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ABSTRACT

Constrained by the sub-optimal dataset in offline reinforcement learning (RL),
the offline trained agent should be online finetuned before deployment. Due to the
conservative offline algorithms and unbalanced state distribution in offline dataset,
offline to online finetuning faces severe distribution shift. This shift will disturb
the policy improvement during online interaction, even a performance drop. A
natural yet unexplored idea is whether policy improvement can be decoupled from
distribution shift. In this work, we propose a decoupled offline to online finetuning
framework using the dynamics model from model-based methods. During online
interaction, only dynamics model is finetuned to overcome the distribution shift.
Then the policy is finetuned in offline manner with finetuned dynamics and with-
out further interaction. As a result, online stage only needs to deal with a simpler
supervised dynamics learning, rather than the complex policy improvement with
the interference from distribution shift. When finetuning the policy, we adopt the
offline approach, which ensures the conservatism of the algorithm and fundamen-
tally avoids the sudden performance crashes. We conduct extensive evaluation on
the classical datasets of offline RL, demonstrating the effective elimination of dis-
tribution shift, stable and superior policy finetuning performance, and exceptional
interaction efficiency within our decouple offline to online finetuning framework.

1 INTRODUCTION

As an approach closely aligned with data-driven paradigms, offline reinforcement learning (Levine
et al., |2020) has ignited the enthusiasm of the community. A large number of algorithms have
been developed with remarkable speed, encompassing not only traditional RL algorithms that are
designed to overcome overestimation on out-of-distribution (OOD) state-action pairs (Kumar et al.,
2020; [Fujimoto & Gul 2021} Zhuang et al., 2023)), but also supervised paradigms such as sequence
modeling (Chen et al., 2021;|Zhuang et al.,|2024). Due to the limitations of data quality, the policies
obtained from offline learning may not be optimal and are challenging to directly deploy in real-
world scenarios. This has given rise to the problem of offline to online finetuning (Guo et al., 2023
Nakamoto et al.,2024)), which aims to further improve the performance through online interaction.

Offline to online finetuning faces the challenge of distribution shift, which is caused by the un-
balanced state distribution in the offline dataset (Fu et al.l 2020) and the inherent conservatism of
offline algorithms (Kumar et al.,[2020). Online finetuning pursues the superior performance than of-
fline pretrained policy and the exploration on out-of-distribution region that may yield high return is
unavoidable. Such exploration may be blind or even dangerous, such as sudden performance drops
(Nakamoto et al., [2024; |Lyu et al., [2022)), unless the distribution shift has been eliminated. That
is, offline to online finetuning is required to address two conflicting issues: policy optimization and
distribution shift elimination. Existing methods can be broadly categorized into two classes: Some
algorithms (Nakamoto et al.| [2024; Wu et al., 2022} [Lyu et al., [2022)), less conservative in nature,
have been crafted in an attempt to mitigate the extent of distribution shift, yet they are powerless
against the inherently unbalanced distribution within the offline dataset. Other algorithms address
the distribution shift by imposing additional constraints (Lee et al., [2022; L1 et al., 2023)), making
the policy safer and more effective when exploring OOD regions. Regardless, the elimination of dis-
tribution shift and policy improvement are perpetually intertwined, with a compromise and trade-off
that must exist. A natural question thus arises:
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Can we decouple the elimination of distribution shift from policy improvement?

If so, we might first eliminate the distribution shift and then carry on the policy improvement. Such
an approach could fundamentally avoid conflicts and the associated compromises, maximizing the
capabilities of both distribution shift elimination algorithms and policy improvement.

Within the context of model-based offline algorithms (Janner et al., 2019; |Yu et al.l 2020), we pro-
pose a framework named Decoupled Offline to Online Finetuning (DOOF). DOOF has successfully
decouples the elimination of distribution shift from policy improvement. Specifically, during the
online interaction phase, we focus solely on the elimination of distribution shift by finetuning a
more accurate dynamics model. Subsequently, we utilize this finetuned dynamics model to assist
in the finetuning of the policy in an offline mode, without the need for further interaction with the
environment. In this way, the online phase only needs to address a simpler supervised dynamics
model learning, rather than more complex policy improvement affected by the distribution shift. In
addition, we leverage the model uncertainty from MOPO to encourage the data collection on OOD
regions where the distribution difference is significant and the dynamics prediction is inaccurate.
The policy is finetuned through offline algorithms, which indicates that the inherent conservatism is
retained and the algorithmic consistency is ensured, fundamentally avoiding sudden policy collapse.
We validate our algorithm on the classic datasets from D4RL (Fu et al., |2020) and find that with
only 10k online interaction steps and 300k offline training steps, DOOF achieves significant perfor-
mance improvements. In contrast, other baseline models fail to improve but have also experienced a
decline in performance in some cases. Such exceptionally high interaction efficiency is attributed to
the simplification of the online phase and efficient exploration guided by the dynamics uncertainty.

2 PRELIMINARY

2.1 OFFLINE REINFORCEMENT LEARNING

Reinforcement learning (RL) is typically formulated by a Markov Decision Process (MDP) M =
{8, A, r, Prq, do, v}, with state space S, action space A, scalar reward function r (s, a;), tran-
sition dynamics Ppg(S¢t1|s¢,a¢), initial state distribution dg(so) and discount factor v (Sutton
et al., [1998). The objective of RL is to optimize a policy 7(a|s;) that maximize the expec-

tation of discounted return J (7, M) = E..p_, (7 [ZZ;O fytr(st,at)}, where Pr o (T) =
do(s0) HtTZOW (at]st) Pap (St+1]st,ar) is the distribution of trajectory 7 generated from the in-
teraction between the policy 7(a¢|s¢) and the environment M. The value function V (s) =
Erep, v(rls.a) [Zf:o ver(se, ae)lso = s} gives the expected discounted return under policy
when starting from state s in environment M.

Offline reinforcement learning forbids (Levine et al.,2020) the interaction with the environment M

and only a fixed offline dataset D = {(s¢, as, 14, st+1)}i 1 is provided. This setting is more chal-
lenging since the agent is unable to explore the environment and collect additional feedback. This
will lead to overestimation on out-of-distribution state-action pairs, resulting in terrible performance.

2.2 MODEL-BASED OFFLINE RL ALGORITHMS

Existing model-based offline RL. methods are designed based on model-based policy optimization
(MBPO) (Yu et al.|, |2020). MBPO can be divided into two stages, transition dynamics pretrainin
and policy learning. During transition dynamics pretraining, MBPO estimates an dynamics modeﬁ
P from the online replay buffer or the offline dataset D using maximum likelihood estimation:

P./T/[\ = arg IIIDIiArlE(st,at,st+1)~D [_ log PM\ (St+1|5t7 at)] . (D
M

Usually, the dynamics model is considered as a neural network that predicts a Gaussian distribution
P (sev1lse,at) = N (g (se,at), g (s1,a¢)). Besides, this dynamics model is actually an en-

"Here we assume the reward function 7 is known. If not, the reward can be considered as part of the
dynamics model Pg; , (st+1,7¢|st,a:). Besides, the following theoretical analysis can also applied to the
situation with unknown reward function (Yu et al., [2020).
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semble model when implementation {P/’\C/t = N(uk, E’;)}szl. With the learned dynamics model

P, we can construct an estimated MDP M = {S, A, r, Piz, do, 7}

Thereafter, MBPO utilizes a standard actor-critic RL algorithm SAC (Haarnoja et al., [2018) to re-
cover optimal policy with the help of the estimated MDP M. An augmented dataset D U Dz is

used to train the policy, where D g is synthetic data generated by performing h-step rollouts in M
starting from states in D. During policy training, mini-batches are drawn from DU D gz, where each
datapoint is sampled from the real data D with the probability p, and from D 57 with probability
1 — p. Model-based offline policy optimization (MOPO) [Yu et al.| (2020) proposes to penalize the
reward function by the uncertainty u(s, a) of the learned dynamics models:

7t(s,a) = ri(s,a) — Au(s, a), (2)
where penalty coefficient \ is a hyperparameter and the uncertainty (s, a) is usually empirically

and lacks theoretical guarantee (Yu et al.||2020; [Lu et al.,|2021). While MOBILE (Sun et al., 2023)
theoretically conducts uncertainty quantification through the inconsistency of Bellman estimations.

2.3  OFFLINE TO ONLINE FINETUNING

In this paper, we only consider offline RL with datasets that comprise sub-optimal trajectories rather
than optimal ones. If optimal, naive supervised methods such as behavior cloning (Pomerleaul |1988)
would sufficient to learn an optimal policy, which is not the issue that offline RL aims to address.

Definition 2.1 (Offline to Online Finetuning) Assume the offline dataset D is sub-optimal and the
offline pretrained policy .y still sub-optimal. Offline to Online Finetuning aims to further improve
the performance of T, through the interaction with environment M.

Challenges The entire state-action space (s, a) can be divided into three distinct segments based
on the alignment of state and action distributions with those from the offline dataset: a) in-
distribution (ID) state-action pairs (sp, ap) , b) in-distribution (ID) state but
out-of-distribution (OOD) action pairs (sp, a—p) , ¢) totally out-of-distribution
(OOD) state-action pairs (s—p, a)

To guarantee the performance of 7, offline algorithms enforce the conservative Q-value on ID state
but OOD action pairs (sp, a—p) to prevent choosing the OOD action a—p given ID state sp (Zhuang
et al.l 2023} [Kumar et al., 2020). Besides, the state distribution of offline dataset D is usually
unbalanced (Fu et al., | 2020). As a result, offline to online finetuning faces severe distribution shift
(Lee et al.} 2022)). Online finetuning should simultaneously improve the policy while eliminate the
distribution shift. This entangled issue may lead to a sudden collapse in performance.

3 DOOF: DECOUPLED OFFLINE TO ONLINE FINETUNING FRAMEWORK

Previous offline to online finetuning methods directly finetune 7o¢ through online interaction (Nair,
et al., 2020; Nakamoto et al., [2024; |Beeson & Montanal 2022). These approaches aim to eliminate
distribution shift while simultaneously improve policy performance. However, there may be poten-
tial conflicts between these two objectives. Unlike previous work, our key insight lies in decoupling
the elimination of distribution shift from the policy improvement within the model-based frame-
work. concretely, our framework first eliminates the distribution shift through the online finetuning
of dynamics P and then finetunes the policy 7 in offline manner without online interaction.

We first theoretically decouple the offline to online finetuning into two stages and then reveal the
relation between online dynamics finetuning and distribution shift elimination. Subsequently, we
develop our algorithm Dcoupled Offline to Online Finetuning (DOOF) based on the MOPO and its
uncertainty estimation. Last but not least, we discuss the advantages of this decoupled framework,
especially on the interaction efficiency.

3.1 FINETUNING DYNAMICS MODEL THROUGH ONLINE INTERACTION

Within the context of model-based approaches, offline to online finetuning should minimize the gap

between the J <7T0ff, /\//T) and J (7*, M). This gap encompasses not only a standard RL problem,
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policy improvement, but also the error introduced by the inaccuracy of the dynamics model Pgy:

J (woﬁ, /\7) T (@ M) = [J (m,ff, M\) —J (Troff,M)] ¥ [J (mots M) — J (w*,M)] G

error of the dynamics model policy optimization

According to the above formulation, our model-based offline to online finetuning algorithm is di-
vided into two phases. First, we aim to reduce the error of the dynamics model that can be viewed as
the distributional shift in the context of offline to online finetuning. The relation between this error
reduction (also the elimination of the distributional shift) and learning a more accurate P; during
online interaction will be revealed. Secondly, we leverage this refined dynamics model to improve
the performance of g in offline manner without further interaction with the environment.

Step I: Elimination of distributional shift = The relation between the first performance difference
J (ﬂ'off, M\) — J (mofr, M) and the dynamics distance dry (PJQ, PM) can be formulated as follows:

Theorem 3.1 Assume M and M are the MDPs with different transition dynamics Pyq and Pz but
the same reward function r. Then the performance difference J (7T'0ff, M\) — J (o, M) holds:

|7 (o, M) = J (o, M)| < 1 B iy (P ) o

L=9 (sa)~pler

The discounted unnormalized visitation frequencies pj\j‘ (s,a) = 7ofr (als) -ZZ;O VP (8¢ = 8|mott)
and P (s = s|mofr) represents the probability of the t-th state equals to s in trajectories generated by
policy mog and transition dynamics PA The distance dry (P PM) is the total variation distance
and || < rmax. More details about rhzs theorem can be found in Appendu-

Furthermore, the dynamics distance drvy (PQ, PM) can be bounded by the state-action frequency:
Theorem 3.2 Assume P = {Py: S x A — S} and |P| < oo. Given an exact state-action pair

(s,a) exists in D with Dy o = {s¢, ay, SlﬂLl}s,:s.a,:u, and n(s,a) = |Ds.al. For§ € (0,1) the
dynamics model Ps; learned by Equalionmsalisﬁes

2log (|P|/0)

n(s,a)

drv (Pip, Pm) < ®)

with the probability at least 1 — §. More details about this theorem can be found in Appendix@

Discussion of Theorem [3.1]and Theorem[3.2] Directly combining the two aforementioned theo-
rems, we can derive the following inequality with the constant C' = ™= /2]og (|P|/0):

1 N 1
— ’J (Woff,M) - J(TroffaM)‘ < E ATy
C (s, (I)N/} Toff

n(s,a)
1 1 1
< E |——|+ E |——|+ E |——]. 6)
(sp,ap) n(s,a) (sp,a-p) n(s,a) (s-p,a) | /1 (s,a)
a) offline dataset b) conservatism on OOD actions  c¢) unbalanced state distribution

On the right-hand side of the inequality, the entire state-action space is divided into three parts based
on whether the state or action belongs to the offline dataset D. Obviously, for the estimated dy-
namics model P trained using the offline dataset D, the inequality n (sp,ap) €K n(sp,a-p) K
n (s—p,a) holds. This implies that the first term in|§| will be relatively small, while the latter two
terms are comparatively larger, especially the third term. During the online interaction, we aim
to collect more data to reduce this performance gap caused by the distributional shift. The more
efficient approach is to collect b) (sp, a—p) and ¢) (s—p, a), rather than a) (sp, ap).
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We train a dynamics model on WK-m dataseﬂ and 1600

. . . .. . a) (sp,ap)
plot the distribution of the total variation distance  1400| == b)(sp,0-0)
across a) (sp,ap), b) (sp,a-p),¢) (s-p,a) inFig- o (s-20)
ure [Tl It is evident that the distance satisfies the in-

1000

equality d]—',(sD,aD) < d]—',(s—D,a_‘p) < d]—',(s_,p,a)’
which aligns with our intuitive deductions. It is also 80
important to note that the horizontal axis represents 600
the log of the distance, indicating that the significant .
distance differences across different state-action re- e

gions, with even orders of magnitude gaps. This sug- 200 u

gests that to reduce the expected dynamics distance, o 2 0 2 1 6

online interaction should make the second and third tog[dry (P, Po) |
become smaller.

Figure 1: The distribution of total variation
distance on WK-m dataset. Here we adopt the

Step II: Offline policy improvement After online log on the distance due to the wide range

dynamics finetuning, one more accurate dynamics
model P\;{ is obtained. Then we finetune the policy 7 to get the final policy 7} in offline man-
ner, the same as the way of getting the offline pretrained policy 7o;. Concretely, the offline manner
represents optimizing the policy 7 in conservative MDP

¢Q“ — {SA I“*/\“ﬁ"’ll.[{'\;l.(]().",r}. (7)

where the uncertainty u (s, a) > drv (Py;(s,a), Pam (s,a)) forall s € S,a € A, is the upper
bound of the dynamics distance. The performance of policy 7 obtained from the offline policy
optimization can be described using the following theorem.

Theorem 3.3 The performance of m, optimized in M, = {S, A, 7 — Aoft - u, Pz, do, v}, satisfies

J(m, M) > J(m* M) =2 - E [u(s,a)]. 8)

| .
(&(1,)'»/1&1

Here m* is the optimal policy and more details about this theorem can be found in /\p/)(’n(/i.\‘@

Discussion of Theorem m The performance J (7w, M) is affected by the uncertainty (s, a),
also the distance between the true and estimated dynamics d (P\;l (s,a), Ppr (s, u)). After online
dynamics pretraining, this distance becomes smaller. As a result, the offline finetuning policy 77 is
better J (7}, M) > J (Tofe, M).

3.2 PRACTICAL IMPLEMENTATION

Now we design a practical model-based offline to online finetuning framework called DOOF moti-
vated by the above analysis. The framework has been summarized in Algorithm T}

K
Offline pretraining We first learn an ensemble dynamics {P/I\%}k using Equation . All
=1

the uncertainty-based offline algorithms are applicable within our decoupled framework, such as
MOPO [2020), count-MORL [2023) and MOBILE [2023). We
choose MOPO to verify our DOOF due to its simplicity and universality. Specifically, the un-
certainty estimator is the maximum standard deviation of the learned dynamics models u(s,a) =

maka:1 HE{;(S, a) HF We denote the the policy obtained from offline pretraining as 7.

Online finetuning According to above analysis, finetuning dynamics model requires data,
(sp,a-p) and (s—p,a), that is out of the offline dataset distribution. If we interact with envi-
ronment through offline pretrained policy 7o, the collected data mainly belongs to the distribution
(sp, ap), which contributes little to learn a more accurate dynamics model. What we required is a
more exploratory and optimistic policy, even if its performance is a little worse than 7.

2 Abbreviations of the datasets from D4RL are as follows: halfcheetah — HC, hopper — HP,
walker2d — WK, Pen — P,random — r, medium — m, medium-replay — mr, medium-expert
— me, cloned — ¢, human — h.
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Algorithm 1 Decoupled Offline to Online Finetuning (DOOF)

Require: Offline dataset D; penalty coefficient \y; exploration coefficient Aqy.
(Offline pretraining) Obtain the offline pretrained policy mos and offline dynamics model Pg;.
(Online finetuning)
1. Train uncertainty policy 7, with modified reward r; + Aoy - u (s, ay).
2. Collect data with m,, in environment to get the real buffer Dy,
3. Finetune dynamics model P+ on dataset D U Dy,.
4. Finetune 7y on dataset D U D, with finetuned dynamics model P}Z.

MOPO penalizes OOD state-action pairs using
uncertainty u(s,.a). Ir} Flggre we qbserve uncertainty on (sp.a.»)
that the state-action region with greater distance uncertainty on (s-p, a)
P ibi i i distance on (s-»,a)
dry (P g PM) alss) exhibits higher un(fertamty 1200 et o o,
u(s,a). This implies that the uncertainty can 1000
assist in identifying which data points are more
critical to be collected through online interac-
tion. Therefore, we choose to use the uncer-

1600

1400

800

600

tainty from MOPO as an extrinsic reward to 400
train the policy mofs: 200
Tt (8t7 at) =71+ )\on U (31‘,-, at)7 (9) -2 0 2 4 6

1og[drv(P,\7,P,«4)} & u(s,a)
here Aop is the exploration coefficient which Figure 2: The distribution of total variation dis-
determines the degree of uncertainty guidance. tance and uncertainty on WK-m dataset. The rea-
The selection of Ao, is proportionally related to SO0 for the congentra.tlon.of the uncertainty dlsFr1-
the offline penalty coefficient, where the ratio bution on the right side is the clipping operation
is Aon ¢ Ao = 0.25,0.5,1,2. We denote this 1n the implementation.
modified policy as uncertainty policy 7, and,
for example, use 7, (0.25) to represent the policy is trained with Ay, : Aogr = 0.25. Interacting with
the environment, the uncertainty policy 7, collects the online buffer D,,. And similarly, D, (0.25)
indicates this online buffer is collected by 7, (0.25). Then we finetune the dynamics model on data
D U Dyy:

P./f\-/l\ = arg I’II’DIHI ]EDL_JDM [— IOg P./\//\l (St+1|8t, at)] . (10)
M

Finally, we run MOPO on dataset D U D, with the help of the finetuned dynamics model Pjiq to
finetune the offline pretrained policy o without the need of further online interaction.

3.3 DISCUSSION AND ADVANTAGES

The online finetuning stage of DOOF is actually the supervised dynamics model learning, which is
significantly more straightforward than RL. To recover to the true transition dynamics on (s, at),
the dynamics model Py; only requires data on (s¢, at). In contrast, RL problem naturally relies on
more diverse data distribution. Taking the Q-function as an example, to learn the optimal Q (s, a;),
it is not only data on (s, a;) is required, but also (s¢11,at+1, S¢+2, 12, ). This is one of the
reasons why our framework boasts high interaction efficiency. Besides,the online buffer collected
by the uncertainty policy tends to include state-action pairs with large uncertainty. This data distri-
bution is precisely the region where the dynamics is less accurate, and also greatly contributes to the
elimination of distribution shift.

Our policy finetuning is conducted in an offline manner without online interaction. If the dynamics
is accurate enough, the policy is also equivalent to interacting with the environment. This is the
inherent advantage of a model-based framework, which can generate a broader distribution with a
small amount of training data. And this property further enhances the data efficiency. Moreover, the
policy training stage remains conservative, which can prevent sudden performance drop.
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4 RELATED WORK

Offline reinforcement learning Mainstream offline model-free methods mainly contains two cat-
egories. One is policy constraint, which constrains the learned policy close to the behavior policy
based on different “closeness” such as batch constrained (Fujimoto et al.,2019)), KL divergence (Wu
et al., 2019), MMD distance (Kumar et al., 2019), MSE constraint (Fujimoto & Gu, 2021 and TV
distance (Zhuang et al., 2023). The other is value regularization, which regularizes the value func-
tion from overestimation on OOD state-action pairs (Kumar et al., 2020; Kostrikov et al.|, 2021a; Bai
et al.,[2022)). Besides, Decision Transformer (DT) (Chen et al.,|2021) directly maximizes the action
likelihood, which opens up a new paradigm called sequence modeling. And Reinformer (Zhuang
et al.l2024) further propose the max-return sequence modeling. Based on the conservatism on dif-
ferent components, offline model-based RL methods derived from MBPO (Janner et al., 2019) are
divided into the following three categories: MOPO (Yu et al., 2020} Lu et al., 2021) and MOReL
(Kidambi et al., 2020) propose to penalize the reward function by the uncertainty of the learned
dynamics models and MOBILE (Sun et al., 2023) theoretically conducts uncertainty quantification
through the inconsistency of Bellman estimations. COMBO (Yu et al.| 2021) trains a conserva-
tive Q-function based on CQL (Kumar et al., 2020). RAMBO (Rigter et al.| |2022) and ARMOR
(Bhardwaj et al., [2024)) incorporates conservatism by modifying the transition dynamics.

Offline to online finetuning Offline to online finetuning aims to further improve the policy using
the offline pretrained policy as initialization. Offline to online finetuning encompasses two issues
to be solved: distribution shift elimination (DSE) and policy improvement (PI). The approaches to
dealing with the distribution shift can be roughly divided into two classes. One class tries to design
less conservative algorithms (Lyu et al} [2022; [Nakamoto et al.| [2024; [Kostrikov et al.| [2021bj [Wu
et al., [2022), aiming to weaken the impact of distribution shift when online finetuning. Another
class applies additional constraint (Beeson & Montana, 2022} [Lee et al., [2022; Nair et al., [2020) to
solve the distribution shift. Although MOORe (Mao et al., [2022), MOTO (Rafailov et al., [2023)),
and FOWM (Feng et al.| [2023)) are online finetuning algorithms within the model-based framework,
they also directly finetunes the policy rather than decouples the dynamics learning from policy im-
provement like DOOF. A comparative analysis between DOOF and other offline to online finetuning
methods, including the model-free algorithms (IQL (Kostrikov et al., [2021b), Cal-QL (Nakamoto
et al.| [2024), CQL (Kumar et al., [2020), SPOT (Wu et al.| [2022), PEX (Zhang et al.| [2023)) and
model-based baselines such as MOORe (Mao et al.,2022) and FOWM (Feng et al.,[2023)), was con-
ducted as listed in Table[I} The table [T] outlines the problems each algorithm attempts to address at
each phase. Only DOOF achieves decoupling of these two issues, while the others simultaneously
tackle the intertwined issues of distribution shift elimination and policy improvement.
Table 1: Problem to solve at each phase

Methods Online Finetuning Offline Finetuning
1IQL, Cal-QL, CQL, SPOT, PEX  Distribution Shift + Policy Improvement No
MOORe Distribution Shift + Policy Improvement No
FOWM Distribution Shift + Policy Improvement No
DOOF (ours) Distribution Shift Policy Improvement

5 EXPERIMENTS

We conduct an extensive and rigorous evaluation on our DOOF: Dodel-based Offline to Online
Finetuning using classical offline datasets from D4RL (Fu et al.l2020). Our experiments are orga-
nized in accordance with the algorithmic workflow:

¢ Uncertainty policy training: We evaluate the performance of uncertainty policy 7, and il-
lustrate the distribution of the collected online buffer Do, (7, ). The impact of exploration
coefficient \,, on dynamics finetuning and policy finetuning is reserved for the latter sections.

* Online dynamics finetuning: We focus on the total variational distance between the finetuned
dynamics model P and the actual environment, and the distance change before and after
finetuning. We also analyze the influence of different \,, on above distance challenge.

 Offline policy finetuning: We plot the typical training curves to analyze the characteristics of
DOOF and the impact of \o,. We also demonstrate the exceptional interactive efficiency.
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ratio = 0.25 ratio = 0.5
5.1 UNCERTAINTY POLICY TRAINING 50% 4 50% q

The uncertainty policy m, determines the dis- 0% | —m=— II‘:.I. 0% o === '-D.I.
tribution of collected online buffer Doy (),
which directly affects the online dynamics fine-
tuning and offline policy finetuning. When train-
ing m,, we adopt four exploration coefficients
Aon With ratio Aop : Aogg = 0.25,0.5,1,2. We ~ 50%7
first compare the performance between the of- 00| —m .=

fline pretrained policy 7o and 7. ) -II | I 0% I =

J(Tru) :
formance change (J(m,ff) - 1) x 100% on ratio Figure 3: This figure depicts the percentage

0.25,0.5, 1, 2. Some datasets, such as HP—m, ex- change on performance of the uncertainty policy
hibits a noticeable performance decline. This is , compared to the offline pretrained policy o,
attributed to the uncertainty policy training that where 7, is trained with different exploration
alters the inherent conservatism. But surpris- coefficients Ao, : Aor = 0.25,0.5,1,2. These
ingly, the P—c dataset achieves performance im- datasets are HC—r, HC—m, HC—mr, HP—r, HP—m,
provement through simple uncertainty training. HP-mr, WK—r, WK-m, WK-mr, P—c, P—h.

-50% 4 50% 4

ratio = 1 ratio = 2

50% A

-50%

In Figure [3] we illustrate the percentage of per- s

Next, we evaluate the distribution of online buffer D, (7,,) collected by the uncertainty policy 7.
Ideally, the collected data distribution should consist of state-action regions unseen by the offline
pretrained dynamics PH, that is, the distance drv (Pﬁ, PM) on online buffer D,,(7,,) should be
larger. In the left two figures from Figure [t can be observed that the distance on D is indeed
minimal, while the distance of Dy,(m,) is substantially large. This suggests that the dynamics
training of on Dy, (7,,) could eliminate the distribution shift effectively.

= D, (r, (0.25))

-2 -1 0 1 0 2

Figure 4: The left two figures illustrate the distribution of log [drv (Pjz, Pat)] on the offline dataset
D and the online buffer D, collected by the uncertainty policy 7, (1) trained with Ao, = Ao, across
datasets HC—r and WK—r. The third figure depicts the distance distribution on online buffer collected
by the offline pretrained policy 7o and uncertainty policy 7, (0.25) trained with Ao, = 0.25Af on
WK-mr. While the last one is similar but the uncertainty policy is 7, (0.25) on WK-mr.

In the right two figures from Figure [4] the distribution on online buffer collected by the offline
pretrained policy 7o and the uncertainty policy , are almost overlap. This is because the m,
is finetuned based on 7. But these subtle differences actually have a significant impact on the
performance of the final offline policy finetuning. We will further discuss in detail in Section[5.3]

5.2 ONLINE DYNAMICS FINETUNING

Table 2: The total variation distance between the true and estimated dynamics on state-action pairs
uniformly sampled from the true MDP. drv (PK/P PM) represents the distance before online dy-

namics finetuning, also the offline pretrained dynamics model. d%r{"}m’) (P/’:?, PM) is the distance

after finetuning, using the online buffer collected by the 7, trained with Ay, : Aoy = 0.25,0.5,1, 2.

Datasets drv (Pyg: Pas) d'(r%%) (Pji?’PM> dg%s) <PA*7’PM> d'(rlv) (PA*T PM) d(T%’) (P}\Z’PM)

mean max mean max mean max mean max mean max

HC-r 118.123  1223.240 119.155 1294.893 | 109.950 1170.111 120.915 2076.364 119.825 1456.900
HC-m 82.339 910.501 63.708 969.096 67.705 1169.591 67.813 1029.322 67.565 1116.883
HC-mr 121.772  2445.304 93.484 1951.653 78.373 1500.777 89.847 1894.1079 89.317 1641.784
HP-r 39.970 319.989 44.888 425.438 56.680 547.203 56.527 629.646 56.668 672.624
HP-m 874.378 5567.265 | 1156.229 6678.457 950.298 5421.856 | 766.162 5719.151 | 765.820 5757.906
HP-mr 135.835 824.546 | 116.199 864.601 | 112.370 688.462 | 105.852 1401.446 | 105.176 1177.113
WK-r 211.203 2073.774 | 118.911 1149.800 92.696 793.019 | 145.021 1156.193 | 144.939 1234.787
WK-m 173.784 1018.120 | 156.550 973.955 | 157.137 909.678 | 149.325 988.611 | 148.906 997.185
WK-mr 164.754 1505.594 | 137.658 892.306 | 148.490 910.916 | 131.005 1104.575 | 130.517 1765.076
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300 finetuned dynamics
offline dynamics

oo ()

Figure 5: This figure presents the distance dis-
tribution of the dynamics model pretrained by
dataset HC—r on dataset HC-me before and after
online dynamics finetuning. The dynamics model
is finetuned using online buffer Dy, (7, (0.25)).

Online dynamics finetuning aims to eliminate
distribution shift by learning a more accurate
dynamics model P*.. The total variation dis-
tance of the dynamics model from the true en-
vironment on a relatively uniform state-action
distribution can reflect the extent of distribution
shift. The results are summarized in Table 2l

From the Table[2} we observe that the online dy-
namics finetuning significantly reduces the dis-
tance dry (PM\, PM) between the real environ-
ment on the fake buffer, except for HP—r with
severely biased distribution. Moreover, dynam-
ics finetuning demonstrates relative robustness
with respect to the exploration coefficient Ayy.

In figure 5| we observe that distance distribu-
tion drtvy F]Lﬂ, PM), where Pﬂ is pretrained
on HC-r, exhibit long-tail effect on HC—me.
This may be attributed to that the dynamics

model learned from low-quality datasets is blind on the high-return regions. Through finetuning,

not only the distance has been significantly reduced,

5.3 OFFLINE POLICY FINETUNING

but the long-tail distribution is also mitigated.

We first demonstrate the superior finetuning performance and exceptional data efficiency of our
framework DOOF. All the offline-to-online algorithms directly finetune the policy during the online
interaction, hence they plot the policy training curves for comparison. In DOOF, the online interac-
tion and policy finetuning are two decoupled stages, making this comparison method inapplicable.
As a result, we compare our proposed DOOF with baselines using the following approaches:

* DOQOF first online interacts 10k steps to finetune the dynamics model and then use this online
finetuned dynamics to finetune the policy with 300k gradient steps in offline manner (OFF-300K);

. For basclinw including model-free IQL (Kostrikov et al} [2021B), Cal-QL (Nakamoto et al}

), CQL (Kumar et al} 2020), SPOT (Wu et al} [2022), PEX (Zhang et al] [2023)) and model-

based FOWM (Feng et al][2023), they first finetu

ne the policy using 10k online interaction steps

(ON-10K) and then finetune the policy 300k gradient steps without online interaction (OFF-300K).

Table 3: The online (ON-10K) and offiine (OFF-300K) finetuning results over 3 seeds. The gray
results means the performance has declined after finetuning and the bold results represent the best.

DOOF IQL CalL-QL CQL

OFF-300K ON-10K OFF-300K ON-10K OFF-300K ON-10K OFF-300K
HC-r |37.5 54.9(+17,4) 14.9 14.2(-0.6) 8.9(—6.0)[ 25.1 11.2(—14.0) 2.3(—22.9)[23.7 12.3(—11.4) 2.2(-21.5)
HC-m |70.5 92.5(+22.0)[48.5 48.3(—0.2) 49.2(+0.8)|47.6 48.6(+ 1.0) 49.1(+ 1.5)| 46.6 46.9(+ 0.2) 47.7(+ 1.1)
HC-mr|69.2 88.3(+19.1)[44.3 44.2(—0.0) 45.3(+1.0)| 46.5 47.4(+ 0.9) 47.4(+ 1.0)| 44.9 45.1(+ 0.2) 46.0(+ 1.2)
HP-r [32.0 324(+ 0.5)| 7.6 7.6(—0.0) 8.17(4+0.6)| 7.3 47(— 2.6) 2.0(— 5.3)] 7.8 6.9(— 1.0) 8.6(+ 0.8)
HP-m |68.3 108.4(+40.1)|57.3 58.8(+1.4) 59.0(+1.6)| 56.8 72.7(4+15.9) 73.5(4+16.7)| 62.3 65.4(+ 3.1) 63.0(+ 0.7)
HP-mr|82.6 107.3(+24.7)(97.2 95.7(—1.5) 99.4(+2.2)| 97.7 97.3(— 0.5) 97.7(— 0.1)| 94.1 95.0(+ 0.9) 99.7(+ 5.7)
WK-r | 4.1 16.9(+12.8)| 3.7 3.7(+0.0)  4.2(+0.6)] 3.9 1.5(— 2.4) 0.2(— 3.7)|-0.3 —=0.2(+ 0.0) 1.6(+ 1.9)
WK-m [77.7 93.8(+16.1)[83.2 80.8(—2.4) 79.0(—4.2)[ 83.6 83.6(+ 0.0) 83.3(— 0.3)| 81.3 83.6(+ 2.3) 30.5(— 0.8)
WK-mr|69.6 97.8(+28.2)|77.1 78.1(+1.0) 84.2(+7.1)[ 79.4 87.2(+ 7.8) 89.2(+ 9.8)| 72.1 82.2(+10.2) 87.6(+15.5)
P-c [48.9 54.2(+ 5.3)[69.5 67.9(—1.6) 68.9(—0.6)|-3.5 —4.0(— 0.6) —4.8(— 1.3) 7347%5(— 0.4) —4.8(— 1.4)
P-h [38.7 62.0(+23.3)|56.4 57.6(+1.2) 60.2(+3.8)] 7.7 —4.0(—11.6) —3.4(—11.1)]—34 —3.5(— 0.2) —44(— 1.1)

DOOF SPOT PEX FOWM

OFF-300K ON-10K OFF-300K ON-10K OFF-300K ON-10K OFF-300K
HC-r [37.5 54.9(+17.4)] 8.0 7.8(— 0.2) 5.1(— 2.8)[15.7 16.4(+ 0.7) 8.6(— 7.1)[15.4 20.4(+ 5.0) 20.3(+ 4.9)
HC-m |70.5 92.5(+22.0) 40446 2( 0.8) 45.1(— 0.3)[48.3 49.5(+ 1.2) 46.0(— 2.3)| 44.0 45.4(+ 1.4) 42.9(— 1.1)
HC-mr|69.2 88.3(+19.1)[43.8 43.1(— 0.7) 43.2(— 0 (;) 44.7 45 7(+ 1.0) 44.2(— 0.5)| 47.3 49.8(+ 2.5) 49.7(+ 2.3)
HP-r [31.9 32.4(+ 0.5)] 85 9.9(+ 1.4) 32.3(+23.8)| 8.4 (= 0.7) 7.8(— 0.6)] 9.2 9.5(+ 0.3) 9.5(+ 0.3)
HP-m [68.3 108.4(+40.1)|57.8 59.0(+ 1.2) 60.9(+ 3.1)| 59.2 10 1(—39.8) 56.6(— 2.6)| 48.5 64. o(+16 O) 52.5(+ 4.0)
HP-mr|82.6 107.3(+24.7)|74.2 47.9(—26.4) 85.5(+11.2)| 78.3 102.3(4+24.0) 73.1(— 5.2)| 93.0 88.0( 0) 99.3(+ 6.3)
WK-r | 41 16.9(+12.8)| 1.5 6.1(+ 46) 5.7(+ 4.2)| 8.8 8.6(— 0.2) 9.1(+ 0.3)] 4.2 5.6(+ 14) 5.5(+ 1.2)
WK-m |77.7 93.8(+16.1)|81.7 81.0(— ) 82.5(+ 0.8)] 72.1 56.8(—15.3) 81.9(+ 9.8)| 0.6 40.0(+39.4) 27.3(+26.8)
WK-mr|69.6 97.8(+28.2)81.1 81.0( 0 (J) 81.8(+ 0.8)| 71.3 61.8(— 9.5) 59.7(—11.6)| 36.0 54.7(+18.7) 45.3(+ 9.3)
P-c [48.9 54.2(+ 5.3)| 2.515.5(+13.0) 22.5(+20.0)| 33.8 29.8(— 4.0) 46.7(4+12.9)|—2.8 51.0(+53.8) 57.3(+60.1)
P-h [38.7 62.0(+23.3)25.9 13.7(—12.2) 18.2(— 7.6)|50.1 59.0(+ 8.9) 70.6(+20.5)|—0.0 1.9(+ 1.9) 8.3(+ 8.3)
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Our performance improvement is highly significant, approaching and even achieving optimal policy
levels. What’s more notable is the interaction efficiency; we have achieved remarkable effects with
only 10k online interaction steps. In addition to the model-based approach, the decoupled framework
and the uncertainty guided data collection to quickly eliminate distribution shift are also crucial.

We further plot several representative curves to illustrate the stable training performance and the
relationship between performance and the dynamics distance. In Figure [6a] if we set the policy
that collects the online buffer as 7y (the blue bold curve), the offline finetuning performance may
decline. While the performance with uncertainty policy 7, (2) is best. This suggests that the policy
guided by uncertainty is more conducive to collecting data that is effective for finetuning the dy-
namics model. In the third figure from Figure ] the distance distribution is similar, which means
the minor distribution differences can have a significant impact on the final policy finetuning perfor-
mance. In Figure[6b] the stability of offline finetuning curves obtained by different data collection
policy varies. The offline pretrained policy is 7o is relatively poor, while other uncertainty policy
is more stable. This indicates the distribution difference in Figure @ affects the stability heavily.

: IWM wwm .
o || |

U — 2 50

— 05
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0 50000 100000 150000 200000

(a) HC—m (b) WK-m (c) HC—mr

Figure 6: Figure@ andillustrate the performance curves during policy finetuning on HC—m and
WK-m. Note that the horizontal axis represents the training steps, rather than the interaction steps.
Different curves represents different exploration coefficient A\o,. The blue bold curve with label ‘0’
is based on the offline pretrained policy mo rather than uncertainty policy. Figure[6c|shows the curve
that carries on twice online finetuning. The curve before the green dashed line represents the policy
finetuning under finetuned dynamics model P, while the other is the policy finetuning curves with
Pj’a‘, the dynamics further finetuned based on the P*-. The two small plots in the lower right corner
respectively illustrate the distribution of distances of three different dynamics Pz, P}Z, %‘/li as well
as the curve of distance mean. The distance is also calculated on its offline fake buffer.

In Figure[6c] we conduct another finetuning process after the the policy has been finetuned. Dynam-
ics model PZ- is obtained form the first online dynamics finetuning while PZ% is further finetuned
based on PX.. The distance distributions of these two dynamics models between the true envi-
ronment are shown in the lower right corner. It can be observed that after the first finetuning, the
distance increases, which means this finetuning is a failure that corresponds to a decline in perfor-
mance and severe fluctuations. After the second finetuning, the distance becomes lower than the
offline pretrained dynamics P+, resulting in a noticeable improvement in performance.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a decoupled model-based offline to online finetuning framework called
DOOF. DOOF decouples the distribution shift elimination from the policy optimization in offline
to online finetuning. Specifically, DOOF finetunes the dynamics model during online interaction
to eliminate the distribution shift using the online buffer collected by the uncertainty guided policy.
And then the policy is finetuned with the help of the finetuned dynamics in offline manner without
further interaction. This decoupled framework not only ensures superior and stable performance but
also boasts exceptional interaction efficiency. Overall, model-based offline algorithms lag behind
model-free counterparts in terms of performance. Therefore, we intend to explore how to extend
this decoupled offline to online finetuning framework to model-free algorithms by incorporating an
additional trained dynamics model. This integration approach may be more conducive to unlocking
the full potential of the decoupled framework.

10
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A  PROOF

A.1 PROOF OF THEOREM[B.T|(YU ET AL] 2020}

Assume M and M are the MDPs with different transition dynamics P and P but the same

reward function |7| < 7pax. According to telescoping lemma from|Cuo et al]2018), the performance
difference J (7Toff, M\) — J (mofr, M) holds:

’J (Woff,M\) — J(Tfoff,M)‘ < 'y( )IE . [d].- (Pﬂ(s,a),PM(s,a))] . (11)

s,a NpAA;’[
Here the state-action pairs comes from the discounted unnormalized visitation frequencies
p”A‘/lA’“ (s,a) = o (als) - ZtT:o YEP (st = s|mor) and P (s; = s|mof) represents the probability of
the ¢-th state equals to s in trajectories generated by policy 7o and transition dynamics Pg;. The
E [f(shI— E [f(s)]| withdris

s’NPAAA(s,a) s'~Ppq(s,a)

the is the integral probability metric (IPM) [T997). IPMs are quite general
[2009) and one special case is the total variational distance.

When F = {f : |||l <1}, dr becomes the total variational distance dry (Pj;, Py ). Due to the

bounded reward function |r| < ryax, the V7| < 377 7' 7max = 1 holds. Then we have

ldrv (Pip, Pm)] - (12)

distance dr (Piz(s,a), Prm(s, a)) = supsc »

Y * Tmax

L= (sa)~pTer

M

‘J (m, /\7) - J(woff,/\/l)‘ <

A.2 PROOF OF THEOREM [32](KIM & OH]} [2023)

Assume P = {Py;: S x A — S} and |P| < co. Given an exact state-action pair (s, a) exists in
D with D5 o = {s¢,at, St41}y,—g q,—o and n(s,a) = |Ds 4| By theorem 21 from [Agarwal et al.

(2020), the dynamics model P learned by Equation l]satisfies

B 2log (M/9)

E(Staat)NDs,a, |:dTV (PM\(S?G)7PM(570‘))2} = 7?,(5,0,) (13)

with the probability at least 1 — §. We can directly bound the total variation distance between the
estimated transition dynamics P and the true transition dynamics Py due to the subset D; , =

{(s,a,s141) ?z(so’a). Thus,

2log (M/§)

n(s,a)

dry (Pip, Pm) < . (14)

A.3  PROOF OF THEOREM B3| (YU ET AL} [2020)

According to Theorem 4.3 from[Yu et al] €020), the policy optimized with uncertainty-based offline
model-based algorithm M, = {S, A, 7 — Aotr - u, Py, do, 7} satisfies

J (m, M) = sup lJ (T, M) =2X e - E Ju(s, a)]] . (15)

7 (s,0)~pT

Assume 7* is the optimal policy 7* = arg max.J (7, M), then we directly have
™

J(m, M) > J(m* M) =2Xe- E - Ju(s,a)]. (16)

(sa)~r

14
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B IMPLEMENT DETAILS

B.1 OFFLINE TRAINING

we firstly run MOPO on the environments to get offline trained dynamics model and policy. During
this stage, We train an ensemble of 7 dynamics models, each model in the ensemble is represented as
a 5-layer feedforward neural network with 400 hidden units on Adroit domain, but 4-layer feedfor-
ward neural network with 200 hidden units on other Gym domain. Once dynamics model training
finished , we use it to rollout for generating data and helping training the policy. During model
rollouts, we randomly pick 5 dynamics model from the 7 models. Finally, the mix batch consists
of 5% from an offline dataset and the rest from dynamic rollouts, which is used to train the policy
optimized by SAC.

B.2 UNCERTAINTY POLICY TRAINING

We initialize the uncertainty policy as former offline pretrained policy. The uncertainty policy opti-
mization is based on SAC, we sample a uncertainty dataset of 10000 transitions from offline dataset
and modify the reward by adding the uncertainty which is determined by our online exploration co-
efficient and uncertainty value evaluated by offline trained dynamics model back to reward. For each
update, we sample a mix batch of 256 transitions where 2.5% of them is from the offline dataset,
2.5% of them is from the modified uncertainty dataset, and 95% is from the synthetic dataset gen-
erated by the offline trained dynamics model. During dynamics model rollouts, half of the obser-
vations required for dynamics rollout comes from offline dataset and another half comes from the
modified uncertainty dataset. We expect this training stage on the uncertainty policy will enhance
its exploration.

B.3 ONLINE DATA COLLECTING

we just utilize the trained uncertainty policy to act in environment for collecting online interacting
data which was only used for finetuning the dynamics later without any further training. It finds out
that very small interact steps setup on this stage can make significant impact on dynamics finetuning.
Actually we just collect 10000 online transitions, which is of great help to finetune the dynamics
and enormously improve the policy performance.

B.4 DyYNAMICS FINETUNING

After online data collecting finished, we finetune the offline trained dynamics in original offline
mode on both offline dataset and online collected dataset, for each update, the mix batch consists of
half from offline dataset and another half from online collected dataset is used to train the dynamics
model.

B.5 PoLICY FINETUNING

The policy to finetune was initialized offline pretrained policy. Once dynamics finetuning finished,
it’s used to assist in finetuning the policy in original offline mode with no need to interact with
environment further, which fundamentally avoid sudden policy collapse because the inherent con-
servatism is retained and the algorithmic consistency is ensured. while finetuning the policy, for
each update, we sample a mix batch size of 256 transitions consists of 2.5% from offline dataset
and 97.5% from the synthetic dataset which is generated by the finetuned dynamics model. During
dynamics models rollouts, half of the observations required to generate this synthetic dataset comes
from offline dataset and another half comes from the online collected dataset.
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C EXPERIMENT DETAILS

Our experiments is conducted based on the open source code base https://github.com/
yihaosunll24/0fflineRL-Kit. we add four additional parts of code as described in section
The code has been submitted as supplementary material. A single experiment requires approx-
imately 40 hours of training on V100 during the offline pretraining phase, while the online phase
only requires 4 to 5 hours.

C.1 BENCHMARKS

we conduct experiments on D4RL benchmark, including Gym tasks(V2) and some Adroit tasks
(V1), we choose several representative algorithms as baselines to show the priority of our algorithm,
and implement the baseline experiments using flowing repositories:

* IQL, CQL, CAL-QL, and SPOT: |https://github.com/tinkoff-ai/CORL
e PEX:https://github.com/Haichao—-Zhang/PEX
e FOWM:https://github.com/fyhMer/fowm

we keep the origin code style of every code base, and just change the online finetuning steps and
offline finetuning steps to keep the same as ours, we set the online interaction steps as 10 000 for
all the baselines, and we modify the baselines based on their original code to conduct offline policy
finetuning after online finetuning , and we set the offline finetuning steps as 300 000 on all baseline
algorithms.

C.2 HYPERPARAMETERS

Now we list the hyperparameters we have tuned for DOOF as follow.

Exploratory coefficient \,,. we tune the \,, in the range of Ao, : Aoy = {0.25,0.5,1,2}. This

hyperparameter has been discussed in section[5] we have listed this hyperparameter of different task
in Table

C.3 TuNING FOR MOPO

All code parameters are default parameters in the code repository https://github.com/
yihaosunll124/0fflineRL—-Kit. While there are tasks that are not implemented in the repos-
itory, therefore we implemented these tasks and tuned these hyperparameters. Most of hyperparam-
eters for MOPO are listed in Table 4]

Table 4: Hyperparameters of MOPO used in the D4RL datasets.

Hyparameters Value Description

17 actor le-4 (3e-5 on Adroit) | Learning rate of the actor network

7 critic 3e-4 Learning rate of the critic network

17 gynamics le-3 (3e-4 on Adroit) | Learning rate of the actor network

N 2(3 on Adroit) Number of hidden layers of actor and critic network
Naynamics 4 Number of hidden layers of dynamics network

Nensemble 7 Dynamics model ensemble size

Optimizer Adam Type of optimizer

h 256 Number of hidden layer dimensions of actor and critic network
Pdynamics 200(400 on Adroit) Number of hidden layer dimensions of dynamics network
¥ 0.99 Discount return

K 3000 Number of training epochs

Rollout length £. We perform short-horizon branch rollouts in MOPO. We tune £ in the range of
{1, 5,10} for Adroit tasks, and also for Gym tasks of random dataset, as listed in Table

Penalty coefficient \or. Wwe tune Ao in the range of {0.25,0.5,0.75,2.5,5.0} for Adroit tasks,
and also for Gym tasks of random dataset, as listed in Table@
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Table 5: Hyperparameters related to dynamics rollout of different tasks.

Dataset | rollout length £ | offline penalty coefficient Ao | online exploratory coefficient Ay,

HC-r 1 0.25

HC—m 5 0.5

HC-mr 5 0.5

HP-r 1 5.0

HP-m 5 5.0

HP-mr 5 2.5

WK-r 1 0.75

WK-m 5 0.5

WK-mr 1 2.5

P-c 1 2.5

P-h 1 0.5

Table 6: OFF-300K
DOOF

Dataset OFF-300K
HC-r 3752+ ( 2.78) 54.89 + ( 3.09)
HC-m 70.50 + ( 6.12) 92.48 4+ ( 5.58)
HC-mr | 69.20 + ( 1.62) 88.28 + ( 3.17)
HP-r 31.90 + ( 0.66) 32.39 4+ ( 0.64)
HP-m 68.28 + (24.46) 108.40 & ( 1.05)
HP-mr | 82.61 £ (30.76) 107.34 = ( 0.81)
WK-r 4.05+ ( 0.34) 16.85 £ ( 6.75)
WK-m 77.67 £+ (15.18) 93.77 + ( 1.27)
WK-mr | 69.60 £ (11.60) 97.83 + ( 0.80)
P-c 48.90 + (11.89) 54.19 4+ ( 6.78)
P-h 38.66 + (24.21) 61.99 &+ (11.67)
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D DISTANCE AND UNCERTAINTY DISTRIBUTION RESULTS

D.1 UNCERTAINTY AND DISTANCE OF OFFLINE DYNAMICS

As discussed in subsection 3.1} the same phenomenon about distance between offline dynamics and
true environment dynamics was observed in other tasks under different dataset, as listed in Fig[7] The
distance satifies the inequality dr (sp.ap) < dF (sp,a-p) K dF (s_p,a) ON all tasks.

1600 600 = a) (sp.ap)
- . D
o enan) = a) (s0,a0) D) (sp,a-p)

600{ ™= b) (sp.a-p) 1400{ ™= b) (sp,a-p)
) (s-p.a) - ) (s-p,0) s00{ = ) (s-pea)
1200

1000

800

600

400

200

log [drv (Pgo Pa)] tog[ary (P Pa)| 1og [drv (Pg Pa)]

(a) WK—-r (b) WK-m (c) WK-mr

W a) (sp.ap)
B b) (sp,a-p)
500 = c) (s-p.a)

5 a) (sp.ap)
o0 W b) (sp.a-p)
o) (s-p.a)

-2 0 -2 0 2

log [drv (Pggs Pad)] log [drv (Pggs Pa)] log [drv (Pgg Pa)]

(d) HP-r (e) HP—m (f) HP—mr

0 a) (sp.an) 600 ) (sp.an) " a) (sp.ap)
s b) (sp.a-p) B b) (sp.a-p) 500- W b) (sp.a-p)
. c) (s-p.a) ) (s-p.a) ) (s-p.a)

oz [drv (Pgg: Pa))| log [dry (Pg Pa)] log [drv (Pge Pag)]

(g) HC-r (h) HC-m (i) HC-mr
Figure 7: The distribution of total variation distance on different dataset.

As discussed in subsection [3.2] the same phenomenon about distance and uncertainty in other tasks
under different dataset was observed. We have displayed the distribution of total variation distance
and uncertainty on different task and datasets in Fig[8] In all tasks under different dataset, the state-
action region with greater distance dyv (Pﬂ, PM) also exhibits higher uncertainty u(s, a) which
obviously implies that the uncertainty can assist in identifying which data points are more critical to
be collected through online interaction.
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Figure 8: The distribution of total variation distance and uncertainty on different dataset. The reason
for the concentration of the uncertainty distribution is the clipping operation in the implementation.
On the HP tasks, the scale ranges of uncertainty and distance differ significantly, so it’s displayed
separately.
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D.2 DISTANCE OF FINETUNED DYNAMICS

Table 7: The total variation distance between the true environment and dynamics model on the fake
buffer. drv (P/W’ PM) represents the distance before online dynamics finetuning, also the offline

pretrained dynamics model.
buffer collected by the uncertainty policy ,, trained with Ay, :

d&r\e}tio)

Aot = 0.25,0.5,1, 2.

(P/*T/T’ PM) is the distance after finetuning, using the online

Datasets drv (P/ﬂ’ PM) d ' (P* PM) d(T%J) (P/%’ PM) d(Ti’) (P/ivl\"PM) dg‘zv) (P/%/T’ PM)
mean max mean max mean max mean max mean max
HC-r 19.705  93.315 | 2.911 29.336 | 2.962 29.864 | 2.618 32.465 2.817 36.587
HC-m 16.305  86.622 | 3.800 59.283 | 6.356 67.574 | 6.918 68.005 5.450 94.405
HC-mr | 15406 63.238 | 6.375 51.478 | 3.616 63.864 | 9.342  58.687 | 4.665 57.970
HP-r 0.893 6.359 | 0.199 31.883 | 0.231 3.719 1.477 62.536 | 0.064 2.563
HP-m 0.962 8.770 | 0.172 6.119 | 0.436 7.290 | 0.430 7.521 0.595 6.702
HP-mr 2.371  22.685 | 0.216 6.159 | 0.674 9.366 | 0.558 7.228 | 0.343 6.705
WK-r 25.833 244.954 | 11.848 195.372 | 11.390 180.553 | 12.553 218.340 | 12.511 114.747
WK-m 7976  56.971 4.301 52.166 | 3.353 51.666 | 4.358 59.224 | 3.632 57.173
WK-mr | 14.092  64.341 3.907 58.195 | 4.416 57.898 3.767 46.905 | 6.898 51.888

Online dynamics finetuning aims to eliminate distribution shift by learning a more accurate dy-
namics model. The total variation distance of the dynamics model from the true environment on a
relatively uniform state-action distribution can reflect the extent of distribution shift. We calculate
this distance on fake buffer before and after dynamics finetuning. The fake buffer is generateed
by the offline dynamics and policy during offline training. The results are summarized in Table
From the Table[/| we observe that most of the online dynamics finetuning significantly reduces the

distance drvy (

Pz, PM) between the real environment on the fake buffer.

E AVERAGE IMPROVEMENT ACROSS ALL TASKS

Table 8:
gray

DOOF IQL CaL-QL CQL

OFF-300K ON-10K  OFF-300K ON-10K OFF-300K ON-10K OFF-300K
R [24.534.7(+10.2)| 8.7 8.5(— l).z) 7.1(— 1.6)[12.1 5.8(— 6.3) 1.5(—10.6)| 104 6.3(— 4.1) 4.1(— 6.3)
M |72.2 98.2(4+26.0)(63.0 62.6(— 0.4) 62.4(— 0.6)|62.7 68.3(+ 5.6) 68.6(+ 5.9)|63.4 65.3(+ 1.9) 63.7(+ 0.3)
MR|73.8 97.8(+24.0)|72.9 72 /r 0.2) 76.3(+ 3.4)|74.6 77.3(+ 2.7) 78.1(+ 3.5)| 70.3 74.1(+ 3.8) T7.8(+ 7.5)
P |43.8 58.1(+14.3)|63.0 62.8(— 0.2) 64.6(+ 1.6)| 2.1 —4.0(— 6.1) —4.1(— 6.2)|—3.4 —3.7(— 0.3) —4.6(— 1.2)

DOOF SPOT PEX FOWM

OFF-300K ON-10K  OFF-300K ON—lOK OFF-300K ON-10K OFF-300K
R [24.534.7(+10.2)] 6.0 7.9(+ 1.9) 14.4(+ 8.4)[11.0 10.9(— 1.0) 8.5(— 2.5)] 9.6 11.8(+ 2.2) 11.8(+ 2.2)
M [72.2 98.2(+26.0)|61.6 62.0(+ 0.4) 62.8(+ 1.2)/59.9 {1, >< 18.0) 61.5(+ 1.6)| 31.0 50.0(+19.0) 40.9(+9.9)
MR|73.8 97.8(+24.0)(66.4 57.3(— 9.1) 70.2(+ 3.8)[64.8 69.9(+ 5.1) 59(— 5.8)| 58.8 64.2(+ 5.4) 64.8(+ 6.0)
P |43.8 58.1(+14.3)|14.2 14.6(+ 0.4) 20.0(+ 5.8)|42.0 44.4(+ 2.4) 58.7(+16.7)|—1.4 26.4(+27.8) 32.8(+34.2)
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F SocIAL IMPACT

Our DOOF framework, by effectively decoupling policy optimization from distribution shift elimi-
nation, promises to enhance the reliability and efficiency of Al systems. This advancement not only
facilitates safer deployment in critical domains such as healthcare and autonomous vehicles but also
promotes equitable and sustainable development across various sectors by optimizing data usage
and reducing computational costs.
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