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Abstract

Devising deep latent variable models for multi-modal data has been a long-standing theme in
machine learning research. Multi-modal Variational Autoencoders (VAEs) have been a pop-
ular generative model class that learns latent representations that jointly explain multiple
modalities. Various objective functions for such models have been suggested, often moti-
vated as lower bounds on the multi-modal data log-likelihood or from information-theoretic
considerations. To encode latent variables from different modality subsets, Product-of-
Experts (PoE) or Mixture-of-Experts (MoE) aggregation schemes have been routinely used
and shown to yield different trade-offs, for instance, regarding their generative quality or con-
sistency across multiple modalities. In this work, we consider a variational bound that can
tightly approximate the data log-likelihood. We develop more flexible aggregation schemes
that generalize PoE or MoE approaches by combining encoded features from different modal-
ities based on permutation-invariant neural networks. Our numerical experiments illustrate
trade-offs for multi-modal variational bounds and various aggregation schemes. We show
that tighter variational bounds and more flexible aggregation models can become beneficial
when one wants to approximate the true joint distribution over observed modalities and
latent variables in identifiable models.

1 Introduction

Multi-modal data sets where each sample has features from distinct sources have grown in recent years. For
example, multi-omics data such as genomics, epigenomics, transcriptomics, and metabolomics can provide a
more comprehensive understanding of biological systems if multiple modalities are analyzed in an integrative
framework (Argelaguet et al.| 2018; [Lee and van der Schaar, |2021; Minoura et al., |2021). In neuroscience,
multi-modal integration of neural activity and behavioral data can help to learn latent neural dynamics
(Zhou and Weil |2020; |Schneider et al., [2023). However, annotations or labels in such data sets are often rare,
making unsupervised or semi-supervised generative approaches particularly attractive as such methods can be
used in these settings to (i) generate data, such as missing modalities, and (ii) learn latent representations
that are useful for down-stream analyzes or that are of scientific interest themselves. The availability of
heterogeneous data for different modalities promises to learn generalizable representations that can capture
shared content across multiple modalities in addition to modality-specific information. A promising class
of weakly-supervised generative models is multi-modal VAEs (Suzuki et al.| |2016; Wu and Goodman), |2019;
Shi et all 2019; [Sutter et all) 2021)) that combine information across modalities in an often-shared low-
dimensional latent representation. A common route for learning the parameters of latent variable models is
via maximization of the marginal data likelihood with various lower bounds thereof, as suggested in previous
work.

Setup. We consider a set of M random variables {Xi,..., X} with empirical density pg, where each
random variable X5, s € M = {1,..., M}, can be used to model a different data modality taking values
in Xs. With some abuse of notation, we write X = {X3,..., Xy} and for any subset S C M, we set
X = (Xs,X\s) for two partitions of the random variables into X5 = {X,}.cs and X\s = {Xs}sem\s-
We pursue a latent variable model setup, analogous to uni-modal VAEs (Kingma and Bal 2014; Rezende
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. For a latent variable Z € Z with prior density ps(z), we posit a joint generative modeﬂ
po(z,x) = po(2) Hi\il po(xs|z), where pp(xs|z) is commonly referred to as the decoding distribution for
modality s. Observe that all modalities are independent given the latent variable z shared across all modal-
ities. However, one can introduce modality-specific latent variables by making sparsity assumptions for the
decoding distribution.

Multi-modal variational bounds and mutual information. Popular approaches to train multi-modal
models are based on a mixture-based variational bound (Daunhawer et al., 2022; Shi et al., [2019) given by
LM (9 = [ p(9)LY™(z,0, ¢, B)dS, where

L3™(x,0,9,8) = /qqs(ZIﬂcs) [log pe(z|2)] dz — BKL(gg(z|2s)|pe(2)) (1)

and p is some distribution on the power set P(M) of M and 8 > 0. For 8 = 1, one obtains the bound
LYX(2,0,¢,8) <logpe(x). Variations of have been suggested (Sutter et al., 2020), such as by replacing
the prior density pg in the KL-term by a weighted product of the prior density pg and the uni-modal encoding
distributions g, (z|zs), for all s € M. Maximizing £¥™* can be seen as

minimizing {H(X|Zs) + 1y, (Xs, Zs) = H(X) — 14, (X, Zs) + 81y, (Xs, Zs) } (2)

where I,(X,Y) = [q(z,y)log q(ig)”q?@) is the mutual information of random variables X and Y having

marginal and joint densities ¢, whilst H(X|Y) = — [ ¢(z,y)log¢(z|y)]dzdy is the conditional entropy of
X given Y. We occasionally write Zs instead of Z to emphasize that Z is conditional on Xs under the
encoding density g4. Likewise, the multi-view variational information bottleneck approach developed in
land van der Schaar| (2021) for predicting x\s given xs can be interpreted as minimizing —1I,, (X\s, Z) +
B, (Xs, Z). |[Hwang et al|(2021) suggested a related bound that aims to maximize the reduction of total
correlation of X when conditioned on Z. Similar bounds have been suggested in |Sutter et al| (2020) and
Suzuki et al| (2016) by considering different KL-regularisation terms; see also |Suzuki and Matsuo| (2022).
Shi et al| (2020) add a contrastive term to the maximum likelihood objective and minimize — logpy(x) —
ﬂng(XS,X\S).

Multi-modal aggregation schemes. To optimize the variational bounds above or to allow for flexible
conditioning at test time, we need to learn encoding distributions g4 (z|zs) for any S € P(M). The typical
aggregation schemes that are scalable to a large number of modalities are based on a choice of uni-modal
encoding distributions ¢4, (z|zs) for any s € M, which are then used to define the multi-modal encoding
distributions as follows:

o Mixture of Experts (MoE), see (2019),

a5 " (2lus) = |5|Zq¢a 2zs).

seS

e Product of Experts (PoE), see [ Wu and Goodman| (2018]),

05" (2lzs) o< po(2) [ | 46, (2]s)-

sES

Contributions. This paper contributes (i) a new variational bound as an approximate lower bound on
the multi-modal log-likelihood (LLH). We avoid a limitation of mixture-based bounds , which may not
provide tight lower bounds on the joint LLH if there is considerable modality-specific variation
, even for flexible encoding distributions. The novel variational bound contains a lower bound of

1'We usually denote random variables using upper-case letters, and their realizations by the corresponding lower-case letter.
We assume throughout that Z = R, and that pg (z) is a Lebesgue density, although the results can be extended to more general
settings such as discrete random variables Z with appropriate adjustments, for instance, regarding the gradient estimators.
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the marginal LLH log pg(zs) and a term approximating the conditional log ps(z\s|zs) for any choice of S €
P(M), provided that we can learn a flexible multi-modal encoding distribution. This paper then contributes
(ii) new multi-modal aggregation schemes that yield more expressive multi-modal encoding distributions
when compared to MoEs or PoEs. These schemes are motivated by the flexibility of permutation-invariant
(PI) architectures such as DeepSets (Zaheer et al, 2017) or attention models (Vaswani et al., 2017;
. We illustrate that these innovations (iii) are beneficial when learning identifiable models,
aided by using flexible prior and encoding distributions consisting of mixtures and (iv) yield higher LLH in
experiments.

Further related work. Canonical Correlation Analysis (Hotelling, [1936; Bach and Jordan| 2005) is a
classical approach for multi-modal data that aims to find projections of two modalities by maximally corre-
lating and has been extended to include more than two modalities (Archambeau and Bach| [2008; [Tenenhaus
and Tenenhaus, 2011) or to allow for non-linear transformations (Akahol [2001}; [Hardoon et al., 2004; [Wang
et al., 2015; [Karami and Schuurmans, [2021)). Probabilistic CCA can also be seen as multi-battery factor
analysis (MBFA) (Brownel [1980; Klami et al. [2013), wherein a shared latent variable models the variation
common to all modalities with modality-specific latent variables capturing the remaining variation. Likewise,
latent factor regression or classification models (Stock and Watson, 2002) assume that observed features and
response are driven jointly by a latent variable. [Vedantam et al.| (2018) considered a tiple-ELBO for two
modalities, while Sutter et al.| (2021) introduced a generalized variational bound that involves a summation
over all modality subsets. A series of work has developed multi-modal VAEs based on shared and private
latent variables (Wang et al., [2016; Lee and Pavlovic, [2021; Lyu and Ful 2022} [Lyu et al.l 2021} [Vasco et al.|
[2022; |[Palumbo et al.,2023)). [Tsai et al.| (2019) proposed a hybrid generative-discriminative objective and min-
imized an approximation of the Wasserstein distance between the generated and observed multi-modal data.
consider a semi-supervised setup of two modalities that requires no explicit multi-modal
aggregation function. Extending the Info-Max principle , maximizing mutual information
I,(1(X1),9(X2)) < L,((X1,X2),(Z1,Z2)) based on representations Z, = gs(X,) for modality-specific en-
coders gs from two modalities has been a motivation for approaches based on (symmetrized) contrastive
objectives (Tian et al) 2020; [Zhang et al) 2022c; Daunhawer et all [2023) such as InfoNCE (Oord et al.
[2018} [Poole et all |2019; [Wang and Isola) |2020)) as a variational lower bound on the mutual information
between Z; and Z,. Recent work (Bounoua et al., |2023; Bao et al., 2023) considered score-based diffusion
models on auto-encoded private latent variables.

2 A tighter variational bound with arbitrary modality masking
For § C M and 8 > 0, we define

Ls(ws. 0,6, 8) = / 4o(2)zs) llog po(zs]2)] dz — BKL(gs(zlzs)[po(2)). 3)

This is simply a standard variational lower bound (Jordan et all [1999; Blei et all [2017)) restricted to the
subset S for 8 = 1, and therefore Ls(zs,0, ¢,1) < logpy(zs). To obtain a lower bound on the log-likelihood
of all modalities, we introduce an (approximate) conditional lower bound

L\s(z,0,¢,8) = /%(le) [log po(2\s(2)] dz — BKL(gp(2]2) gs(2]s))- (4)

For some fixed density p on P(M), we suggest the overall bound

£(2.0,6,5) = / p(S) [Cs(2s.0.6,8) + Lrs(x,6, 6, )] dS,

which is a generalization of the bound suggested in [Wu and Goodman| (2019) to an arbitrary number of
modalities. This bound can be optimized using standard Monte Carlo techniques, for example, by computing
unbiased pathwise gradients (Kingma and Baj 2014; Rezende et al., [2014; Titsias and Lazaro-Gredillal
using the reparameterization trick. For variational families such as Gaussian mixturesﬂ one can

2For MoE aggregation schemes, [Shi et al.| (2019)) considered a stratified ELBO estimator as well as a tighter bound based
on importance sampling, see also [Morningstar et al|(2021), that we do not pursue here for consistency with other aggregation
schemes that can likewise be optimized based on importance sampling ideas.
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employ implicit reparameterization (Figurnov et al.;2018). It is straightforward to adapt variance reduction
techniques such as ignoring the scoring term of the multi-modal encoding densities for pathwise gradients
(Roeder et al.l [2017), see Algorithm [1| in Appendix [H| for pseudo-code. Nevertheless, a scalable approach
requires an encoding technique that allows to condition on any masked modalities with a computational
complexity that does not increase exponentially in M.

2.1 Multi-modal distribution matching

Likelihood-based learning approaches aim to match the model distribution py(x) to the true data distribution
pa(z). Variational approaches achieve this by matching in the latent space the encoding distribution to the
true posterior as well as maximizing a tight lower bound on logpy(x), see |[Rosca et al.| (2018). We show
similar results for the multi-modal variational bound. Consider, therefore the densities

po(z,x) = po(2)po(ws]2)po(\sl2)

and
4p(zs,7) = pa(rs)qe(2s|rs)-

The latter is the encoding path comprising the encoding density g, conditioned on zs and the empirical
density pg. We write

5 = [ pales)ao(cles)ins

for the aggregated prior (Makhzani et al.| 2016; Hoffman and Johnson, [2016; Tomczak and Welling, [2017)
restricted on modalities from S and ¢*(zs]2) = gy (zs,2)/ qggg(z) and likewise consider its conditional version,

Tys(zles) = /Pd(x\slﬂfs)Qqﬁ(ZIx)dx\s

for an aggregated encoder conditioned on zs. We provide a multi-model ELBO surgery, summarized in
Proposition |I| below. It implies that maximizing [ pq(zs)Ls(zs,0,¢)dzs drives

1. the joint inference distribution g¢4(z,zs) = pa(zs)gs(z|zs) of the S submodalities to the joint
generative distribution pg(z,zs) = pe(2)pe(zs|z) and
2. the generative marginal py(xs) to its empirical counterpart py(xs).

Analogously, maximizing [ pg(a\s|rs)Ly\s(x,0, ¢)dx\ s drives, for fixed xs,

1. the distribution pg(z\s|7s)ge(2|x) to the distribution pg(z\s|2)gs(2|zs) and
2. the conditional py(z\s|zs) to its empirical counterpart pq(z\s|zs).

Furthermore, it shows that maximizing L\s(z,0,4) minimizes a Bayes-consistency matching term
KL(qu{gS( |zs)|¢s(z|zs)) for the multi-modal encoders where a mismatch can yield poor cross-generation,

as an analog of the prior not matching the aggregated posterior leading to poor unconditional generation,
see Remark [l

Proposition 1 (Marginal and conditional distribution matching) For any S € P(M), we have

/ pa(es)Ls(zs, 0, o)des + Hpa(s))

= KL(q¢(z,ac3)|p9(z,x5)) (mearginal)
= —KL(pa(zs)|pe(zs)) — /pd(ivs)KL(Q¢(Z|$s)|p9(2\3?s))d9€5 (Xmarginal)
—— KL n(2) ~ [ a2KL (sl po(os])dss, (Zunarginat)
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where ¢*(zs|2) = q4(vs,2)/q,"(2). Moreover, for fived s,

/ pa(\sles)Lys (.6, )ders + H(pa(osles))

=—KL (Q¢<Z|m)pd(‘r\3|$8) ’pg($\5|2)q¢5(2|$5)) (Zxconditional)
= KL(pd(x\5|xS)|p9 (x\5|x5)) (Xconditional)
(#]

- [ pstorstas) (KLasClolmatelo) + [ as(elonton 2EEa: ) o

= — KL(gz Vs (zlzs)las (2lzs)) — /Qf\gg(dfﬂs) (KL(g"(2\s]2, z5)lpe(2\s12))) dz, (Zconditionat)

where q*(1\s|2,25) = 4s(2, 2\slws) /45 \s (2125) = pa(w\slws) s (2|7)/ 45 Ns (2l s)-

If q4(z|lzs) approximates pg(z|xzs) exactly, Proposition (I| implies that L\s(z,0,¢) is a lower bound of
log pg(x\s|rs). More precisely, we obtain the following log-likelihood approximation.

Corollary 2 (Multi-modal log-likelihood approximation) For any modality mask S, we have
[ pata) [£5(5,6,0,1) + £15(2,6.6,1)] dz = [ pa(o) logpa(o)] da
=- /pd(xs) [KL(gs(z|zs)lpo(zlzs))] dz — /pd(w) [KL(go(2]7)lpe(z|x))] dz

M zdz
+/pd(JC)Q¢(Z|x) [log Pe(z|$5)] e

Our approach recovers meta-learning with (latent) Neural processes (Garnelo et al.| |2018b)) when one op-
timizes only £\s with S determined by context-target splits, cf. Appendix E} Our analysis implies that
Ls + L\ is an approximate lower bound on the multi-modal log-likelihood that becomes tight for infinite-
capacity encoders and is a true lower bound if KL(qZ%%S(Z|x3)|q¢(z|m5)) = 0, see Remarks [3 and [5| for
details.

Remark 3 (Log-Likelihood approximation, Empirical Bayes and Vamp-Priors) The term

/Pd(x)q¢(z|m) {log q(ﬁ(zxs)} dzdz

po(z|zs)

arising in Corollary and in (Xconditional) 1S not necessarily negative. Analogous to other variational
approaches for learning conditional distributions such as latent Neural processes, our bound becomes an

approximately lower bound. Note that Ls is maximized when g4(z|zs) = po(2|zs), see (Xmarginal), While
L\ s is maximized when

o(clos) = [ palslos)ao (zlo)dos = a3 (eles).
see (Zconditionall). The latter condition implies a lower bound in Corollary [19| of

/pd(z) [Ls(zs,0,0,1) + Lys(x,0,0,1)] dw = /pd(:lf) [log po () — KL(gs(2|2)[pe(2[2))] dz.

From a different perspective, we can consider an Empirical Bayes viewpoint (Robbins| {1992; |Wang et al.,
2019b) wherein one chooses the hyperparameters of the (conditional) prior so that it maximizes an approx-
imation of the conditional log-likelihood log pg(2\s|rs). The conditional prior g4(z|xs) in the conditional
ELBO term L\ s can thus be seen as a learned prior for any modality subset S. While the aggregated prior
qf{gs (2|zs) is the optimal learned prior when maximizing £\ s, this choice can lead to overfitting. Following
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the approach of [Tomczak and Welling| (2017, one may consider learned priors in the form of a variational
mixture of posteriors prior (VampPrior),

K

PP (D) = Y g (zlur) ()

k=1

for K pseudo-inputs u; € X and which are learned end-to-end based on the full multi-modal empirical
dataset DE| Indeed, |Joy et al.| (2021) considered a somewhat similar model for the conditional prior through
mutual supervision. We contend ourselves with choosing the conditional prior as ¢4(z|zs). Other choices
are clearly possible, such as leading to less regularised models, with algorithmic adjustment as in the
uni-modal case. These choices also work with the flexible aggregation models introduced below. Likewise,
one may consider VampPriors for the prior pg(z) in the bound Ls.

Remark 4 (Prior-hole problem and Bayes or conditional consistency) In the uni-modal setting,
the mismatch between the prior and the aggregated prior can be large and can lead to poor uncondi-
tional generative performance because this would lead to high-probability regions under the prior that have
not been trained due to their small mass under the aggregated prior (Hoffman and Johnson, [2016; Rosca.
et al., 2018)). Equation extends this to the multi-modal case, and we expect that unconditional
generation can be poor if this mismatch is large. Moreover, extends this conditioned on some
modality subset, and we expect that cross-generation for x\ s conditional on xs can be poor if the mismatch
between qi%fs (z|zs) and gy (z|zs) is large for xs ~ pg, because high-probability regions under ¢4 (z|zs) will
not have been trained - via optimizing £\s(x) - to model x\s conditional on zs, due to their small mass
under qf\gs(dxg). The mismatch will vanish when the encoders are consistent and correspond to a single
Bayesian model where they approximate the true posterior distributions. A potential approach to reduce
this mismatch may be to include as a regulariser the divergence between them that can be optimized by
likelihood-free techniques, such as the Maximum-Mean Discrepancy (Gretton et al., [2006)), as in |Zhao et al.
(2019) for uni-modal or unconditional models.

Remark 5 (Variational gap for mixture-based bounds) Corollary shows that the variational
bound can become tight in the limiting case where the encoding distributions approximate the true posterior
distributions. A similar result does not hold for the mixture-based multi-modal bound. Indeed, as shown
in Daunhawer et al. (2022), there is a gap between the variational bound and the log-likelihood given by
the conditional entropies that cannot be reduced even for flexible encoding distributions. More precisely, it
holds that

/pd(x) log pg(x)da > /pd(x)EMix(m,9,¢,1)dx—|—7—£(pd(X\3|X3)).

Moreover, our bound can be tight for an arbitrary number of modalities in the limiting case of infinite-capacity
encoders. In contrast, Daunhawer et al.| (2022)) show that for mixture-based bounds, this variational gap
increases with each additional modality if the new modality is ’sufficiently diverse’, even for infinite-capacity
encoders. Note that in practice, we optimize over the objective where the mask S is not fixed but random,
which induces a Jensen gap as in other any-order methods (Hoogeboom et al., 2021} [Shih et al., 2022).

Remark 6 (Optimization, multi-task learning and the choice of p) For simplicity, we have chosen
to sample S ~ p in our experiments via the hierarchical construction v ~ U(0,1), m; ~ Bern(y) iid for
all j € [M] and setting S = {s € [M]: m; = 1}. The distribution p for masking the modalities can be
adjusted to accommodate various weights for different modality subsets. Indeed, can be seen as a linear
scalarization of a multi-task learning problem (Fliege and Svaiter] |2000; Sener and Koltun [2018). We aim to
optimize a loss vector (Ls + £\s)scam, where the gradients for each S C M can point in different directions,
making it challenging to minimize the loss for all modalities simultaneously. Consequently, [Javaloy et al.
(2022) used multi-task learning techniques (e.g., as suggested in [Chen et al.| (2018]); [Yu et al.| (2020)) for
adjusting the gradients in mixture-based VAEs. Such improved optimization routines are orthogonal to our
approach. Similarly, we do not analyze optimization issues such as initializations and training dynamics that
have been found challenging for multi-modal learning (Wang et al., 2020; Huang et al.| |2022]).

agg

3The aggregated posterior dgn\s

(2|zs) also depends on the empirical data p4(z\s|zs) although this is not explicit in our
notation.
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2.2 Information-theoretic perspective

Beyond generative modeling, 5-VAEs (Higgins et all |2017)) have been popular for representation learning
and data reconstruction. |Alemi et al.| (2018) suggest learning a latent representation that achieves certain
mutual information with the data based on upper and lower variational bounds of the mutual information.
A Legendre transformation thereof recovers the 8-VAE objective and allows a trade-off between information
content or rate versus reconstruction quality or distortion. We show that the proposed variational objective

gives rise to an analogous perspective for multiple modalities. Recall that the mutual information on the
inference patlﬁ is given by

qp(Ts, 2s)
I, (Xs,Zs) = log —————+—dzsd
%( S5 5) /%(IES,ZS) ngd(xs)qf‘%(zs) zsdrs,

can be bounded by standard (Barber and Agakov}, |2004; |Alemi et al.| |2016; [2018) lower and upper bounds:
Hs — Ds <Hs — Ds + Ay =1,,(Xs,Z) = Rs — Az < Rs, (6)

with Ay, Ag > 0 for the rate
Rs = / pales)KL (g (2)25) o (2))ds

measuring the information content that is encoded by g, into the latents, and the distortion
Ds = —/q¢($s,z) log pg(zs|z)dzdzs

given as the negative reconstruction log-likelihood. For details, see Appendix [C] Observe that for any 3 > 0
by construction,

- /pd(ﬂﬁs)ﬁ(ws)dxs = Ds + BRs

and for any and that Hs < Rs + Ds. To arrive at a similar interpretation for the conditional bound £\ s
that involves the conditional mutual information

I, (X\s, Zm|Xs) = /pd(x‘S)KL(pd(w\s,ZM|$8))|pd(9€\s|fﬂ8)q;:g{gs(ZM\$S))dffs
recalling that ng\gs(szs) = [pa(x\s|zs)qe(zm|r)de s, we set
Ris = [ pala)KLigs elo)laozJos)do
for a conditional or cross rate. Similarly, set
D\s = —/pd(x)q¢(z|x) log pg(2\s|2)dzdx.

One obtains the following bounds, see Appendix [C]

Lemma 7 (Variational bounds on the conditional mutual information) It holds that
- [ £35(0.6,6,9pulde) = Dis + BRis

and for A\s 1,A\s,2 >0,

H\S — D\S + A\S,l = qu) (X\S, ZMlXS) = R\S — A\S,2-

4We include the conditioning modalities as an index for the latent variable Z when the conditioning set is unclear.
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Using the chain rules for entropy, we obtain that the suggested bound can be seen as a relaxation of bounds
on marginal and conditional mutual information.

Corollary 8 (Lagrangian relaxation) It holds that
H—Ds — D\S < Iq¢(X5,Z5) +Iq¢(X\S,ZM|X5) < Rs+ R\S

d(Ds+D\s)

and minimizing L for fized [ = I RsFR\s) minimizes the rates Rs + R\s and distortions Ds + D\s.

Remark 9 (Mixture based variational bound) The arguments in [Daunhawer et al.| (2022) imply that

- [ palda)C¥() = Ds + Dis + BRs,

where
Dig=— /pd(xs)qqs(zs|ﬂfs)10gp9(x\s|zs)d23d$s
is a cross-distortion term. Due to
H(Xm|Zs) = —H(Xm) + 1o, (Xm, Zs) < Ds + Dis

we can view minimizing Eg/ﬁx as minimizing

H(X ) — gy (Xams Zs) + By, (Xs, Zs),
see (2).

Remark 10 (Optimal variational distributions) Consider the annealed likelihood pge(zs|z)
po(rs|2)/? as well as the adjusted posterior pg g(z|rs) o Ps.e(xs|z)pe(z). The minimum of the bound
[ pa(dz)Ls(z) is attained at any xs for the variational density

¢*(2las) ox exp (; llog p(es]2) + mogpe<z>]) x P glzles), )

see also [Huang et al| (2020) and Remark [21] Similarly, if (7)) holds, then it is readily seen that the minimum
of the bound [ p4(dz)Ly\s(z) is attained at any x for the variational density ¢*(z|z) = pg,o(z|x). In contrast,
as shown in Appendix the optimal variational density for the mixture-based multi-modal objective
is attained at

q"(z|lzs) o< ppo(z|zs) exp (/Pd($\5|$s)10gﬁ5,9($\5|2)d$\5> :

3 Permutation-invariant modality encoding

Optimizing the above multi-modal bounds requires learning variational densities with different conditioning

sets. We write Ay ,: Xg — RP= for some modality-specific feature function. We recall the following multi-

modal encoding functions suggested in previous work where usually g, (zs) = [fs,0(2s) ", vec(Ss o (25)) ] ’

with ps , and X, , being the mean, respectively the (often diagonal) covariance, of a uni-modal encoder of
modality s. Accommodating more complex variational families, such as mixture distributions for the uni-
modal encoding distributions, can be more challenging for these approaches.

()
mean p and covariance X.

o MoE: ¢M°F(z|zs) = ﬁ Y oses AN (2|ps o (2s), s o (5)), where gar(2]p, £) is a Gaussian density with

« PoE: ¢0°%(zlas) = $po(2) [1es an(2liso(2s), Bop(2s)), for some Z € R. For Gaussian priors
po(z) = qn(z|pe, L) with mean iy and covariance g, the multi-modal distribution ¢°F (z|zs) is

Gaussian with mean

(ung + Z US,@(SCS)ES,cp(xS))(E;é + Z 25750(358)71)71

sES seS
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and covariance

(Sro+ ) Teplas) 7N

seS

o Mixture of Product of Experts (MoPoE), see [Sutter et al.| (2021,

1
MoPoE . MoE

3.1 Learnable permutation-invariant aggregation schemes

We aim to learn a more flexible aggregation scheme under the constraint that the encoding distribution is
invariant (Bloem-Reddy and Tehl [2020)) with respect to the ordering of encoded features of each modality.
Put differently, for all (Hy)ses € RI°IXPE and all permutations m € Sg of S, we assume that the conditional
distribution is Sg-invariant, i.e. ¢j(z|h) = ¢y (z|m-h) for all z € RP, where 7 acts on H = (Hy)ses viam-H =
(Hr(s))ses- We set q(2[rs) = q5(2]hs,o(2s),c5), ¢ = (p,) and remark that the encoding distribution is
not invariant with respect to the modalities, but becomes only invariant after applying modality-specific
encoder functions hg ,. Observe that such a constraint is satisfied by the aggregation schemes above for A, ,

being the uni-modal encoders.

A variety of invariant (or equivariant) functions along with their approximation properties have been consid-
ered previously, see for instance [Santoro et al.| (2017)); Zaheer et al.| (2017)); |Qi et al.| (2017); Lee et al.| (2019));
Segol and Lipman| (2019); Murphy et al.| (2019); Maron et al.| (2019); |Sannai et al.| (2019); [Yun et al.[ (2019);
Bruno et al.| (2021); Wagstaff et al.| (2022)); Zhang et al.|(2022b)); |Li et al.| (2022)); Bartunov et al.| (2022), and
applied in different contexts such as meta-learning (Edwards and Storkey, 2016} (Garnelo et al., 2018b; [Kim|
et al., |2018; Hewitt et al.| 2018; |Giannone and Winther} [2022), reinforcement learning (Tang and Ha, |2021}
Zhang et al., [2022a) or generative modeling of (uni-modal) sets (Li et al. 2018} 2020} [Kim et al., [2021} Bilog|
and Gunnemann, 2021} [Li and Olivay [2021)). We can use such constructions to parameterize more flexible
encoding distributions. Indeed, the results from [Bloem-Reddy and Teh| (2020) imply that for an exchangable
sequence Hs = (H,)ses € RIS*PE and random variable Z, the distribution ¢/(z|hs) is Ss-invariant if and
only if there is a measurable functiorEl f*:[0,1] x M(RP#) — RP such that

(Hs,Z) 2 (Hs, f*(2,Mp,)), where Z ~ U[0,1] and E 1| Hs

with Mg (-) = >_,cs0m.(-) being the empirical measure of hs, which retains the values of hs, but discards
their order. For variational densities from a location-scale family such as a Gaussian or Laplace distribution,
we find it more practical to consider a different reparameterization in the form Z = u(hs) + o(hs) ® E,
where = is a sample from a parameter-free density p such as a standard Gaussian and Laplace distribution,
while [p(hs),logo(hs)] = f(hs) for a PI function f: RISXDPe _ R2P | Likewise, for mixture distributions
thereof, assume that for a PI function f,

[11(hs) logoi(hs), ..., uk (hs),log ok (hs),logw(hs)] = f(hs) € R*PKTE

and Z = pp(hs) + or(hs) ® 2 with L ~ Cat(w(hs)) denoting the sampled mixture component out of K
mixtures. For simplicity, we consider here only two examples of PI functions f that have representations

with parameter ¥ in the form
fo(hs) = po (Z gﬂ(hs)s>

seS

for a function py: RP? — RP° and permutation-equivariant function gg: RN*Pe — RNXDr,

Example 1 (Sum Pooling Encoders) The Deep Set (Zaheer et al) [2017) construction fy(hs) =
09 (Z ses Xﬁ(hs)) applies the same neural network yg: RP2 — RPP to each encoded feature h,. We
assume that xy is a feed-forward neural network and remark that pre-activation ResNets (He et al. [2016)

5The function f* generally depends on the cardinality of S. Finite-length exchangeable sequences imply a de Finetti latent
variable representation only up to approximation errors (Diaconis and Freedman) |1980).
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have been advocated for deeper xy. For exponential family models, the optimal natural parameters of
the posterior solve an optimization problem where the dependence on the generative parameters from the
different modalities decomposes as a sum, see Appendix [F]

Example 2 (Set Transformer Encoders) Let MTBy be a multi-head pre-layer-norm transformer block
(Wang et al., |2019a; Xiong et al., [2020), see Appendix @ for precise definitions. For some neural network
xo: RPE — RPPset g% = xy(hs) and for k € {1,...,L}, set gk = MTBﬁ(gé_l). We then consider
fo(hs) = po (X ,es 9¥). This can be seen as a Set Transformer (Lee et al.l |2019; Zhang et al., 2022a)) model
without any inducing points as for most applications, a computational complexity that scales quadratically
in the number of modalities can be acceptable. In our experiments, we use layer normalization (Ba et al.|
2016)) within the transformer model, although, for example, set normalization (Zhang et al.| [2022a)) could be
used alternatively.

Remark 11 (Context-aware pooling) Assuming a single head for the transformer encoder in Example
With head size D and projection matrices Wqo, Wi, Wy € RPP*D the attention scores for the initial input
sequence gs = g% = xy(hs) € RISIXDP are a(gs, gt) = <W5957 W;gﬁ/\/l») The attention outputs o5 € RP

for s € S can then be written as L

0s =7 Z K(gss 91)v(9t),

teS

where Z = Ztes k(gs,gt) >0, v(gt) = WJgt and

#(gs:90) = explalgs: 90)) = exp (WG g5, Wikgi) /VD)

can be seen as a learnable non-symmetric kernel (Wright and Gonzalez, 2021; |Cao, |2021)). Conceptually, the
attention encoder pools a learnable D-dimensional function v using a learnable context-dependent weighting
function. While such attention models directly account for the interaction between the different encodings,
a DeepSet aggregation approach may require a sufficiently high-dimensional latent space Dp to achieve
universal approximation properties (Wagstaff et al.l [2022]).

Remark 12 (Mixture-of-Product-of-Experts or MoPoEs) [Sutter et al.| (2021) introduced a MoPoE
aggregation scheme that extends MoE or PoE schemes by considering a mixture distribution of all 2
modality subsets, where each mixture component consists of a PoE model, i.e.,

oro 1 (0]
(I};\)A i E(Z\ZL’M) = oM Z qi E(Z\l’s)
zsEP (T M)

This can also be seen as another PI model. While it does not require learning separate encoding models for
all modality subsets, it, however, becomes computationally expensive to evaluate for large M. Our mixture
models using components with a SumPooling or SelfAttention aggregation can be seen as an alternative
that allows one to choose the number of mixture components K to be smaller than 2, with non-uniform
weights, while the individual mixture components are not constrained to have a PoE form.

Remark 13 (Pooling expert opinions) Combining expert distributions has a long tradition in decision
theory and Bayesian inference; see|Genest and Zidek| (1986)) for early works, with popular schemes being linear
pooling (i.e., MoE) or log-linear pooling (i.e., PoE with tempered densities). These are optimal schemes for
minimizing different objectives, namely a weighted (forward or reverse) KL-divergence between the pooled
distribution and the inidividual experts (Abbas, 2009). Log-linear pooling operators are externally Bayesian,
allowing for consistent Bayesian belief updates when each expert updates her belief with the same likelihood
function (Genest et al., [1986).

3.2 Permutation-equivariance and private latent variables

In principle, the general permutation invariant aggregation schemes that have been introduced could also be
used for learning multi-modal models with private latent variables. For example, suppose that the generative

10
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model factorizes as

p9(27x) =p(2) H p9($5|z/,25) (8)

seM
for z = (2/,21,...,2m) € Z, for shared latent variables Z’ and private latent variable Z* for each s € M.
Note that for s # t € [M], . .
X, L Z | 7', Z,. (9)
Consequently,
po(?, 25, 2\slrs) = po(2', Zs, lxs)pe (252’ Zs, vs) = po(2', Zs, |ws)pe (2\s]7, Zs)- (10)

An encoding distribution g4(z|zs) that approximates pg(z|zs) should thus be unaffected by the inputs zs
when encoding Z; for s ¢ S, provided that, a priori, all private and shared latent variables are independent.
Observe that for fy with the representation where py has aggregated inputs y, and that parameterizes
the encoding distribution of z = (', Zs, Z\s), the gradients of its i-th dimension with respect to the modality

values x, is
a%s [fo(hs(zs))i] = agz,i (Z gﬁ(hs(:rs%)) 6?65 (Z gﬂ(hS(I'S))t) .

teS tes

In the case of a SumPooling aggregation, the gradient simplifies to

ik (Z mht(xt») O () 2]

ay teS

Suppose that the i-th component of py maps to the mean or log-standard deviation of some component of
Z, for some s € M\ S. Notice that only the first factor depends on i so that for this gradient to be zero, P9.i
has to be locally constant around y = ) s x9(hs(zs)) if some other components have a non-zero gradient
with respect to Xs. It it thus very likely that inputs X for s € S can impact the distribution of the private
latent variables 2\ s.

However, the specific generative model also lends itself to an alternative parameterization that guarantees
that cross-modal reconstruction likelihoods from X\s do not affect the encoding distribution of Zs under
our new variational bound. The assumption of private latent variables suggests an additional permutation-
equivariance into the encoding distribution that approximates the posterior in , in the sense that for any
permutation m € Sg, it holds that

Gp(Zs|m - hy(s),2") = gy (7 - Zslhy(zs), 2'),

assuming that all private latent variables are of the same dimension DE| Indeed, suppose we have modality-
specific feature functions hy, s such that {Hy = hy o(X)}, g is exchangeable. Clearly, (9) implies for any
s # t that

hos(Xs) L Z, | Z', Zs.

The results from [Bloem-Reddy and Teh (2020)) then imply, for fixed |S|, the existence of a function f* such
that for all s € §, almost surely,

(Hs,Z,) = (Hs, f*(Es, Z', Hs,Mpy)), where 2, ~ U[0,1] iid and Z, 1 Hs. (11)

This fact suggests an alternative route to approximate the posterior distribution in : First, pg(2\s|2’, Zs)
can often be computed analytically based on the learned or fixed prior distribution. Second, a permutation-
invariant scheme can be used to approximate py(z’|zs). Finally, a permutation-equivariant scheme can be
employed to approximate py(Zs|zs, z’) with a reparameterization in the form of . The variational bound
that explicitly uses private latent variables is detailed in Appendix [E] Three examples of such permutation-
equivariant schemes are given below with pseudocode for optimizing the variational bound given in Algorithm

2

6The effective dimension can vary across modalities in practice if the decoders are set to mask redundant latent dimensions.

11
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Example 3 (Permutation-equivariant PoE) Similar to previous work [Wang et al| (2016)); Lee and
Pavlovic| (2021)); Sutter et al.| (2020), we consider an encoding density of the form

q¢(Zla2M‘$8) POE |$S HQN ZS|/,LS¢(.’ES) ESW(:ES)) H Po(Zs),
seS seM\S

where

4. (7 |zs) = *pe 0T av Il o (), 2, ()

sES
is a (permutation-invariant) PoE aggregation, and we assumed that the prior density factorizes over the
shared and different private variables. For each modality s, we encode different features hj , = (u5 ., 25 )

and 715#7 = (fis,p XN]S#)) for the shared, respectively, private, latent variables.

Example 4 (Permutation-equivariant Sum-Pooling) We consider an encoding density that is written

as

SumP(

Q¢<Z/, 2M|x5> _ Q¢ ) C}fqmv—SumP

(zslz'xs) [ po(zl2).
se M\S

2xs

Here, we use a (permutation-invariant) Sum-Pooling aggregation scheme for constructing the shared latent
variable Z' = p/(hs)+0'(hs) ©Z ~ qzump( 2'|zs), where ' ~ p and fy: RIS¥PE — RP given as in Example

(@) with [1/(h),log o’ (h)] = fs(h). To sample Zs ~ qEq“W‘SumP( s|#’,xs), consider functions x;.»: RP? —

RP? . j € [3], and py: RPP — RPO eg. fully-connected neural networks. We define fﬂEqmv'SHmP. Z x
RISIXDe _y RISIXDo yig

gquiv—SUmP(Z’7 hs)g = P9 ( [Z XO,ﬁ(ht)

tesS

+x1,9(2") + X2,ﬂ(hs)) .

With [/](hg)T,log 6(h3)T}T = fgquiv_sump(z’,h‘g)7 we then set Z, = fi(hs)s + 6(hs)s ® Zs for Z4 ~ p iid,
hs = hy.s(zs) for modality-specific feature functions he, s: X5 — RPE.

Example 5 (Permutation-equivariant Self-Attention) Similar to a Sum-Pooling approach, we con-
sider an encoding density that writes as

Equiv- SA

45(', 2mlzs) = 4% (' |ws) g, (212 2s) J[ pe(zl2).

seM\S

Here, the shared latent variable Z’ is sampled via the permutation-invariant aggregation above by summing
the elements of a permutation-equivariant transformer model of depth L’. For encoding the private latent
variables, we follow the example above but set

~ ~ T uiv-
[fi(hs) T loga(hs)T] = fEY S22 hs)s = g5,
with g& = MTBy(gs ") an ¢° = (x1,0(hs) + x2,0(2')) ,cs-

Remark 14 (Cross-modal context variables) In contrast to the PoE model, where the private encod-
ings are independent, the private encodings are dependent in the Sum-Pooling model by conditioning on a
sample from the shared latent space. The shared latent variable Z’ can be seen as a shared cross-modal
context variable, and similar probabilistic constructions to encode such context variables via permutation-
invariant models have been suggested in few-shot learning algorithms (Edwards and Storkey, [2016; |Giannone
and Winther], 2022) or, particularly, for neural process models (Garnelo et al.| [2018bja; |Kim et al., 2018)).
Permutation-equivariant models have been studied for stochastic processes where invariant priors correspond
to equivariant posteriors (Holderrieth et all 2021)), such as Gaussian processes or Neural processes with pri-
vate latent variables, wherein dependencies in the private latent variables can be constructed hierarchically
(Wang and Van Hoof! 2020} [ Xu et al., [2023]).

12
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4 Identifiability and model extensions

4.1 Identifiability

Identifiability of parameters and latent variables in latent structure models is a classic problem (Koopmans
land Reiersol, [1950; Kruskal, |1976}; |Allman et al., |2009), that has been studied increasingly for non-linear
latent variable models, e.g., for ICA (Hyvarinen and Moriokal, 2016; Halva and Hyvarinen) 2020; Hélvéa et al.
2021), VAEs (Khemakhem et al.,|2020a} |Zhou and Wei, |2020; Wang et al.,|2021} Moran et al. 2021} |[Lu et al.
2022; Kim et al., [2023), EBMs (Khemakhem et al., 2020b)), flow-based (Sorrenson et al., |2020) or mixture
models (Kivva et al.| 2022).

Non-linear generative models are generally unidentifiable without imposing some structure
[Pajunen, [1999; Xi and Bloem-Reddy), 2022). Yet, identifiability up to some ambiguity can be achieved in
some conditional models based on observed auxiliary variables and injective decoder functions wherein the
prior density is conditional on auxiliary variables. Observations from different modalities can act as auxiliary
variables to obtain identifiability of conditional distributions given some modality subset under analogous
assumptions.

Example 6 (Auxiliary variable as a modality) In the iVAE model (Khemakhem et al., |2020a), the
latent variable distribution pp(z|x1) is independently modulated via an auxiliary variable X; = U. Instead
of interpreting this distribution as a (conditional) prior density, we view it as a posterior density given
the first modality X;. [Khemakhem et al. (2020a)) estimate a model for another modality X5 by lower
bounding log pg(z2|z1) via £y 13 under the assumption that gg(z|z1) is given by the prior density pg(z|z1).
Similarly, Mita et al. (2021) optimise log pg(z1,z2) by a double VAE bound that reduces to £ for a masking
distribution p(sy, s2) = (01 ® dp)(s1, s2) that always masks the modality Xo and choosing to parameterize
separate encoding functions for different conditioning sets. Our bound thus generalizes these procedures to
multiple modalities in a scalable way.

We are interested in identifiability, conditional on having observed some non-empty modality subset S C M.
For illustration, we translate an identifiability result from the uni-modal iVAE setting in (2022),
which does not require the conditional independence assumption from [Khemakhem et al.| (2020a). We assume
that the encoding distribution g4 (z|zs) approximates the true posterior pg(z|zs) and belongs to a strongly
exponential family, i.e.,

po(zles) = qp(zles) = pif ¢, s (2l2s), (12)
with
PVe s (2l28) = p(2) exp [(Vs(2), A(xs)) — logTs(As(@s))],

where 1 is a base measure, Vs: Z — R¥ is the sufficient statistics, As(zs) € R* the natural parameters and
I's a normalizing term. Furthermore, one can only reduce the exponential component to the base measure
on sets having measure zero. In this section, we assume that

po(ws|z) = p8,6<33s - fG,S(Z)) (13)

for some fixed noise distribution p, . with a Lebesgue density, which excludes observation models for discrete
modalities. Let ©s be the domain of the parameters 0s = (f\s, Vs, As) with fis: Z 3 z = (fs(2))serns €
Xsem\sXs = X\s. Assuming , note that

pos (1 ses) = / e (28)Prs.e(ors — fis(2)dz,

with p\s,e = @sem\sPs,e. We define an equivalence relation on ©s by (fis, Vs, As) ~as (f\S,VS,S\S) iff
there exist invertible Ag € R¥** and ¢g € R* such that

Vs(fig (1s) = AsVs(f g (2\s)) + cs

for all ;s € X\s-

13
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Proposition 15 (Weak identifiability) Consider the data generation mechanism po(z,z) =
Po(2) [[sepq Po(ws|2) where the observation model satisfies for an injective f\s. Suppose further
that pe(z|xs) is strongly exponential and holds. Assume that the set {x\s € X\s|p\s,c(2\s) = 0} has
measure zero, where p\s . is the characteristic function of the density p\s.. Furthermore, suppose that
there exist k + 1 points 2%, . .. ,Jc"g € Xs such that

L= [/\5(33‘15‘) - /\5(3?%), cey As(xg) - /\3(%%)] € RFxF

is invertible. Then pos(m\s|zs) = ps,(2\s|rs) for all x € X implies 6 ~ 44 0.

This result follows from Theorem 4 in [Lu et al.| (2022). Note that pss(z\s|rs) = pj,(z\slrs) for all
x € X implies with the regularity assumption on ¢\s . that the transformed variables Z = f\f SI(X\S) and

Z = f\_ 31 (X\s) have the same density function conditional on Xs.

Remark 16 (Conditional identifiability) The identifiability result above is about conditional models
and does not contradict the un-identifiability of VAEs: When S = () and we view = x4 as one modality,
then the parameters of pg,(x) characterized by the parameters Vj and Xy of the prior pg,(z|xp) and the
encoders faq will not be identifiable as the invertibility condition will not be satisfied.

Remark 17 (Private latent variables) For models with private latent variables, we might not expect
that conditioning on Xs helps to identify Z\s as

po(Z', Zs, Z\slzs) = po(?, Zs|xs)pe (2 s]2', 2\s)-

Indeed, Proposition (15| will not apply in such models as f\s will not be injective.

Remark 18 (Data supported on low-dimensional manifolds) Note that and imply that
each modality has a Lebesgue density under the generative model. This assumption may not hold for some
modalities, such as imaging data that can be supported (closely) on a lower-dimensional manifold (Roweis
and Saul, |2000), causing issues in likelihood-based methods such as VAEs (Dai and Wipf, [2018; |Loaiza-
Ganem et al.| 2022)). Moreover, different conditioning sets or modalities may result in different dimensions
of the underlying manifold for conditional data (Zheng et al.| [2022). Some two-step approaches (Dai and
Wipf], 2018} [Zheng et al., 2022)) first estimate the dimension r of the ground-truth manifold as a function
of the encoder variance relative to the variance under the (conditional) prior for each latent dimension i,
i € [D], with » < D. It would, therefore, be interesting to analyze in future work if more flexible aggregation
schemes that do not impose strong biases on the variance components of the encoder can better learn the
manifold dimensions in conditional or multi-modal models following an analogous two-step approach.

Recall that the identifiability considered here concerns parameters of the multi-modal posterior distribution.
We believe that our inference approach is beneficial for this type of identifiability because (a) unlike some
other variational bounds, the posterior is the optimal variational distribution with £\s(x) being an approx-
imate lower bound on log pg(7\s|zs), and (b) the trainable aggregation schemes can be more flexible for
approximating the optimal encoding distribution.

4.2 Mixture models

An alternative to the choice of uni-modal prior densities py has been to use Gaussian mixture priors (Johnson
et al., [2016; [Jiang et al., [2017; [Dilokthanakul et al., |2016) or more flexible mixture models (Falck et al.)
2021). Following previous work, we include a latent cluster indicator variable ¢ € [K] that indicates the
mixture component out of K possible mixtures with augmented prior pg(c, z) = po(c)pgo(z|c). The classic
example is py(c) being a categorical distribution and py(z|c) a Gaussian with mean . and covariance matrix
3.. Similar to |[Falck et al.| (2021) that use an optimal variational factor in a mean-field model, we use an
optimal factor of the cluster indicator in a structured variational density g4(c, z|zs) = gg(2|zs)ge(c|2, 25)
with gy (c|z,zs) = pe(c|z). Appendix |G| details how one can optimize an augmented multi-modal bound.
Concurrent work (Palumbo et al.| 2024) considered a similar optimal variational factor for a discrete mixture
model under a MoE aggregation.

14
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4.3 Missing modalities

In practical applications, modalities can be missing for different data points. We describe this missingness
pattern by missingness mask variables m, € {0,1} where m, = 1 indicates that observe modality s, while
mg = 0 means it is missing. The joint generative model that extends will be of the form py(z,z,m) =
P0(2) [ e Po(w5|2)po(m|x) for some distribution pg(m|x) over the mask variables m = (m;)sea. For S C
M, we denote by 2% = {zs: ms =1,s € S} and 2% = {z,: m; = 0,s € S} the set of observed, respectively
missing, modalities. The full likelihood of the observed and missingness masks becomes then py(z%, m) =
S po(2) [1es po(xs|z)po(m|z)da*dz. If pg(m|z) does not depend on the observations, that is, observations
are missing completely at random (Rubin, [1976), then the missingness mechanisms pg(m|x) for inference
approaches maximizing pg(2°,m) can be ignored. Consequently, one can instead concentrate on maximizing
log pg(x°) only, based on the joint generative model py(z, 2°) = py(2) H{SeM: ma=1} PO (s|2). In particular,
one can employ the variational bounds above by considering only the observed modalities. Since masking
operations are readily supported for the considered permutation-invariant models, appropriate imputation
strategies (Nazabal et all 2020; Ma et al. |2019)) for the encoded features of the missing modalities are not
necessarily required. Settings allowing for not (completely) at random missingness have been considered in
the uni-modal case, for instance, in |Ipsen et al.| (2021)); (Ghalebikesabi et al| (2021)); |Gong et al.|(2021), and
we leave multi-modal extensions thereof for future work for a given aggregation approach.

5 Experiments

We present a series of numerical experiments that illustrate the benefits of learning more flexible aggregation
models and that optimizing our variational bound - called masked in the subsequent Figures - leads to
higher log-likelihood values. Moreover, we demonstrate that our variational bound results in models that
differ in their information theoretic quantities compared to models trained with a mixture-based bound.
Recall that the full reconstruction log-likelihood is the negative full distortion —D . based on all modalities,
while the full rate Raq is the averaged KL between the encoding distribution of all modalities and the
prior. Across different datasets, we observe that our bound leads to higher reconstructions —D 4 for and
given all modalities with increased full rates Rxq. Note that mixture-based bounds optimize directly for the
cross-reconstruction log-likelihood DY, see Remark]?} and do not contain a cross-rate term R\s, i.e. the
KL between the encoding distribution for all modalifies relative to a modality subset, as a regulariser, in
contrast to our bound (Lemma [7|and Corollary . This observation is confirmed empirically by higher cross
reconstructions with increased cross rates for mixture-based bounds.

5.1 Linear multi-modal VAEs

The relationship between uni-modal VAEs and probabilistic PCA (Tipping and Bishop, [1999) has been
studied in previous work (Dai et al., 2018} [Lucas et all, [2019; [Rolinek et all |2019; [Huang et al. [2020;
Mathieu et all [2019). We analyze how different multi-modal fusion schemes and multi-modal variational
bounds affect (a) the learned generative model in terms of its true marginal log-likelihood (LLH) and (b)
the latent representations in terms of information-theoretic quantities and identifiability. To evaluate the
(weak) identifiability of the method, we follow Khemakhem et al.| (2020a3b|) to compute the mean correlation
coefficient (MCC) between the true latent variables Z and samples from the variational distribution g (-|zm)
after an affine transformation using CCA.

Generative model. Suppose that a latent variable Z taking values in R? is sampled from a standard
Gaussian prior pp(z) = N(0,I) generates M data modalities X, € RPs, D < Dy, based on a linear decoding
model pg(2s|2) = N (Wyz + by, 02 1) for a factor loading matrix W, € RP<*P bias b, € RPs and observation
scale ¢ > 0. Note that the annealed likelihood function pgg(zs|z) = N(Wsz + bs, Bo?1) corresponds to a
scaling of the observation noise, so that we consider only the choice 0 =1, set 03 = oB/? and vary 8 > 0.
It is obvious that for any & C M, it holds that pgg(zs|z) = N(Wsz + bg,ag Is), where Ws and bs are
given by concatenating row-wise the emission or bias matrices for modalities in S, while 0/23 Is is the diagonal
matrix of the variances of the corresponding observations. By standard properties of Gaussian distributions,
it follows that pg ¢(rs) = N (bs,Cs) where Cs = WsWJd —|—0’% Is is the data covariance matrix. Furthermore,
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Table 1: Gaussian model with a noisy and less noisy modality. Relative difference of the true MLE vs
the (analytical) LLH from the learned model in the first two columns, followed by multi-modal information
theoretic quantities.

Relative LLH gap Full Reconstruction Full Rates Cross Reconstruction Cross Rates
Aggregation ours mixture ours mixture ours mixture ours mixture ours mixture
PoE 1.29 7.11 —2.30-10% —22-10% 2.1-10%° 20-10% —-24-103% —-1.9-10%® 14-10% 1.7-10%
MoE 0.11 0.6 -32.07 -30.09 1.02 2.84 -33.27 -28.52 2.37 19.33
SumPooling ~ 3.6-107° 0.06 -2.84 -3.23 2.88 2.82 -52.58 -27.26 1.42 27.35
SelfAttention 3.4-107° 0.06 -2.85 -3.23 2.87 2.82 -52.59 -27.25 1.42 27.41

with Ks = W4 Ws + 0314, the adjusted posterior is pgo(z|zs) = N(Kg'Wd (x5 — bs),0% 14 K3h). If we
sample orthogonal rows of W, the posterior covariance becomes diagonal so that it can - in principle - be
well approximated by an encoding distribution with a diagonal covariance matrix. Indeed, the inverse of
the posterior covariance matrix is only a function of the generative parameters of the modalities within S
and can be written as the sum O'%I-l-Wg Ws = 0%1—1— 3 e W W, while the posterior mean function is

Ts — (0'[2314-2863 wSw,)~t Y oses Ws(xs — bs).

seS

Illustrative example. We consider a bi-modal setup comprising a less noisy and more noisy modality.
Concretely, for a latent variable Z = (Z1, Z», Z3) € R3, assume that the observed modalities can be repre-
sented as

X1 =20+ 21+ U,
Xo =70+ 10725 + Uy,

for a standard Gaussian prior Z ~ A(0,1) and independent noise variables Uy, Us ~ N(0,1). Note that the
second modality is more noisy compared to the first one. The results in Table[I]for the obtained log-likelihood
values show first that learnable aggregation models yield higher log—likelihoodsﬂ and second that our bound
yields higher log-likelihood values compared to mixture-based bounds for any given fixed aggregation model.
We also compute various information theoretic quantities, confirming that our bound leads to higher full
reconstructions at higher full rates and lower cross reconstructions at lower cross rates, compared to mixture-
based bounds. More flexible aggregation schemes increase the full and cross reconstruction for any given
bound, while not necessarily increasing the full or cross rates, i.e., they can result in an improved point
within a rate-distortion curve for some configurations.

Simulation study. We consider M = 5 modalities following multi-variate Gaussian laws. We consider
generative models wherin all latent variables are shared across all modalities, as well as generative models
where only parts of the latent variables are shared across all modalities, while the remaining latent variables
being modality specific. The setting of private latent variables can be incorporated by imposing sparsity
structures on the decoding matrices and allows us to analyze scenarios with considerable modality-specific
variation described through private latent variables. We provide more details about the data generation
mechanisms in Appendix [J} For illustration, we use multi-modal encoders with shared latent variables using
invariant aggregations in the first case, and multi-modal encoders that utilise additionally equivariant ag-
gregations for the private latent variables in the second case. Results in Table [2] suggest that more flexible
aggregation schemes improve the LLH and the identifiability for both variational objectives. Furthermore,
our new bound yields higher LLH for a given aggregation scheme.

5.2 Non-linear identifiable models

Auxiliary labels as modalities. We construct artificial data following [Khemakhem et al.| (2020a)), with
the latent variables Z € RP being conditionally Gaussian having means and variances that depend on
an observed index value Xy € [K]. More precisely, pg(z|T2) = N (ttg,, Xz,), Where p, ~ ® U(—5,5) and
Y. = diag(A¢), Ac ~ ® U(0.5,3) iid for ¢ € [K]. The marginal distribution over the labels is uniform

"We found that a PoE model can have numerical issues here.
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Table 2: Gaussian model with five modalities: Relative difference of true LLH to the learned LLH. MCC to
true latent. The generative model for the invariant aggregation schemes are using dense decoders, whereas
the ground truth model for the permutation-equivariant encoders use sparse decoders to account for private
latent variables.

Invariant aggregation Equivariant aggregation
Our bound Mixture bound Our bound Mixture bound
Aggregation LLH Gap MCC LLH Gap MCC
PoE 0.03 (0.058)  0.75 (0.20)  0.04 (0.074)  0.77 (0.21)  0.00 (0.000) 0.91 (0.016)  0.01 (0.001) 0.8 (0.011)
MoE 0.01 (0.005)  0.82 (0.04)  0.02 (0.006)  0.67 (0.03)

(
SumPooling  0.00 (0.000) 0.84 (0.00) 0.00 (0.002) 0.84 (0.02) 0.00 (0.000) 0.85 (0.004) 0.00 (0.000) 0.82 (0.003)
SelfAttention 0.00 (0.003) 0.84 (0.00) 0.02 (0.007) 0.83 (0.00) 0.00 (0.000) 0.83 (0.006)  0.00 (0.000) 0.83 (0.003)

-8 -6 -4 -2 o -8 -6 -4 -2 o -8 -6 -4 -2 0 -0 -8 -6 -4 -2 0

(b) Our  bound(c) Our bound +PoE(d) Mixt. bound(e) Mixt. bound
+SumPool +SumPool +PoE

-6 -4 -2 0 2 -6 -4 -2 0 2 4 25 -20 -15 -10 -5 0 5

(g) Our  bound(h) Our bound +PoE(i) Mixt. bound(j) Mixt. bound
+SumPool +SumPool +PoE

Figure 1: Continuous data modality in (a) and reconstructions using different bounds and fusion models in
(b)-(e). The true latent variables are shown in (f) with the inferred latent variables in (g)-(j) with a linear
transformation inditerminancy. Labels are colour coded.

U([K]) so that the prior density pep(z) = f[K] po(z|x2)pe(22)das becomes a Gaussian mixture. We choose

an injective decoding function fi: RP? — RP1 D < Dy, as a composition of MLPs with LeakyReLUs and
full rank weight matrices having monotonically increasing row dimensions (Khemakhem et al.l [2020b)), with
iid randomly sampled entries. We assume X1|Z ~ N(f1(Z),021) and set 0 = 0.1, D = D; = 2. f; has a
single hidden layer of size D; = 2. One realization of bi-modal data X, the true latent variable Z, as well as
inferred latent variables and reconstructed data for a selection of different bounds and aggregation schemes,
are shown in Figure[I} with more examples given in Figures [l and [f] We find that learning the aggregation
model through a SumPooling model improves the data reconstruction and better recovers the ground truth
latents, up to rotations, in contrast to a PoE model. Simulating five different such datasets, the results
in Table [3] indicate first that our bound obtains better log-likelihood estimates for different fusion schemes.
Second, it demonstrates the advantages of our new fusion schemes that achieve better log-likelihoods for both
bounds. Third, it shows the benefit of using aggregation schemes that have the capacity to accommodate
prior distributions different from a single Gaussian. Also, MoE schemes lead to low MCC values, while PoE
schemes have high MCC values.

Multiple modalities. Considering the same generative model for Z with a Gaussian mixture prior,
suppose now that instead of observing the auxiliary label, we observe multiple modalities X, € RPs,
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Table 3: Non-linear identifiable model with one real-valued modality and an auxiliary label acting as a second
modality: The first four rows use a fixed standard Gaussian prior, while the last four rows use a Gaussian
mixture prior with 5 components. Mean and standard deviation over 4 repetitions. Log-likelihoods are

estimated using importance sampling with 64 particles.

Our bound Mixture bound
Aggregation LLH (3=1) MCC (8=1) MCC (8=0.1) LLH (8=1) MCC (8=1) MCC (8=0.1)
PoE -43.4 (10.74) 0.98 (0.006) 0.99 (0.003) -318 (361.2) 0.97 (0.012) 0.98 (0.007)
MoE -20.5 (6.18) 0.94 (0.013) 0.93 (0.022) -57.9 (6.23) 0.93 (0.017) 0.93 (0.025)
SumPooling -17.9 (3.92) 0.99 (0.004) 0.99 (0.002) -18.9 (4.09) 0.99 (0.005) 0.99 (0.008)
SelfAttention -18.2 (4.17) 0.99 (0.004) 0.99 (0.003) -18.6 (3.73) 0.99 (0.004) 0.99 (0.007)
SumPooling -15.4 (2.12) 1.00 (0.001) 0.99 (0.004) -18.6 (2.36) 0.98 (0.008) 0.99 (0.006)
SelfAttention -15.2 (2.05) 1.00 (0.001) 1.00 (0.004) -18.6 (2.27) 0.98 (0.014) 0.98 (0.006)
SumPoolingMixture ~ -15.1 (2.15) 1.00 (0.001)  0.99 (0.012)  -18.2 (2.80)  0.98 (0.010)  0.99 (0.005)
SelfAttentionMixture -15.3 (2.35)  0.99 (0.005) 0.99 (0.004) -18.4 (2.63) 0.99 (0.007) 0.99 (0.007)

Table 4: Partially observed (n = 0.5) and fully observed (n = 0) non-linear identifiable model with 5
modalities: The first four rows use a fixed standard Gaussian prior, while the last four rows use a Gaussian
mixture prior.

Partially observed Fully observed

Our bound Mixture Our bound Mixture

Aggregation LLH MCC LLH MCC LLH MCC LLH MCC

PoE -250.9 (5.19) 0.94 (0.015)  -288.4 (8.53) 0.93 (0.018)  -473.6 (9.04) 0.98 (0.005)  -497.7 (11.26) 0.97 (0.008)
MoE -250.1 (4.77) 0.92 (0.022)  -286.2 (7.63) 0.90 (0.019)  -477.9 (8.50) 0.91 (0.014) -494.6 (9.20)  0.92 (0.004)
SumPooling -249.6 (4.85) 0.95 (0.016)  -275.6 (7.35) 0.92 (0.031) -471.4 (8.29)  0.99 (0.004) -480.5 (8.84) 0.98 (0.005)
SelfAttention -249.7 (4.83) 0.95 (0.014)  -275.5 (7.45) 0.93 (0.022) -471.4 (8.97)  0.99 (0.002) -482.8 (10.51) 0.98 (0.004)
SumPooling -247.3 (4.23) 0.95 (0.009)  -269.6 (7.42) 0.94 (0.018) -465.4 (8.16)  0.98 (0.002) -475.1 (7.54)  0.98 (0.003)
SelfAttention -247.5 (4.22) 0.95 (0.013)  -269.9 (6.06) 0.93 (0.022)  -469.3 (4.76) 0.98 (0.003) -474.7 (8.20)  0.98 (0.002)
SumPoolingMixture  -244.8 (4.44)  0.95 (0.011)  -271.9 (6.54) 0.93 (0.021) -464.5 (8.16) 0.99 (0.003) -474.2 (7.61) 0.98 (0.004)
SelfAttentionMixture — -245.4 (4.55)  0.96 (0.010) -270.3 (5.96) 0.94 (0.016) -464.4 (8.50) 0.99 (0.003) -473.6 (8.24)  0.98 (0.002)

X |Z ~ N(fs(Z),0%1), for injective MLPs f, constructed as above, with D = 10, D, = 25, ¢ = 0.5
and K = M = 5. We consider a semi-supervised setting where modalities are missing completely at random,
as in |Zhang et al.| (2019)), with a missing rate 1 as the sample average of ﬁ > sem(l—M,). Table |4 shows
that using the new variational bound improves the LLH and the identifiability of the latent representation.
Furthermore, using learnable aggregation schemes benefits both variational bounds.

5.3 MNIST-SVHN-Text

Following previous work (Sutter et all 2020} 2021} Javaloy et all 2022)), we consider a tri-modal dataset
based on augmenting the MNIST-SVHN dataset (Shi et al., 2019) with a text-based modality. Herein,
SVHN consists of relatively noisy images, whilst MNIST and text are clearer modalities. Multi-modal
VAEs have been shown to exhibit differing performances relative to their multi-modal coherence, latent
classification accuracy or test LLH, see Appendix [[] for definitions. Previous works often differ in their
hyperparameters, from neural network architectures, latent space dimensions, priors and likelihood families,
likelihood weightings, decoder variances, etc. We have chosen the same hyperparameters for all models,
thereby providing a clearer disentanglement of how either the variational objective or the aggregation scheme
affects different multi-modal evaluation measures. In particular, we consider multi-modal generative models
with (i) shared latent variables and (ii) private and shared latent variables. We also consider PoE or MoE
schemes (denoted PoE+, resp., MoE+) with additional neural network layers in their modality-specific
encoding functions so that the number of parameters matches or exceeds those of the introduced PI models,
see Appendix for details. For models without private latent variables, estimates of the test LLHs in
Table 5| suggest that our bound improves the LLH across different aggregation schemes for all modalities and
different Bs (Table @, with similar results for PE schemes, except for a Self-Attention model. More flexible
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Table 5: Test LLH estimates for the joint data (M+S+T) and marginal data (importance sampling with
512 particles). The first part of the table is based on the same generative model with shared latent variable
Z € R* while the second part of the table is based on a restrictive generative model with a shared latent
variable Z’ € R'? and modality-specific latent variables Z, € R10.

Our bound Mixture bound

Aggregation M+S+T M S T M+S+T M S T
PoE+ 6872 (9.62) 2599 (5.6) 4317 (1.1)  -9(0.2) 5900 (10) 2449 (10.4) 3443 (11.7)  -19 (0.4)
PoE 6775 (54.9) 2585 (18.7) 4250 (8.1)  -10 (2.2) 5813 (1.2) 2432 (11.6) 3390 (17.5)  -19 (0.1)
MoE+ 5428 (73.5) 2391 (104) 3378 (92.9) -74 (88.7) 5420 (60.1) 2364 (33.5) 3350 (58.1) -112 (133.4)
MoE 5507 (26.7) 2449 (7.6) 3557 (26.4)  -11 (0.1) 5485 (4.6) 2343 (1.8) 3415 (5.0)  -17 (0.4)
SumPooling 7056 (124) 2478 (9.3) 4640 (114) -6 (0.0) 6130 (4.4) 2470 (10.3) 3660 (1.5)  -16 (1.6)
SelfAttention 7011 (57.9) 2508 (18.2) 4555 (38.1) -7 (0.5) 6127 (26.1) 2510 (12.7) 3621 (8.5) -13 (0.2)
PoE-+ 6549 (33.2) 2509 (7.8) 4095 (37.2) -7 (0.2) 5869 (29.6) 2465 (4.3) 3431 (8.3) -19 (1.7)
SumPooling 6337 (24.0) 2483 (9.8) 3965 (16.9) -6 (0.2) 5930 (23.8) 2468 (16.8) 3491 (18.3) -7 (0.1)
SelfAttention 6662 (20.0) 2516 (8.8) 4247 (31.2) -6 (0.4) 6716 (21.8) 2430 (26.9) 4282 (49.7)  -27 (1.1)

fusion schemes yield higher LLHs for both bounds. Qualitative results for the reconstructed modalities are
given in Figures[2] with shared latent variables, in Figure[§|for different 3-hyperparameters and in Figure[J] for
models with private latent variables. Realistic cross-generation of the SVHN modality is challenging for the
mixture-based bound with all aggregation schemes. In contrast, our bound, particularly when combined with
learnable aggregation schemes, improves the cross-generation of SVHN. No bound or aggregation scheme
performs best across all modalities by the generative coherence measures (see Table |§| for uni-modal inputs,
Table |8] for bi-modal ones and Tables |§|- for models with private latent variables and different fs), along
with reported results from external baselines (MVAE, MMVAE, MoPoE, MMJSD, MVTCAE). Overall,
our bound is slightly more coherent for cross-generating SVHN or Text, but less coherent for MNIST.
Mixture based bounds tend to improve the unsupervised latent classification accuracy across different fusion
approaches and modalities, see Table [I3] To provide complementary insights into the trade-offs for the
different bounds and fusion schemes, we consider a multi-modal rate-distortion evaluation in Figure
Ignoring MoE where reconstructions are similar, our bound improves the full reconstruction with higher full
rates and across various fusion schemes. Mixture-based bounds yield improved cross-reconstructions for all
aggregation models, with increased cross-rate terms. Flexible PI architectures for our bound improve the
full reconstruction, even at lower full rates.

Table 6: Conditional coherence with shared latent variables and uni-modal inputs. The letters on the second
line represent the generated modality based on the input modalities on the line below it.

Our bound Mixture bound
M S T M S T
Aggregation M S T M S T M S T M S T M S T M S T
PoE 0.97 022 056 0.29 060 036 078 043 1.00 096 0.83 0.99 0.11 0.57 0.10 044 0.39 1.00
PoE+ 0.97 0.15 063 024 063 0.42 079 035 1.00 096 0.83 0.99 0.11 0.59 0.11 045 0.39 1.00
MoE 096 080 0.99 0.11 059 011 044 037 1.00 094 081 097 010 0.54 0.10 045 0.39 1.00
MoE-+ 093 077 095 0.11 054 010 044 037 098 094 080 098 0.10 0.53 0.10 0.45 0.39 1.00
SumPooling 0.97 048 087 025 0.72 0.36 073 0.48 1.00 0.97 0.86 0.99 0.10 0.63 0.10 0.45 0.40 1.00
SelfAttention 0.97 044 079 020 0.71 036 061 043 1.00 0.97 0.86 0.99 0.10 0.63 0.11 045 040 1.00

Results from |Sutter et al.|(2021), |Sutter et al.|(2020) and [Hwang et al.|(2021)

MVAE NA 024 020 043 NA 030 028 017 NA
MMVAE NA 075 0.99 031 NA 030 096 076 NA
MoPoE NA 074 099 036 NA 034 09 076 NA
MMJSD NA 0.82 099 037 NA 0.36 0.97 0.83 NA

MVTCAE (w/oT) NA 060 NA 082 NA NA NA NA NA
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Figure 2: Conditional generation for different aggergation schemes and bounds and shared latent variables.
The first column is the conditioned modality. The next three columns are the generated modalities using a
SumPooling aggregation, followed by the three columns for a SelfAttention aggregation, followed by PoE+
and lastly MoE+.

6 Conclusion

Limitations. A drawback of our bound is that computing a gradient step is more expensive as it requires
drawing samples from two encoding distributions. Similarly, learning aggregation functions are more compu-
tationally expensive compared to fixed schemes. Mixture-based bounds might be preferred if one is interested
primarily in cross-modal reconstructions.

Outlook. Using modality-specific encoders to learn features and aggregating them with a PI function is
clearly not the only choice for building multi-modal encoding distributions. However, it allows us to utilize
modality-specific architectures for the encoding functions. Alternatively, our bounds could also be used, e.g.,
when multi-modal transformer architectures (Xu et al., 2022)) encode a distribution on a shared latent space.
Our approach applies to general prior densities if we can compute its cross-entropy relative to the multi-
modal encoding distributions. An example would be to apply it with more flexible prior distributions, e.g., as
specified via score-based diffusion models (Vahdat et al.,[2021). Likewise, diffusion models could be utilized
to specify PI conditional prior distribution in the conditional bound by utilizing permutation-equivariant
score models (Dutordoir et all [2023; [Yim et all} 2023; Mathieu et al.| [2023)).
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A Multi-modal distribution matching

Proof [Proof of Proposition The equations for Ls(zs) are well known for uni-modal VAEs, see for example
Zhao et al.| (2019). To derive similar representations for the conditional bound, note that the first equation
for matching the joint distribution of the latent and the missing modalities conditional on a
modality subset follows from the definition of £\,
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To obtain the second representation (Xconditionall) for matching the conditional distributions in the data space,
observe that pp(2\s|zs, 2) = pe(7\s|z) and consequently,
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dzdr\s

— [ patosles)ao ) o dedis

dzdr\s

qs(2|7) +log po(z|Ts)

|
po(z|) Q¢(Z|Is)

Lastly, the representation (Zconditional) for matching the distributions in the latent space given a modality
subset follows by recalling that

- / pa(asls)as (21) log

KL(pa(oslos)lpalaoslos) + [ pateslos) [ aolclo) log dxdos

pa(@\slzs)as(zlz) = ;%5 (2]25)q" (2 s]2, zs)

and consequently,

- /pd($\3|$s)£\s(9€797¢)d$\5 — H(pa(z\s|Ts))

pa(2\s|rs)qs(2|r)

p9($\3|2)qa§(z|$s)

ayis(zlzs)a* (aslz, @s)
pe($\s|z)q¢s(z|xs)

Z/pd(x\s|$s)q¢s(zlff) log dedan s

:/qf\g‘s(2|x3)q*(m\s|z7x3) log zday s

=KL(q;%s( |$5)|Q¢(Z|$s))*/ng\gs( z5) (KL(g* (252, 25) po(2\5]2))) d2.

|

Corollary 19 (Multi-modal log-likelihood approximation) For any modality mask S, we have

[ pata) [£5(25.6.6.1) + £35(0,6,0,1)] di = [ pale) ogpo(a) do

=— /pd(ffs) [KL(gy(2|zs)|po(2|zs))] do — /pd(x) [KL(go(2]7)[po(z|2))] dz
%(les)]
+ T z|x) [log =————= | dzdzx.
[ aaiastela) 1og 222

Proof This follows from (Xparginal) and (Xeonditional)- n

B Meta-learning and Neural processes

Meta-learning. We consider a standard meta-learning setup but use slightly non-standard notations to
remain consistent with notations used in other parts of this work. We consider a compact input or covariate
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space A and output space X. Let D = U35_,(A x X)M be the collection of all input-output pairs. In
meta-learning, we are given a meta-dataset, i.e., a collection of elements from D. Each individual data
set D = (a,2) = D.U D; € D is called a task and split into a context set D. = (ac,x.), and target set
Dy = (a¢, ;). We aim to predict the target set from the context set. Consider, therefore, the prediction map

e Dc = (ac;xc) — p($t|at,Dc) = p(xtaxclat;ac)/p(xc‘ac)a

mapping each context data set to the predictive stochastic process conditioned on D..

Variational lower bounds for Neural processes. Latent Neural processes (Garnelo et al., [2018b; Foong
et al.,|2020) approximate this prediction map by using a latent variable model with parameters 6 in the form
of
z~po, po(wilan2) = [ pele = fola,2))
(a,z)ED,

for a prior py, decoder fy and a parameter free density p.. The model is then trained by (approximately)
maximizing a lower bound on log pg(x¢|at, ac, z.). Note that for an encoding density g4, we have that

log py(w¢|ar, ac, zz) = /q¢(2|x,a) log p (w¢|at, z)dz — KL(ge(2]a, x)|pe(z|ac, xc))-

Since the posterior distribution pg(z|ac, x.) is generally intractable, one instead replaces it with a variational
approximation or learned conditional prior g4(z|ac, z.), and optimizes the following objective

Le" (x,a) = /Q¢(Z|$7a) log pg(x1|ar, z)dz — KL(gy(2]a, 2)|gs (2|ac, zc))-

Note that this objective coincides with £\c conditioned on the covariate values a and where C comprises
the indices of the data points that are part of the context set. Using the variational lower bound [,{Jé\n) can

yield subpar performance compared to another biased log-likelihood objective (Kim et al.| [2018} [Foong et al.|
2020)),

L
. 1
log po(x¢|at, ac, zc) = log i3 ZGXP Z log po(xay, 2.)
=1 (z¢,a¢)EDy

for L importance samples 2. ~ ¢4 (zc| ¢, ac) drawn from the conditional prior as the proposal distribution.
The required number of importance samples L for accurate estimation scales exponentially in the forward
KL(gy(2|x, a)|gs(z|ze, ac)), see [Chatterjee et al| (2018). Unlike a variational approach, such an estimator
does not enforce a Bayes-consistency term for the encoders and may be beneficial in the setting of finite
data and model capacity. Note that the Bayes consistency term for including the target set (x¢,a;) into the
context set (x.,a.) writes as

KL(q5E (2l ) o (2], ac)) = KL ( [ pataias e, 0ozl a)dz,

q¢(z|$c'7a0)> .

Moreover, if one wants to optimize not only the conditional but also the marginal distributions, one may
additionally optimize the variational objective corresponding to L¢, i.e.,

£%NP($C,GC) = /Q¢(Z|$C,CLC) 10gp0(xc|aca Z)dZ - KL(Q(#(Zlacvxc)'p@(Z))v

as we do in this work for multi-modal generative models. Note that the objective [,]C“NP alone can be seen
as a form of a Neural Statistician model (Edwards and Storkeyl, |2016|) where C coincides with the indices of
the target set, while a form of the mixture-based bound corresponds to a Neural process bound similar to
variational Homoencoders (Hewitt et al., |2018)), see also the discussion in [Le et al.| (2018]).
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C Information-theoretic perspective

We recall first that the mutual information is given by

q¢(Ts, 2s)
I, (Xs,Zs ——/ rs,zs)log —————=*—dzsdzxsgs,
! ) 95, 75) gpd(xs)qﬁ‘%(%)

where qf;%(z) = [ pa(zs)qs(z|rs)dxs is the aggregated prior (Makhzani et al.l 2016). It can be bounded by

standard (Barber and Agakov} 2004} [Alemi et al., |2016} |2018) lIower and upper bounds using the rate and
distortion:
Hs —Ds <Hs — Ds+ Ay =14,(Xs,Zs) = Rs — A < Rs,

with A1 = [¢3%(2)KL(¢"(zs]2)[pe(zs]2))dz > 0, Ay = KL(g3%(2)lpe(z)) > 0 and ¢*(zslz) =
a6 (Ts,2) /a4 (2).

Moreover, if the bounds in (@ become tight with A; = As = 0 in the hypothetical scenario of infinite-
capacity decoders and encoders, one obtains [ psLs = (1 — ) I,,(Xs,Zs) +Ms. For > 1, maximizing Ls
yields an auto-decoding limit that minimizes I, (zs,2) for which the latent representations do not encode
any information about the data, whilst § < 1 yields an auto-encoding limit that maximizes I , (Xs, Zs) and
for which the data is perfectly encoded and decoded.

Proof [Proof of Lemma Eﬂ The proof follows by adapting the arguments in |Alemi et al.| (2018]). The law of
X\s and Z conditional on Xs on the encoder path can be written as

06 (2 \slzs) = pa(@\slrs)as(2]7) = ¢35 (2]zs)q" (2\s]2, s)

with ¢*(z\s|z, 2s) = q4(2, x\5|x5)/q;g\gs (z]xzs). To prove a lower bound on the conditional mutual informa-
tion, note that

I, (X\s, Zml|Xs)
@ s(217s)q* (257, ws)

— [ pates) [ aifisteles) [ a*(oslzims) log s

q¢,\5(z|$8)pd($\s |$\s)

dzdz\sdrs

=/pd(5€s) /qz:g{gg(z\ms) [q* (2\s]2, w5) log pa (2 5]2)) + KL(¢* (2\s]2, 25) Ipe (27| 2)) | dzdzs
= [ pates) [ patosles) g pata shos)do
:/pd(:r)/q¢(z|x) logp(,(x\s\z)dzdx—/pd(xs)/pd(x\5|x5)logpd(x\g\xg)dx

=—H\s=—H(X\s|Xs)

+ [ patas) [ a5 (clas KL (o] 0) o) dos

=A\s,1>0

:A\S,l + D\g + 7‘[\5.
The upper bound follows by observing that
I, (X\s: Zm|Xs)

4g(z]x)pa(z\s|zs)
= [ palz pa(T\s|Ty ) log — dzdz
/ d( S)/ d( \S| \) q¢%\g‘5(z|xs)pd($\s|$s)

:/pd(I)KL(Q¢(2|$)|Q¢(Z\1?s))d$* /pd(xs)KL(QZ%\gg(Z|Is)|Q¢(Z\Is))d$s

=A\s,220

:R\S - A\S,2'
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Remark 20 (Total correlation based objectives) The objective suggested in [Hwang et al. (2021) is
motivated by a conditional variational bottleneck perspective that aims to maximize the reduction of total
correlation of X when conditioned on Z, as measured by the conditional total correlation, see [Watanabe
(1960); |Ver Steeg and Galstyan| (2015); |Gao et al.| (2019), i.e.,

M
minimizing {TC(X\Z) = TC(X) — TC(X, Z) = TC(X) + 1, (X, 2) = ¥_14,(Xs, Z)}, (14)

where TC(X) = KL(p(z)| H?Zl p(z;)) for d-dimensional X. Resorting to variational lower bounds and using
a constant 8 > 0 that weights the contributions of the mutual information terms, approximations of
can be optimized by maximizing

£19(6.6,8) = [ () [ {ao(ela) Mogpula2)) d= — BKL(go(2Jo)lgo (21as) } 4S.
where p is concentrated on the uni-modal subsets of M.

Remark 21 (Entropy regularised optimization) Let ¢ be a density over C, exp(g) be integrable with
respect to ¢ and 7 > 0. The maximum of

flg) = /C 4(c) [g(c) — T log g(c)) de

that is attained at ¢*(c) = £ e9(9)/7 with normalizing constant Z = Jc 9/ dc is

£ = fq") = rlog [ rO/ac

C

Remark 22 (Optimal variational distribution) The optimal variational density for the mixture-based
multi-modal objective,

/Pd(dx)ﬁlgix(m) Z/Pd(%)/Q¢(Z|$5)/Pd($\s|$5)
[log po(ws|z) + log pe(a\s|z) — Blog pe(z) — Blog g (z|zs)] da sdzdzs,
using Remark 2] is attained at
. 1
q*(z|rs) oc exp ([3 /pd(x\s|93s) [log po(x5]2) + log pe(2\s|z) — Blog pe(2)] dx\s)

X Pg.o(z|zs)exp (/pd(x\sxg) logﬁﬁ,g(x\sp)dx\s) .

D Permutation-invariant architectures

Multi-head attention and masking. We introduce here a standard multi-head attention (Bahdanau
et al., 2014} [Vaswani et al., 2017) mapping MHA,: RT*Px x RSPy 5 RIXDy given by

MHAy(X,Y) = WO [Head" (X,Y,Y),...,Head” (X,Y,Y)], 9= Wq, Wk, Wy, Wo),
with output matrix Wo € RPA*PY | projection matrices Wy € RPx*Pa W Wy, € RPy*Pa and
Head"(Q, K, V) = Att(QWA, KWE VW) e RIXP (15)
where we assume that D = D4/H € N is the head size. Here, the dot-product attention function is
At(Q, K, V) = o(QK ")V,

where ¢ is the softmax function applied to each column of QK .
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Masked multi-head attention. In practice, it is convenient to consider masked multi-head attention
models MMHA g s : RI*Px 5 RTXDy 5 RIXDy for mask matrix M € {0,1}7*7 that operate on key or
value sequences of fixed length T" where the h-th head is given by

Head"(Q, K, V) = [M © o(QWH(EWi) )] Vi W € RT*P.
Using the softmax kernel function SMp(q, k) = exp(q " k/v/D), we set

M;SMp (W X, WEY;)
Sty My SMp (X, W2, Ve W)

T H
MMHA 0 (X,Y)i =YY Y, Wy wi (16)

t=1 h=1

which does not depend on Y; if M.; = 0.

Masked self-attention. For mask matrix M = mm ' with m = (1{ses}))sem, we write
MHA(Ys,Ys) = MMHAy 5 (1(Ys),1(Ys))s.

where MMHA s operates on sequences with fixed length and i(Ys)), =Y; if t € S and 0 otherwise.

LayerNorm and SetNorm. Let h € RT*P and consider the normalization

Ny = o+ s

where 1 and o standardise the input A by computing the mean, and the variance, respectively, over some

axis of h, whilst v and 3 define a transformation. LayerNorm (Ba et al., |2016) standardises inputs over the
last axis, e.g., u(h) = % 25:1 .4, i.e., separately for each element. In contrast, SetNorm (Zhang et al.,

2022b) standardises inputs over both axes, e.g., u(h) = 75 23:1 ZdD:1 . d, thereby losing the global mean
and variance only. In both cases, v and § share their values across the first axis. Both normalizations are
permutation-equivariant.

Transformer. We consider a masked pre-layer-norm (Wang et al.l 2019a; |Xiong et al. |2020) multi-head
transformer block
(MMTBy,u(is(Ys)))s = (Z + oreLu(LN(Z)))s

with ogreru being a ReLU non-linearity and
Z =ig (Ys) + MMHAﬁ’M(LN(iS (YS))7 LN(is(Ys)))

where M =mm" for m = (1{5es})sem.

Set-Attention Encoders. Set ¢° =is(xy(hs)) and for k € {1,..., L}, let
g" = MMTBy (gs ).
Then, we can express the self-attention multi-modal aggregation mapping via fg(hs) = py (3 cs 95)-

Remark 23 (Multi-modal time series models) We have introduced a multi-modal generative model
in a general form that also applies to the time-series setup, such as when a latent Markov process
drives multiple time series. For example, consider a latent Markov process Z = (Z;)ieny with prior dy-
namics pg(z1,...,27) = pg(zl)]_[tT:2 po(zt|zi—1) for an initial density pg(z1) and homogeneous Markov
kernels pg(z¢|z:—1). Conditional on Z, suppose that the time-series (X;:)ieny follows the dynamics
po(Ts1,-..,Ts|21,. .., 217) = Hthz po(zs,)2e) for decoding densities pg(zs¢|2:). A common choice (Chung
et al., [2015) for modeling the encoding distribution for such sequential (uni-modal) VAEs is to assume the
factorisation ¢y (21, ... 2r|T1,...27) = ¢u(21]|71) HtT:2 qo(zt|zi—1, x¢) for @, = (z4,1)sem, with initial encod-
ing densities ¢4 (2z1|21) and encoding Markov kernels gy (2¢|2:—1, 2:). One can again consider modality-specific
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encodings hs = (hs1,...,hs 1), hst = hso(2s+), now applied separately at each time step that are then
used to construct Markov kernels that are permutation-invariant in the form of gy (z¢|2i—1, The(2t,5)) =
qy(2t|zt—1, hy(21,5)) for permutations m € Ss. Alternatively, in the absence of the auto-regressive encoding
structure with Markov kernels, one could also use transformer models that use absolute or relative positional
embeddings across the last temporal axis but no positional embeddings across the first modality axis, fol-
lowed by a sum-pooling operation across the modality axis. Note that previous works using multi-modal
time series such as Kramer et al. (2022)) use a non-amortized encoding distribution for the full multi-modal
posterior only. A numerical evaluation of permutation-invariant schemes for time series models is, however,
outside the scope of this work.

E Permutation-equivariance and private latent variables

Remark 24 (Variational bounds with private latent variables) To compute the multi-modal varia-
tional bounds, notice that the required KL-divergences can be written as follows:

KL(gg(2', Z|2s)Ipe(2', 2)) = K'—(%(Z/\SUS)\PG(Z/))+/Q¢(2’\$S)K|—(q¢(53|z'aw8)|Pe(58\2/))dZ'

and
KL(gs(2', 2z ) lgs (2, 2l2s))
=KL(gs(#'lzm)(g6(2']zs)) +/Q¢(2/\$M)KL(Q¢(PSZ|Z/aQ?M)l%(Ps?\Z'»wS))dZ’
+/q¢(z’\xM)KL(q¢(P\32\z’,m3)|pg(P\5,§|z’))dz’
where Ps: (Z1,...20m) = (Zs)ses projects all private latent variables to those contained in S.

These expressions can be used to compute our overall variational bound Ls + £\ s via

/q¢(z’\x5)q¢(25|z’,x5)] log py(zs]2’, Zs)dz'dZs

- KL(Q¢(Z'|$5)Q¢(55|Z’,xs)‘po(zl)p9(53|2/))
+/q¢(z’|xM)q¢(2\S\z’,a:M)] logpe(zs|2', 2\s)d2'dZs
- KL(q¢,(Z'723,2\3|mM)‘q¢(2’,25,2\5|x5)).

Remark 25 (Comparison with MMVAE+ variational bound) It is instructive to compare our
bound with the MMVAE+ approach suggested in [Palumbo et al. (2023)). Assuming a uniform masking
distribution restricted to uni-modal sets so that S = {s} for some s € M, we can write the bound from
Palumbo et al.| (2023) as 45 Zﬁl El{\g/IVAEJF(x) with

,Cl{vg}\’/[VAE-F(SC) :/Q¢(Z/‘I{S})Q¢(2{S}|£C{S})|:10gp9(:17{s}|2/,2{5})}(12,(12{5}

+/%(Z’lx{s})%(f\{s})[logpe(w\{s}|2'v5\{s})]d2'd5\{s}

_ KL(qgfoE(z',5M|xM)]p9(z')p9(zM)).

Here, it is assumed that the multi-modal encoding distribution for computing the KL-divergence is of the

form

- 1 .
43 (2, Zmlrm) = i D (a6(Z |25)a6 (5| 5))
seM

and 7¢(24) = [[,c47¢(%s) are additional trainable prior distributions.
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F Multi-modal posterior in exponential family models

Consider the setting where the decoding and encoding distributions are of the exponential family form, that
is

po(ws|2) = ps(ws) exp [(Ts(xs), fs,0(2)) —log Zs(fs,0(2))]
for all s € M, while for all S C M,

qs(z|lzs) = p(z) exp [(V(2), Ag,s(2s)) — log's(Ag,s(25))]

where p; and g are base measures, Ts(zs) and V(z) are sufficient statistics, while the natural parameters
A.s(xs) and fs(z) are parameterized by the decoder or encoder networks, respectively, with Z, and I's
being normalizing functions. Note that we made a standard assumption that the multi-modal encoding
distribution has a fixed base measure and sufficient statistics for any modality subset. For fixed generative
parameters 6, we want to learn a multi-modal encoding distribution that minimizes over xs ~ py,

KL(gg (2]7s)Ipo(2]zs))

=/Q¢(Z|xs)[10gq¢(2|xs) logpe(z) — > log pa(xsz }dz—logpe(ms)
seES

= /q¢>(z|x5)[(V(Z)»)\¢,S(IS)> logT's(Ap.s(xs)) — Y _ log prs(as)

seS
~{ Y (Toal@s), foo(2)) +1ogpo(2) = D Zolfo0(2) } | dz = log po (ws)
seS seS
- / as.0(zls) [( mz)] ! {_ 1og?2?f;,i§)<xs))} )- §< {TS (190)] ! ngﬂ )]z,

with bg s(2) = ﬁpg(z) —log Zs(fs.0(%)).
G Mixture model extensions for different variational bounds

We consider the optimization of an augmented variational bound

L(z,0,¢) = /p(S)[/qqs(cwlms) [log po(c, zs]2)] dzde — KL(gg(c, z|2s)|po(c, 2))

+/q¢(c,z|x3) [1ogpg(x\s\z)} dzde — KL(q¢(C,z|x)\q¢(c,z|x3))} ds.

We will pursue here an encoding approach that does not require modeling the encoding distribution over
the discrete latent variables explicitly, thus avoiding large variances in score-based Monte Carlo estimators
(Ranganath et al., |2014) or resorting to advanced variance reduction techniques (Kool et al., 2019) or
alternatives such as continuous relaxation approaches (Jang et al. 2016; Maddison et al., [2016)).

Assuming a structured variational density of the form

4e(c, 2|zs) = q4(2|7s)q0(cl2, 25),

we can express the augmented version of via

Ls(zs,0,0) = /Q¢(C7Z|$8) [log po(c, zs|2)] dz — BKL(gy(c, z|xs)|po(c, 2))

— [ do(elns) Ua(aus) + oz
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where f,(z,2s) = logpe(zs|z) — Blogqe(z|zs)) and
lers) = [ dalelz,s) (=B 1o gslelz,as) + Flogpalc )] de. (7)
We can also write the augmented version of in the form of
L\s(x,0,¢) = /q¢(c,z|x5) [logpg(a:\3|z)] dz — BKL(ge(c, z|z)|ge(c, 2|zs))

- / 0 (2|2)gs (2, 2)d

where

9z(2,x) = log pg(2\s|2) — Blog g (z|x) + Blog gy (z|zs)

which does not depend on the encoding density of the cluster variable. To optimize the variational bound
with respect to the cluster density, we can thus optimize , which attains its maximum value of

f2(2,25) = Blog / po(©)po(zlc)de = Blog po(2)

at qg(c|z,z5) = pe(c|z) due to Remark 1] below with g(c) = Slogps(c, 2).

We can derive an analogous optimal structured variational density for the mixture-based and total-
correlation-based variational bounds. First, we can write the mixture-based bound as

£Y(20.6) = [ au(eles) Dogpate, o12)]d= — SKL(ao(cslos)po(c, )
= /qd,(z\mS) [f;vﬁx(z,m) + fc(z,x)] dz,

where fM*(z,2) = log py(z|2) — Blog gs(z|zs) and f.(z,x) has a maximum value of f*(z,z) = Blogpy().
Second, we can express the corresponding terms from the total-correlation-based bound as

L5°(0,9) = /qqs(ZIx) [log pe(x[2)] dz — BKL(gg(c, 2[2)|gs (¢, 2|zs))
— [ aulelo) [£7° e, )]
where f'¢(z,z) = logpg(z]2) — Blog gs(2|z) + Blog gs(z|xs).
H Algorithm and STL-gradient estimators

We consider a multi-modal extension of the sticking-the-landing (STL) gradient estimator (Roeder et al.
2017) that has also been used in previous multi-modal bounds (Shi et al) [2019). The gradient estima-
tor ignores the score function terms when sampling g4 (z|zs) for variance reduction purposes because it
has a zero expectation. For the bounds that involves sampling from gy(z|zs) and g4(z|zre), We
thus ignore the score terms for both integrals. Consider the reparameterization with noise variables eg,
em ~ p and transformations zs = ts(¢,€s,2s) = finvariant-agg(V, €s,S, hs), for hs = hy o(xs)scs and
Zpm = tam(0, erts ) = finvariant-agg (Vs €at, M, hag), for hag = heg s(25)sem - We need to learn only a single
aggregation function that applies that masks the modalities appropriately. Pseudo-code for computing the
gradients are given in Algorithm [} If the encoding distribution is a mixture distribution, we apply the
stop-gradient operation also to the mixture weights. Notice that in the case of a mixture prior and an
encoding distribution that includes the mixture component, the optimal encoding density over the mixture
variable has no variational parameters and is given as the posterior density of the mixture component under
the generative parameters of the prior.
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Algorithm 1 Single training step for computing unbiased gradients of L(z).

Input: Multi-modal data point x, generative parameter 6, variational parameters ¢ = (p,1).
Sample § ~ p.

Sample €5, eaq ~ p.

Set zs =ts(¢,es,2m) and 2y = (9, err, Tm)-

Stop gradients of variational parameters ¢’ = stop_grad(¢).

Set Ls(0,¢) = logpg(xsl|zs) + Blogpe(zs) — Blog gy (2s|xs).

Set L\s(0, ¢) = log pg(z\s|2am) + Blog qy(2m|zs) — Blog qer (zaml|T ).

Output: Vg,qﬁ {ﬁs (0, gf)) + ﬁ\s (9, d))}

In the case of private latent variables, we proceed analogously and rely on reparameterizations z =
t's(¢,€s,xs) for the shared latent variable zi ~ g¢u4(2'|zs) as above and Zs = is(¢,7,es,25) =
fequivariant-age (U, €s, 2', S, hs) for the private latent variables Zs ~ g4(Zs|?’,zs). Moreover, we write Pg
for a projection on the S-coordinates. Pseudo-code for computing unbiased gradient estimates for our bound
is given in Algorithm

Algorithm 2 Single training step for computing unbiased gradients of £(z) with private latent variables.

Input: Multi-modal data point z, generative parameter 6, variational parameters ¢ = (i, ).

Sample § ~ p.

Sample €, €5, €\s, €pgs €EMs E\AM ~ D-

Set ZZS’ = tig(gﬁ, 6:5" {ES), zZs = {g(qb, ZZS», €S, mg).

Set Z;vl = th(¢,€fM,wM), M= fM(¢7Z§\4a€M7$M>~

Stop gradients of variational parameters ¢’ = stop_grad(¢).

Set EAS(Q, @) =logpe(zs|zs, Zs) + Blogpe(zs) — Blog gy (#5|zs) + Blogpe(Zs|zs) — Blog qu (Zs|2s, Ts)-

Set L\s(0,¢) = logpe(n\s|2y) + Blogqy(2h|rs) — Blogqe (Zamlzhg 2a1) + Blogqe(Ps(Zm)|2y, vs) +
Blog pe(P\s(Zm)|2s Zam) — Blog ag (ZamlZg, Tm)-

Output: Vo4 |Ls(0,¢) +[’\s(9a¢)}

| Evaluation of multi-modal generative models

We evaluate models using different metrics suggested previously for multi-modal learning, see for example
Shi et al.| (2019); [Wu and Goodman| (2019)); |Sutter et al.| (2021)).

Marginal, conditional and joint log-likelihoods. We can estimate the marginal log-likelihood using
classic importance sampling

i po(2*, xs)

1 (zs) =1 1
o0gpye(Ts) =~ log — T RN
K 2 g, (Fas)

for 2% ~ g4(-|zs). This also allows to approximate the joint log-likelihood log py(z), and consequently also
the conditional log pg(2\s|zs) = log pe(x) — log pg(rs).

Generative coherence with joint auxiliary labels. Following previous work (Shi et all 2019; |Sutter
et all [2021; Daunhawer et al.l |2022; |Javaloy et al. |2022), we assess whether the generated data share the
same information in the form of the class labels across different modalities. To do so, we use pre-trained
classifiers clf;: Xy — [K] that classify values from modality s to K possible classes. More precisely, for
S € M and m € M, we compute the self- (m € §) or cross- (m ¢ S) coherence Cs_,,,, as the empirical
average of

Liclt, () =y}
over test samples z with label y where 25 ~ ¢4(z|zs) and %, ~ pg(zm|2s). The case S = M\ {m}
corresponds to a leave-one-out conditional coherence.
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Linear classification accuracy of latent representations. To evaluate how the latent representation
can be used to predict the shared information contained in the modality subset S based on a linear model,
we consider the accuracy Accs of a linear classifier clf,: Z — [K] that is trained to predict the label

based on latent samples zs ~ g4(zs|z%*") from the training values z*™ and evaluated on latent samples

zs ~ qg(2]25$5") from the test values zi$st.

J Linear models

Data generation. We generate 5 data sets of N = 5000 samples, each with M = 5 modalities. We set
the latent dimension to D = 30, while the dimension Dy of modality s is drawn from #/(30,60). We set the
observation noise to o = 1, shared across all modalities, as is standard for a PCA model. We sample the
components of b; independently from A(0,1). For the setting without modality-specific latent variables, Wi
is the orthonormal matrix from a QR algorithm applied to a matrix with elements sampled iid from U (-1, 1).
The bias coefficients W;, are sampled independently from N'(0,1/d). Conversely, the setting with private
latent variables in the ground truth model allows us to describe modality-specific variation by considering
the sparse loading matrix

wi W, 0 ... 0

Wy 0 Wy ... 0
Wm=| . .

Wi, 0 ... 0 Wy

Here, W!, W, € RP=*P" with D’ = D/(M + 1) = 5, Furthermore, the latent variable Z can be written as
Z =(Z',Z1,...,Zy) for private and shared latent variables Z,, resp. Z’. We similarly generate orthonormal
[WS’ ,WS] from a QR decomposition. Observe that the general generative model with latent variable Z
corresponds to the generative model with shared Z’ and private latent variables Z with straightforward
adjustments for the decoding functions. Similar models have been considered previously, particularly from

a Bayesian standpoint with different sparsity assumptions on the generative parameters (Archambeau and
Bach, [2008} [Virtanen et al., [2012; |Zhao et al., [2016]).

Maximum likelihood estimation. Assume now that we observe N data points {x, },,c[n], consisting of
stacking the views z,, = (24,n)ses for each modality in S and let S = % Zf:’zl(xn —b)(zy, —b)T € RPexDs
D, = Zyzl Dy, be the sample covariance matrix across all modalities. Let Uy € RP=*P be the matrix of the
first D eigenvectors of S with corresponding eigenvalues A1, ... Ap stored in the diagonal matrix Ap € RP*P,
The maximum likelihood estimates are then given by by = % ZnN:1 T, O’I%/[L = ﬁ Z;VZ Di1 A; and
Wy = Up(Ap — oy, 1)/? with the loading matrix identifiable up to rotations.

Model architectures. We estimate the observation noise scale o based on the maximum likelihood esti-
mate oy, We assume linear decoder functions py(zs|z) = N(W22z+b?, 021 ), fixed standard Gaussian prior
p(z) = N(0,1) and generative parameters 6 = (W?,¢,..., W9, b3,). Details about the various encoding
architectures are given in Table[I5] The modality-specific encoding functions for the PoE and MoE schemes
have a hidden size of 512, whilst they are of size 256 for the learnable aggregation schemes having additional

aggregation parameters .

K Non-linear identifiable models

We also show in Figure [f] the reconstructed modality values and inferred latent variables for one realization
with our bound, with the corresponding results for a mixture-based bound in Figure
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(i) SumP, K =5 (z) (j) SumP, K =5 (2) (k) SumPM, K =5 (z) (1) SumPM, K =5 (z)

Figure 4: Bi-modal non-linear model with label and continuous modality based on our bound. SumP:
SumPooling, SumPM: SumPoolingMixture.
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-2

(i) SumP, K =5 (z) (j) SumP, K =5 (2) (k) SumPM, K =5 (z) (1) SumPM, K =5 (z)

Figure 5: Bi-modal non-linear model with label and continuous modality based on mixture bound. SumP:
SumPooling, SumPM: SumPoolingMixture.
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L MNIST-SVHN-Text

L.1 Training hyperparamters

The MNIST-SVHN-Text data set is taken from the code accompanying [Sutter et al.|(2021) with around 1.1
million train and 200k test samples. All models are trained for 100 epochs with a batch size of 250 using
Adam (Kingma and Bal [2014)) and a cosine decay schedule from 0.0005 to 0.0001.

L.2 Multi-modal rates and distortions

B Vasked 10000 ——
10000 g mixture == e
8000 s00 T T
6000
0
4000
-5000

-10000

Full Reconstruction
Cross Reconstruction

2000 15000
-4000 1
20000 | —L-
§& & & & & «® & & &
8 & & o &
o B o B
Aggregation Aggregation
(a) Full Reconstr. —D aq (b) Cross Reconstr. —D{ g
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10°
4
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'S [§]
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R & & &
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Aggregation Aggregation
(c) Full Rates R (d) Cross Rates R\s

Figure 6: Rate and distortion terms for MNIST-SVHN-Text with shared and private latent variables.

L.3 Log-likelihood estimates
L.4 Generated modalities
L.5 Conditional coherence

Latent classification accuracy.
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Figure 7: Rate and distortion terms for MNIST-SVHN-Text with shared latent variables and different 3.

Table 7: Test log-likelihood estimates for varying 8 choices for the joint data (M+S+T) as well as for
the marginal data of each modality based on importance sampling (512 particles). Multi-modal generative
model with a 40-dimensional shared latent variable. The second part of the Table contains reported log-
likelihood values from baseline methods that, however, impose more restrictive assumptions on the decoder
variances, which likely contributes to much lower log-likelihood values reported in previous works, irrespective
of variational objectives and aggregation schemes.

Our bound Mixture bound
(8, Aggregation) M+S+T M S T M+S+T M S T
(0.1, PoE+) 5433 (24.5) 1786 (41.6) 3578 (63.5) -29 (2.4) 5481 (18.4) 2207 (19.8) 3180 (33.7) -39 (1.0)
(0.1, SumPooling) 7067 (78.0) 2455 (3.3) 4701 (83.5) -9 (0.4) 6061 (15.7) 2398 (9.3) 3552 (7.4) -50 (1.9)
(1.0, PoE+) 6872 (9.6) 2599 (5.6) 4317 (1.1) 9(0.2) 5900 (10.0) 2449 (10.4) 3443 (11.7) -19 (0.4)
(1.0, SumPooling) 7056 (124.4) 2478 (9.3) 4640 (113.9) 6 (0.0) 6130 (4.4) 2470 (10.3) 3660 (1.5) -16 (1.6)
(4.0, PoE+) 7021 (13.3) 2673 (13.2) 4413 (30.5) -5 (0.1) 5895 (6.2) 2484 (5.5) 3434 (2.2) -13 (0.4)
(4.0, SumPooling) 6690 (113.4) 2483 (9.9) 4259 (117.2) -5 (0.0) 5659 (48.3) 2448 (10.5) 3233 (27.7) -10 (0.2)
Results from ISutter et al.|q2021p and ISutter et al.|q2020p

MVAE -1790 (3.3) NA NA NA

MMVAE -1941 (5.7) NA NA NA

MoPoE -1819 (5.7) NA NA NA

MMJSD -1961 (NA) NA NA NA
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Figure 9: Conditional generation for permutation-equivariant schemes and private latent variable constraints.
SumPooling aggregation, followed by the three columns for a SelfAttention scheme and a PoE model.
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Table 8: Conditional coherence for models with shared latent variables and bi-modal conditionals. The
letters on the second line represent the modality which is generated based on the sets of modalities on the
line below it.

Our bound Mixture bound
M S T M S T
Aggregation M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T
PoE 0.98 098 0.60 075 058 0.77 082 1.00 1.00 0.96 097 095 061 011 061 045 099 0.98
PoE+ 097 098 055 073 052 075 0.83 1.00 099 097 097 096 0.64 011 063 045 099 0.97
MoE 0.88 097 090 035 011 035 041 072 069 0.88 096 089 032 010 033 042 072 0.69
MoE+ 085 094 0.8 032 010 032 040 071 067 087 096 089 032 010 032 042 072 0.69
SumPooling 097 097 0.86 078 030 0.80 0.76 0.99 1.00 0.97 097 095 0.65 010 0.65 045 099 0.97
SelfAttention 097 097 0.82 076 030 078 0.69 1.00 1.00 097 097 099 066 010 0.65 045 099 1.00
Results from |Sutter et al.|(2021), |Sutter et al.|(2020) and [Hwang et al.|(2021)
MVAE NA NA 032 NA 043 NA 029 NA NA
MMVAE NA NA 087 NA 031 NA 084 NA NA
MoPoE NA NA 094 NA 036 NA 093 NA NA
MMJSD NA NA 0.95 NA 0.48 NA 0.92 NA NA

MVTCAE (w/oT) NA NA NA NA NA NA NA NA NA

Table 9: Conditional coherence for models with private latent variables and uni-modal conditionals. The
letters on the second line represent the modality which is generated based on the sets of modalities on the
line below it.

Our bound Mixture bound
M S T M S T
Aggregation M S T M S T M S T M S T M S T M S T
PoE+ 097 0.12 0.13 020 062 024 0.16 0.15 1.00 096 083 0.99 0.11 058 0.11 044 0.39 1.00

SumPooling 097 042 0.59 0.44 067 0.40 0.65 0.45 1.00 097 0.86 0.99 0.11 062 0.11 045 040 1.00
SelfAttention 0.97 0.12 0.12 0.27 0.71 028 046 040 1.00 0.96 0.09 0.08 0.12 0.67 012 0.15 0.17 1.00

Table 10: Conditional coherence for models with private latent variables and bi-modal conditionals. The
letters on the second line represent the modality, which is generated based on the sets of modalities on the
line below it.

Our bound Mixture bound
M S T M S T
Aggregation  M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T
PoE+ 0.97 0.97 014 066 033 0.67 018 1.00 1.00 0.97 0.97 0.94 063 011 063 045 099 0.96

SumPooling 0.97 0.97 054 079 0.43 080 0.57 1.00 1.00 0.97 0.97 093 064 011 063 045 099 097
SelfAttention 0.97 0.97 0.12 0.80 029 0.81 049 1.00 1.00 096 096 0.08 0.70 0.12 070 0.15 1.00 1.00

Table 11: Conditional coherence for models with shared latent variables for different s and uni-modal
conditionals. The letters on the second line represent the modality which is generated based on the sets of
modalities on the line below it.

Our bound Mixture bound
M S T M S T
(8, Aggregation) M S T M S T M S T M S T M S T M S T
(0.1, PoE+) 0.98 0.11 0.12 0.12 062 0.14 061 025 1.00 096 083 0.99 0.11 0.58 0.11 045 0.39 1.00
(0.1, SumPooling) 0.97 048 0.81 0.30 0.72 033 0.86 0.55 1.00 097 0.86 0.99 0.11 064 0.11 045 0.40 1.00
(1.0, PoE+) 097 0.15 063 024 063 042 079 035 1.00 096 0.83 0.99 0.11 059 0.11 045 0.39 1.00
(1.0, SumPOOhng) 097 048 087 025 0.72 036 073 048 1.00 097 0.86 0.99 0.10 0.63 0.10 045 040 1.00
(4.0, PoE+) 097 029 083 0.41 060 0.58 0.76 038 1.00 096 0.82 0.99 0.10 0.57 0.10 044 0.38 1.00
(4.0, SumPooling) 097 048 0.88 0.35 0.66 044 083 0.53 1.00 096 0.85 0.99 0.11 057 0.10 045 0.39 1.00
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Table 12: Conditional coherence for models with shared latent variables for different s and bi-modal con-
ditionals. The letters on the second line represent the modality, which is generated based on the sets of
modalities on the line below it.

Our bound Mixture bound
M S T M S T
(8, Aggregation) M+S M+T S+T M+S M+T S+T M+S M+T S4+T M+S M+T S+T M+S M+T S+T M+S M+T S+T
(0.1, PoE+) 0.98 098 0.15 070 014 0.72 066 1.00 1.00 096 096 093 062 011 062 045 099 095
(0.1, SumPooling) 097 0.97 086 0.83 031 0.84 085 099 1.00 097 097 094 0.66 011 0.65 045 099 0.96
(1.0, PoE+) 097 0.98 055 073 052 075 083 1.00 099 097 097 0.96 064 011 063 045 0.99 097
(1.0, SumPooling) 097 097 086 0.78 030 080 0.76 099 1.00 0.97 097 095 0.65 010 0.65 045 099 0.97
(4.0, PoE+) 097 098 08 07 0.66 078 082 1.00 1.00 097 097 0.96 0.62 010 0.62 045 099 0.98
(4.0, SumPooling) 097 097 0.89 077 040 0.78 0.86 099 1.00 097 097 0.96 0.61 0.10 0.60 045 099 097

Table 13: Unsupervised latent classification for § = 1 and models with shared latent variables only (top
half) and shared plus private latent variables (bottom half). Accuracy is computed with a linear classifier
(logistic regression) trained on multi-modal inputs (M+S+T) or uni-modal inputs (M, S or T).

Our bound Mixture bound

Aggregation M+S+T M S T M+S+T M S T

PoE 0.988 (0.000)  0.940 (0.009) 0.649 (0.039)  0.998 (0.001) 0.991 (0.004) 0.977 (0.002) 0.845 (0.000)  1.000 (0.000)
PoE+ 0.978 (0.002) 0.934 (0.001) 0.624 (0.040)  0.999 (0.001)  0.998 (0.000)  0.981 (0.000) 0.851 (0.000)  1.000 (0.000)
MoE 0.841 (0.008)  0.974 (0.000) 0.609 (0.032) 1.000 (0.000)  0.940 (0.001)  0.980 (0.001)  0.843 (0.001)  1.000 (0.000)
MoE+ 0.850 (0.039) 0.967 (0.014) 0.708 (0.167)  0.983 (0.023) 0.928 (0.017) 0.983 (0.002) 0.846 (0.001)  1.000 (0.000)
SelfAttention 0.985 (0.001) 0.954 (0.002) 0.693 (0.037)  0.986 (0.006) 0.991 (0.000) 0.981 (0.001) 0.864 (0.003)  1.000 (0.000)
SumPooling 0.981 (0.000) 0.962 (0.000) 0.704 (0.014)  0.992 (0.008)  0.994 (0.000)  0.983 (0.000)  0.866 (0.002)  1.000 (0.000)
PoE+ 0.979 (0.009) 0.944 (0.000) 0.538 (0.032) 0.887 (0.07) 0.995 (0.002) 0.980 (0.002) 0.848 (0.006)  1.000 (0.000)
SumPooling 0.987 (0.004) 0.966 (0.004) 0.370 (0.348)  0.992 (0.002) 0.994 (0.001) 0.982 (0.000)  0.870 (0.001) 1.000 (0.000)
SelfAttention 0.990 (0.003) 0.968 (0.002) 0.744 (0.008) 0.985 (0.000) 0.997 (0.001) 0.974 (0.000) 0.681 (0.031) 1.000 (0.000)

Results from |Sutter et a‘l.l7 |Sutter et a].l and [Hwang et al.

MVAE 0.96 (0.02)  0.90 (0.01)  0.44 (0.01) 0.85 (0.10)
MMVAE 0.86 (0.03)  0.95 (0.01)  0.79 (0.05) 0.99 (0.01)
MoPoE 098 (0.01)  0.95 (0.01)  0.80 (0.03) 0.99 (0.01)
MMJSD 0.98 (NA) 0.97 (NA) 0.82 (NA) 0.99 (NA)
MVTCAE (w/o T) NA 0.93 (NA) 0.78 (NA) NA

Table 14: Unsupervised latent classification for different 8s and models with shared latent variables only.
Accuracy is computed with a linear classifier (logistic regression) trained on multi-modal inputs (M+S+T)
or uni-modal inputs (M, S or T).

Our bound Mixture bound

(8, Aggregation) M+S+T M S T M+S+T M S T

(0.1, PoE+) 0.983 (0.006) 0.919 (0.001) 0.561 (0.048) 0.988 (0.014)  0.992 (0.002) 0.979 (0.002) 0.846 (0.004)  1.000 (0.000)
(0.1, SumPooling)  0.982 (0.004) 0.965 (0.002) 0.692 (0.047) 0.999 (0.001)  0.994 (0.000) 0.981 (0.002) 0.863 (0.005)  1.000 (0.000)
(1.0, PoE+) 0.978 (0.002) 0.934 (0.001) 0.624 (0.040) 0.999 (0.001) 0.998 (0.000)  0.981 (0.000) 0.851 (0.000)  1.000 (0.000)
(1.0, SumPooling)  0.981 (0.000) 0.962 (0.000) 0.704 (0.014) 0.992 (0.008)  0.994 (0.000)  0.983 (0.000) 0.866 (0.002) 1.000 (0.000)
(4.0, PoE+) 0.981 (0.006) 0.943 (0.007) 0.630 (0.008) 0.993 (0.001) 0.998 (0.000)  0.981 (0.000) 0.846 (0.001)  1.000 (0.000)
(4.0, SumPooling) 0.984 (0.004) 0.963 (0.001) 0.681 (0.009) 0.995 (0.000)  0.992 (0.002) 0.980 (0.001) 0.856 (0.001)  1.000 (0.000)

47



Under review as submission to TMLR

M Encoder Model architectures
M.1 Linear models

Table 15: Encoder architectures for Gaussian models.

(a) Modality-specific encoding functions hs(zs). Latent dimen- (b) Model for outer aggregation function py for
sion D = 30, modality dimension D, ~ U(30,60). SumPooling and SelfAttention schemes.
MoE/PoE SumPooling/SelfAttention Outer Aggregation
Input: D Input: D Input: 256
Dense Dg x 512, ReLU  Dense Dg x 256, ReLU Dense 256 x 256, ReLU
Dense 512 x 512, ReLU  Dense 256 x 256, ReLLU Dense 256 x 256, ReLU
Dense 512 x 60 Dense 256 x 60 Dense 256 x 60
(c) Inner aggregation function xy-. (d) Transformer parameters.
SumPooling SelfAttention SelfAttention (1 Layer)
Input: 256 Input: 256 Input: 256
Dense 256 x 256, ReLU  Dense 256 x 256, ReLU Heads: 4
Dense 256 x 256, ReLU Dense 256 x 256 Attention size: 256
Dense 256 x 256 Hidden size FFN: 256

M.2 Linear models with private latent variables

Table 16: Encoder architectures for Gaussian models with private latent variables.

(a) Modality-specific encoding functions hs(zs). All private and
shared latent variables are of dimension 10. Modality dimension
D, ~U(30,60).

(b) Model for outer aggregation function
pw for SumPooling scheme.

Outer Aggregation (py)

Input: 128

Dense 128 x 128, ReLU
Dense 128 x 128, ReLU
Dense 128 x 10

PoE (hshared and pPrivate)  SumPooling/SelfAttention

Input: Dy Input: D,
Dense Dy x 512, ReLLU Dense Dy x 128, ReLLU
Dense 512 x 512, ReLU Dense 128 x 128, ReLU

Dense 512 x 10 Dense 128 x 10
(c) Inner aggregation functions. (d) Transformer parameters.
SumPooling (x0,9, X1,0, X2,0) SelfAttention (x1,9, Xx2,9) SelfAttention (1 Layer)
Input: 128 Input: 128 Input: 128
Dense 128 x 128, ReLLU Dense 128 x 128, ReLU Heads: 4
Dense 128 x 128, ReLU Dense 128 x 128 Attention size: 128
Dense 128 x 128 Hidden size FFN: 128

M.3 Nonlinear model with auxiliary label
M.4 Nonlinear model with five modalities
M.5 MNIST-SVHN-Text

For SVHN and Text, we use 2d- or 1d-convolutional layers, respectively, denoted as Conv(f, k, s) for feature
dimension f, kernel-size k, and stride s. We denote transposed convolutions as tConv. We use the neural
network architectures as implemented in Flax Heek et al.| (2023)).
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Table 17: Encoder architectures for nonlinear model with auxiliary label.

(a) Modality-specific encoding functions hs(zs). Modality di-
mension Dy = 2 (continuous modality) and D, = 5 (label).
Embedding dimension Dg = 4 for PoE and MoE and Dg = 128

otherwise.

(b) Model for outer aggregation function py
for SumPooling and SelfAttention schemes and
mixtures thereof. Output dimension is Dy =
25 for mixture densities and Do = 4 otherwise.

Modality-specific encoders

Input: Dy
Dense D, x 128, ReLU
Dense 128 x 128, ReLU

Outer Aggregation

Input: 128
Dense 128 x 128, ReLU
Dense 128 x 128, ReLU

Dense 128 x Dg

(c) Inner aggregation function xg.

SumPooling

SelfAttention

Input: 128

Dense 128 x 128, ReLU
Dense 128 x 128, ReLU
Dense 128 x 128

Input: 128
Dense 128 x 128, ReLU
Dense 128 x 128

Dense 128 x Do

(d) Transformer parameters.

SelfAttention

Input: 128

Heads: 4

Attention size: 128
Hidden size FFN: 128

Table 18: Encoder architectures for a nonlinear model with five modalities.

(a) Modality-specific encoding functions hs(zs).

Modality di-

mensions Ds = 25. Latent dimension D = 25

MoE/PoE

SumPooling/SelfAttention

Input: D

Dense D, x 512, ReLLU
Dense 512 x 512, ReLU
Dense 512 x 50

Input: D;

Dense Dy x 256, ReLU
Dense 256 x 256, ReLU
Dense 256 x 256

(c) Inner aggregation function xy-.

SumPooling SelfAttention

Input: 256 Input: 256

Dense 256 x 256, ReLU Dense 256 x 256, ReLU
Dense 256 x 256, ReLU Dense x256

Dense 256 x 256

M.6 MNIST-SVHN-Text with private latent variables

(b) Model for outer aggregation function py
for SumPooling and SelfAttention schemes and
mixtures thereof. Output dimension is Dy =
50 for mixture densities and Do = 25 other-
wise.

Outer Aggregation

Input: 256

Dense 256 x 256, ReLU
Dense 256 x 256, ReLU
Dense 256 x Do

(d) Transformer parameters.

SelfAttention

Input: 256

Heads: 4

Attention size: 256
Hidden size FFN: 256

N MNIST-SVHN-Text Decoder Model architectures

For models with private latent variables, we concatenate the shared and private latent variables. We use a
Laplace likelihood as the decoding distribution for MNIST and SVHN, where the decoder function learns
both its mean as a function of the latent and a constant log-standard-deviation at each pixel. Following
previous works (Shi et al., |2019; |Sutter et al. |2021)), we re-weight the log-likelihoods for different modalities

relative to their dimensions.
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Table 19: Encoder architectures for MNIST-SVHN-Text.

(a) MNIST-specific encoding functions hs(zs).
Modality dimensions Dy = 28 x 28. The embedding
dimension is Dg = 2D for PoE/MoE and Dg = 256
for SumPooling/SelfAttention. For PoE+/MoE+,
we add four times a Dense layer of size 256 with ReLU
layer before the last linear layer.

MoE/PoE/SumPooling/SelfAttention

Input: Ds,

Dense D, x 400, ReLLU
Dense 400 x 400, ReLU
Dense 400 x Dg

(c) Text-specific encoding functions hs(zs). Modal-
ity dimensions Ds = 8 x 71. Embedding di-
mension is Dg = 2D for PoE/MoE and Dg =
256 for permutation-invariant models (SumPool-
ing/SelfAttention) and Dg = 128 for permutation-
equivariant models (SumPooling/SelfAttention). For
PoE+/MoE+, we add four times a Dense layer of size
256 with ReLU layer before the last linear layer.

MoE/PoE/SumPooling/SelfAttention

Input: D;

Conv(128, 1, 1), ReLU
Conv(128, 4, 2), ReLU
Conv(128, 4, 2), ReLU, Flatten
Dense 128 x Dg

(e) Inner aggregation function xy for permutation-
invariant models (Dgp = 256) and permutaion-
equivariant models (Dg = 128).

SumPooling SelfAttention

Input: Dg Input: Dg

Dense Dg X Dg, LReLU Dense Dg x Dg, LReLU

Dense Dg x Dg, LReLU Dense xDg
Dense Dg x Dg

O Compute resources and existing assets

(b) SVHN-specific encoding functions hs(zs).
Modality dimensions D, = 3 x 32 x 32. Embedding
dimension is Dg = 2D for PoE/MoE and Dg = 256
for SumPooling/SelfAttention. For PoE+/MoE+,
we add four times a Dense layer of size 256 with
ReLU layer before the last linear layer.

MoE/PoE /SumPooling /SelfAttention

Input: D

Conv(32, 4, 2), ReLU
Conv(64, 4, 2), ReLU
Conv(64, 4, 2), ReLU

Conv(128, 4, 2), ReLU, Flatten
Dense 2048 x Dg

(d) Model for outer aggregation function py for
SumPooling and SelfAttention schemes. Output di-
mension is Dy = 2D = 80 for models with shared
latent variables only and Dy = 10 + 10 for mod-
els with private and shared latent variables. Dg =
256 for permutation-invariant and D; = 128 for
permutation-invariant models.

Outer Aggregation

Input: Dg

Dense D x Dg, LReLU
Dense Dg x D, LReLLU
Dense Dg x Do

(f) Transformer parameters for permutation-

invariant models. Dg = 256 for permutation-
invariant and Dy = 128 for permutation-invariant
models.

SelfAttention (2 Layers)

Input: Dg

Heads: 4

Attention size: Dg
Hidden size FFN: Dg

Our computations were performed on shared HPC systems. All experiments except Section were run on
a CPU server using one or two CPU cores. The experiments in Section were run on a GPU server using

one NVIDIA A100.

Our implementation is based on JAX (Bradbury et al., 2018) and Flax (Heek et al) 2023). We com-
pute the mean correlation co-efficient (MCC) between true and inferred latent variables following [Khe-
makhem et al.| (2020b)), as in https://github.com/ilkhem/icebeem and follow the data and model
generation from [Khemakhem et al| (2020a), https://github.com/ilkhem/iVAE in Section as well
as https://github.com/hanmenghan/CPM_Nets| from [Zhang et al. (2019)) for generating the missingness


https://github.com/ilkhem/icebeem
https://github.com/ilkhem/iVAE
https://github.com/hanmenghan/CPM_Nets
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Table 20: Decoder architectures for MNIST-SVHN-Text.

(a) MNIST decoder. D; = 40 for models with shared
latent variables only, and D; = 10 4 10 otherwise.

MNIST

Input: Dy

Dense 40 x 400, ReLU
Dense 400 x 400, ReLU
Dense 400 x D, Sigmoid

(c) Text decoder. Dy = 40 for models with shared
latent variables only, and D; = 10 + 10 otherwise.

Text

Input: Dy

Dense D; x 128, ReLU
tConv(128, 4, 3), ReLU
tConv(128, 4, 2), ReLU
tConv(71, 1, 1)

mechanism. In our MNIST-SVHN-Text experiments, we use code from |Sutter et al. (2021),

//github.com/thomassutter/MoPoE.

o1

(b) SVHN decoder. D; = 40 for models with shared
latent variables only, and D; = 10 + 10 otherwise.

SVHN

Input: Dy

Dense D; x 128, ReLU
tConv(64, 4, 3), ReLU
tConv(64, 4, 2) ReLU
tConv(32, 4, 2), ReLU
tConv(3, 4, 2)

https:


https://github.com/thomassutter/MoPoE
https://github.com/thomassutter/MoPoE
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