OpenG VL - Benchmarking Visual Temporal Progress
for Data Curation

Pawel Budzianowski' Emilia Wisnios Gracjan Géral!
Igor Kulakov® Viktor Petrenko® Krzysztof Walas>*

"University of Warsaw 2IDEAS Research Institute
3Simple Automation #Poznan University of Technology

Abstract: Data scarcity remains one of the most limiting factors in driving
progress in robotics. However, the amount of available robotics data in the wild is
growing exponentially, creating new opportunities for large-scale data utilization.
Reliable temporal task completion prediction could help automatically annotate
and curate this data at scale. The Generative Value Learning (GVL) approach
was recently proposed, leveraging the knowledge embedded in vision-language
models (VLMs) to predict task progress from visual observations. Building upon
GVL, we propose OpenGVL, a comprehensive benchmark for estimating task
progress across diverse challenging manipulation tasks involving both robotic and
human embodiments. We evaluate the capabilities of publicly available open-
source foundation models, showing that open-source model families significantly
underperform closed-source counterparts, achieving only approximately 70% of
their performance on temporal progress prediction tasks. Furthermore, we demon-
strate how OpenGVL can serve as a practical tool for automated data curation and
filtering, enabling efficient quality assessment of large-scale robotics datasets. We
release the benchmark along with the complete codebase.

:  https://huggingface.co/spaces/0penGVL/0OpenGVL
O :  https://github.com/budzianowski/opengvl

1 Introduction

Advancements in hardware and modeling have accelerated progress in robotics. Various embodi-
ments have recently been proposed with decreasing bill-of-material costs, leading to wider avail-
ability [1, 2, 3]. A variety of Vision-Language-Action (VLA) models are being created and open-
sourced [4, 5, 6]. Furthermore, new benchmarks, repositories, and communities are being formed
[7, 8]. These hardware innovations have led to different data collection approaches such as UMI
and DexHub [9, 10]. However, this rapid progress is not matched by the availability of well-curated
datasets. There are only a few large-scale datasets available, such as Agibot-World, OXE, and Droid
[11, 12, 13]. Although these datasets are much larger than previously available ones, they remain an
order of magnitude smaller than datasets used in vision or language domains [14, 15].

However, reduced entry barriers have led to wider adoption of different data collection methods
and an increased propensity to share data. As of August 2025, more than 2.6 million episodes
were publicly shared on Hugging Face’s Dataset Hub alone.! This calls for building tools that
allow efficient and cost-effective filtering of available data. Temporal prediction progress (general
purpose reward functions) determines robots’ own proficiency at the specified task from their own

'Tt is important to note that some datasets are copies of previously available datasets.
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observations [16, 17, 18]. Such ability can be repurposed to curate and filter already collected
datasets [19].

Recently, Ma et al. [20] proposed a generative value function estimator (GVL) that leverages world
knowledge embedded in VLMs to predict universal value functions and estimate task progress. To
automatically measure episode or dataset quality, Ma et al. [20] introduced the Value-Order Corre-
lation (VOC) metric, which exhibits useful characteristics for data curation applications.

Building on this foundation and motivated by the need for large-scale robotics datasets compara-
ble to The Pile or C4 [14, 21], we develop an open-source temporal progress prediction system
(OpenGVL) as a foundational tool for data management at scale. We replicate and extend the GVL
approach for open-source models, creating the OpenGVL benchmark. Furthermore, we demonstrate
how OpenGVL can serve as a practical tool for real-world data curation applications.

OpenGVL reveals significant performance 14076
gaps between open-source and proprietary
models. It can also highlight different
patterns per episode as well as across
full datasets. Specifically, our contribu-
tions are threefold: 1) We create and re-
lease the OpenGVL Benchmark with ac-
companying code. 2) We analyze pop-
ular open-source VLMs, highlightin.g the O o
performance gap compared to proprietary W T seR T p
counterparts. 3) We demonstrate practi-

cal methods for how OpenGVL can curate  Figure 1: Cumulative number of shared datasets for the
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2 Related work

Learnable universal value functions and success detectors for robotics have been a long-standing
challenge [22, 23, 17, 18, 24]. To formalize this concept, given a trajectory 7 = (01, ..., or) with
observations o, a value function V' : T' — R assigns a scalar score to the entire trajectory, reflecting
how well it achieves its goal. We define:

where r; denotes the task success signal at step ¢t and y € [0, 1] is a discount factor. In practice, V(1)
serves as a temporal success measure that can be approximated from visual-language inputs. Initial
works focused on sparse signals of task success and typically relied on training or fine-tuning base
models for specific tasks or domains [24, 22]. Alakuijala et al. [25] and Zhang et al. [26] fine-tune
a VLM with a sequential ranking objective to encourage later frames in the video to have higher
rewards.

Recently, Ma et al. [20] proposed deriving fine-grained temporal success predictions through in-
context learning. Leveraging advancements in VLMs, this approach naturally frames the problem
as a trajectory, goal, and prediction setup where traditional training can be replaced with few-shot
learning. In this setup, the VLM is provided with a few examples of trajectories along with their
temporal value function progress and a trajectory to be evaluated. Ma et al. [20] showed that due to
VLMs’ propensity for imitating behavioral patterns in context, shuffling input observations improves
prediction quality.

To automatically measure prediction quality, GVL uses a rank correlation (Spearman or Kendall)
between the predicted values and the temporal order of frames in the trajectory (Value-Order Corre-
lation, VOC):

VOC = rank-correlation(argsort(m, o), (1,20 ,T)).



where vy, . . ., vy are shuffled frames from the trajectory. VOC ranges from a perfect inverse correla-
tion of —1 to a perfect alignment of 1. The proposed metric was shown to be effective for assessing
data quality across different embodiments and human videos. Although the high score itself is a
necessary but not sufficient condition, it provides a good signal of data quality.

3 OpenGVL Benchmark

Given the rapid increase in datasets shared online (see Figure 1), we introduce the OpenGVL bench-
mark to handle data curation needs. OpenGVL replicates the original GVL results with closed-
source models while adding comparisons to open-source variants. Furthermore, we show how our
benchmark can be easily used for data annotation and filtering in practice.

3.1 Experimental Setup
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Figure 2: Trajectory prediction performance comparison on the hidden human task. Models were
tasked with predicting task completion percentages from shuffled trajectory inputs. The predicted
scores were then sorted by ground truth values for visualization. Top: Gemini-2.5-Pro shows signs of
monotonic upward trend. Bottom: Gemma-3-27B-it shows minimal predictive alignment indicating
difficulty in discerning task completion patterns from visual trajectory data.

Data Selection: We have targeted four initial datasets as a base for validation: nyu_door,
berkeley mvp, cmu_stretch, and nyu_franka [27, 11, 28]. These datasets represent diverse ma-
nipulation tasks spanning different robot embodiments with relatively low task complexity. From
each dataset, we sampled 50 episodes using the same episode indices. We consider two condition-
ing scenarios: zero-shot and two-shot, balancing open-source context capabilities with performance
gains from additional episode examples [20]. Due to the limits on context length, for each episode
we sample 15 random frames and shuffle both context and evaluation frames to provide equal context
for all models. In the Appendix A, we share the full prompt used across all runs.



To establish the OpenGVL benchmark, we created two hidden datasets to prevent contamination.
These datasets are derived from real-world applications requiring long-horizon planning and dexter-
ous manipulation abilities. Figure 2 illustrates prediction results compared to ground truths for both
the MiMo-VL-7B-RL-2508 and Gemma-3-4b-it models on the hidden task.

Model Selection: We evaluate a comprehensive set of open-source VLMs spanning different param-
eter scales and architectural approaches. Our selection includes the Gemma-3 family [29], which
provides models at 4B, 12B, and 27B parameter scales, and the Qwen2.5-VL-Instruct family [30]
with 3B, 7B, and 32B parameter counts. Both families allow us to study the effect of model scaling
on temporal progress prediction. Additionally, we include four models with integrated reasoning
capabilities: GLM-4.1V-9B-Thinking [31] with 9B parameters, MiMo-VL-7B-RL-2508 [32] and
Cosmos-Reason1-7B [33] with 7B parameters, and Kimi-VL-A3B [34] with 16B total parameters
(3B active parameters), all of which incorporate thinking mechanisms that enable enhanced tem-
poral reasoning through explicit reasoning steps. All selected models follow similar architectural
paradigms with integrated vision and language encoders, enabling direct comparison of their tem-
poral reasoning capabilities.

For comparison with proprietary models, we have also evaluated gpt-4o0 [35],
gemini-2.5-flash-lite-preview-06-17, and gemini-2.5-pro [36] based on their context
capabilities and previous performance. Since closed-source models are updated regularly, we
initially tested their performance on unshuffled trajectories. We observed similar behavior to the
versions evaluated in [20], confirming that these models tend to over-rely on temporal ordering cues
in the provided context. Therefore, we evaluate all subsequent results using shuffled frames.

3.2 Benchmarking Open Source VLMs for GVL

Table 1 presents results for all models in the initial benchmark release under zero-shot and two-shot
conditioning. The results show that the VLM scale improves temporal score quality. Both the largest
Qwen and Gemma versions achieve similar scores with significant improvements over their smaller
counterparts, while among reasoning models, MiMo-VL-7B-RL-2508 shows strong performance
and GLM-4.1V-9B-Thinking demonstrates solid results, though Kimi-VL-A3B falls short despite
good performance on other vision benchmarks [34, 31].

Model Size nyu_door berkeley_mvp cmu_stretch nyu_franka

0-shot 2-shot 0-shot 2-shot 0-shot 2-shot 0-shot 2-shot

Open-source models

Gemma-3-4b-it 4B 0.0213 0.0521 -0.0176  -0.0352  -0.0461 0.0304 -0.0430  -0.0177
Gemma-3-12b-it 12B 0.5206 0.4304 0.1805 0.1260 0.0045 0.0458 -0.0427 0.0477
Gemma-3-27b-it 27B 0.6372 0.8219 0.1427 0.1575 0.0963 0.1419 0.0226 0.0950
Kimi-VL-A3B 16B 0.2545 0.1605 0.0528 0.0148 -0.0059  -0.0089  -0.0122 0.0417

GLM-4.1V-9B-Thinking 9B 0.6420 0.6540 0.4276 0.3424 0.1628 0.0867 0.1025 0.1392
Qwen2.5-VL-3B-Instruct 3B -0.0014  0.0097  -0.0112  -0.0232 0.0005 -0.0152  -0.0159  -0.0094
Qwen2.5-VL-7B-Instruct 7B 0.0843 0.1444 0.0500 0.0710 -0.0495 0.0061 0.0181 0.0167
Qwen2.5-VL-32B-Instruct ~ 32B 0.5296 0.6092 0.2491 0.2426 0.0345 0.1192 0.0196 0.1370
MiMo-VL-7B-RL-2508 9B 0.5314 0.5977 0.4391 0.4736 0.2340 0.1798 -0.0544 0.1413
Cosmos-Reason1-7B 7B 0.1703 0.0359 0.0264 0.0208 -0.0429  -0.0233 0.0148 0.0376

Closed-source models

gpt-40 - 0.720 0.870 0.410 0.420 0.200 0.200 0.527 0.290
Gemini-2.5-Flash-lite - 0.8119 0.8491 0.4767 0.6298 0.1500 0.3866 0.1609 0.2679
Gemini-2.5-Pro - 0.9158 0.9654 0.5626 0.6806 0.3348 0.4427 0.4065 0.4099

Table 1: VOC scores across different datasets and model sizes in a zero-shot and two-shot context
conditioning. VOC is averaged over 50 episodes. We can clearly see that VOC scores improve with
model size, observable for both the Gemma family and Qwen models, demonstrating the effect of
model scaling on temporal progress prediction.



Moreover, open-source counterparts reach only approximately 60-70% of the performance of pro-
prietary models’ upper bound scores’. This is a substantial gap compared to the smaller perfor-
mance differences typically observed in text-only models. This finding demonstrates the importance
of comprehensive VLM evaluation suites focused on robotics tasks [37] and highlights the much-
needed progress in vision-language tasks requiring spatial reasoning.
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Figure 3: In hidden tasks 1 and 2, zero-shot VOC clusters performed at or below chance levels, indi-
cating poor cold-start grounding capabilities. While two-shot prompting generally improved VOC
scores, many remained weak (approximately 0.1-0.3), with only a minority achieving moderate per-
formance (> 0.4) and very few reaching strong performance levels (> 0.7). This suggests that these
tasks remain challenging overall, and while few-shot prompting provides some benefit, it is often
insufficient on its own to achieve robust performance.

Motivated by practical applications, we developed two additional evaluation datasets involving last-
mile electronic assembly—a multi-step process requiring sub-millimeter precision. Both datasets
address the same task: one features human execution while the other uses two 7-DOF robotic arms
(see Figure 3). To prevent data contamination, we withhold all task-related data and conduct eval-
vations for each new benchmark submission. These challenging datasets serve as a stress test for
future model capabilities and will become increasingly relevant as VLMs improve their fine-grained
spatial reasoning abilities.

3.3 OpenGVL Benchmark Space

To further promote temporal progress scoring as a benchmark for VLM evaluation and data cura-
tion, we have created a Hugging Face Space enabling community contributions of new models and
datasets for evaluation (see Figure 4). The OpenGVL Benchmark and interactive evaluation inter-
face are publicly available at link. We also provide the complete codebase with all experimental
results at link.

4 Data curation in the wild

To demonstrate the potential of OpenGVL for data curation, we analyzed various datasets recently
shared on the Hugging Face LeRobot datasets hub. With over 13,000 datasets already published,

2The upper bound scores themselves are only a proxy to the (unobservable) ground truth.



automatic data curation and filtering have become essential for leveraging these datasets during the

pre-training phase.

We show how OpenGVL can easily identify
different dataset issues ranging from unclear
task definitions and instructions to occluded
sensors and failed/out-of-distribution examples
that can disrupt training, as observed previously
[20].

VLMs have already been employed to detect
incorrect task instructions, one of the most
pressing challenges since these often include
ambiguous placeholders [6]. For example,
SmolVLA sampled representative frames and
provided them to the VLM alongside the orig-
inal instructions. The VLM was prompted to
produce a short, action-oriented sentence sum-
marizing the behavior. We demonstrate that
OpenGVL adds new dimensions to data cura-
tion by enabling effective filtering of problem-
atic episodes or even entire datasets with ill-
posed setups. We have identified three common
issues with publicly shared data: (1) task defi-
nition problems, (2) labeling ambiguity, and (3)
failed/out-of-distribution examples. In the fol-
lowing sections, we provide a detailed analysis
of each category. We emphasize that we do not
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Figure 4: OpenGVL Benchmark Space and inter-
active analysis of different models and datasets.

critique any specific submissions but rather highlight these challenges to improve future data collec-

tion efforts.

4.1 Task definition

Excavator dataset

Move the lab dataset

Chess pieces dataset

Pickup stick dataset

Figure 5: Example of different datasets published by the community and analyzed in Section 4.



The most common type of problem relates to the definition of the task itself. An example of an
unclearly defined task can be shown with the dataset Mahimana/excavator_toy_v3_dig_dump_
v3_51, where the instruction is ”Dig grass and dump in dump truck”. Due to ambiguity in both the
instruction and task definition, task completion often decreases when it should consistently increase
throughout all episodes. This occurs because it is difficult to define progress when there is no clear
definition of what constitutes ”a dump”” and how much material needs to be excavated. This issue is
easily detected by checking the VOC accuracy.

Another interesting example can be seen in dopaul/1500_chess_moves—a large dataset of mov-
ing chess pieces from point A (red circle) to point B (blue circle) (see Figure 5). Despite the dataset
size, training a performant model poses severe challenges, even though this could be viewed as a
relatively simple pick-and-place problem. Analyzing the VOC scores from the dataset shows that
the VLM does not understand the task definition well given the current instructions. Furthermore,
the camera positioned at the arm angle is often completely obscured by lighting, providing no use-
ful sensor information. This suggests the need for different task instructions or improved visual
markers.

4.2 Labeling ambiguity

Another common issue stems from labeling ambiguity and unclear instructions. For example, in
the dataset willx0909/pickplace_joint, the VOC score is very low due to highly unclear task
instructions (“take out a vial and put it into another pocket”). The movement between pockets can
be accomplished in multiple ways and between multiple different pockets, and the model struggles
to identify the proper temporal relationship. Without clear task boundaries and success criteria, the
VLM cannot establish consistent progress patterns across episodes. This type of data can have a
deteriorating effect on training foundation VLA models.

4.3 OOD/Failed examples
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Figure 6: Two examples of task progress trajectories from the Rorschach4153/s0101_60_new
dataset evaluated by Qwen2.5-VL-32B-Instruct. a) A standard trajectory across all other collected
episodes. b) A trajectory from episode 93 that shows a wrong example.

Other common issues can be observed at the individual trajectory level, where some episodes differ
significantly from the standard collected data. Comparison between individual scores can easily
identify such examples. In the dataset Rorschach4153/s0101_60_new, although the overall VOC
score is high, it is straightforward to identify patterns of rising and falling task completions that can
quickly detect examples falling outside the expected pattern. These outlier trajectories often rep-
resent execution failures, sensor malfunctions, or fundamentally different task interpretations that
would confuse model training. See Figure 6 for a comparison between a standard and an OOD tra-
jectory. It is worth noting that episode 93 is the only one out of 150 episodes that differs significantly
from the rest.
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5 Conclusions

In this work, we have presented OpenGVL—an open-source benchmark for evaluating VLMs on
temporal task progress prediction for robotics applications. OpenGVL enables rapid validation of
different VLMs on the GVL task and facilitates comparisons across models. Additionally, we have
demonstrated how open-source VLMs can also be repurposed as a data curation tool that identifies
issues at both macro and micro levels within collected datasets. Through qualitative examples,
we show how different issues in open-source datasets can be easily detected, paving the way for
creating large-scale robotics datasets in the wild. In future work, we plan to investigate how visual
goal or failure conditioning could improve prediction quality. The rank correlation metrics could be
enhanced by incorporating additional submetrics or explicit Chain-of-Thought processes.

5.1 Limitations

Several aspects of our evaluation could be extended in future work. We tested all models using a
temperature setting of 1.0, and it would be valuable to examine how VOC scores vary across differ-
ent temperature parameters. Additionally, we used a single system prompt template throughout our
experiments. As vision-language models are expected to be robust to prompt variations, investigat-
ing VOC score sensitivity to different system prompt formulations would strengthen the evaluation
framework. Finally, we sampled trajectories uniformly from expert demonstrations. Exploring how
VOC performance changes with alternative sampling strategies—such as importance sampling or
stratified sampling—could provide deeper insights into model capabilities and evaluation robust-
ness.
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A Prompt

The full prompt provided to the VLM for GVL predictions. The same prompt is used for all models
and all datasets reported in Table 1.

You are an expert roboticist tasked to predict task completion percentages for
frames of a robot for the task of {instruction}. The task completion
percentages are between O and 100, where 100 corresponds to full task
completion. We provide several examples of the robot performing the task at
various stages and their corresponding task completion percentages. Note that
these frames are in random order, so please pay attention to the individual
frames when reasoning about task completion percentage.

Initial robot scene:
[Image: eval_episode.starting_frame]
In the initial robot scene, the task completion percentage is 0.

Frame 1:
[Image: context_episode.frames[0]]
Task Completion Percentage: {task_completion:.1f}%

Frame 2:
[Image: context_episode.frames[1]]
Task Completion Percentage: {task_completion:.1f}%

(repeated for all context frames)

Now, for the task of {eval_episode.instruction}, output the task completion
percentage for the following frames that are presented in random order.

For each frame, format your response as follows:

Frame {i}: Description:{}, Task Completion Percentages: {1}/

Be rigorous, precise and remember that the task completion percentage is the
percentage of the task that has been completed.

Remember that the frames are presented in random order.

Frame N:
[Image: eval_episode.frames[0]]

Frame N+eval_num:
[Image: eval_episode.frames[eval_num-1]]

B Detailed evaluation results
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