future work could explore tokenization strategies that directly incorporate temporal de-
pendencies, especially in tasks where fine-grained dynamics are critical. Second, TABLeT processes
all tokens jointly, without explicit modeling of their spatial or temporal structure. Architectures de-
signed to leverage spatial and temporal alignment between tokens may further enhance the ability to
capture the spatiotemporal dynamics inherent in fMRI data.

Nevertheless, we believe our study suggests a promising approach, bridging natural image process-
ing and medical imaging, and enabling scalable, efficient spatiotemporal modeling of brain activity.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided detailed descriptions and resources
throughout the paper and the appendices. The 2D DCAE model utilized in our experiments is pub-
licly available on Hugging Face under the identifier mit-han-lab/dc-ae-f32c32-in-1.0,
as detailed in Sec. 3.1. The preprocessing pipeline for the fMRI dataset, clarifying the alignment to
MNI space, is outlined in Sec. 4.1. Implementation details, such as GPU specifications and training
configurations, are specified in Sec. A. Furthermore, the hyperparameters and training procedures
of the 3D DCAE, which was built upon the 2D DCAE, are described in Sec. B.
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Efficient Modeling of Long-range fMRI Dynamics with a 2D
Natural Image Autoencoder

Appendix

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized LLMs for the purpose of polishing our manuscript only.

A IMPLEMENTATION DETAILS

All experiments were conducted on the NVIDIA A100-40GB and RTX A6000 GPUs. We used
fp16mixed precision for the training of all models except for TFF due to NaN error during training.

We used BCEWithLogitsLoss for the classification task, and used pos-weight option for the
ADHD task to account for class imbalance. We used L1Loss for the regression tasks.

For the voxel-based models, TFF, SwiFT, and TABLeT, training was performed by randomly sam-
pling consecutive 3D volumes. For evaluation, following Kim et al. (2023), we computed the final
prediction by averaging the model outputs over all possible windows starting from the first frame.

Shared Settings We used the following strategy for all of the experiments, unless explicitly stated.

• Optimizer: AdamW using a cosine decay learning rate scheduler, with weight decay of
10−2.

• Hyperparameter Search: For the UKB-Sex and HCP-Sex tasks, we searched the
hyperparameter based on the validation AUROC for each model. For the UKB-Age, HCP-
Age, and HCP-Intelligence tasks, we searched based on the validation MAE. For ADHD,
we searched based on the validation loss to consider the pos-weight for the class im-
balance.

• Early Stopping: We chose the early-stopped model for the BrainNetCNN, BNT,
meanMLP, Brain-JEPA, and TFF by default. As we observed that SwiFT and TABLeT
are more stable during training, we report results from the final epoch for all tasks.

XGBoost We grid searched for hyperparameter tuning of XGBoost for the following.

• Maximum depth: Chosen between 3 and 5
• Minimal child weight: Chosen between 1 and 7
• Gamma: Chosen between 0.0 and 0.4
• Learning rate: Chosen between 0.05 and 0.3
• Colsample by tree: Chosen between 0.6 and 0.9

BrainNetCNN We trained BrainNetCNN with the following setup:

• Learning rate: Chosen between 1× 10−6 and 2× 10−4

• Batch size: 64
• Epochs: 100 epochs of training

Brain Network Transformer We trained Brain Network Transformer with the following setup:

• Learning rate: Chosen between 1× 10−6 and 2× 10−4

• Batch size: 64
• Epochs: 100 epochs of training

meanMLP We trained meanMLP with the following setup:

• Learning rate: Chosen between 1× 10−4 and 1× 10−2

• Batch size: 32
• Epochs: 100 epochs of training
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Brain-JEPA We trained Brain-JEPA from scratch for fair comparison with the following setup.

• Learning rate: Chose between 1× 10−5 and 7× 10−4.
• Batch size: 16
• Epochs: 50 epochs of training

TFF We trained TFF with the following setup:

• Phase 1
– Learning rate: 3× 10−3 for UKB, ADHD, and 7× 10−4 for HCP
– Batch size: 4
– Epochs: 100 epochs of training

• Phase 2
– Learning rate: 1 × 10−5 for UKB, ADHD, and chosen between 1 × 10−5 and
1× 10−6

– Batch size: 2
– Epochs: 50 epochs of training

• Fine-tuning
– Learning rate: Chosen between 1 × 10−5 and 1 × 10−6 for UKB and ADHD,

chosen between 3× 10−7 and 1× 10−6 for HCP,
– Batch size: 4
– Epochs: 10 epochs of training for UKB-Sex, 20 epochs of training for HCP, UKB-

Age, and 30 epochs of training for ADHD.

SwiFT We trained SwiFT with the following setup:

• Learning rate: Chosen between 1× 10−6 and 5× 10−5

• Batch size: 4
• Epochs: 25 epochs of training for UKB, HCP, 30 epochs for ADHD.

TABLeT We trained TABLeT with the following setup:

• Learning rate: Chosen between 3× 10−7 and 5× 10−5

• Batch size: 4
• Epochs: 50 epochs of training for HCP-Sex, HCP-Intelligence, ADHD, 30 epochs for age

regression, 15 epochs for UKB-Sex.

B TRAINING DETAILS OF 3D FMRI-TRAINED DCAE

We developed 3D DCAE by adapting the architecture of 2D DCAE (Chen et al., 2025) to handle 3D
volume inputs. To achieve this, we replaced 2D convolutional layers with 3D convolutional layers
and adjusted components such as RMS normalization, batch normalization, PixelUnshuffle,
and PixelShuffle to process 3D data effectively. The model was configured with 1 input chan-
nel, 1024 latent channels, encoder-decoder width of [16, 64, 256, 256, 1024, 1024],
and encoder-decoder depth of [0, 2, 2, 5, 5, 5], to make the same compression ratio as
the 2D DCAE.

For training, we utilized a dataset of 8,178 subjects from the UK-Biobank, splitting it into train-
ing and validation sets with a 9:1 ratio and stratification based on sex and age. The model was
trained for 100 epochs with an initial learning rate of 4 × 10−5, which was gradually reduced us-
ing ReduceLROnPlateau scheduler. During each epoch, we randomly selected a single fMRI
frame from the full set of frames for each subject to train the model. The training process used L2

reconstruction loss and the AdamW optimizer with a weight decay of 1× 10−4.

As the training curve in Fig. 7 shows, we made every effort to train the 3D DCAE model to achieve
the best performance and ensure full convergence, for fair comparison.
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Figure 7: Validation Loss Curve for Training of 3D DCAE.

C DETAILED EXPERIMENTAL RESULTS

We provide the results reported in the manuscript with the standard deviation in Tab. 5, Tab. 6, and
Tab. 7.

Table 5: Experimental results with standard deviation on UKB.

Method
UKB

Sex Age
ACC AUC F1 MSE MAE ρ

XGBoost 84.1±1.7 0.916±0.012 0.830±0.019 0.698±0.013 0.686±0.008 0.553±0.018

BrainNetCNN 91.7±0.9 0.969±0.007 0.912±0.009 0.597±0.017 0.618±0.007 0.647±0.012

BNT 92.4±0.9 0.980±0.003 0.919±0.009 0.541±0.016 0.588±0.011 0.685±0.011

meanMLP 87.7±1.8 0.949±0.009 0.869±0.020 0.672±0.031 0.662±0.016 0.586±0.027

Brain-JEPA 86.8±0.6 0.943±0.004 0.862±0.007 0.688±0.017 0.669±0.008 0.574±0.018

TFF (T = 20) 98.3±0.4 0.998±0.001 0.982±0.004 0.440±0.029 0.525±0.015 0.760±0.015

SwiFT (T = 20) 97.4±0.3 0.998±0.001 0.972±0.003 0.366±0.005 0.480±0.007 0.800±0.004

SwiFT (T = 50) 98.1±0.4 0.999±0.001 0.980±0.005 0.364±0.004 0.477±0.005 0.802±0.003

TABLeT (T = 256) 97.6±0.2 0.998±0.000 0.975±0.002 0.340±0.011 0.466±0.010 0.814±0.009

Table 6: Experimental results with standard deviation on HCP sex classification and age regression.

Method
HCP

Sex Age
ACC AUC F1 MSE MAE ρ

XGBoost 82.2±2.5 0.890±0.028 0.837±0.025 0.859±0.074 0.769±0.033 0.296±0.112

BrainNetCNN 86.3±4.9 0.937±0.027 0.866±0.049 0.847±0.097 0.749±0.040 0.372±0.097

BNT 86.3±3.0 0.935±0.026 0.872±0.030 0.794±0.051 0.719±0.027 0.444±0.055

meanMLP 84.5±2.5 0.915±0.018 0.855±0.028 0.846±0.056 0.751±0.030 0.370±0.087

Brain-JEPA 73.9±3.2 0.809±0.018 0.761±0.043 0.814±0.037 0.746±0.009 0.369±0.046

TFF (T = 20) 88.1±5.0 0.937±0.055 0.892±0.042 0.888±0.062 0.779±0.036 0.246±0.061

SwiFT (T = 20) 93.1±0.5 0.978±0.008 0.937±0.004 0.776±0.043 0.719±0.015 0.450±0.031

SwiFT (T = 50) 92.2±1.1 0.972±0.014 0.929±0.010 0.764±0.092 0.699±0.047 0.460±0.071

TABLeT (T = 256) 93.8±0.9 0.987±0.003 0.943±0.008 0.773±0.077 0.705±0.038 0.473±0.053

TABLeT (3D DCAE) 92.2±1.7 0.973±0.010 0.929±0.014 0.767±0.118 0.693±0.043 0.475±0.076

TABLeT (FT) 95.3±1.3 0.986±0.005 0.958±0.011 0.650±0.045 0.655±0.024 0.552±0.032

D DETAILED DATA DESCRIPTION

We provide a detailed description of each dataset used in our study in Tab. 8.
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Table 7: Main experimental results with standard deviation on HCP intelligence regression and
ADHD diagnosis.

Method
HCP ADHD-200

Intelligence Diagnosis
MSE MAE ρ ACC AUC F1

XGBoost 0.908±0.054 0.779±0.023 0.292±0.099 62.3±2.5 0.650±0.036 0.555±0.031

BrainNetCNN 0.967±0.119 0.788±0.044 0.286±0.112 59.2±10.7 0.640±0.095 0.545±0.118

BNT 0.920±0.092 0.778±0.054 0.318±0.083 63.6±5.4 0.677±0.062 0.624±0.057

meanMLP 0.887±0.076 0.767±0.028 0.340±0.045 56.8±6.8 0.617±0.067 0.532±0.095

Brain-JEPA 0.959±0.091 0.799±0.033 0.171±0.051 – – –
TFF (T = 20) 0.898±0.022 0.767±0.018 0.312±0.088 63.3±2.3 0.700±0.028 0.608±0.030

SwiFT (T = 20) 0.940±0.111 0.782±0.044 0.297±0.080 63.3±3.7 0.693±0.030 0.623±0.033

SwiFT (T = 50) 0.865±0.093 0.758±0.046 0.354±0.070 63.9±3.2 0.701±0.032 0.627±0.030

TABLeT (T = 256) 0.835±0.053 0.741±0.028 0.392±0.062 65.8±3.5 0.729±0.029 0.630±0.038

TABLeT (3D DCAE) 0.869±0.077 0.755±0.032 0.387±0.078 65.8±1.7 0.711±0.026 0.644±0.022

TABLeT (FT) 0.796±0.051 0.732±0.028 0.435±0.046 65.8±2.1 0.722±0.022 0.639±0.031

Table 8: Demographic information of the datasets used in our study

Category UKB HCP ADHD-200
Number of subjects 8,178 1,061 533
Sex

Male, n (%) 4,295 (52.5%) 488 (46.0%) 207 (38.8%)
Female, n (%) 3,883 (47.5%) 573 (54.0%) 325 (61.0%)
N/A, n (%) – – 1 (0.2%)

Age (years) 54.98±7.53 28.79±3.70 11.94±3.40

Intelligence – 113.32±20.50 –
Diagnosed, n (%) – – 236 (44.3%)
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