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Abstract

Understanding the mechanisms underlying deep neural networks remains a fundamental
challenge in machine learning and computer vision. One promising, yet only preliminarily
explored approach, is feature inversion, which attempts to reconstruct images from interme-
diate representations using trained inverse neural networks. In this study, we revisit feature
inversion, introducing a novel, modular variation that enables significantly more efficient
application of the technique. We demonstrate how our method can be systematically ap-
plied to the large-scale transformer-based vision models, Detection Transformer and Vision
Transformer, and how reconstructed images can be qualitatively interpreted in a meaningful
way. We further quantitatively evaluate our method, thereby uncovering underlying mech-
anisms of representing image features that emerge in the two transformer architectures.
Our analysis reveals key insights into how these models encode contextual shape and image
details, how their layers correlate, and their robustness against color perturbations. These
findings contribute to a deeper understanding of transformer-based vision models and their
internal representations.

1 Introduction

In recent years, the focus in the field of computer vision has shifted from convolutional neural networks
(CNNs) to transformer-based vision models (TVMs) (Dosovitskiy et al.l [2020; [Li et al., [2023b} |Carion et al.)
2020; [Zhu et al.l 2021} |Zhang et all [2022]). Despite their impressive performance, the internal mechanisms
that enable these networks to solve complex tasks remain largely opaque. This opaqueness prevents an
interpretation and a clear understanding of how predictions are made within these networks (Zhang &
Zhul, |2018; [Fan et al.l [2021; [Li et all [2022b). Enhancing network interpretability, i.e., understanding the
mechanisms underlying the functionality of a particular deep neural network (DNN), is crucial for ensuring
safety, optimizing performance, and identifying potential weaknesses.

Feature inversion using inverse networks, introduced by Dosovitskiy and Brox (Dosovitskiy & Brox| 2016), is
an early technique to interpret the processing capabilities of DNNs for vision. Building on a substantial body
of work on generating images from intermediate representations (Erhan et al., |2009; [Zeiler & Fergus, [2014;
Mahendran & Vedaldil 2014} Springenberg et al.l 2015)), their method involved training an inverse network
for each layer of the CNN AlexNet Krizhevsky et al.|(2012) to reconstruct input images from intermediate
representations. By analyzing these reconstructed images and their distinct characteristics from various
layers, they gained insights into the underlying mechanisms of the architecture.

While feature inversion was successfully applied to AlexNet, it has not seen widespread adoption in the
context of modern DNNs for vision. We attribute this limited use to two main factors. Firstly, training
individual inverse networks for each layer of a DNN is computationally demanding, particularly for the large
CNNs and TVMs of today. Secondly, the potential of using feature inversion as a tool for analyzing and
interpreting neural networks was only preliminarily explored by Dosovitskiy and Brox (Dosovitskiy & Brox,
2016)), leaving much of the of the capabilities of the method underutilized.

In this work, we revisit feature inversion and apply it to two widely used TVMs (see Figure 1| for an illustra-
tion): Detection Transformer (DETR) (Carion et al., [2020]) and Vision Transformer (ViT) (Dosovitskiy et al.,
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@D, which serve as standalone models as well as backbones in state-of-the-art vision systems (e.g.,|Li et al.
2022a% [Oquab et all 2024} Ravi et all [2024). We begin by introducing a novel feature inversion approach
that builds on the classical idea of training layer-wise inverse networks but adopts a modular strategy that
inverts only specific components of the model. This design enables a substantially more efficient application
of feature inversion to large-scale deep networks.
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Figure 1: Illustration of our approach. Left: We invert components of transformer-based vision models,
such as the backbone and encoder. Right: Using these inverted components, we reconstruct images from
different processing stages to analyze DETR and ViT. Here, we recolor a yellow bus to blue to examine color
processing in the two architectures.

We empirically validate our method on DETR and ViT, and demonstrate how reconstructed images from
different layers can be interpreted in a systematic and meaningful way (see Figure [1| for an illustration).
We introduce several novel analysis techniques for feature inversion and quantitatively evaluate a range of
hypotheses about internal representations. Our analyses uncover key properties of DETR and ViT, as well
as fundamental architectural differences. Among our findings are contrasts in the preservation of contextual
shape and image detail, inter-layer representational correlations, and robustness to color perturbations.
Notably, despite their similar architecture, the two models exhibit distinct strategies for visual abstraction:
DETR gradually transforms object shapes and colors into more prototypical representations at higher layers,
while ViT retains fine-grained visual detail throughout all layers. We summarize our core contributions as
follows:

e We introduce a novel highly efficient feature inversion method based on modular, independently
trained inverse components, which we empirically test and validate.

o We demonstrate how reconstructed images can be systematically used to interpret internal processing
mechanisms, introducing new analysis techniques such as targeted embedding manipulation.

o We identify shared properties across DETR and ViT, including gradual representation changes across
layers, thereby extending prior findings on ViT to the DETR architecture.

o We reveal fundamental differences between DETR, and ViT, particularly in terms of image detail
preservation, abstraction behavior, and robustness to color perturbations.

2 Related work

In computer vision, feature inversion is a technique that reconstructs an input image from its intermediate fea-
ture representations, enabling direct inspection of the information a DNN preserves, discards, or transforms
at different processing stages. It serves as a general tool for studying information flow and representation
dynamics of DNNs.

A seminal work by Mahendran & Vedaldi| (2014)) framed inversion as an optimization problem in the image
space, generating images whose features matched those of a target layer in CNNs. However, this approach was
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computationally expensive, and generated images varied with different image space regularizers. Additionally,
although visually appealing, the mean squared errors (MSE) between the reconstructed and ground truth
images were relatively high.

Dosovitskiy & Brox| (2016]) advanced feature inversion by training dedicated inverse networks for each layer
of a CNN, achieving substantially higher-quality reconstructions, as reflected by lower MSE compared to
ground-truth images. Applied to AlexNet (Krizhevsky et all [2012), this approach showed that both color
and spatial information are preserved across the network hierarchy. However, the method remained com-
putationally expensive, as it required training a separate network for each layer, which becomes demanding
for larger architectures. Nonetheless, their primary focus was on comparing inversion strategies rather than
fully leveraging feature inversion as a tool for network interpretability.

Feature inversion should not be confused with activation maximization studies (Erhan et al., 2009; Zeiler
& Fergus, 2014; |Springenberg et al., 2015; Nguyen et al., [2016} |Olah et al.| [2017)), a technique for image
synthesis from intermediate network states. While feature inversion reconstructs the original input from
intermediate representations to reveal the information preserved at each stage, activation maximization
instead synthesizes inputs that maximally activate specific network units, such as neurons, channels, or
entire layers. The resulting images typically show simple, low-level structures (e.g., edges) for early layers
and more complex, high-level patterns for deeper layers.

In the broader scope of model interpretation, a variety of techniques have been developed to clarify how
internal representations evolve and contribute to downstream predictions. Saliency and attribution methods,
such as gradient-based saliency maps (Simonyan et al., |2014]), class activation mapping (Selvaraju et al.
2017), and layer-wise relevance propagation (Bach et al.| [2015) typically produce heatmaps that spatially
highlight which part of an input image most influences the prediction of the model, often via gradient
backpropagation or pixel-level relevance propagation. While insightful for localizing decision-critical regions,
these methods do not reveal the actual visual content encoded within intermediate representations.

Perturbation-based analyses, such as occlusion sensitivity (Zeiler & Fergus, [2014)) and adversarial at-
tacks (Goodfellow et al.,|2015|), assess input relevance and model robustness by measuring prediction changes
under controlled modifications such as masking out image regions to produce spatial relevance maps akin to
saliency methods, or adding subtle adversarial noise to identify worst-case vulnerabilities. These methods
are valuable to quantify sensitivity and robustness to input perturbations but offer little insight into the
underlying information-processing pipeline.

Representational Similarity Analysis (RSA) methods such as singular vector canonical correlation analy-
sis (Raghu et al., 2017, and Centered Kernel Alignment (CKA) (Kornblith et al., [2019) compare encoding
spaces and quantify alignment between different layers or models to identify how representations evolve,
providing both global and sample-specific similarity metrics but without directly visualizing the preserved
spatial or semantic content.

Loss landscape analyses (Li et al.| 2018} |Garipov et al.|[2018; Keskar et al.| 2017)) examine the geometry of the
optimization surface in parameter space, revealing aspects like sharpness, flatness, and mode connectivity,
to study generalization capacity and learning dynamics, yet offer little intuitive insight into the layer-wise
encoding of specific inputs.

Interpretability research on TVMs, and ViT in particular, has typically employed one or more of the afore-
mentioned broader techniques rather than feature inversion, with a primary focus on attention-based analy-
ses, representation probing, and robustness evaluations. For instance, attribution methods such as attention
rollout (Abnar & Zuidema, 2020) and relevance propagation through attention layers (Chefer et al., [2021)
trace decision pathways across tokens by aggregating and propagating attention weights through successive
layers, producing attention maps that aim to highlight the most influential regions or tokens for the pre-
diction of the model. Other attribution studies assess the importance of attention heads via pruning and
leave-one-out ablations, evaluating prediction changes to quantify the contribution of each head (Li et al.
2023a)). Perturbation-based studies analyze robustness against occlusion, patch permutation, and adversarial
noises (Naseer et al., |2021)), as well as analyzing loss landscape (Park & Kiml| [2022; |Paul & Chen, 2022).
Findings of these works indicate that ViT gradually refines its representations throughout its layers, depends
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less on high-frequency features than CNNs, maintains spatial information throughout its architecture, and
is particularly robust against image perturbations compared to CNNs.

RSA studies using CKA (Raghu et al., |2021)) quantify alignment or separability of features across layers,
also indicate that ViT has more uniform and similar representations across layers than CNNs; driven by
early global information aggregation. Complementary studies (e.g., |Ghiasi et al.| (2022)) use activation
maximization to generate synthetic patterns that most strongly activate specific ViT neurons, observing
a layer-wise shift from local textures to object-level features. However, these approaches mostly highlight
decision-critical regions or quantifying token/feature importance, rather than directly visualizing the full
spatial and semantic content retained at intermediate stages.

In contrast to ViT, interpretability studies on TVMs for object detection, like DETR, remain limited (Chefer
et al.l [2021)), partly because highly entangled features common for object detection are difficult to interpret
with current methods. Instead, rather than analyzing existing models, recent works focus on architectural
changes to improve interpretability by design, e.g., by incorporating feature disentanglement techniques or
introducing new modules designed to learn prototypical features, thereby making subsequent interpretation
more tractable (Yu et al., 2024} [Paul et al., 2024} Rath-Manakidis et al., [2024)).

To the best of our knowledge, feature inversion has not been systematically applied to to TVMs for inter-
pretability and inverting the operations of self-attention and cross-attention layers has been considered a
challenging task (Fantozzi & Naldi, 2024; Bibal et all |2022)), as these mechanisms dynamically aggregate
information across all tokens, entangling spatial and semantic features in a non-local manner. Our work
addresses this gap by reintroducing feature inversion as a scalable, semantically grounded interpretability
tool for large-scale TVMs.

We apply feature inversion to the two TVMs DETR, (Carion et al. [2020), designed for object detection, and
ViT (Dosovitskiy et al.l [2020), designed for image classification. DETR comprises a convolutional backbone,
a transformer encoder-decoder, and a multi-layer perceptron (MLP) prediction head. On the other hand,
ViT features a linear projection layer (serving as its backbone) followed by a transformer encoder and a
MLP head. In both architectures, images are represented as sequences of tokens within their encoders,
maintaining a one-to-one correspondence with their spatial locations, making them well-suited for feature
inversion. We additionally advance the feature inversion approach by training modular inverse components
locally, eliminating the need to train separate networks for each layer. This advancement greatly improves
efficiency and scalability, enabling the application of it to large-scale architectures.

We leverage our novel modular feature inversion approach as a systematic interpretability framework, and
instead of inferring importance from gradients, perturbations, or similarity metrics, we directly reconstruct
images from intermediate representations, providing human-interpretable depictions of what each stage en-
codes. This enables both qualitative inspection of visual richness, abstraction level, and spatial fidelity, as
well as quantitative analysis, e.g., reconstruction error comparison, across stages and models. Furthermore,
using targeted perturbations into feature space, we enable step-by-step analysis of the model’s information
processing pipeline and robustness. Moreover, the framework serves as a diagnostic tool for detection failures,
offering a detailed view into intermediate representations when prediction errors occur.

3 Methods

3.1 Feature inversion

Feature inversion attempts to reconstruct input images from intermediate representations within a neural
network to gain insights into and interpret the processing mechanisms of the network. To formalize the
method, let A : Xy — XL be a neural network with parameters 6, mapping from an image space Xy to an
output space Xp. Assume that A consists of n processing stages of interest indexed by P := (1,...,n), a
subset of the layers of the network. We denote the representation of an image at input stage as xg € Xy and
its representation at stage j € P as x; := Np.;(X0; 00:j), where N;.; : X; — X; represents the component of
the network spanning layers ¢ to j with parameters 60;.; C 6.
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Furthermore, we define the approximate inverse of component N;.; as the neural network /\fjfil X = A
with parameters ¢;.;. The reconstruction of x; from processing stage j € P is given by X;.; := /\/']fi1 (x5).
When ¢ = 0, we refer to the reconstruction as image reconstruction and layer reconstruction otherwise.

Feature inversion for the network interpretability approach by Dosovitskiy & Brox! (2016)) follows two steps.
First, separate inverse components j\/jfol are trained for each j € P by minimizing the expected mean squared
error (MSE) between image reconstructions X;,o and their corresponding input images xo. Then, the inverse
components are used to generate reconstructed images from the various processing stages, enabling an
interpretation of the processing mechanisms of the forward network.

Intuitively, feature inversion relies on the principle that inverse components reconstruct an image by generat-
ing an average over plausible images corresponding to a given representation x;. As a network processes an
input, it abstracts information and omits details at various stages. If the inverse components are sufficiently
powerful, the reconstructed image will reflect these abstractions and omissions at the pixel level. Analyz-
ing these pixel-level transformations allows for an assessment of what information is retained, omitted, or
abstracted at different processing stages, thereby enhancing the interpretability of the network.

3.2 Modular feature inversion

We modify the classic approach to feature inversion in a key aspect. Instead of training inverse components
to map from X; to Xy directly, we train local inverse components, learning ./\/jfjl_1 for all j € P. Formally,
given a training set of images, we optimize the expected MSE for an inverse component over parameters

Gjj-1:
Lyse(¢j-1) = E [[Ix; = N (x5)]3] (1)

With the modular approach, we then obtain image reconstructions by sequentially applying the trained
inverse components from any processing stage b € P:

%o = (N o o N L) () 2)

Jig—1

Our modular approach offers various advantages. Biasing the inverse solution space of inverse components
by independently training inverse components maintains greater symmetry between the processing stages of
the forward and backward path. Additionally, computational efficiency is greatly improved, as fewer, smaller
components are required compared to training separate inverse components attempting to inverse the entire
forward path for each stage.

This efficiency can be illustrated by comparing the total number of trainable parameters in the full-path
approach of[Dosovitskiy & Brox| (2016)) versus our modular approach: Let A" be a DNN with p parameters and
n processing stages of interest, for simplicity, each with p/n parameters. In the full-path approach, n inverse
models are trained, each inverting an increasingly larger network portion. Assuming each inverse network
roughly mirrors its forward path, the total parameter count for all inverse networks is » ., i - 2= "p; L,
scaling linearly with n. In contrast, for the same A, our modular method uses n modular inverse components

of size p/n, totaling p parameters, constant in p and independent of n.

3.3 Application to DETR and ViT

We applied modular feature inversion to the two TVMs, DETR and ViT (see Figure [2| for an illustration of
our approach on DETR). The procedure for ViT follows the same methodology. Specifically, we analyzed
pretrained DETR-R50 and ViT-B/16 as they are a reasonable compromise between performance and size.
For DETR, we identified four processing stages of interest P := (1,2,3,4) while for ViT, we considered
two stages P := (1,2). These correspond to the representations after processing by the backbone (bb),
encoder (enc), decoder (dec), and prediction head (pred). Note that ViT does not consist of a decoder,
and we excluded the prediction head of ViT from our analysis, as it operates on a single token, discarding
the remaining encoder sequence. In contrast, the prediction head of DETR processes the entire decoder
sequence.
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Figure 2: Modular feature inversion of DETR. The top half illustrates the main components of DETR,
with blue arrows indicating the forward path of an input image through the architecture. The bottom half
shows our modular inversion approach, where each component is inverted individually. Red arrows trace the
backward path from predictions through the inverse components, enabling image reconstruction from any
processing stage. Green double-arrows indicate correspondence between representations, i.e., representations
output by a respective forward component can be used as input to the corresponding inverse component
during inference or as a supervision signal during training.

To improve readability, we will henceforth write bb instead of Np.;, bb™! instead of N, 1_:01, and xy,}, instead of x1,
with analogous notation for other components, e.g., enc for N1.o. When referring to an image reconstruction
from a specific processing stage, such as the encoder, we write Xepc.o.

Our inverse components were designed to mirror their respective forward components. For DETR, we
implemented a deconvolutional network as bb™!, resembling an inversion of DETR’s backbone (ResNet-50
(He et al., 2016))). We set enc™! to be structurally equivalent to enc, but with swapped inputs and outputs.
Similarly, we defined dec™! as structurally equivalent to dec, but initialized its input as blank tokens that
self-attend to each other and cross-attend to xge.. For pred_l, we used a simple MLP that takes the
concatenation of bounding box and the full distribution of class logits as input.

For ViT, we employed a local small deconvolutional network as bb~!. Although bb in ViT is a simple,
local invertible linear transformation, its analytical inverse proved to be ill-conditioned, making it highly
sensitive to layer reconstruction errors between xy;, and Xepe:bh. For enc™! we used a structurally equivalent
component to enc, but reversed the direction of information flow. A detailed description of our components
is provided in the supplementary material and our code repositoryﬂ

We trained all inverse components on the COCO 2017 (Fleet et al.l |2014) training dataset and evaluated
image reconstructions on the corresponding test set. We trained at least three instances for each inverse
component variant and interchanged them during analysis to ensure that findings are not attributable to
random variation.

4 Results

4.1 Assessing modular approach

After training the inverse components for DETR and ViT, we first tested the feasibility of our modular
feature inversion approach. To this end, we began by evaluating reconstructed images of arbitrary examples
generated with our method from the various processing stages of the two architectures.

Figure [3] presents exemplary image reconstructions. Early-stage image reconstructions from both DETR
and ViT maintain the overall scene layout and coarse object structure. However, ViT preserved fine-grained
details more accurately, while DETR reconstructions show early signs of blurring even at the backbone stage.
These differences become more pronounced in deeper stages, where DETR reconstructions progressively lose

Lcode submitted in supplement to ensure anonymity during double-blind peer review
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structural detail, introduce color shifts, and abstract away background elements, suggesting a systematic
abstraction process. In contrast, ViT reconstructions remain comparatively faithful across stages.

DETR ViT
input predgp bb enc

24"

Figure 3: Image reconstructions from processing stages. Column 1 shows the original input images. Columns
2-5 and 6-7 show reconstructions from different processing stages of DETR and ViT, respectively.

We quantified these discrepancies between image reconstructions in DETR and ViT in Figure @ (left), using
the average MSE across different processing stages. As expected, reconstruction error increases at later
stages in both models; however, ViT maintains significantly lower MSE than DETR throughout, consistent
with our first assessment of reconstructed images. Notably, in DETR, the MSE from the decoder stage
onward exceeds the baseline error of comparing each image to the dataset mean (a grayish, structureless
reference image). While this could superficially suggest that representations from the decoder stage onward
are less informative than a simple average image, visual inspection of the corresponding reconstructions in
Figure [ reveals the contrary: Despite the higher reconstruction error, these outputs preserve structured,
object-specific content, indicating that the underlying representations encode nontrivial scene information.
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Figure 4: Left: Average reconstruction error across processing stages for DETR and ViT on the COCO
validation dataset. "mean" denotes the average reconstruction error between validation images and the
mean image of the dataset. Center: Reconstruction loss (MSE) at the decoder stage versus object detection
performance (AP) for DETR, evaluated across different values of A. The label "modular" indicates the
performance of our modular feature inversion approach without fine-tuning. Right: Reconstruction loss
(MSE) at the encoder stage versus classification accuracy (Acc) for ViT across varying A.
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This observation suggests a desirable property of our modular approach to feature inversion: Despite the
potential for error accumulation across sequential inverse modules, the approach enables reconstructions that
retain stage-specific transformations without collapsing into a globally averaged output, even when applied
sequentially across deep model stages. This hypothesis prompted a more systematic evaluation of the validity
of our modular feature inversion framework presented in Section [£.2]

4.2 Validating modular approach

We validated our modular approach to feature inversion by comparing the image reconstructions obtained
with our method to those generated using the classic feature inversion approach. For classic feature inversion,
we selected a processing stage of interest for DETR and ViT, specifically, xqec for DETR and Xep for ViT,
and trained networks to reconstruct input images directly, following the classic approach to feature inversion.
That is, we trained inverse networks to determine the optimal parameters ¢gec.o for DETR and ¢epe.o for
ViT.

As an additional control experiment , we also fine-tuned the forward weights of both models by incorporating
an image reconstruction loss. This allowed us to assess whether the loss of detail in reconstructions was due to
limitations in the forward components rather than ineffective inverse components. Specifically, we combined
the reconstruction loss with the objectives of the respective architectures, Logy, following the approach
of Rathjens & Wiskott| (2024):

L(OU ¢j.0) = ALmse(9) + (1 — A) Loy (8) + Lvse(¢j:0) (3)

We trained four model variants with A € {0.0,0.1,0.9,1.0}, setting j to dec for DETR and enc for ViT.
Notably, A = 0.0 corresponds to the classic feature inversion approach, where the forward weights 6 are
not influenced by the reconstructions loss, while the other A-values correspond to fine-tuned versions of
our models. For ViT, we used the ImageNet-1K dataset (Krizhevsky et al., 2012), as ViT is designed for
classification, not object detection, making the COCO object detection dataset less suitable for fine-tuning..

Figure [5] presents the image reconstructions obtained with fine-tuned inverse models alongside those gener-
ated using our modular approach and the classic feature inversion approach. Across all examples, a consistent
pattern emerges: for high A\ values, the reconstructions maintain high fidelity, capturing image details accu-
rately. As A\ decreases, reconstruction quality deteriorates. This effect is particularly pronounced in DETR,
especially in the last two columns, where blur is high. In contrast, ViT exhibits this effect to a lesser degree.
Interestingly, for DETR, clear differences emerge between the last two columns: The reconstructions in the
A = 0 column, which represent the classic feature inversion approach, exhibit a grayish tone, whereas those
in the modular approach column display more saturated colors.

We quantitatively analyzed this pattern in Figure [4] which displays the mean squared error (MSE) alongside
average precision (AP) for DETR (center plot) and MSE alongside accuracy for ViT (right plot). The
results align with the qualitative assessment of the reconstructed images: As A\ decreases, reconstruction
error increases. Moreover, as A decreases, the object detection and classification performances of DETR
and ViT improve, highlighting a trade-off between reconstruction quality and the tasks of the architectures.
Unsurprisingly, the MSE is lower for the classic feature inversion approach than for our modular approach.
As a side note, despite this trade-off, our fine-tuned ViT for A set to 0.0, 0.1, and even 0.9, achieved
slightly higher validation accuracy on ImageNet-1K than the released ViT-B/16 model (used in our modular
approach).

We interpret these findings as follows. Firstly, incorporating reconstruction-driven information into the
forward path enhances reconstruction quality but degrades the performance of the architectures, in line with
previous work (Rathjens & Wiskott, [2024). This trade-off suggests that blur in reconstructions is not a
result of ineffective inverse components but rather a consequence of how information is processed in the
forward model. Importantly, this implies that poor reconstructions are not detrimental to interpretability;
on the contrary, they highlight which information is omitted or abstracted at different stages of the model.
Secondly, our modular approach to feature inversion enhances reconstruction properties for interpretability.
While the classic approach has a better reconstruction performance in terms of MSE, it does so by shifting
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Figure 5: Reconstructions with fine-tuned models. Columns 2-4 show reconstructions from models fine-
tuned with different A values. Column 1 displays input images, and column 6 shows reconstructions using
our modular feature inversion approach. Top: Images from the DETR dec processing stage. Bottom: Images
from the ViT enc processing stage.

colors toward a grayish tone, reflecting the average color of the COCO dataset, particularly evident for
DETR. This shift occurs because the inverse network in the classic approach can exploit global dataset-wide
color statistics as they are not trained locally. In contrast, the modular approach better preserves stage-
specific information, though the MSE between input and reconstructed images may increase, particularly
when reconstructed from deeper representations.

4.3 Analyzing color

Having established the feasibility and validity of our modular inversion framework, we turned to its primary
purpose, i.e., interpreting intermediate representations in DETR and ViT.

Building on our initial observations suggesting substantial differences in color processing between DETR and
ViT, we conducted a systematic analysis to explore these differences in more detail. Precisely, we recolored
specific objects in input images and evaluated the influence of these modifications on image reconstructions
from the various processing stages. For recoloring, we used the segmentation annotations from the COCO
dataset to apply six different color filters in the HSV color space to various object categories. Specifically,
we adjusted the hue of specified objects to red, green, blue, shifted the hue values by 120 or 240 degrees, or
converted all image pixels to grayscale. Figure [f] illustrates recolored images alongside their corresponding
reconstructions for several examples. Each row presents an example from a different object category with a
distinct color filter applied. Each column presents a reconstruction from a different processing stage.

For DETR, we observe that color perturbations are preserved in image reconstructions from the backbone
representations for all objects and filters but gradually fade or disappear almost entirely in image reconstruc-
tions from the encoder representations. In Xgec.o practically no color perturbation remains. Instead, colors
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Figure 6: Effects of color perturbations. Rows show images where specific object categories were color-
perturbed (from top to bottom: stop sign colored green, bear with colors rotated by 240°, apple with colors
rotated by 120°, bus colored blue, giraffe converted to grayscale). Columns 2-4 and 5-6 show reconstructions
from different processing stages of DETR and ViT, respectively.

shift toward prototypical representations (red for the stop sign and bus, brown for the bear, red or yellow for
the apples, and yellow for the giraffe) even when color information was deleted (see giraffe). In contrast, we
do not observe a similar effect in ViT, as color perturbations remain visible in image reconstructions from
all processing stages.

We quantified the response to color perturbations by computing the average pairwise MSE between image
reconstructions of differently perturbed images from each processing stage. Specifically, given an image xg,
we applied each color filter separately, generating six perturbed versions. We calculated the average pairwise
MSE between these perturbed images at the input stage. Similarly, for the backbone stage, we computed
the average pairwise MSE between the six corresponding reconstructed images Xpp.0, following the same
approach for the encoder and decoder stages. The left plot in Figure [7] presents these MSE values, averaged
across all categories and images in the dataset.

For DETR, we observe that the average pairwise MSE decreases progressively from X to Xenc.o, indicating
increasing similarity. However, at the decoder stage, the MSE returns to input levels. This observation aligns
with our qualitative analysis, confirming that reconstructions tend to converge to the same or similar colors
as they progress through the DETR architecture. The increase in average pairwise MSE at the decoder
stage is likely not due to color divergence but rather distortions in object shapes. For ViT, the preservation
of color perturbations throughout the architecture is reflected in an almost constant pairwise MSE across
processing stages.

The greater loss of color information in DETR compared to ViT suggests that DETR is more robust to
color changes than ViT. We tested this hypothesis by evaluating the performance of each architecture on
recolored images (see right plot Figurem). Specifically, we recolored entire images from the ImageNet dataset
and measured classification performance for ViT, as segmentation data was not available. To ensure a fair
comparison, we also applied full-image recoloring for DETR. The results show that accuracy of ViT drops
compared to the default setting, whereas DETR remains unaffected.

10
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Figure 7: Quantification of color perturbations. Left: Average pairwise MSE between image reconstructions
of differently perturbed versions of an image, comparing inputs and reconstructions across processing stages.
Shaded area indicates 95% confidence intervals over the COCO test set. Right: DETR’s and ViT’s sensitivity
to color perturbations (none, red, green, blue, 120° shift, 240° shift, grayscale) in relation to the performance
of their objectives.

4.4 Analyzing structure

Our initial assessment of reconstructed images indicated that DETR progressively alters the image structure
across its processing stages, whereas ViT tends to preserve it. To investigate this phenomenon in greater
depth, we again reconstructed images from various stages of both architectures, this time focusing on the
analysis of structural changes. Given the particularly interesting behavior observed in DETR, we employed
two variants for its pred™': a standard predl?é, which receives xpreq With full distribution of class logits
as input, and an additional plredalgI7 which takes a one-hot encoded variant of Xpeq. The latter retains
only the highest-confidence class per detected object, discarding information about the uncertainty in class
predictions. Bounding boxes are retained in both variants. We hypothesized that the full distribution of class
confidences, beyond just the top prediction, encodes meaningful visual cues. The one-hot variant allowed us
to evaluate more prototypical reconstructions of certain objects, without the model being able to exploit the
uncertainty information and low-confidence class associations during the reconstruction process.

Figure [8] displays exemplary image reconstructions. For DETR, we observed that low-level structural infor-
mation is generally well-preserved in reconstructions from xy,. Notably, at the later stages starting from
dec, objects undergo significant alterations, including changes in size, shape, structure and orientation (e.g.,
the person in the first row appears taller with a lowered hand, the sunflowers in the third row shift into a
generic green plant, and the horse in the fourth row is reoriented to face right), the addition of contextual
elements (left person in the second row appears to be wearing a suit in reconstructions from dec and pred,
inferred from the presence of a tie), or complete omissions of objects (e.g. the bollards in the second row, or
the photo frame on the wall in the third row are completely abstracted out). Furthermore, we observe some
artifacts, e.g., in the reconstructions from predgy in the fourth row, a dark object appears near the horse
that seems to be another person, which is not present in earlier stages. These transformations appeared
repeatedly across diverse samples and object classes, suggesting that the model learns structured abstraction
behaviors that are consistent within each class.

In contrast, ViT reconstructions show little structural change across stages. Object shape, spatial configu-
ration, and contextual elements are consistently preserved, suggesting that ViT retains low-level visual and
semantic information without applying the same degree of abstraction observed in DETR.

We interpret these observations as follows. In higher processing stages, DETR tends to omit image details
that are not relevant to object detection, such as objects that are not explicitly recognized (e.g., the omission
of bollards and photo frame, compared to detected objects indicated by bounding boxes in the input images).
Instead of preserving raw image details, DETR represents objects in a prototypical manner, discarding
information deemed irrelevant for recognition, such as pose and shape variations or orientation changes (e.g.,
the altered posture of the person or the transformed sunflowers). Additionally, DETR appears to learn priors
about object co-occurrences and typical scene compositions. It may modify contextual elements to enhance

11



Under review as submission to TMLR

S Al
e © WWWKIGjicekinet i

.40 i i

Figure 8: Structural transformations analysis in DETR and ViT

object recognizability, as seen in the addition of a suit coat to emphasize the tie. Using only top-scoring
classes for reconstructions can also lead to semantically relevant hallucinations, like a person appearing near
a horse, emphasizing the role of model confidence in activating the co-occurrence of related objects. On the
other hand, ViT does not appear to undergo these abstractions, as image details remain largely preserved
throughout its architecture.

4.5 Analyzing spatial correlations

Throughout our experiments, we observed that ViT preserves image details more effectively across processing
stages than DETR, suggesting a stronger spatial correspondence between the input image and its token
representations. To further examine this spatial correlation, we replaced 20% of randomly selected tokens
at two processing stages with identical uniform noise added to the respective positional embeddings, and
analyzed the resulting image reconstructions. Specifically, we manipulated x}}, and generated reconstructions
N, b_bl:o(xbb) and Ne;i:O(Nbb;enc(xbb)), which we refer to as bbyan and encpant. Additionally, we manipulated

Xene tO generate reconstruction J\fe;izo(xenc) which we refer to as encyan. Note that positional information
of tokens from the encoder stage of ViT cannot be preserved, as explicit positional encodings are no longer

present at that processing stage.

Our reasoning for the experimental setup was as follows: If the manipulation of tokens result in visible
distortions at their corresponding spatial locations, while the rest of the image remains unchanged, it would
indicate that the reconstruction process relies primarily on local features. Such behavior suggests a low level
of abstraction, where image information is not distributed across all tokens. Conversely, if the manipulated
tokens do not produce localized distortions but instead affect the entire reconstruction, it implies that the
image information is distributed across tokens, pointing to a higher level of abstraction and reduced spatial
locality.

To enable a more isolated analysis of enc, we introduced a local inverse backbone variant for DETR. In this
configuration, each image patch is reconstructed solely from the token corresponding to its spatial location,
without incorporating global features. This design decouples the global integration of image details across
tokens performed by the encoder from that of the backbone.
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Figure [9]shows results for two example images for both architectures. For the DETR setup with the standard
bb~!, token manipulation leads to slightly increased blurring and color shifts in the reconstructions across
all processing stages. However, the reconstructions do not reveal which tokens were manipulated, as the
noisy tokens were consistently filled in with plausible content.

default manipulated
input bbman €NCman €NCman+

¢ i w- -H-
"
1 R -
L]
| ]

DETR

DETR - local bb™?

ViT

Figure 9: Image reconstructions from default (unmanipulated) and manipulated representations with DETR,
a DETR variant with a local inverse backbone, and ViT. Tokens were replaced with the same random uniform
noise at different processing stages before reconstruction. For encyan4, embeddings were manipulated at the
backbone stage, processed through enc, and then used for reconstruction.

With the local inverse backbone variant for DETR, overall reconstruction quality deteriorates significantly,
as expected. Unlike the standard inverse backbone, reconstructed images with the local version enable a
more accurate identification of the manipulated tokens. Since the local bb™! reconstructs each image patch
using only a single token, and all manipulated tokens are replaced with identical noise, the corresponding
patches appear visually identical, as visible in the bbp,., setup.

In the encpa, setup, manipulated tokens can still be identified, as their corresponding reconstructed patches
differ from those based on unmanipulated tokens. However, these differences are less pronounced, suggesting
that manipulated tokens integrate some contextual information from surrounding tokens. In the encpant
condition, patches reconstructed from manipulated tokens are nearly indistinguishable from others, as the
noisy tokens blend seamlessly into the overall image.

The appearance of reconstructed images from manipulated representations in DETR stands in sharp contrast
to those obtained from ViT. For ViT, manipulated tokens manifest as visible noise within their corresponding
patches, while unmanipulated patches remain unaffected.

The differences in image reconstructions from manipulated representations strongly support the hypothesized
distinction in information processing between the two architectures. While both the DETR backbone and
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encoder distribute image details associated with a given location across multiple tokens, ViT components
preserve a spatial correspondence between tokens and image locations. As a result, the inverse components in
ViT do not require global integration to reconstruct the image, an effect particularly evident in the encpan+
setup, where the manipulated tokens remain clearly identifiable despite being processed through multiple
stages.

The lower level of abstraction in ViTs suggests that, in the forward pass, greater emphasis is placed on
attention from the class token to image tokens rather than self-attention among image tokens. To test
hypothesis, we disabled self-attention in enc retaining only the cross-attention from the class token to image
tokens, and fine-tuned the architecture on ImageNet-1K. Remarkably, this modified model still achieved
approximately 69% top-1 accuracy, only seven percentage points lower than the 76% accuracy of ViT-B/16
with enabled self-attention, supporting our hypothesis.

4.6 Analyzing detection errors in DETR

Our method also enables a visual inspection of detection errors by examining the reconstructed images to
find out how DETR encodes, or fails to encode, objects across stages. As illustrated in Figure [I0} objects
that are ultimately not detected (e.g., the bicycle in the second row or the potted plants in the third row)
are gradually suppressed across the processing stages. Although clearly visible in the input, these elements
begin to fade in the reconstructions from bb and enc, and leave no trace in the reconstructions from dec or
pred. This gradual disappearance suggests that the model deems them irrelevant and filters them out during
object query formation or matching.

|nput(GT)

|nput(DETR) bb dec predep predon

:""ram:!ng'n"gr.mu!— !

Taheatraffic:ligl £ tral
M atriciia ht o
Oifire, nyar

Figure 10: Image reconstructions from various processing stages of DETR. Analysing detection errors using
reconstructions of various stages. The first and second columns depict input images along with ground truth
labels and predictions of DETR, respectively.

In contrast, false positives often exhibit the opposite behavior: Reconstructions from later stages reveal a
shift toward features associated with incorrect classes (e.g., the second fire hydrant in the first row or the
second stop sign in the fourth row). This suggests that, if DETR misinterprets certain features or contextual
cues, it constructs coherent features and consolidates them into prototypical object representations.
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These observations provide a visual trail of where detection errors arise by revealing the stages in the pro-
cessing pipeline where critical information is lost or misrepresented. This stage-wise visual access to internal
representations makes reconstruction-based analysis a valuable diagnostic tool for interpreting the inner
workings of DETR, highlighting where in the architecture corrective refinements might be most effective.

4.7 Analyzing intermediate layers

Until now, we have applied feature inversion only to representations from selected processing stages, thereby
excluding layers not explicitly chosen for our analysis. However, unlike in CNNs, transformer-based vision
models offer a unique analytical opportunity: The intermediate representations within both the encoder and
decoder maintain a consistent shape across layers. This property allows intermediate encoder representations
to be passed through the inverse backbone and inverse encoder, and intermediate decoder representations
through the inverse decoder, even though these components were not trained for this purpose. Leveraging this
unique property, we explored whether our inverse components could reconstruct images from intermediate
encoder and decoder representations, despite the mismatch in training context. Specifically, we analyzed
intermediate representations from the encoder and decoder of DETR, as well as from the encoder of ViT.
Figure [I1] provides illustrative examples.
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Figure 11: Image reconstructions from intermediate encoder and decoder layers. The left y-axis labels
indicate the component from which we extracted the respective intermediate representation. The x-axis
labels denote the specific intermediate layer corresponding to the intermediate representation. The right
y-axis labels indicate into which inverse component we fed the intermediate representation.

Predictably, for intermediate representations of both architectures, we obtained best reconstruction perfor-
mances for the representations the inverse components were trained on: xpp, for bb™! | Xene for enc™! and,
for DETR, Xgec for dec™!. The quality of reconstructions gradually decreases as we move farther away from
the representations the inverse components were trained on, a pattern particularly evident for the input to
dec™! since decoder tokens initially hold values that are independent of the input image.

Despite of this degradation, image features are generally preserved across intermediate layers, especially
when feeding intermediate encoder representations into enc™!. For DETR, most variations in bb~! and
enc™! appear as color shifts, whereas reconstructions from dec™! exhibit greater stability in color than in
shape. For ViT, reconstructions from enc~! preserve both shape and color, while bb™! display strong tiling
effects, likely due to the local operations of the inverse backbone. Nevertheless, both color and shape remain
discernible.The overall stability of reconstructions across layers is noteworthy, as inverse modules might be
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expected to produce only noisy outputs when applied to intermediate embeddings they have not been trained
on.

From these observations, we draw three key conclusions. Firstly, the difference in feature preservation
between DETR and ViT further highlights their distinct approaches to information abstraction, as DETR
progressively alters colors throughout its hierarchy. Secondly, intermediate embeddings in transformer-based
vision models evolve gradually across layers, as suggested by Raghu et al. for ViTs (Raghu et al, 2021]) and
by Liu et al. for LLMs (Liu et al 2023). Finally, feature inversion is particularly well-suited for TVMs, as
inverse components can be applied across multiple layers, eliminating the need to train a separate inverse
component for each layer.

5 Discussion

In this work, we set out to apply an efficient variant of the classic feature inversion approach from [Dosovitskiy
& Brox| (2016) to study the intermediate representations of the TVMs DETR and ViT. We began by
formulating a modular version of feature inversion that significantly improves efficiency by replacing large
global inverse networks with lightweight, local inverse components, thereby substantially reducing the number
of trainable parameters.

After a brief glimpse into image reconstructions obtained with our novel variant from DETR and ViT, we
first validated its feasibility for network interpretability on both architectures. To this end, we qualitatively
and quantitatively compared our approach to classical feature inversion on ViT and DETR, and variants
of the two architectures fine-tuned with a combination of reconstruction loss and architecture specific ob-
jectives. We found that reconstructed images obtained with modular feature inversion are reflective of the
processing mechanisms of both architectures. Additionally, despite potential error accumulation through
repeated application of inverse components, the method opposes trivial image reconstructions, rendering our
modular approach not only more efficient than classic feature inversion but also better suited for network
interpretability.

Building on this foundation, we commenced with a systematic interpretability study of DETR and ViT,
beginning with an investigation of how color information is processed. We observed that DETR progres-
sively shifts object colors toward prototypical representations, while ViT preserves original color information
throughout. Consistent with these findings, DETR shows strong robustness to color perturbations, whereas
the classification performance of ViT degrades, challenging previous claims (Naseer et all 2021; [Paul &
Chen, [2022) that ViT is remarkably resilient to image perturbations.

We continued our interpretability study with a focused analysis of how image structure is processed in the
two architectures. We found that DETR abstracts object structure and context, modifying shapes and
poses, omitting irrelevant but adding contextually relevant features, reflecting a shift toward prototypical
representations that likely simplify object detection in later stages. In contrast, ViT retains object geometry
and spatial layout with minimal distortion, pointing to a lower level of abstraction and a stronger preservation
of visual detail.

We then turned towards analyzing spatial correlations between intermediate representations and input im-
ages. Using a novel analysis method in the context of feature inversion, specifically, injecting noise into
intermediate representations, we found that ViT encodes spatial information in a localized manner. At the
same time, DETR diffuses spatial information more globally. The spatial correspondence in ViT questions
the importance of self-attention within the architecture, particularly given that we achieved reasonable clas-
sification accuracy in a ViT with disabled self-attention. Notably, Jaegle et al| (2021) have shown that
a transformer-based model can achieve competitive accuracy on ImageNet-1k using only cross-attention.
However, in their model, self-attention was still applied to register tokens, and its computational complexity
exceeded that of ViT.

After briefly showing how DETR reconstructions vary with detection errors, we concluded our analysis by
leveraging a key property of transformer architectures, namely, the constant shape of intermediate repre-
sentations across encoder and decoder layers. The consistency allowed us to feed these representations into
inverse components optimized for reconstruction from different layers. We found that both DETR and ViT
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refine their representations gradually across layers, a pattern consistent with prior ViT studies (Raghu et al.)
2021) and now extended to DETR, suggesting that gradual refinement is a general characteristic of TVMs.
This property also enhances the efficiency of feature inversion in such models.

On the whole, we found both shared and divergent properties between DETR and ViT. For instance, both
models exhibit gradually evolving representations across layers, yet differ in their treatment of color and
structural image information. While similarities can likely be attributed to the transformer-based nature of
both models, the differences raise important questions for future research, and we outline several hypotheses
regarding their origin.

One potential factor is the difference in training data. The ViT we analyzed was trained on the large-scale
JFT-300M dataset, which contains around 18,000 classes (Sun et al., |2017)), while the DETR we analyzed
was trained on COCO (Fleet et al., [2014), which includes approximately 90 object categories. The greater
visual diversity in JFT-300M may require ViT to preserve finer image details, whereas DETR, trained on
a smaller and more constrained set of categories, may afford more abstraction. Future work could examine
how the training dataset influences feature inversion results, for example, by retraining both architectures
on the same dataset.

Another hypothesis relates to the difference in training objectives. DETR is trained for object detection,
which involves identifying and localizing multiple objects per image. In contrast, ViT is trained for image-
level classification, where only a single object needs to be identified without localization. Classification,
therefore, may place less demand on the model to transform input features extensively. In contrast, object
detection requires more abstract and context-aware representations to support both recognition and spatial
localization. Future research could explore this hypothesis by training the architectures with swapped
objectives and analyzing the impact on feature inversion outcomes.

Lastly, architectural differences, particularly in the backbone, may also contribute to the observed differences
in image reconstructions. DETR uses a CNN as its backbone, which is known to produce progressively more
abstract representations (Mahendran & Vedaldil |2014), whereas ViT employs an invertible linear embedding
that preserves all input information. Consequently, the inputs to the transformer encoders in DETR and
ViT differ substantially from the outset, potentially leading to distinct representational dynamics throughout
the network. Future work could explore the role of the backbone by systematically swapping the backbones
of the two architectures and analyzing their effect on image reconstructions.

From a methodological perspective, we have shown that modular feature inversion is both more efficient and
more naturally aligned with the architecture of TVMs than the classical approach. These properties make it
well-suited for analyzing modern iterations of TVMs such as DINOv2 (Oquab et al., 2024) or SAM (Kirillov,
et al., 2023)). Furthermore, since our approach is not limited to TVMs and we expect it to offer advantages
for a broad range of DNNs, it may also prove valuable for analyzing modern CNN-based models such as
ConvNeXt V2 (Woo et al.| [2023) or YOLOv8 (Ultralytics).

One particularly intriguing property of our method is that, despite yielding higher image reconstruction error
than classical feature inversion, images are better suited for network interpretability. While we can attribute
this effect to the closer mirroring of the forward processing path obtained with modular feature inversion
compared to the classical approach, its extent remains unclear. Future research could explore this further by
systematically varying the number of inverse components and examining the impact on both reconstruction
quality and interpretability.

In this line of research, future work could also address a fundamental limitation of feature inversion: Even
with the modular approach, it remains challenging to conclusively attribute specific properties in recon-
structed images to individual processing stages. Drawing reliable conclusions typically requires additional
quantitative analysis. However, increasing the number of inverse components may offer finer-grained insights
and help localize specific representational effects to particular layers.

Our method may have broader applications beyond network interpretability. In the case of DETR, we
observed that undetected objects often vanish in reconstructed images, while misclassified objects tend to
appear significantly altered. These findings point to a promising direction for applying modular feature
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inversion to error detection: By comparing reconstructed images to their inputs, discrepancies may serve as
indicators of detection failures.

Drawing a parallel to computational neuroscience, prior work has shown that generative models of episodic
memory require the integration of both discriminative and generative processes (Fayyaz et al [2022). Future
models could build on this idea by unifying a TVM and its inverse within a single architecture. Like-
wise, TVMs may be well-suited for biologically plausible learning systems, as they naturally support local
reconstruction losses (Kappel et al., [2023).

In summary, we proposed a modular feature inversion framework for TVMs that enables scalable, component-
wise interpretability with minimal training overhead. Applied to DETR and ViT, it revealed shared and
distinct representational dynamics in abstraction, spatial encoding, and robustness. Beyond interpretabil-
ity, the approach shows promise for error detection and biologically inspired learning, positioning modular
inversion as a practical tool for probing modern vision models and guiding future discriminative-generative
integration.
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