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ABSTRACT

In online advertising, advertisers can purchase consumer relevant
data from data marketplaces with a certain expenditure, and exploit
the purchased data to guide the bidding process in ad auctions.
One of the pressing problem faced by advertisers is to design the
optimal data purchasing strategy (how much data to purchase to be
competitive in bidding process) in online ad auctions. In this paper,
we model the data purchasing strategy design as a convex opti-
mization problem, jointly considering the expenditure paid during
data purchasing and the benefits obtained from ad auctions. Using
the techniques from Baysian game theory and convex analysis, we
derive the optimal purchasing strategies for advertisers in different
market scenarios. We also theoretically prove that the resulting
strategy profile is the unique one that achieves Nash Equilibrium.
Our analysis shows that the proposed data purchasing strategy can
handle diverse ad auctions and valuation learning models. Our nu-
merical results empirically reveal how the equilibrium state changes
with variation of the strategic environment.
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1 INTRODUCTION

Targeting is a technique to enable advertisers to deploy advertising
campaigns on the consumers from certain market segments, such
that the advertisers can spend their finite ad budgets on the most
relevant consumer. It is difficult to conduct and evaluate a qualified
advertising without enough consumer relevant data. Fortunately,
with the advance of online tracking techniques, the advertisers now
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can collect a large amount of relevant data, such as third-party-
cookies [6, 19, 26, 49], to build the profiles of consumers, and then
conduct accurate targeted advertising.

The consumer relevant data is currently traded over the Inter-
net. The collection and distribution of consumer relevant data are
conducted by Data Management Platforms, ranging from well-
known data analysis companies such as Acxiom! and Bloomberg?,
to emerging companies such as Bluekai® and eXelate?. Data Manage-
ment Platforms create online marketplaces, where these companies
can upload consumers relevant data to make profits, and advertisers
can purchase the desired datasets to enable targeted advertising.
The marketing demand for such highly detailed, consumer-level
data is mostly driven by advertising industries.

In advertising ecosystem, major search engines are now leverag-
ing auctions as main monetization channels [16, 21, 32, 42], includ-
ing forms of sponsored search auctions [31, 39, 42, 43] and realtime
bidding (RTB) [12, 14, 50]. In sponsored search, a selective set of ads
related to the user query will be shown together with returned rele-
vant webpages after in the search engine, while In RTB for display
advertising, an ad impression with related information will be sent
to advertisers through the ad exchange when the user visits the
website. For both scenarios, auctions are held and bids are collected
to determine the ad allocations and corresponding charges. How-
ever, the uncertainty of valuations over the ad slots, which may
varies across advertisers, causes difficulties for launching successful
ad campaigns. Without full information about the consumers, it
is hard for advertisers to extract the precise valuations for the ad
slots. Either underestimation or overestimation of valuations could
lead to improper bidding strategies in ad auctions.

Therefore, Data Management Platforms have become demand-
ing places for advertisers to refine their valuations by purchasing
consumer relevant data. By buying enough amount of data, the
advertisers can extract valuable information about the demographic
and psychographic characteristics of consumers via the data mining
techniques [19, 49], and further tailor their ad campaigns to their
preferred consumers. While advertisers can learn more precise val-
uations from buying a larger amount of data, they also have to pay
more money for such purchasing, or exert more efforts or energy to
extract such valuable information. Hence, one of the pressing prob-
lems faced by advertisers is to design an optimal data purchasing
strategy by making a trade-off between the expenditure paid during
data purchasing and the expected utility increase in the auction.

There are several challenges in designing such a data purchasing
strategy for online ad auctions. The first challenge comes from the
various formats of ad auctions. The ultimate goal of an advertiser

! Acxiom: http://www.acxiom.com/
2Bloomberg: http://www.bloomberg.com/
3Bluekai: http://www.bluekai.com/
4eXelate: http://exelate.com/
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is to purchase an appropriate amount of data to maximize her ex-
pected utility in ad auctions. Thus, the data purchasing strategy
design is highly related to the specific procedure of the auction.
However, the variety of ad auctions in practice, such as General-
ized Second Price (GSP), Generalized First Price (GFP) [21], and
Vickrey-Clarke-Groves (VCG) mechanism [17, 29, 47], increases
the difficulty in analyzing data purchasing strategies.

The second challenge comes from the diverse valuation learning
models of advertisers. The data purchasing strategy design is to
solve the payoff maximization problem under the strategic envi-
ronment. The payoff of an advertiser is defined as the difference
between the utility obtained from ad auction and the expenditure
paid to purchase consumer relevant data. In order to extract true
valuations and then obtain high utilities in ad auctions, advertisers
may adopt diverse valuation learning models [33, 34, 44] upon the
purchased data. Without specifying the learning procedure of other
advertisers, an advertiser may not be possible to infer her competi-
tors’ data purchasing strategies, which significantly increases the
difficulty of designing an optimal data purchasing strategy.

In this paper, we develop a framework to solve the optimal data
purchasing strategy design problem, by jointly considering the
above challenges. We first model the various ad auctions as Bayesian
games with the same ad allocation rule. Using Payoff Equivalence
Principle [38], we demonstrate that the expected utilities of ad-
vertisers are independent on the specific formats of ad auctions,
decoupling the data purchasing stage from the auction stage. We
then propose a data purchasing model to capture the diverse valua-
tion learning models of advertisers, and formulate the optimal data
purchasing strategy design as a convex optimization problem. Us-
ing the techniques from game theory and convex analysis, we can
explicitly derive the optimal data purchasing strategy for advertis-
ers, and theoretically prove that such a strategy profile is a unique
Nash Equilibrium. Our numerical results further illustrate how
would advertisers behave under various strategic environments.
We summarize our key contributions in this work as follows.

o First, we propose a general framework consisting of an ad
auction model and a data purchasing model. The framework is
powerful enough to comprehend a variety of ad auction formats
and different classes of learning agents, as well as to express the
trade-offs advertisers have to consider when purchasing data. To the
best of our knowledge, we are the first to study the data purchasing
strategy design in an online ad auction setting.

e Second, we begin with considering a simple but representative
case, where two Gaussian Learning agents compete for two dif-
ferent ad slots. We rigorously prove the existence and uniqueness
properties of the Nash Equilibrium, as well as verify several intu-
itions of the equilibrium structure under both homogeneous and
heterogeneous settings. Through this basic case, we demonstrate
the rationale of finding the optimal data purchasing strategy.

e Third, we further extend this work by considering a more
general scheme, where there can be a finite arbitrarily number
of advertisers and slots. We show a general method to calculate
the optimal strategy, and prove that the uniqueness and existence
of the equilibrium are guaranteed given that the agents’ learning
processes satisfy a particular structure.

e Last but not least, we conduct a numerical study on two partic-
ular types of learning agents under our framework. We empirically
reveal how much information will advertisers purchase under dif-
ferent strategic environments.

The rest of this paper is organized as follows. Section 2 provides
the notations and the basic framework used throughout this paper.
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Figure 1: The timing of the game.

In Section 3, we solve the optimal strategy design under a simple
setting. In Section 4, we extend the model to a more general scheme
and provide the corresponding theorems. Numerical results are
provided in Section 5 to show how the different strategic environ-
ments affect the optimal strategies. Related works are reviewed in
Section 6. We summarize our work in Section 7.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we develop models and notations used throughout
this paper. Since we focus on the data purchasing strategy design
in context of online advertising, which is related to the formats of
ad auctions, we first present the ad auction model and then the data
purchasing model.

As shown in Figure (1), we consider one round of ad auction
which can be regarded as a two-stage game: it consists of a data
purchasing (DP) stage and an ad auction stage. We will later specify
that the first stage is a complete information game while the second
is a Bayesian game. From now on we refer the advertisers as the
agents in the model. First, the auctioneer announces the rules of ad
auction. Next, agents purchase data from Data Market according to
some strategies. After that, agents extract messages from purchased
data, and refine their knowledge about their valuations over ad slots
according to some learning model. Finally, all agents participate
in the ad auction with their updated knowledge and receive the
outcomes.

2.1 Ad Auction Model

There are N agents competing for K < N ad slots. Denote w; as
the valuation of agent i’s ad for a click. In practice, there may be
different classes of agents each round [11], and the valuation of one
slot to different agents with various experience and identities is not
fixed [2]. We capture these uncertainties by modeling that in prior,
valuations of agents within the same class are identically distributed,
while valuations of agents of different classes are independent [35,
41, 46]. We let (i) be the class of i, which is interpreted as the
finest prior information to distinguish between the agents. In our
framework (i) indicates: (1) the prior valuation distribution, and
(2) the cost function (described in Section 2.2), of agent i. The
prior distribution for agents of class n(i) is denoted as Fy;), i.e.,
wi ~ Fp(;). We assume the class information to be public prior
knowledge, which is widely adopted by works regarding classical
Bayesian game theory [28, 30]. Regarding her own valuation, we
suppose i just knows as much as anybody else before purchasing
data, i.e., F,m). But after i having purchased and learned from data
(targeting), from her point of view the knowledge of w; is updated
from F,,U) to a new distribution, which is not observed by others.

Every agent reports her bid b; and therefore gets ranked by it.
Then some agents win and obtain their positions from top to bottom
according to their ranking, leaving those who lost unassigned. Each
ad slot j has a corresponding click-through-rate (CTR) cj. We restrict
¢j = 0 for j > K and denote ¢ = (cq,cz. .. en)T as the CTR profile.
In this paper, we assume ¢; > ¢z > ... > cg > 0.
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The auctioneer sorts the agents in descending order of their bids.
The allocation rule can be represented as x : RN - ¢N. More
specifically, given bid profile b = (b1, bz ... bN), xi(b) = ¢; if and
only if b; is the j-th highest bid in b (ties are broken randomly).
Then agent i’s utility would be u; = w;x;(b) — p;(b), where p;(b)
is her charge according to some payment rule.

The study of the equilibrium in ad auctions is of the central role
in most works in this field. We formally define the bayesian view
of equilibrium concept in our ad auction model as follows.

Definition 2.1 (Bayesian-Nash Equilibrium in Position Auction
(BNEpy)). Aprofile of (b7, b b},) forms a Bayesian-Nash Equi-
librium in a position auction lfVl b E[ul(b* b )] = Elu; (b',b7))].

The guarantee of equilibriums is closely related to the allocation
rule, payment rule, and the distribution of agents [28]. However,
analyzing the existence of equilibrium of a particular form of posi-
tion auction is not our main focus in this work. We will assume that
the mechanism announced by the auctioneer will always guarantee
agents to reach a BNEp 4, which is formally defined as follows.

Definition 2.2 (Standard Position Auction (SPA) ). A position auc-
tion is called an Standard Position Auction, if there always exists a
BNEp 4 regardless of the strategies in DP stage.

Examples of SPA include laddered auction proposed by [3] for
its truthful dominant strategy. Generally speaking any position
auctions with VCG-like payment rule are SPA for the same reason.
However, things become complicated when coming to payment
rules of GFP and GSP. The authors of [13] proved there exists only
one symmetric BNE in a class of ad auctions representing by GFP.
And [28] provided with a necessary and sufficient condition for GSP
to have BNE in a symmetric setting. Leveraging Payoff Equivalence
Principle [38], the expected payoffs of agents at auction stage at a
BNEp4 is independent on its auction format, which will help us
simplify the computations. In the remaining of this paper, we will
assume the existence of BNEp4 at the auction stage, and focus on
designing optimal strategy for DP stage.

2.2 Data Purchasing Model

At data purchasing stage agents i may acquire a costly signal (data)
s; to refine her knowledge of w; (targeting) , with s; € [s,s]. Sig-
nals received by different buyers are independent. The advertiser
can choose the quality of signal, @;, she buys, with higher «; in-
dicating a more precise picture of w; but also costing more, and
a; € [a,«]. Agents of the same class p = (i) as i have the same
cost function ®,(«), which is assumed to be public knowledge,
satisfying @, (a) = 0 and is non-decreasing in signal quality a. We
interpret @, as the cost to acquire a certain level of information
for i, including like the unit price of data, or i’s time or energy cost
of data mining on such amount of data. So the cost for the same
quality of data may vary across different classes of agents. The
qualities of data agents choose to purchase will also be referred as
their DP strategies. We will later define and show how to find the
equilibrium (a7, @} . .. ay;) in data purchasing stage.

Advertiser i who has data quality «; will update her belief about
wj according to Bayes Rule: her knowledge of w; updates from F ;)
to Fl' with mean v; updated to vlf and w;, v;, Ulf € [w, ®]. We assume
agent i will choose her bidding strategy b; according to posterior
mean vlf , I.e., she submits bi(v; ) according to some function b; () at
auction stage. More precisely, vlf(si, a;) = E[wilsi, a;]. Notice that
the knowledge of v is uncertain before acquiring s;, so we need
to introduce Hy, (v) = Pr{vlf(si, a;) < v} as the prior cumulative
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distribution of Ulf with index v and parameter «;, and let hy; be the
corresponding density function. For the simplicity of notation, we
may interchangeably denote Hy, (x) = H; in this paper.

2.3 Problem Formulation

Our goal is to properly formulate the problem agents facing at
DP stage, to define the notion of the optimal DP strategy, and to
show how to calculate such strategy. To handle the first task in this
subsection, we now have to trace agents’ decision-making process
backward from auction stage to DP stage.
Suppose agents choose a DP strategy & = (a1, a2 . .. an) given
a BNEpa (b7, b; ...bY) already have been reached at the SPA.

Then from agents i’s point of view, by Integral-form Envelope
Theorem [38], her expected utility can now be written as [28]

E[u; (b} (v}),

Ma

,] Cj 2z ](U, PI(U;)]

c] f zi,j(t)d

Where z;,j(v]) = Pr(xi(b) = c;) denotes the probability that i
obtains j-th slot This formulation holds true when E[p;(w)] = 0.
Then for condition of agent 1, the probability she wins the first

~.
Il
—-

)

Mw

slot is z1,1(v]) = H Hj(v]), for the second slotis z1,2 = X (1 -
1=

k#1
Hk(vl)) H Hi(v 1) . In general,

2= > [Ja-He))  [] H@). @
T, keT 1€{2,3--NN\T
TC{2,3,...,N},
ITI=j-1

And similar derivations for other z; ;. To simplify notation we

K
define a auxiliary function Q;(t) = Y cj - z; j(t), then equation (1)
Jj=1
. . [
can be simplified as fw’ Qi(t)dt.
With the above derivations, we can now consider i’s DP strategy.
Since v] is unknown prior to s;, we should do expectation of u; in

equation (1) with respect to v] :
v
2y | [ Qitnrar
2}

By [B[ui (b; (v7), bZ,1]

- fj(f: Qi(t)dt> he, (x)dx

Considering the expenditure paid during DP and the outcome
received during auction, the agents choose their DP strategies ac-
cording to the following optimization problem:

w eargmax [ (1= Ho ()Qi)dx - yp @) )

Denote the above payof to be optimized as 7; (¢, a—;). Comparing
equation (1) and (3), we would find goals of two stages are totally
different: for auction stage it is to choose some bidding strategy to
maximize utility expectation (1), while for DP stage it is to choose
some o to maximize the deterministic payoff (3). So the auction
stage should be considered as a Bayesian game while the DP stage is
a complete information game. For DP stage, its equilibrium concept
is defined as follows.

i

(1 - Hg; (x))Qi(x)dx.

w



Session 42: Auction and Mechanism Design 4

Definition 2.3 (Nash Equilibrium in Data Purchasing (NEpp)).
A data purchasing strategy profile (¢, @; ... a}) forms a Nash
Equilibrium if for any i, a’, we have r; (e}, a*;) 2 mi(a’, a”}).

Thus, our goal is to derive optimal data purchasing strategy o*
under different scenarios. We start from solving a simple case.

3 GAUSSIAN LEARNING WITH LINEAR COST

In this section, we focus on a simple scenario to demonstrate the
basic rationale of finding the optimal DP strategy. In this simple
case, there are 2 ad slots and 2 agents, i.e., each agent is guaran-
teed to win a slot. We describe one representative scheme under
the framework developed in Section 2. Specifically, in the auction
stage, the payment rule would be VCG mechanism in position auc-
tion [21]. Thus, truthful report would be the dominant strategy
towards equilibrium state. In consistence with previous economic
learning models, in the DP stage Gaussian (GAS) Learning Model is
adopted for advertisers, for it nicely quantify the “quality of signals”
and is feasible to estimate empirically [15, 23]. We solve this model
by proving properties such as the existence and uniqueness of the
equilibrium as well as showing how to calculate the optimal DP
strategy, for both homogeneous and heterogeneous settings.

3.1 Setup

Since there are only two agents, for the simplicity of notations we
will suppress the class indexes and let agents’ names represent their
own belonging classes: n(1) = 1, n(2) = 2. Agents have Gaussian
priors of their valuations: F; = N (v;, /%l), where f; > 0 measures

the precision of the information i at hand in prior. After purchasing
data of quality «;, agents i receives some private information, works
out some data mining, and then obtains s; = w; + €;,€; ~ N(0, aii .
Here only the summation s; is observed by i, and the noise term ¢;
is independent on w;. So we can see that the higher quality «; is
acquired, the more precise the signal is. Agents follow a Gaussian
Learning and update their beliefs about w; according to Bayes Rule:
aisi+pivi

ai+/3i

To form the optimization problem, we now have to compute
the learning structure H. According to the properties of Gaussian
Distribution, it can be calculated that the distribution of v} prior to

1
wilsi,a; ~ N (v], m), where v} =

si is N (v, G'iz), where O'iz = ﬁ'(+:'ﬁ')' Therefore,

Hai(v):f ! exp{— > }dx.
—co ’271’0’1-2 20;

We assume the cost is linear: ®;(a;) = ¢;(a; — @), ¢i > 0.

From now on we start to consider the problem from agents 1’s
point of view. Corresponding to equation (1), the expected utility
for 1 at auction stage when truthful report is

(x — v)*

@

, ,
Y1 Y1

E[ui(v))] = 1 Hy(x)dx + ¢, f 1- Hy(x)dx. (5)

—0co —00

The following lemma shows that there always exists an equilibrium
as long as their prior means are the same, which means equilibrium
is reachable for agents with similar beliefs.

LEMMA 3.1. Ifv; = vy, then there exists a NEpp.
Proor. By equation (4) we obtain

(v - 'Ul)z
1 202

1

B}

ad(ay + p1)’

OH;(v) V-
=- e

day  2\2x
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And notice that

om ** 9H,(v)
F 7—\[00 oa; Q1(v)dv — ¢y
e otrayt et
2\/%(6{1 + ﬂl)z Z(Ulz + 0'22) i

combining with equation (3) (5), it can be derived that

6277.'1 __ c1—C 1 exp - (1)1 - UZ)Z
da? 2V2m(ay + Br)* lalz + ol 2(c% + o)
01 (v1 - Uz)z
|:Z(0{1+,81)+ ) 2(1— 2 ) )]
oy + 0, oy + 0y

And the same form for agents 2. So it can be observed that when
v1 = vy, we have x; being strictly concave in ;. By Proposition
8.D.3 in [37], since the strategy space for every agents is [a, ],
which is a nonempty, convex and compact subset of Euclidean
space, combining with that s; is continuous in (a1, @2) and concave
in a;, there exists a Nash equilibrium. O

3.2 Homogeneous Agents

In this subsection, we restrict agents to be homogeneous, meaning
both of them belong to the same class. i.e, v1 = vy = v, 1 = f2 =
B, $1 = ¢2 = ¢. We claim there is one and only one equilibrium
in this setting, and we also show how to derive such purchasing
strategy in the proof.

THEOREM 3.2. For 2 homogeneous agents, 2 slots with GAS Learn-
ing and linear cost, there exists a symmetric and unique NEpp.

PRrROOF. By lemma 3.1, there must exist a NEpp whenv; = vy =
(c1=cp)-(o2+0D) 2
22 (ai+fi)?
Kuhn-Tucker (KKT) first order condition for agents i’s problem,

v.Denote v; (a1, a2) = , then we check the Karush-

76”"((90;1;“2) = vila, @) -¢=-Ai+yi

Ailai—a) = 0 , )
yilap—a) = 0

Ai, Yi > 0

here A; and y; are the Lagrange multipliers for restrictions a; >
and a; < @ respectively.
Suppose there exists an asymmetric equilib:ium (af, a3), wlo.g.
assuming that &} < a;. This implies a] < @ and &, > @. Then
om(af,a;)
by (7), y1 = 0 and A3 = 0. So we have 16—{1112
Oyt .
and nz([+2a2) = y2 2 0. Then ¢ = ®j(a}) = vi(a], ;) >
va(af, ;) = @ (a;) = ¢. Which is a contradiction. So a] = ;.
Now we prove the uniqueness of the equilibrium. First we show

the interior equilibrium is unique. By (7), % = 0 for the interior

= -1 <0

equilibrium. Since we have proved the equilibrium must be sym-
metric, this shows that Omi(ea) _ 0. ie., vi(a, @) — ¢ = 0. Since
o; is increasing in «; and v;(a, @) is decreasing in «, therefore, it
guarantees the uniqueness of interior equilibrium.

Then let us look at the corner equilibrium. There is only two
possible corner equilibriums (@, @) and (a, &). Suppose these two
9mi _ ). <0at

da;
(a0, @) and % =yi 2 0 at (@, a). But this implies ¢

equilibriums exist simultaneously, by (7) we have

> vi(a, @) >
vi(a, @) > ¢. Since ¢ < @, this yields a contradiction. So the corner
equilibrium must be unique.
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Finally we show the interior equilibrium and corner equilibrium
cannot exist concurrently. W.lLo.g., suppose there is an interior
equilibrium (a*, @*) and a corner equilibrium (a, a). Then we have

% =0at (¢*,a*) and g—Zi =y; > 0 at (2, a). But we again see

that ¢ =vi(a*,a*) < vi(a,a) = ¢, contradicting to & < a*. So the
corner equilibrium and the interior equilibrium cannot both exist.

Therefore, we have completed the proof that the equilibrium
must be symmetric and unique. O

Under homogeneous setting, we can observe that only prior
precision f and marginal cost ¢ affect the interior equilibrium a*.
Since the analytic form of v is provided, we can calculate the op-
timal DP strategy in equation v(a) — ¢ = 0, simply by resorting
to classical root-finding algorithms, such as Newton’s method or
Secant method. The relation between a* with f, ¢ are drawn in
Figure 2. We can observe that for fixed ¢, « first increases with
P then decreases, showing the trade-offs agents have to make be-
tween enhancing the precision of knowledge and paying for such
acquisitions. Also agents will tend to purchase less data for higher
marginal cost, confirming intuition.

Figure 2: Homogeneous agents. c; = 1,¢c2 = 1/2

Furthermore, if we view ¢ as the unit price of cookies and let
Rev = 2¢a* be the revenue of the platform provider, we can de-
termine the corresponding revenue-maximization price for Data
Market by a simple first-order derivation.

PROPOSITION 3.3 (REVENUE-MAXIMIZATION PRICE). The revenue-
maximization price for a Data Market with 2 homogeneous agents is
_ (01—02)\/?

%« _ (c1—c2)
¢ T 6Vir

T 6\B3rp’

and equilibrium state a* =

with corresponding optimal revenue Rev™*

B

=3
3.3 Heterogeneous Agents

In this subsection, we consider two directions of modeling hetero-
geneous agents. More concretely, we restrict that v1 = v = v, and
their classes differ only in that either ¢1 # ¢2, or f1 # B2. For these
heterogeneous settings, it is intuitive that (1) agent with higher
precision of prior knowledge will acquire less data when their cost
functions are the same, or (2) agent who has a higher marginal
cost of acquiring data (for example, poor data mining technology)
will buy less even their prior beliefs are the same. We will first
formally define these intuitions and verify them through a detailed
and rigorous analysis.

Definition 3.4 (Intuitive Equilibrium). A profile of (aj, a;) forms
an intuitive equilibrium if @] > @} under condition when ¢; < ¢2

and 1 = S, or condition when ¢1 = ¢ and f; < fa, vice versa.
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THEOREM 3.5. For 2 heterogeneous agents, 2 slots with GAS Learn-
ing and linear cost, there exists a unique NEpp, and it must be intu-
itive.

Proor. First we prove that any equilibrium (o], o) must be

1
_ (ci=cp)-(of+af)"2
T 2Vam(ai+Bi)?
: — — *
Consider when 1 = 2 = Bbut 1 < $2. Suppose a;

om _ _ Oy _
da = /11§0andaaz—y22

0, so again we have ¢, < vz(a;‘,a;,ﬂ,ﬂ) < vl(ai‘,ag,ﬁ,ﬁ) < ¢1,a
contradiction, so we must have af > o when ¢1 < ¢s.

Then consider another case when ¢ = ¢ = ¢ but f; < . Simi-
larly we can derive that ¢ < v2(af, a3, f1, B2) < vi(aj, a3, 1, B2) <
. It is also a contradiction. So @ < a; when f; > .

Finally we prove the uniqueness of equilibrium. The unique-
ness of corner equilibrium can be proved similar to Theorem 3.2.
Consider an interior equilibrium (a7, @) which must satisfy

intuitive. Denote v; (a1, @2, f1, f2)
< a;.Then

it implies &] < @ and & > @. Then

(c1 —c2) - (0% +02)72
2@((1,’ +ﬂi)2

Comparing the forms of i = 1,2 we have

Vi@ + 1) = gt + o). ®)

It serves as a constraint for an equilibrium (a7, a;). Suppose there
exists another interior equilibrium (a7, @), where a; < aj. By
equation (8) we have aé < a;. Then V,’(a{, aé, B1, f2) > V,'(a;“, a;, B
$i. Which implies (o, &;) is not an interior equilibrium. Then there
is only one interior equilibrium. The interior equilibrium and corner
equilibrium cannot exist concurrently for the same reason described
in Theorem 3.2. So we now have completed the proof. O

—¢i=0,i=1,2.

The optimal DP strategy can also be calculated by applying root-
finding algorithms to equations v; — ¢; = 0. From Figure 3, we can
observe that one’s optimal DP strategy would increase with her
adversary’s prior precision and marginal cost.

N 0.0
—1703

Marginal Cost ¢, for 2
1.0 05

102
=\ | DP strategy a;* for 1

101

Rrior i?;’e;:ision B for2

0.0

Figure 3: Heterogeneous agents.c; = 1,c2 = 1/2, 1 = 0.2,¢1 =
0.4.

4 GENERAL LEARNING MODEL WITH
CONVEX COST

In this section, we consider a more general scheme for any N >
2,K > 1. Here we assume the prior valuation distributions to be
homogeneous for all agents: F,(;) = F. We extend the linear cost
model adopted in Section 3 to the space of all convex functions
@,,(i)> which captures the fact that valuable information becomes
rare and harder to find as more efforts are exerted or time is wasted.

,B2) =
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The difference between distinct classes of agents would be reflected
by their cost functions @, ;). The learning structure Hy, follows
the same form for all agents.

First we focus on a homogeneous setting where ®,,(;) = ®. The
following theorem shows that, as long as the learning process H is
strict log-convex with respect to «, the existence, the symmetry as
well as the uniqueness of equilibrium are assured. The intuition of
building such learning structure is that with more data, the relative
probability of information gain from DP would be larger.

THEOREM 4.1. For an SPA </, if Hy, is strict log-convex with

8% log Hy,
% > 0, then there exists a symmetric and
i

unique NEpp for homogeneous agents.

respect to a;, i.e.,

We refer to Appendix A for the detailed proof of this theorem.
From the proof, we can find the purchasing strategy can be obtained
by calculating an equation W;(«) = 0 via root-finding algorithms.

We next consider a heterogeneous setting, where marginal cost
function @’ ;) may vary across different agents. We prove that

classes of higher marginal cost will always acquire less information
at an NEpp, as one direction of generalization for Theorem 3.5.

Definition 4.2 (General Intuitive Equilibrium). An NEpp is gen-
erally intuitive if it satisfies that agents of the same class acquire
the same quality of data: Vi (1 = 5(i)) = Jay(a] = ay). Moreover,
class with larger marginal cost will acquire less data: Vi, g (1 = n(i))A

(6 = n(9) AVa (@),(a) > Py(a) = af < .

THEOREM 4.3. For an SPA <7, if Hy,; is log-convex with respect to
8% log Hy,
% > 0, then if NEpp exists, it must be intuitive for

heterogeneous agents.

a, i.e.,

The proof of Theorem 4.3 is provided in Appendix B.

A representative learning model is the Truth-or-Noise learning,
which we are going to formally define below. It is easy to verify its
log-convexity. As indicated by the name, in this model the quality
of signal is interpreted as the probability that an agent obtains the
ground-truth of w, which is also consistence with existing works
concerning targeting [9].

Definition 4.4 (Truth-or-Noise Learning Model). In truth-or-noise
learning model, priors are uniform distributions on [w, ®]. In other

words, F(x) = %,x € [w,®]. F(x) = 0whenx < wand F(x) = 1
when x > @. The quality of signal @ € (1/2, 1]. Having purchasing

a, one may obtain just her precise w; with probability «, or a noise
signal of sample mean w with probability 1 — a.

5 NUMERICAL RESULTS

In this section, we report our numerical results on how agents
react to different strategic environments. We consider three types
of CTRs: ¢; = 271 ¢; = i1 and ¢; = (log, (i + 1)) "1, We name
them as EXP-CTR, HAM-CTR, and LOG-CTR, in decreasing order
of discounting effects. CTRs that are less discounted may stand for
a more popular online website. The agents in the evaluation are
configured to be homogeneous.

We will mainly investigate on GAS Learning and ToN Learn-
ing agents. We implement classical Newton’s algorithm to find
the optimal strategies. Having examined different combinations of
parameters, we found that normally GAS Learning agents may dis-
play certain properties within relatively small N while ToN is more
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suitable for simulating environment where more agents are partici-
pating. We will next demonstrate our findings under representative
combinations of parameters in the following evaluations.
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Figure 4: GAS Learning. Comparison on number of slots.
Fixed EXP-CTR.

For GAS Learning, we vary the number of agents from 2 to 15
with step 1. We fix at a point f = 0.2, ¢ = 0.4. We first fix at EXP-
CTR in Figure 4. It shows that except for RTB case K = 1 that
the * is decreasing with N, generally for other cases the a* first
increases with N up to a maximal point and then decreases. This
is due to the trade-off between the revenue brought by improving
the valuations precision and the loss ensued by fiercer competition.
Another tendency is that with more competitors coming in and
less ad slots become available, the agents would tend to purchase
less data. This is due to that agents are trying to avoid the risks of
losing the auction as the environment becomes more competitive
even after purchasing huge amount of data, which may bring only
large wasted data expenditure to the agents.
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Figure 5: GAS Learning. Comparison on CTRs. K =5

In Figure 5 we fix K = 5. The curvatures show that for GAS Learn-
ing agents, the uphills of optimal strategies ascend steeper and the
downbhills descend more gently, in websites with less discounting
effects. And in the long run as more competitors participate the
auction, agents tend to purchase more data in LOG-CTR than in
EXP-CTR. This illustrates the incentive effect that CTRs bring to
the agents. It can be interpreted as that in a popular online environ-
ment, such as one with LOG-CTR, agents are more likely to receive
more ad clicks that induces larger profits, than one with EXP-CTR.
Thus agents behave as they want to take chances to obtain higher
revenue in a popular website by purchasing enough amount of data.
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Figure 6: ToN Learning. Comparison on number of slots.
Fixed EXP-CTR.

For ToN Learning, we set the number of agents from 10 to 150
with step 10. We let ¢ = 2. First look at Figure 6. Pay attention
to that unlike GAS Learning, for ToN learning, when K is a even
number it will encounter a sudden drop at point N = K + 2. And for
the same N the optimal ¢* may oscillate between adjacent even and
odd K. But generally, the overall tendency of optimal DP strategies
with respect to N still tends to decline when K becomes much larger,
which again confirms the trade-off agents have to make between
profits made in auction and risk of wasted data purchasing.
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Figure 7: ToN Learning. Comparison on CTRs. K =5

In Figure 7 we can observe that for ToN learning agents they
would purchase most data in LOG-CTR while least in EXP-CTR,
further illustrating the incentive effect in this scenario. But from the
graphs we can also notice that the turning point tends to occur at a
larger N after where the optimal DP strategy decreases more rapidly
as more agents are involved. So ToN learning agents normally
may be suitable for modeling advertisers facing larger number of
competitors.

6 RELATED WORKS

In this section, we briefly review literatures about data usage in an
auction context.

Our work is closely related to previous ones which also con-
sidered the role of data in auctions. Specifically, [30] studied how
would improved targeting affect the revenue when facing different
number of advertisers. [9] researched the value of data for differ-
ent advertisers with different valuations or budgets. [24] designed
an optimal mechanism when considering data usage, which might
bring additional revenue. [22] provides an optimal signaling scheme
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for revenue maximization for a second price auction. [4] designed
an optimal mechanism for selling data by assuming an one-round
protocol. [48] designed strategy-proof data auctions considering
negative externalities. Recent works [5, 20, 40] highlight theoretical
progress about targeting and signaling in ad auctions.

How to choose proper strategy for obtaining costly signals is
the main focus on topic of information acquisition [8, 18], whose
framework naturally fits data usages in auctions. [44] designed an
optimal mechanism considering acquisition process, which casted
insight on our framework design. [34] considered the optimal acqui-
sition strategy for one item in vickery auction, while ours extends
to a wide classes of ad auction with any number of ad slots. Re-
cent work [27] propose the optimal and efficient mechanisms with
dynamic acquisition.

The authors in [7] considered the interdependent relation be-
tween the valuations for acquisition, addressing the role of informa-
tion externalities in an auction. This issue is particular important
in ad auction since advertisers’ valuations toward ad slots may be
interdependent to each other and satisfy common-value model. The
roles of information asymmetries in common-value vickery auction
was addressed in [1], where the complex condition of equilibriums
was refined to as a new concept called TRE. [45] considered two
asymmetrically informed bidders in a common-value auction with
discrete signals and give the characterization of equilibrium. The
authors in [10] derived when would the agents choose to observe
the signal under certain interdependent structure. [25] proposes
an approximation algorithm for winner determination under ex-
ternalities. [36] researched the effect of information externalities
in GSP mechanism, which were naturally raised when considering
data usage. Nevertheless, since in our model the signaling process
is modeled as a complete information game while advertisers’ valu-
ation are assumed to be independent, we do not concern consider
these issues and defer them for future works.

7 CONCLUSION

In this paper, we have considered the data purchasing problem faced
by advertisers before an ad auction. Having properly formulated
the problem and the objective, we started with a simple scenario
and have solved it through rigorous mathematical analysis. The
intuitions have been extended to a more general scheme which
embraces a wide class of learning agents. Our numerical results
have revealed the relations between the optimal strategies with
different configurations of the strategic environment.

A PROOF OF THEOREM 4.1

Proor. First we prove the existence of equilibrium. The log-
convex constraint of Hy; is equivalent to:

0%H;
60{1.2

2 log Hy,
aogal_l[ ©)

- -
aai

OH; 2}
Hi — (22| > 0.
2 13
H:

8ai

2y7,
Then we have 21

Oa?
a;. Thus,
0*mi(ai)

2
da;

> 0 for all a;. And so Hy, is strictly convex in

© A217.
=_f IHi©) b (w)do < 0,

[} (90{12

(10)
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Next we look at the KKT condition for bidder i, denote v; (e, a—;) =

fw 6H“’(v) (v)dv, we have

omGeti) = vi(@)-¥'@) =ity

Ailei—a) = 0 (11)
vi(ai — @) = 0

AisYi > 0

We first prove the equilibrium must be symmetric. Suppose
a} < o, which implies o] < @ and a; > @. We have y; = 0 and
0
Ay = 0. Thus, nl(a+fa”) =-A; < 0and
y2 = 0. Then we obtain ®'(a}) > v1 (al,az, oy
vz(ai‘,a;,afl,z).But we will prove vi (o, o, _1’2) > va(ay, a5,

which leads to @ (e;) < ®’(af).
Look at quantity
* * * * * *
V1 (0(1 e 0‘—1,2) - Vz(()(l T 05_1’2)

@ [ 0Hgx(v) 0Hg;: (v)
- [a—:Q 0:(0)| do.
@ *

2
1(v) da
We want to transform the integrated part in (12) in a more explicit
form. Recall the definition of Q; in Section 2.3 we can observe that
it is a summation whose terms include a series of product of form
H and 1 — H. What we do is simply rearrange the production to
"match" terms of 1, 2. For example, term

6H1 (U) l_[ 5Hz(v) l_[ H, = 1—[ H,

n#2
The similar procedures can be applied to every matched terms.
So we will eventually turn equation (12) into a summation of terms
of form

omy(a, o), a- 12)
Bag
) and @' (a) <

aly,)

(12)

OH;
day
H;

6H2
day
Hp

M. f [6H1 1 6H2 1
daf gi(H) 80{5‘ gi(H2)

Here g1 (H) = Hand g2(H) = 1-H,and M > 0 is a series produc-
tion of form of 1—H and H independent of 1, 2. The strict log-convex
aHai (v)

60!,'

(13)

]dv,iz 1,2.

of H is equivalent to that j#H) is strictly increasing. And

aHai (Z}) 1
Oai  fo(H;)

just by verifying the positiveness of its first derivative on a;:

by (9) we can conclude form of are also increasing

0 O0%H;
- H;) +

(90(,'

OH;

(9szi(v) 1 ] _ 1 ) > 0.

da; 1-Hg;(v) " (1-H;)?

da;

(14)
Therefore, terms of form (13) are all positive. Thus, v (a7, &5, ail, 5) >
va(af, o, ail’z). However, this indicates ®’(a;) < ®'(a;) which
implies a] > @7, a contradiction. So the equilibrium must be sym-
metric.

We now prove the equilibrium must be unique. First we show
the interior equilibrium must be unique. For interior equilibrium
a=(a"a"...a%),vi(a*)-® («*) = 0. Denote Wj(a™) = vi(a™)—
®’(ar*). What we’ll prove is that W; («) is monotonically decreasing.

Notice W/ (a*) = g M

— ®”(a*). Recall we assume that

61’1(‘1)

®”" > 0. And by (10) <0.Fori#n,wlog,leti=1,n=2,
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notice that

o (a f ﬁHl(v) {)Ql(v) o
Bag W a 60{2
“ 9H; OH.
= al(v) 62(7)) Z k(_Rk—l(v) +Rk(‘U)) dv
“© o %2 \i=
@ [ 9H. 2 [K+1
- ( Bl(v)) (Z(Ck—l = ¢)Rg-1(v) |dv <0
w (251 e
Where R; = > [1(1-Hpy) IT Hpfor1<i<K
T. €T le(3,4--NN\T
TC(3,4---N},
|T|=i-1
and Ry = 0.

The idea of the above transformation can be concretely seen
from the following example:

Cll_[HI+CZZ(1_Hn) I—[ Hp+..

daz I#n,1
OH a
2
=—-|c Hy+c|—| | H + 1-Hpy) H
| 1[!1 2 HIZ( n#ﬂ 1
= n,1,2
0H;
“Oay (Cl—Cz)l_[H1+(Cz—03 Z(l—Hn #rllel*'
n

So we can see that the order of CTRs plays an important rule in

% < 0 for i # n. And so W/ (a") < 0. The

monotonicity shows the uniqueness of symmetric equilibrium.

We now move to the proof of the uniqueness of corner equilib-
rium. There are only two possible corner equilibriums: (2, a ... a)
and (a,«...@). By KKT condition (11), we have vi(a, ... ) <
®’(a) for equilibrium (¢, ...a) and vi(a@,a...@) > ®'(a) for
equilibrium (@, « . . . @). By (9) we proved v;(a;, a—;) is strictly de-
creasing in «;, we have v;(@, @ ... @) > vi(a,a ... a), so two possi-
ble equilibriums cannot exist concurrently.

Last we show there is only one possible equilibrium, either inte-

our proof. Thus,

rior or corner. W.Lo.g. suppose (2, ...a) and (a,a ... a) both ex-
ist. Then we have v(a,a...a) = (@) and v(a, @ . .. @) < @' ().
But this implies ®’'(a) = v(a,a...a) < v(z,a...q) < '(a)

which means a < , a contradiction.
We now have completed all the proof that the NEpp must be
symmetric and unique. m]

B PROOF OF THEOREM 4.2

ProOF. by Theorem 4.1, bidders of the same type must acquire
the same quality of information.

Next we consider bidders in different groups of type. Consider
class 1,6 where @) () > @ (a), and bidder i in type y and g in
type 8. If they acquire the same quality of information a*, by equa-
tion (11) we have CDI’J(a*) =vi(a®) = vy(a¥) = <I>’6(oz*) since their
beliefs are identical in prior. But we have assumed <I>/’1 (a) > <I>’5 (a),
so it is a contradiction. Therefore, the quality of information ac-
quired by different type of bidders must be different.

Suppose in this condition a;; > a . Then by Theorem 4.1 we ob-
tain that CIJ;I(aﬂ) =vi(a") < vg(a” ) = (IJ’ (a 5)
to our assumption. So the equilibrium must be intuitive.

which contradicts
]
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