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ABSTRACT

In many applications like experimental design, group testing, medical diagnosis,
and active testing, the state of a random variable Y is revealed by successively ob-
serving the outcomes of binary tests about Y , where new tests are selected adap-
tively based on the history of outcomes observed so far. If the number of states of
Y is finite, the process ends when Y can be predicted with a desired level of con-
fidence or all available tests have been used. Finding the strategy that minimizes
the expected number of tests needed to predict Y is virtually impossible in most
real applications due to high dimensions. Therefore, the commonly used strategy
is the greedy heuristic of information maximization that selects tests sequentially
in order of information gain. However, this can be far from optimal for certain
families of tests. In this paper, we argue that in most practical settings, for a given
set of tests, there exists a 0 ≪ δ ≪ 1

2 , such that in every iteration of the greedy
strategy, the selected binary test will have conditional probability of being ‘true’,
given the history, within δ units of one-half. Under this assumption, we first study
the performance of the greedy strategy for the simpler case of oracle tests, that
is, when all tests are functions of Y , and obtain tighter bounds than previously
reported in literature. Subsequently, under the same assumption, we extend our
analysis to incorporate noise in the test outcomes. In particular, we assume the
outcomes are corrupted through a binary symmetric channel and obtain bounds
on the expected number of tests needed to make accurate predictions.

1 INTRODUCTION

Many applications of machine learning in science and engineering can be posed as an active testing
problem of sequentially carrying out tests to predict a target variable Y such that the expected num-
ber of tests needed is minimized. Perhaps the simplest example is the classical parlor game “twenty
questions”, where the objective might be to identify a famous person one player thinks of (the Y
in this case) by asking the minimum number questions about Y on average, where each of these
questions can be viewed as a test about Y .1 Other examples include Bayesian optimal experimen-
tal design (Lindley, 1956), sensor fault detection (Zheng et al., 2012) and medical diagnosis (Peng
et al., 2018). Since computing the optimal sequence of tests for such scenarios is NP-complete in
general (Hyafil & Rivest, 1976), the “greedy” heuristic of choosing tests in each iteration that reduce
the uncertainty about Y the most, given the outcomes observed so far, is commonly employed in
practice. More precisely, this is mathematically equivalent to choosing the test whose outcome has
maximum mutual information with Y given the sequence of test outcomes observed so far and is
popularly known as the Information Maximization (InfoMax) algorithm, which has found numerous
uses in recent applications (Geman & Jedynak, 1996; Sznitman & Jedynak, 2010; Branson et al.,
2014; Geman et al., 2015; Ma et al., 2018; Foster et al., 2019; Cuturi et al., 2020; He et al., 2022;
Chattopadhyay et al., 2022). Given the natural intuition behind InfoMax, one might ask how ef-
ficient this greedy heuristic is in practice. However, despite its popularity, theoretical guarantees
about the performance of the InfoMax algorithm are scarce (Chen et al., 2015).

In this paper, we analyze the InfoMax algorithm for binary tests and derive bounds on its perfor-
mance. Throughout this paper, by performance we mean the expected number of tests needed to
make accurate predictions. If one has access to all possible binary functions of Y as tests, then it is

1For example, one possible question could be “Is Y still alive?”
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known that the performance of the greedy strategy is upper bounded by H(Y )+1 (Garey & Graham,
1974), where H(Y ) denotes the entropy of Y . This is nearly-optimal since H(Y ) is a lower bound
on the best possible performance (Shannon, 1948). Unfortunately, for scenarios when one has access
to only a restricted set of functions of Y , Loveland (1985) illustrated that it is possible to construct
binary active testing problems for which given a set of tests, T , the greedy strategy requires at least
|Y|
16 × opt(T , Y ) number of of tests to identify Y , where |Y| is the number of values Y can take

and opt(T , Y ) is the performance of the optimal (not necessarily greedy) strategy for identifying
Y given T . Thus, as |Y| gets large, the greedy strategy can obtain dismal results when compared
with the optimal strategy. In light of this result, how is it that the greedy strategy is one of the most
popular heuristics used for solving the sequential selection of tests in practical applications?

Figure 1: Distribution of the values of |P(Tk = 1 | History) − 1
2 |

sampled over all iterations for all examples in the dataset, where Tk

indicates the test selected at iteration k.

In this paper, we argue
that the competitive per-
formance of the greedy
strategy that is often ob-
served in practice can be
attributed to a property
of the set of available
tests T that we call δ-
unpredictability. A set of
tests is δ-unpredictable, if
in every iteration of the
greedy strategy the selected
test has conditional proba-
bility of being ‘true’, given
history of test outcomes
observed so far, within 1

2 ±
δ, unless the posterior over Y given the history of outcomes observed so far is sufficiently peaked,
upon which the algorithm will terminate. While taking δ = 1

2 , makes any given T trivially δ-
unpredictable, we observe that in many practical applications the given set of tests is δ-unpredictable
for modest values of 0 ≪ δ ≪ 1

2 . For example, in Figure 1, we show on two machine learning
datasets, namely CUB-200 (Wah et al., 2011) and AwA2 (Xian et al., 2018), on which carrying out
information maximization always finds a test within δ units of one-half in every iteration for every
datapoint with δ = 0.22 and δ = 0.17, respectively. More details in Appendix §A.5. Similarly,
Geman et al. (2015) employed δ-unpredictable T for visual scene annotation (in terms of objects in
the scene, their attributes and relationships) and showed δ = 0.15 works.

Inspired by these observations, we study the performance of the greedy strategy when T is δ-
unpredictable for some δ ∈ [0, 1

2 ]. In the extreme case where δ = 0, we have bisecting tests at
each iteration. If we further assume the tests are functions of Y , then the set of possible values Y
can take, referred to as the active set, is effectively halved at each iteration depending on the test
outcome. This is akin to binary search, which is known to converge in H(Y ) iterations (Flores &
Madpis, 1971). On the other extreme, when δ = 1

2 , it allows the greedy strategy to pick a test that is
deterministic given the history, in other words, tests with conditional probability of being true equal
to 0/1 will be selected which would lead to null reduction of the current active set. Our contribution,
is to study what happens in the middle, say when δ ≈ 0.25. We first study the simpler case of oracle
tests, that is, when all tests in T are functions of Y and bound the performance of the greedy strategy
to be at most H(Y )

− log2(
1
2+δ)

, which immediately improves upon bounds previously reported in liter-
ature (Garey & Graham, 1974; Loveland, 1985; Dasgupta, 2004; Kosaraju et al., 1999). Building
on this, we extend our analysis and present our main result on the algorithm’s performance under
noisy tests. In particular, we assume the test outcomes are corrupted by a binary symmetric channel
and we obtain bounds on the prediction error rate after the algorithm terminates. The analysis in the
noisy case is more involved since the test outcomes, by virtue of noise, no longer constrain the set
of possible values Y can take. In summary, our main contributions are the following.

• We first study the oracle case where tests are functions of Y . Assuming the given set of tests, T , is
δ-unpredictable for some δ ∈ [0, 1

2 ], we prove that the greedy strategy needs at most H(Y )

− log2(
1
2+δ)

number of tests on average to identify (predict) Y . To the best of our knowledge, this is a first
bound on the performance of the greedy strategy that explicitly depends on the entropy of Y . This
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is desirable since a lower bound on the average number of tests needed for any given T is given by
the entropy of Y (Shannon, 1948). Moreover, we show that our bound is tighter than previously
known bounds for oracle tests in practically relevant settings.

• We then extend our analysis to the noisy case where we assume that test outcomes are corrupted
via a binary symmetric channel. We obtain an upper bound on the performance of the greedy
strategy that explicitly depends on δ and the noise level. Specifically, our bound in this case is
again within a constant factor of the entropy of Y modulo an additional term, where the constant
factor and the additional term depend on δ and the noise level. To the best of our knowledge, this
is the first such result for the greedy strategy given noisy tests.

2 RELATED WORK

Information Maximization (InfoMax) is a popular heuristic for sequentially selecting tests to make
accurate predictions, which has been widely adopted across various fields under different names.
One of the first proposals of this algorithm was in the context of optimal experimental design by
Lindley (1956) where tests correspond to experiments one can carry out to gather information about
Y . Consequently, this algorithm has been proposed under various names such as Probabilistic Bi-
section Method, (Horstein, 1963), Splitting Algorithm (Garey & Graham, 1974), Entropy Testing
(Geman & Jedynak, 1996), Information Gain (for decision tree induction) (Breiman et al., 1984),
Generalized Binary Search (Dasgupta, 2004), and Information Pursuit (Jahangiri et al., 2017). In-
spired by its empirical success, there is a fifty year lineage of scattered work on the performance
of this “greedy” strategy. We begin by reviewing works studying the oracle case, where tests are
functions of Y , and conclude by mentioning recent efforts towards analyzing the more general case
where test outcomes are corrupted by noise.

Oracle tests. Shannon (1948) showed that when T is complete (that is, we have a test for every
function of Y ), the greedy strategy requires at most one test more than the optimal strategy on aver-
age. This result was extended by Sandelius (1961) who showed that greedy is in fact optimal when
Y is uniformly distributed. Usually, for practical applications, T will almost always be incomplete.
For example, in the popular “twenty question” parlor game involving famous people, we cannot
test if Y is in every possible subset of famous people using questions about presence or absence
of single human attributes like “writer”, “female”, “living”, “French”, etc. Subsequently Kosaraju
et al. (1999) and Dasgupta (2004) proved that in the case of incomplete tests, the greedy strategy
would require at most O

(
ln( 1

miny∈Y P(Y=y) )× opt(T , Y )
)

number of queries on average. Here
opt(T , Y ) is, as defined in the Introduction, the performance of the optimal strategy for identifying
Y . This generic bound is often vacuous (too loose) in practice as we also show empirically in the
appendix (see §A.5). The idea of assuming the existence of δ-unpredictable tests in each iteration of
the greedy strategy was considered in earlier work (Garey & Graham, 1974; Loveland, 1985). How-
ever, their analysis technique is significantly different from ours and results in an upper bound of

log2 |Y|
|( 1

2−δ) log2(
1
2−δ)| +

1+2δ
1−2δ , which is typically larger (i.e., looser) than ours. See §4.2 for an extended

discussion comparing the these bounds with our proposed bound.

Noisy tests. This refers to the situation where the tests T are not determined by Y , that is, the
entropy H(T | Y ) is positive. Unlike the oracle case, the performance of the greedy strategy in this
case is sparsely explored. It is known that InfoMax is optimal in the restricted case where Y ∈ R
and T is a set of noisy indicator functions for all possible finite unions of intervals along the real
line (Jedynak et al., 2012). More general results are obtained by reducing the noisy case to the
oracle case. For instance, Nowak (2008) assumed that the tests are “repeatable”, that is, any given
test can be independently replicated any number of times to obtain the true outcome (de-noise)
with high probability. Thus, by repeating the same test multiple times, its outcome can be made
deterministic given Y (with high confidence) and the results discussed for the oracle case apply with
an additional cost for repeating the test. However, this is not very realistic since in practice we rarely
have access to “repeatable” tests. Golovin et al. (2010) analyzed greedy active learning algorithms
in the presence of noise by considering the tests to be functions of Y and some noise variable η with
known joint distribution P(Y, η), and thereafter applied the bounds known from the oracle case.
Finally, Chen et al. (2015) explored the near-optimality of information maximization for the more
practical scenario where noise is persistent, that is, tests are not “repeatable”. Compared to our work,

3



Under review as a conference paper at ICLR 2024

Chen et al. (2015) studies the setting “What is the maximum amount of mutual information one can
obtain about Y by carrying out k tests following the greedy strategy?”, whereas we are interested in
bounding the mean number of tests required to achieve a desired level of accuracy.

3 PROBLEM SETTING AND PRELIMINARIES

As is common convention, we will use capital letters for random variables and lowercase letters for
their realizations. We will use the symbol P(E) to denote the probability of event E . Moreover, we
will often refer to the Information Maximization (InfoMax) algorithm simply as the greedy strategy.

Information maximization. InfoMax (Geman & Jedynak, 1996) is a greedy strategy for selecting
tests sequentially in order of information gain. More formally, let Y be a discrete random variable
taking values in Y and let T be a given finite set of available tests, whose outcomes are informative
about the value of Y . All random variables (T and Y ) are defined on a common sample space
Ω. Given this setup, for any collection of tests (binary, noisy or otherwise), the InfoMax algorithm
proceeds iteratively as follows:

T1 = argmax
T∈T

I(T ;Y ); Tk+1 = argmax
T∈T

I(T ;Y | A(t1:k)). (1)

Here Tk+1 ∈ T refers to the new test selected by InfoMax at step k + 1, based on the history of
outcomes to previously asked tests (denoted as t1:k), and tk+1 ∈ {0, 1} indicates the corresponding
outcome of the test asked in iteration k + 1. The conditioning event A(t1:k) is defined as the event
{ω ∈ Ω : Ti(ω) = ti : i ∈ {1, 2, . . . , k}}, where ti is the observed outcome for carrying out test
Ti. We refer to these events as active sets. We will use the concept of active sets in our analysis of
InfoMax. The algorithm terminates after L iterations if either maxy∈Y P(Y = y | A(t1:L)) > γ
(a hyper-parameter that can be interpreted as desired accuracy level) or after all tests have been
carried out. Refer to Figure 5 in the appendix for a flowchart diagram illustrating the InfoMax
algorithm. Having described the InfoMax algorithm, we next define (δ, γ)-unpredictable set of tests
which encapsulates our assumption of existence of approximately bisecting sets as discussed in the
Introduction.

Unpredictable set of tests. As motivated in the Introduction, there exists scenarios when the greedy
strategy can perform poorly compared to the optimal strategy. This calls for some assumptions on T
to ensure the good performance of the greedy strategy that is often observed in practical sequential
testing problems. In this work, we assume that at each iteration of the greedy algorithm there exists
a test that δ-approximately bisects the current active set. Formally,

Definition 1. [(δ, γ)-unpredictable set of tests] A set of tests T is said to be (δ, γ)-unpredictable2

if at any iteration k+1 of InfoMax (assuming there remain tests in T that have not yet been carried
out), either

• The probability of the mode of the posterior is greater than or equal to γ, i.e., maxY P(Y |
A(t1:k)) ≥ γ; or

• There exists a test Tk+1 ∈ T such that,∣∣∣P (Tk+1 = 1 | A(t1:k))−
1

2

∣∣∣ ≤ δ, (2)

where t1:k denotes the history of test outcomes after k iterations.

The γ parameter is user-defined and controls the termination criteria for the greedy strategy. In the
extreme case where we require Y to be identifiable, γ = 1. For simplicity, in such scenarios, we will
drop γ from the notation and refer to such sets as δ-unpredictable set of tests, implicitly meaning
that the algorithm terminates only when Y is identified or all tests in T have been carried out. We
will further discuss the motivation for this definition and how it helps us bound the performance of
the greedy strategy in the subsequent sections.

2The word unpredictable comes from the fact that if a test T ′ ∈ T at iteration k exactly bisects the current
active set, then, one cannot predict the outcome of T ′ based on the history of test outcomes observed up till the
first k − 1 iterations better than a random (unbiased) coin flip.
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4 PERFORMANCE BOUNDS FOR ORACLE TESTS

In this section, we analyze the performance of InfoMax when all tests in T are functions of Y , hence
the name oracle tests. Throughout this section, we will denote the outcome of test T as T (Y ) to
explicitly remind the reader that T is a function of Y . Effectively the sample space Ω (as defined in
§3) can be taken to be Y . Since the tests are not noisy, it is reasonable to expect that they collectively
determine Y , that is, the value of Y is uniquely determined if we observe {T (Y ), ∀T ∈ T }). As a
result we will drop γ from the notation and only refer to T as being a δ-unpredictable set of tests.

4.1 A NEW BOUND ON THE PERFORMANCE OF THE GREEDY INFORMATION MAXIMIZATION
ALGORITHM

Relationship with entropy maximization. In the oracle case, where Y determines the test out-
comes (i.e., the outcome of any test is a function of Y , t = T (Y ), ∀T ∈ T ), the InfoMax algorithm
as described in equation 1 is equivalent to sequentially finding the test T that achieves the maximum
conditional entropy given history. Equivalently,

T1 = argmax
T∈T

H(T ); Tk+1 = argmax
T∈T

H(T | A(t1:k)). (3)

The equivalence of equation 3 and equation 1 can be seen by noticing that H(T | Y,A(t1:k)) = 0
when all tests are functions of Y (Cover, 1999). Note that the active set in this case is now simply a
subset of Y , that is, A(t1:k) = {y ∈ Y : Ti(y) = ti : i ∈ {1, 2, ..., k}}.

Motivation for assuming T is δ-unpredictable. The motivation for assuming a given T is δ-
unpredictable is as follows. The entropy of a binary random variable is maximized when its success
probability is p = 1

2 . Equation 3 can be reinterpreted as sequentially selecting tests from T that have
success probability closest to 1

2 given the history of test outcomes observed so far. Specifically,

T1 = argmin
T∈T

∣∣P(T (Y ) = 1)− 1

2

∣∣; Tk+1 = argmin
T∈T

∣∣P(T (Y ) = 1 | A(t1:k)−
1

2

∣∣; (4)

While it will generally not be possible to find a perfectly bisecting test, it is reasonable to assume that
there exists some δ, such that at any iteration, a test can be found in T whose success probability,
conditioned on the history of test outcomes observed so far, is within 1

2 ± δ, as motivated in §1.

Bounding the performance of the greedy strategy. If T is δ-unpredictable for very small δ we
can intuitively expect the number of queries needed on average to identify Y to be roughly of the
order of H(Y ) (since we have almost bisecting tests). On the other hand, for large δ (close to 1

2 ),
any given set of tests would be δ-unpredictable (according to definition 1) and we would expect the
number of queries needed on average to blow up. The following theorem captures this intuition and
provides a bound on the expected number of tests needed by the greedy strategy as a function of
both δ and the entropy of Y .
Theorem 1. Fix any δ ∈ [0, 1

2 ]. Given a δ-unpredictable T , the average number of tests needed by
the information maximization algorithm to identify Y is at most

BOurs :=
H(Y )

− log2(
1
2 + δ)

. (5)

Proof. (Sketch only; see Appendix §A.1.1 for a complete proof) Our result is based on the insight
that if at any iteration k, the greedy strategy picks a test Tk that satisfies equation 2, then at least 1

2−δ
of the probability mass of the active set A(t1:k−1) would be discarded depending on the outcome
Tk(Y ). Applying this argument recursively, the probability mass of the active set after k iterations,
P(A(t1:k)), is at most ( 12 + δ)k. As a result, we can conclude that if Y = y is still in the active set
after iteration k then it must be that P(Y = y) ≤ ( 12 + δ)k. This result gives a bound on the number
of tests needed to identify state y which is then used to bound the average number of tests.

To highlight the importance of this result, recall from coding theory that given any set of tests, the
optimal strategy cannot be better than H(Y ), which thus serves as a lower bound for the greedy
strategy given any T . To the best of our knowledge, our result is the first one to upper bound the
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Figure 2: Comparing our bound BOurs with BLov for different values of |Y| and δ. When |Y| (the
number of discrete values Y can take) is small (|Y| = 4 here), our bound is uniformly a tighter upper
bound than the Loveland bound. As |Y| increases for larger δ values, BLov gets tighter. Asymptoti-
cally (|Y| ≈ 106 here), we see that our bound is tighter for small values of δ < 0.2.

performance of the greedy strategy to be at most a multiplicative factor of the entropy of Y . This
multiplicative factor degrades inverse logarithmically with δ and so even for the modest value of
δ ≈ 0.2, which is far from a bisecting split, our result guarantees that the average number of tests
under the greedy strategy is at most roughly twice the entropy of Y .

4.2 COMPARISON WITH PREVIOUS BOUNDS

Having described our bound, we compare it with bounds previously reported in literature. The
assumption of a δ-unpredictable T was previously considered by Garey & Graham (1974) for the
case where Y is uniformly distributed, and subsequently by Loveland (1985) for any distribution on
Y . Both papers get the same bound and so we compare with the bound in Loveland (1985), which
we will refer to as the BLov. Their analysis technique is significantly different from ours and as a
result they obtain a very different upper bound on the average number of queries needed to identify
Y ,

BLov :=
log2 |Y|

−( 12 − δ) log2(
1
2 − δ)

+
1 + 2δ

1− 2δ
, (6)

where |Y| is the number of discrete values Y can take. Comparing the bound in equation 6 with our
bound in equation 5 we make the following observations.

• When Y is uniform, we can compare the two bounds more easily since H(Y ) = log2 |Y|.
As illustrated in figure 2, when |Y| is small our bound is uniformly tighter than BLov for all
values of δ ∈ [0, 1

2 ]. As |Y| increases, BLov gets tighter for larger values of δ. Asymptoti-
cally, when δ → ∞, our bound is tighter whenever δ ≤ 0.1963 ≈ 0.2. This is a favorable
result since we are most interested in the regime where δ is moderate (0.15-0.2), because
otherwise the greedy strategy can degrade significantly compared to the optimal strategy.
Indeed, note that both bounds diverge to ∞ for larger values of δ.

• When Y is uniform and δ → 0, that is when we have access to exactly bisecting splits of
the current active set, our bound recovers the entropy bound (Shannon, 1948) of log2 |Y|,
whereas BLov converges to 2 log2 |Y|+ 1, indicating a clear gap.

• When the distribution for Y is not uniform, we expect our bound to be tighter since it
depends on H(Y ) instead of log2 |Y|. More specifically, for large |Y|, the value of δ at
which the two bounds are equal increases from ≈ 0.2 (which was the point at which both
the bounds were equal in the uniform case, refer Figure 2 for the case |Y| = 106) as the
level of non-uniformity of Y increases. This is illustrated in Figure 3.

Next we compare BOurs with the bounds derived by Dasgupta (2004) and Kosaraju et al. (1999),
which make no assumption on T . Since both papers have the same bound in big O notation, we
compare with Dasgupta’s bound because it specifies the constants explicitly. Let opt(T , Y ) be the
expected number of queries needed by the optimal strategy to identify Y given a set of tests T .
Dasgupta’s bound is given by:

BDas := 4 ln

(
1

minY p(Y )

)
× opt(T , Y ). (7)
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Figure 3: Comparing our bound BOurs with BLov for different values of H(Y ) and δ, with |Y| = 106.
If Y was uniform H(Y ) in this case would be log2(10

6) = 19.93 bits. We see that as the entropy
decreases, the value of δ at which the two bounds are equal increases from ≈ 0.2 for the uniform
distribution (Figure 2 col 3) to about 0.4 for when the distribution over Y has H(Y ) = 9.96 bits.

Notice that unlike the previous bounds, BDas depends on opt(T , Y ). This is because, in absence of
any assumption on T (like the δ-uncertainty assumption we make), it only makes sense to analyze
the performance of the greedy strategy relative to that of the optimal strategy. Otherwise, one can
always choose some inefficient T to make the greedy strategy perform arbitrarily bad. For example,
take T to contain only singleton tests of the form “Is Y = y?”.

Figure 4: Comparing our bound with BDas by eval-
uating 2−

1
4 ln |Y| − 1

2 for different values of |Y|.
The y-axis is an upper bound on the value of δ for
which our bound will be tighter than Dasgupta’s.

Using the fact that opt(T , Y ) ≥ H(Y ) Shan-
non (1948) and ln

(
1

minY p(Y )

)
≥ ln |Y|, we

can show that for δ ≤ 2−
1

4 ln |Y| − 1
2 , our bound

is guaranteed to be tighter that BDas. For details
see Appendix §A.4. This is expected since BDas
makes no distributional assumptions about T .
We explicitly evaluate 2−

1
4 ln |Y| − 1

2 for values
of |Y| ∈ [10, 100] and show in Figure 4 that our
bound is tighter for extremely modest values of
δ ≤ 0.43 (recall δ ∈ [0, 0.5]).

We demonstrate on two machine learning
datasets (CUB-200 (Wah et al., 2011) and
AwA2 (Xian et al., 2018)) that the given set of
tests T is δ-unpredictable for modest values of
δ (0.22 and 0.17 respectively) and subsequently
show that our bound is closer to the true mean
number of tests the greedy strategy requires on
these datasets to identify Y , than the other dis-
cussed bounds. These results can be found in
Appendix §A.5.

5 PERFORMANCE BOUNDS FOR NOISY TESTS

Here, we analyze the performance of the greedy strategy when all tests in T are noisy, that is
∀T ∈ T , the conditional entropy H(T | Y ) > 0. As discussed in §2, the performance of the greedy
strategy under noise is poorly understood. Unlike prior work Nowak (2008), our analysis does not
assume that tests can be repeated any number of times to average the noise out. This is because in
many applications the same test cannot be repeated again or will give the same outcome Chen et al.
(2015).3 Instead we consider an explicit noise model for the tests and analyze the performance of
the greedy strategy for that model.

3Note, while we do not assume the same test can be repeated, there can be multiple tests in T that are
(conditionally) statistically identical. For example, in the famous 20Q game let y1 = “Queen Victoria” and y2
= “Charles Darwin” be the only two states with non-trivial mass. Then, both tests “Is Y female?” and “Is Y a
queen?” have statistically identical outcomes but are different tests.

7



Under review as a conference paper at ICLR 2024

Binary Symmetric Channel (BSC) Noise Model. We first study the case where test outcomes are
corrupted by a BSC, which is perhaps the most well-studied and simplest model for understanding
the effects of noise in communication channels (Shannon, 1948). We make the following assump-
tions.

• For every T ∈ T there exists random variables DT (Y ), which is a function of Y , and NT such
that T = DT (Y )⊕NT . The symbol ⊕ denotes the Exclusive OR (XOR) operation. DT (Y ) can
be understood as the true outcome for test T if there was no noise. NT is the noise variable that
corrupts the test outcome.

• For every T ∈ T , we assume NT is independent of Y with prior probability P(NT = 1) = α for
some α ∈ [0, 1

2 ]. Moreover, we assume all the noise variables, {NT : T ∈ T }, are independent
and hence the noise variables are i.i.d..

We now describe our analysis of how the greedy strategy performs under this noise model.

5.1 A BOUND OF THE PERFORMANCE OF THE GREEDY STRATEGY FOR NOISY TESTS

In general, when noise is present in the test outcomes, InfoMax (equation 1) is not equivalent to
entropy maximization (equation 3). As a result we cannot interpret the greedy strategy as selecting
the test at each iteration whose success probability given the history of test outcomes observed so far
is close to 1

2 . However, as we show in Lemma 2, under our noise model, we can interpret the greedy
strategy as choosing the test T̂ in each iteration whose true outcome (DT̂ ) has success probability
(given history) closest to a half. We now state our lemma which is inspired from Jedynak et al.
(2012) where a similar result was derived for the case where Y = R and the tests are unions of
intervals along R.
Lemma 2. Under the BSC noise model, at any iteration k+ 1, the InfoMax algorithm will pick test

Tk+1 = argmin
T∈T

∣∣P(DT = 1 | A(t1:k))−
1

2

∣∣,
where A(t1:k) is the active set after k iterations.

The lemma is proved using standard information-theoretic identities coupled with the properties of
our noise model. Refer Append §A.1.2 for a detailed proof. This result is in line with intuition since
the noisy component of every test (NT ) is independent of Y and hence uninformative for prediction.
Thus, the selection of the most information next test is governed solely by how well it’s true outcome
approximately bisects the current active set A(t1:k).

A natural question to ask next is, If a given set of tests T is (δ, γ)-unpredictable then what can we
conclude about the chosen test’s P(DTk+1

= 1 | A(t1:k))? The following lemma answers this.

Lemma 3. Under the BSC model with noise parameter α ∈ [0, 1
2 ], if T is (δ, γ)-unpredictable

according to definition 1, then in any iteration k + 1, the greedy strategy will either choose a test
Tk+1 ∈ T such that ∣∣∣P (DTk+1

= 1 | A(t1:k)
)
− 1

2

∣∣∣ ≤ δ

1− 2α
, (8)

or terminate according to γ stopping criterion. Moreover, given α, it is not possible to have a
(δ, γ)-unpredictable T for δ > 1

2 − α.

Refer to Appendix §A.2 for a proof. The above result has two consequences.

1. It shows that for a fixed δ, as the noise level α increases from 0 to 1
2 (it’s maximum possible

value) the ability of the true outcome DT = DT (Y ) for any given test T ∈ T to approximately
bisect the current active set detoriates by a factor of 1

1−2α compared to the observed test outcome
T = t. Based on this, one can conjecture that as the noise level increases, more and more tests
would be needed to identify Y , because the ability of the true outcomes to approximately bisect
the current active set degrades.

2. It shows that the maximum possible value of δ is bounded by the noise level α. In particular, by
inverting the result in equation 8 (see Appendix §A.2) we see that if

∣∣∣P (DTk+1
= 1 | A(t1:k)

)
−

8
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1
2

∣∣∣ ≤ δ′ for some constant δ′ ∈ [0, 1
2 ], then this implies δ = δ′(1 − 2α) ∈ [0, 1

2 − α]. Thus,
unlike the oracle case, it is not possible to have a set of noisy tests which is (δ, γ)-unpredictable
for δ > 1

2 − α. In hindsight, this result makes sense since according to our noise model, every
test outcome is corrupted independently of all other tests and hence, there will always be some
uncertainty in a certain test’s outcome regardless of how many tests have been carried out so far.

Having stated all the ingredients we will now present our main result for the greedy strategy under
the BSC noise model.

Theorem 4. Fix noise level α ∈ [0, 1
2 ] for the BSC model. Fix δ ∈ [0, 1

2 − α]. Given a (δ, γ)-
unpredictable T , the average number of tests needed by the InfoMax algorithm to predict Y with
confidence at least γ under the BSC model is at most

BNoisy
Ours :=

H(Y )− | log2 γ|+ α|T | log2 1−α
α

log2(1− α)− log2(
1
2 + δ)

+ 1. (9)

A complete proof can be found in Appendix §A.3. The main idea behind the proof of this theorem
is similar to the proof sketch for Theorem 1 but requires a more careful tracking of how much
probability mass of the active set is discarded in each iteration. As expected, the number of tests
needed increases as the desired accuracy level γ is increased. Observe that in the absence of noise,
that is, when α = 0, and we set our desired accuracy to γ = 1, we recover our bound for the oracle
case (Theorem 1)4

Our bound guarantees that as long as the noise level α is low relative to the entropy of Y , the
performance of the greedy strategy is nearly-optimal (that is, within a constant factor of Y ). To the
best of our knowledge, this is a first such result for the InfoMax algorithm for noisy tests. Notice
that this bound also depends on |T | which has a detrimental effect on the bound when the noise level
α is high. This dependence on the size of the set of available tests is expected under the BSC model
since there will always exist some sample points along which Y cannot be predicted with γ level of
confidence. As a result, for those sample points, the greedy strategy would end up exhausting all
|T | tests. In the extreme case, when α = 1

2 , none of the tests are informative about Y , and hence Y
can never be identified in less than |T | number of tests.

6 CONCLUSION & LIMITATIONS

We analyzed the Information Maximization (InfoMax) algorithm and derived new upper bounds for
the average number of tests needed to predict Y . Our results are based on the observation that in
most practical applications of InfoMax, one often has access to tests whose outcome partitions the
current active set into two sets of sizes between 1

2 ± δ for 0 ≪ δ ≪ 1
2 . Using this assumption we

obtained better bounds for the greedy strategy than previously established in the literature for the
case of oracle tests, that is when the tests are functions of Y . Subsequently, we extended our results
to the case of noisy tests by assuming that the test outcomes are corrupted by a Binary Symmetric
Channel and obtain bounds on the performance of the InfoMax algorithm.

We now describe a few limitations of this work. Our analysis assumes tests are δ-unpredictable for
modest values of δ, however a priori it is not known how to find δ such that the given set of tests
would be δ-unpredictable. Moreover, the BSC noise model assumes i.i.d. noise, however in practice
noise is often dependent on the value of Y , and test outcomes are often not independent of each
other. We would address these limitations in future work by studying more complex noise models
and designing testable conditions to verify if a given T is δ-unpredictable for a given value of δ or
not.
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Bsoda: a bipartite scalable framework for online disease diagnosis. In Proceedings of the ACM
Web Conference 2022, pp. 2511–2521, 2022.

Michael Horstein. Sequential transmission using noiseless feedback. IEEE Transactions on Infor-
mation Theory, 9(3):136–143, 1963.

Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15–17, 1976.

Ehsan Jahangiri, Erdem Yoruk, Rene Vidal, Laurent Younes, and Donald Geman. Information
pursuit: A bayesian framework for sequential scene parsing. arXiv preprint arXiv:1701.02343,
2017.

Bruno Jedynak, Peter I Frazier, and Raphael Sznitman. Twenty questions with noise: Bayes optimal
policies for entropy loss. Journal of Applied Probability, 49(1):114–136, 2012.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International Conference on Machine Learning, pp.
5338–5348. PMLR, 2020.

S Rao Kosaraju, Teresa M Przytycka, and Ryan Borgstrom. On an optimal split tree problem.
In Algorithms and Data Structures: 6th International Workshop, WADS’99 Vancouver, Canada,
August 11–14, 1999 Proceedings, pp. 157–168. Springer, 1999.

10



Under review as a conference paper at ICLR 2024

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, 27(4):986–1005, 1956.

Donald W Loveland. Performance bounds for binary testing with arbitrary weights. Acta Informat-
ica, 22(1):101–114, 1985.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
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A APPENDIX

Figure 5: Illustration of the greedy Information Maximization algorithm. A flow chart depicting
one iteration (k = 4) of the algorithm. As an example we consider the task of disease diagnosis
where Y denotes the disease a patient is suffering from (for example, tuberculosis, common cold
etc.) and the set of tests T here corresponds to questions about different symptoms the patient may
be experiencing. The corresponding binary answer (Yes/No) to every test indicates the outcome of
that test.

A.1 PROOFS

For ease of reading, we rewrite all the theorems, lemmas and corollaries from the main paper in this
section (unnnumbered) before presenting their respective proofs.

A.1.1 PROOF OF THEOREM 1

Theorem. Fix any δ ∈ [0, 1
2 ]. Given a δ-unpredictable T , the average number of tests needed by

the information maximization algorithm to identify Y is at most

BOurs :=
H(Y )

− log2(
1
2 + δ)

. (10)

The proof of the theorem relies on the following Lemma. Recall from §4.1 that in the oracle case,
the active set is simply a subset of Y , that is, A(t1:k) = {y ∈ Y : Ti(Y ) = Ti(y) : i ∈ 1, 2, ..., k}.
Lemma 5. If T is δ-unpredictable for some δ ∈ [0, 1

2 ], then after k iterations of the greedy strategy,
the probability mass of the current active set A(t1:k) is upper bounded by ( 12 + δ)k.

Proof. We prove this by induction.

Base case k = 1. Let T1 ∈ T be the test selected by the greedy strategy in the first iteration. Since T
is δ-unpredictable, we know the new active set At1 , based on the outcome for T1, has mass at most
1
2 + δ. Thus, P(At1) ≤ 1

2 + δ.

Base case k = n. Assume P(At1:n−1), the probability mass of the active set reached after the first
n− 1 iterations of the greedy strategy, is at most ( 12 + δ)n−1. Let Tn ∈ T be the test selected by the
greedy strategy in the nth iteration. Since T is δ-unpredictable, we know the new active set At1:n ,
based on the outcome for Tn = tn, has probability mass

P(At1:n) = P(Tn = tn | At1:n−1
)P(At1:n−1

) ≤ (
1

2
+ δ)(

1

2
+ δ)n−1 = (

1

2
+ δ)n,

where the first factor in the inequality comes from the assumption that T is δ-unpredictable, while
the second factor is a consequence of the induction hypothesis.
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We will now use the above lemma in the proof of Theorem 1.

Proof. For a given Y = y, let ly be the number of iterations the greedy strategy takes before
termination, that is after ly iterations, y has been identified. This implies the current active set
A(t1:ly ) = {Y = y}. Using Lemma 5 we conclude that

P(Y = y) ≤ (
1

2
+ δ)ly

=⇒ ly ≤ − log2 P(Y = y)

| log2( 12 + δ)|

(11)

Let lY now be a random variable denoting the number of tests the greedy strategy requires for
random variable Y . The expected number of tests needed to identify Y can then be upper bounded
as follows,

EY [lY ] ≤ EY

[− log2 P(Y = y)

| log2( 12 + δ)|

]
=

H(Y )

− log2(
1
2 + δ)

. (12)

In the inequality we used the result from equation 11.

As stated in the main paper (see §4.2) our bound, as expressed in equation 5, is tighter than existing
bounds on the average number of tests the greedy strategy needs to identify Y . Notably, our bound
is the first to show that the performance comes within a constant factor of H(Y ), the entropy of Y . It
turns out that, via information-theoretic arguments, this constant factor could be made smaller. This
result (which is unpublished) was provided to us during the reviewing process of an earlier version
of this paper by an anonymous reviewer. We now state the reviewer’s result for completeness.

Theorem 6. Fix any δ ∈ [0, 1
2 ]. Let h be the binary entropy function. Given a δ-unpredictable T ,

the average number of tests needed by the information maximization algorithm to identify Y is at
most H(Y )

h( 1
2+δ)

.

Proof. Assume the InfoMax algorithm has run for k iterations. There are two cases,

Case 1. Y has not been identified. Then, since T is δ-unpredictable we know for the test Tk+1

selected in iteration k + 1

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≥ h(
1

2
+ δ) (13)

The inequality is obtained using the concavity of the binary entropy function since the chosen test
satisfies |P(Tk+1 = 1 | T1 = t1, . . . , Tk = tk)− 1

2 | ≤ δ (from definition 2).

Case 2. Y has been identified, at which point the algorithm would terminate and all further tests
would have 0 conditional entropy since their outcome will be determined by the value of Y that has
been identified, that is,

H(Tk+1 | T1 = t1, . . . , Tk = tk) = 0 (14)

Define τ to be the random variable indicating the stopping time for a single run of the InfoMax
algorithm. Equation 13 and equation 14 can be combined into

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≥ h(
1

2
+ δ)1(τ > k), (15)

where 1 is the indicator random variable.

Taking expectation on both sides,

H(Tk+1 | T1, T2, ..., Tk) ≥ h(
1

2
+ δ)P(τ > k), (16)

13
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Summing k from 0 to |T | we obtain

h(
1

2
+ δ)

|T |∑
k=0

P(τ > k) ≤ H(T1, T2, ...)

≤ H(Y )

=⇒ E[τ ] ≤ H(Y )

h( 12 + δ)
,

(17)

which is the desired bound. The second inequality is obtained since all the test outcomes are func-
tions of Y .

A.1.2 PROOF OF LEMMA 2

Lemma. Under the BSC noise model, at any iteration k+1, the information maximization algorithm
will pick the test Tk+1, such that

Tk+1 = argmin
T∈T

∣∣P(DT = 1 | A(t1:k))−
1

2

∣∣,
where A(t1:k) is the active set after k iterations.

Proof. Let h be the binary entropy function. At any iteration k + 1, the mutual information for any
T ∈ T can be written as follows,

I(T, Y | A(t1:k)))

= H(T | A(t1:k)))−H(T | Y,A(t1:k)))

= h

(∑
y∈Y

P
(
y | A(t1:k)

)
P(T = 1 | y)

)
−
∑
y∈Y

P(y | A(t1:k))h

(
P(T = 1 | y)

) (18)

Define δT :=
∑

{y∈Y:DT (y)=1} P(y | A(t1:k)), that is, δT is the total posterior mass on Y (given
the current active set) subject to the constraint that DT (Y ) = 1. We can rewrite equation 18 as,

I(T, Y | A(t1:k))) = h

(
δT (1− α) + (1− δT )α

)
− δTh(1− α)− (1− δT )h(α)

= h

(
δT (1− α) + (1− δT )α

)
− h(α).

(19)

Equation 19 shows that the mutual information between T and Y given the current active set is just
the mutual information of a noisy binary symmetric channel, for which we know the maximal value
is attained at δT = 1

2 . Moreover, the binary entropy function is concave thus proving the desired
lemma.

A.2 PROOF OF LEMMA 3

Lemma. Under the BSC model with noise parameter α ∈ [0, 1
2 ], if T is (δ, γ)-unpredictable ac-

cording to definition 1, then in any iteration k + 1, the greedy strategy will either choose a test
Tk+1 ∈ T such that ∣∣∣P (DTk+1

= 1 | A(t1:k)
)
− 1

2

∣∣∣ ≤ δ

1− 2α
, (20)

or terminate according to γ stopping criterion. Moreover, given α, it is not possible to have a
(δ, γ)-unpredictable T for δ > 1

2 − α.
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Proof. We know from the BSC noise model that

P(Tk+1 = 1 | A(t1:k)) = P
(
Tk+1 = 1 | DTk+1

= 1
)
P
(
DTk+1

= 1 | A(t1:k)
)

+ P
(
Tk+1 = 1 | DTk+1

= 0
)
P
(
DTk+1

= 0 | A(t1:k)
)
.

(21)

Let x := P
(
DTk+1

= 1 | A(t1:k)
)
. The above equation can be rewritten as

P
(
Tk+1 = 1 | A(t1:k)

)
= P

(
Tk+1 = 1 | DTk+1

= 1
)
x+ P

(
Tk+1 = 1 | DTk+1

= 0
)
(1− x).

(22)

From our noise model we know P
(
Tk+1 = 1 | DTk+1

= 1
)
= 1 − α and P

(
Tk+1 = 1 | DTk+1

=

0
)
= α. Substituting this in equation 22 we get,

P
(
Tk+1 = 1 | A(t1:k)

)
= (1− α)x+ (1− x)α

=⇒ x =
P
(
Tk+1 = 1 | A(t1:k)

)
− α

1− 2α

(23)

Since T is (δ, γ)-unpredictable, the chosen test Tk+1 at iteration k + 1 satisfies

1

2
− δ ≤ P (Tk+1 = 1 | A(t1:k)) ≤

1

2
+ δ (24)

Combining equation 23 and equation 24 we obtain,
1
2 − α

1− 2α
− δ

1− 2α
≤ x ≤

1
2 − α

1− 2α
+

δ

1− 2α

=⇒ − δ

1− 2α
≤ x− 1

2
≤ δ

1− 2α
,

(25)

proving the lemma.

Moreover, notice that equation 25 can be inverted. In particular if we assume x := P
(
DTk+1

= 1 |
A(t1:k)

)
is between 1

2 ± δ′ for some δ′ ∈ [0, 1
2 ], we can conclude from equation 23 that∣∣∣P(T = 1 | A(t1:k)
)
− 1

2

∣∣∣ ≤ δ′(1− 2α). (26)

It is immediate from equation 26 that P
(
T = 1 | A(t1:k)

)
cannot be more than 1

2 − α units away
from one-half (obtained by setting δ′ = 1

2 in the above inequality).

The result in equation 26 will be used to reparameterize δ for a given (δ, γ)-unpredictable set of tests
in terms of δ′ to get rid of the constraint on δ in terms of the noise level α.

A.3 PROOF OF THEOREM 4

Theorem. Fix noise level α ∈ [0, 1
2 ] for the BSC model. Fix δ ∈ [0, 1

2 − α]. Given a (δ, γ)-
unpredictable T , the average number of tests needed by the InfoMax algorithm to predict Y with
confidence at least γ under the BSC model is at most

BNoisy
Ours :=

H(Y )− | log2 γ|+ α|T | log2 1−α
α

log2(1− α)− log2(
1
2 + δ)

+ 1. (27)

Throughout the remainder of this exposition, we will assume that T is (δ, γ)-unpredictable for some
δ ∈ [0, 1

2 − α] and γ ∈ [0, 1]. Proof of this theorem will rely on the following lemma.

Lemma 7. Under the BSC model with noise parameter α, for any hypothesis y0 ∈ Y with prior
probability py0 , if Info-Max has run for k iterations, with m < k iterations for which the observed
test outcome ti is not equal to the corresponding true outcome DTi(y

0), then

P (y0 | A(t1:k)) ≥
py0αm(1− α)k−m

( 12 + δ)k
.
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Proof. If the hypothesis of the lemma is true then the joint probability distribution of the observed
test outcomes and y0 can be written as

P(Y = y0, T1 = t1, ..., Tk = tk) = py0αm(1− α)k−m. (28)

This is because, given Y = y0, all the test outcomes are conditionally independent of each other and
so their probability only depends on whether or not the true outcome was corrupted by noise. Since
we know the probability of corruption is α (uniformly for all the tests) we obtain the desired result
in equation 28. Using this we can obtain a lower bound on the conditional probability of y0 given
the current active set after k iterations:

P(y0 | A(t1:k)) =
py0αm(1− α)k−m

P(A(t1:k))
≥

py0(1− α)k−m(α)m

( 12 + δ)k
.

The inequality is obtained by appealing to Lemma 5.

We will now prove our main result (Theorem 4).

Proof. For any sample point ω ∈ Ω. Let y0 = Y (ω) with P(Y = y0) = py0 . If the greedy strategy
has run for k iterations and not terminated, and there are m < k iterations where the observed test
outcome ti is not equal to the corresponding true outcome DTi(y

0), then we can bound k as,

γ ≥ P(y0 | A(t1:k)) ≥
py0(1− α)k−m(α)m

( 12 + δ)k
. (29)

This first inequality is because if P (y0 | A(t1:k)) > γ, then the algorithm will terminate since this
would imply maxY P (Y | A(t1:k)) > γ. The second inequality is obtained from Lemma 7.

Rearranging equation 29 we get

γ(
1

2
+ δ)k ≥ py0(1− α)k−m(α)m. (30)

Taking log on both sides,

log2 γ + k log2(
1

2
+ δ) ≥ log2(py0) + k log2(1− α) +m log2

α

1− α

=⇒ k
[
| log2(

1

2
+ δ)| − | log2(1− α)|

]
≤ − log2 py0 − | log2 γ|+m log2

1− α

α

=⇒ k ≤
− log2 py0

− | log2 γ|+m log2
1−α
α[

| log2( 12 + δ)| − | log2(1− α)|
] .

(31)

The last inequality effectively upper bounds k for fixed m number of false answers, which now will
be made precise.

For any sample point ω ∈ Ω let l(ω) be the number of tests the greedy strategy carries out before
termination, that is, before the mode of the posterior has mass greater than or equal to γ or all
|T | tests have been carried out. Let m(ω) be the number of iterations for which the observed test
outcome does not equal the corresponding true outcome. Using equation 31 we can upper bound
l(ω) as

l(ω) ≤
− log2 py0

− | log2 γ|+m(ω) log2
1−α
α[

| log2( 12 + δ)| − | log2(1− α)|
] + 1. (32)

The +1 term shows up because one more test is needed to guarantee the mode of the posterior given
history would have probability more than γ. However, in the case when γ = 1, we note that since
the probability can never be more than 1, this +1 term would not be needed.
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Now, we can upper bound the expected number of tests as follows

E[l(ω)] =
∑
ω∈Ω

p(ω)l(ω)

≤
H(Y )− | log2 γ|+

(∑
ω P(ω)m(ω)

)
log2

1−α
α

log2(1− α)− log2(
1
2 + δ)

+ 1

≤
H(Y )− | log2 γ|+ α|T | log2 1−α

α

log2(1− α)− log2(
1
2 + δ)

+ 1.

(33)

We used equation 32 to obtain the upper bound in the first inequality. The second inequality is ob-
tained by observing that m(ω) can be point-wise upper bounded by another random variable which
denotes the number of test outcomes that would disagree with their corresponding true outcomes, if
all the tests in T were carried out. As a result, we can upper bound the the expectation of m(ω) by
α|T |, which is the mean of a binomial random variable with |T | trials each having success proba-
bility α.

A.4 MORE DETAILS ABOUT THE DASGUPTA BOUND IN EQUATION 7

Observe that

H(Y ) ≤ opt(T , Y ); ln |Y| ≤ ln

(
1

minY p(Y )

)
, (34)

where the first inequality is due to the source coding theorem (Shannon, 1948) and the second equal-
ity is obtained by observing that minY p(Y ) is always upper bounded by 1

|Y| since the probabilities
have to sum to 1, where |Y| is the number of distinct states of Y . Thus, combining equation 34 and
equation 7 we get the following bound,

BDas ≥ 4H(Y ) ln |Y|, (35)

Comparing equation 35 with our bound in equation 5 we conclude that Dasgupta’s bound would be
looser (larger) that our bound for

δ ≤ 2−
1

4 ln |Y| − 1

2
. (36)

A.5 EXPERIMENTS

In this section we evaluate the tightness of our bound for the case when tests are functions of Y ,
along with those reported previously in literature, on some practical instantiations of the information
maximization algorithm. Both examples are inspired from the classical “twenty questions” (20Q)
game where one player thinks of an entity, and the goal of the other player is to guess the object
correctly by asking the minimum number of questions about the object.5

A.5.1 20Q WITH BIRDS

In our first example, we play 20Q with birds. One player thinks of a bird species Y and the other
player asks questions about different visual attributes about the chosen bird in order to identify Y .
For this purpose we use the CUB-2011 dataset (Wah et al., 2011). The dataset consists of images
of 200 different bird species, each annotated with answers to 312 binary questions about visual
attributes like belly colour, wingspan, beak shape etc. It is reasonable to assume that given all 312
attributes, Y is determined and that every visual attribute question is a function of Y . However, the
image annotations are noisy. To remedy this, in accordance with prior work (Koh et al., 2020), we
modify the annotations in the following manner; if more than half the images for a particular class
has value x for a certain attribute, we set the annotation for that attribute of all images from that
class to x.

Given the problem setup, each test corresponds to a binary visual attribute question, and the outcome
of the test is the corresponding answer. We carry out information maximization to sequentially

5The tests in this context are the questions and their respective outcomes are the answers to the question.
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Figure 6: Example runs of the greedy strategy on the two tasks considered here; (a) 20Q with birds;
(b) 20Q with animals. One player thinks of a label Y , and the other player carries out tests by asking
questions about Y in order to correctly identify it. The test outcomes are obtained from ground truth
annotations.

Figure 7: Distribution for δk,y over all iterations and labels y ∈ Y for the two examples (tasks)
considered here; (a) 20Q with birds; (b) 20Q with animals. This same data was used in our plots in
Figure 1 in the main paper.

carry out tests until the species, Y , has been determined. We use the empirical probabilities in the
dataset to compute all the entropic quantities required for running the greedy strategy (Algorithm in
equation 3). Figure 6a shows an example run of the greedy strategy for this task.

For every species y ∈ Y , for every iteration k and selected test Tk,y , we record the quantity δk,y :=∣∣P (Tk,y = 1 | t1:k−1) − 1
2

∣∣. Figure 7a shows the distribution for δk,y over all iterations and labels
y ∈ Y . It is clear from the figure that the given set of tests for this example is δ-unpredictable
for δ = 0.22, since for this value all tests selected by the greedy strategy (in any iteration for any
data-point) will satisfy equation 2. We compare the mean number of queries needed by the greedy
strategy for this task with various upper bounds to evaluate their tightness in Table 1.

We make the following observations.

1. As discussed in §4.2, BDas is a vacuous upper bound (161.86) compared to the true value of
the average number of tests needed to identify Y using the information maximization algorithm
(7.70). This is because it makes no assumptions about T , whereas it is clear from Figure 7a that
the tests selected satisfy equation 2 for δ = 0.22.
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Table 1: Comparison of the average number of tests needed by the greedy strategy to identify Y , for
the two tasks considered here, with those predicted from upper bounds. We also report the entropy
of Y for each task (column 2) which is a lower bound on the best achievable performance. InfoMax
(column 2) refers to the observed empirical performance of the information maximization algorithm
(the greedy strategy) in terms of the average number of tests needed to identify Y . For BDas we
evaluate the lower bound in equation 35 since computing the optimal strategy is intractable.

Task δ H(Y ) InfoMax BOurs BLov BDas
20Q with birds 0.22 7.64 7.70 16.12 17.44 161.86
20Q with animals 0.17 5.64 5.73 9.66 12.69 88.31

2. For evaluating both BLov and BOurs we use δ = 0.22, since this value makes the set of tests
considered here δ-unpredictable (see Figure 7a). Though, our bound is tighter 16.12, BLov obtains
a similar value of 17.44. This is because as we saw in Figure 2, at about δ ≈ 0.2 and large |Y|
(In this example |Y| = 200), both the bounds are roughly the same.

A.5.2 20Q WITH ANIMALS

For our second example, we play 20Q with animals. For this purpose, we use the AwA2 dataset
(Xian et al., 2018). The datasets consists of images of 50 different animal classes each annotated
with answers to 85 binary attributes such as number of legs, skin color, eating habits, habitat etc.
Every attribute answer is a deterministic outcome of the label Y and together they determine Y , that
is, knowing the answers to all 85 attribute questions allows for identifying Y .

Given this description, we take every binary attribute question in the dataset to be test, and its answer
to be the corresponding outcome of the test. We follow the same steps as before, namely, carry out
the greedy strategy by using the empirical probabilities for computing the relevant entropy terms
and record δt,k for every iteration k and for every label y ∈ Y . Figure 7b shows this distribution.
Accordingly we pick ϵ = 0.167 for evaluating BLov and BOurs. Figure 6b shows an example run of
the greedy strategy for this task.

The comparisons of different bounds are reported in Table 1. We observe the same trend as the
previous task. BDas gives a vacuous bound compared to the true value (column 2, InfoMax). Our
bound BOurs is tighter than BLov even though both are evaluated at the same δ = 0.167.
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