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Abstract
Origin-destination (O-D) travel time estimation is among the most
important problems studied in transportation. It focuses on deter-
mining accurate travel time from a specific origin point to a destina-
tion point. Given the development of new technologies such as GPS
and mobile applications, this data can be easily gathered, improving
the estimation of the O-D travel time and enabling prediction in
almost real-time. Currently, one of the simplest and newest algo-
rithms is the 𝐾𝑁𝑁 −𝑊𝐻 model, an improvement of the K-Nearest
Neighbors method with Haversine distance and a correction factor.
Unfortunately, the direct application of this method can take over
50 minutes to predict a new set of 70,000 data points. This paper
proposes 𝑘 −𝐾𝑁𝑁 −𝑊𝐻 , a new two-step framework that clusters
the data using 𝑘-means and then applies 𝐾𝑁𝑁 −𝑊𝐻 on the corre-
sponding cluster. The empirical results show a minimal impact on
the MAPE performance (1.5%) while reducing the time estimation
process from approximately 50 to 20 minutes.
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1 Introduction
In today’s rapidly advancing and interconnected world, cities are
becoming increasingly crowded, resulting in traffic congestion and
posing significant challenges to urban mobility. Among these prob-
lems, one of the most important is predicting travel time between
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locations, as ensuring the smooth movement of people and goods
within the city is crucial for sustainable economic growth and a
high quality of life. Accurate prediction of travel times between
origin-destination (O-D) pairs enhances traffic management sys-
tems and optimizes public transit by synchronizing traffic flows
with signal control systems and transit schedules.

Early methods for estimating origin-destination (O-D) travel
times primarily relied on home interviews and roadside surveys,
which provide a snapshot of the traffic situation and a limited
amount of data [7]. These methods were complemented by statisti-
cal techniques, such as linear regressionmodels, entropy-maximization
approaches, and maximum likelihood estimation methods [17, 24,
28, 34, 39]. However, given the development of new technologies
such as GPS and mobile applications, massive data can be gathered
on an unmatched scale [25] (spatially and temporally). The GPS
applications offer more precise information to describe movements,
including the location (latitude and longitude) of the origin and
destination of the trip [7, 15]. Then, leveraging this information as
an input for machine learning predictive models has improved the
prediction of O-D travel times.

Machine learning (ML) is a field of computer science that enables
computers to acquire knowledge without explicit programming. In
the last years, several models have been developed to predict O-D
time travel [12, 21, 23, 31, 42, 47]. While most of these methods
consider several variables for their estimation (GPS route, day time,
and others), few models focus on the travel time estimation using
only the origin and destination data points. Among these few mod-
els, one of the simplest and newest algorithms is the 𝐾𝑁𝑁 −𝑊𝐻

model [21]. The 𝐾𝑁𝑁 −𝑊𝐻 is a model based on the K-Nearest
Neighbors method with Haversine distance instead of the Euclidean
distance and a correction factor to improve the O-D time travel
prediction. Even though the results of 𝐾𝑁𝑁 −𝑊𝐻 are statistically
better than other baseline models (KNN, extreme gradient boosting,
regression tree), the direct application of 𝐾𝑁𝑁 −𝑊𝐻 over a new
dataset is empirically slow, taking more than 50 minutes to make
the predictions over 70,000 data points.

In this paper, we propose a new simple two-step framework
by applying 𝑘-means and 𝐾𝑁𝑁 −𝑊𝐻 to speed up the estimation
process of the model, with a small effect on its performance. The
framework will group the data into 𝑁𝑘 clusters using 𝑘-means.
Then, when a new data point arrives, we assign it to a cluster and
estimate the O-D time travel using 𝐾𝑁𝑁−𝑊𝐻 with the data of the
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cluster. By clustering the data into 𝑁𝑘 groups with 𝑘-means, we
reduce the time to predict from 50 to 20 minutes. Unfortunately,
this improvement in the prediction process affects the model’s
performance, as the new data point to predict has access to limited
data.

2 Literature Review
The O-D time travel estimation has historically posed a challenge.
Initially, the estimation methods were simple and based on home
and roadside surveys [5]. Then, during the 1970s decade, along-
side the development of computing, several linear models were
proposed, such as linear regression [24], Holm’s [17], Common-
wealth Bureau of Roads [35], and Lamarre’s models [22]. Also, non-
linear regression models were introduced, including Robillardls
[29], Hogberg’s [16], and Wills’s [43] models. In the 1980’s decade,
new methods were explored, such as entropy maximization models
[3, 36, 39], and maximum likelihood estimation models, often em-
ploying a Poisson distribution [4, 33, 38]. In the following 20 years
(1990-2009), the least-squares approach was employed, aiming to
minimize the sum of squared differences between each potential
element of the observed data points [6, 10, 11, 28, 34].

In the last years (2010-present), advancements in technologies
like GPS and mobile applications have enabled the collection of
large volumes of data [25], allowing the creation of new models for
the estimation of the O-D travel time [26, 27]. This resulted in the
use of graphical models [30] and machine learning (ML) models
[2, 48] to forecast the time. For example, a 2014 study utilized
graphical models to estimate the O-D travel time [9]. However,
the computational complexity, due to the numerous variables and
relationships involved (each location is treated as a variable), has
constrained further research in this area.

Multiple approaches have been considered for estimating the
O-D time travel. [46] proposed an ensemble model with Gradient
Boosting Regression Tree to improve the prediction accuracy of
travel time. This model was later used to empirically reveal the real-
world demand for shared mobility-on-demand ride services [8]. In
2016, one of the first frameworks based on the k-nearest-neighbor
model (KNN) was published. This study concluded that simple mod-
els can be empowered by big data [40]. Later, [20] proposed a deep
learning technique that combines convolutional layers and long
short-term memory (LSTM) layers, but instead of time prediction,
they focus on demand. [19] proposed a spatio-temporal Neural Net-
work composed of two different modules, that jointly predict the
travel distance and travel time of the trip. The first module predicts
the travel distance, and the output is combined with the time of day
to forecast the travel time. Based on the work of [40], [5] estimates
the travel time for specific O-D points by using a combination of
KNN with shortest-path convex optimization. First, the KNN al-
gorithm for each O-D pair identifies ‘k’ similar trips, establishing
similar routes. Then, the optimization technique focuses on finding
the shortest path for each O-D pair over those discovered routes,
while minimizing the travel time.

Since 2020, the models to estimate O-D travel time have been
mainly based on neural networks and deep learning techniques,
changing the focus of the prediction to demand and flow. [44] esti-
mates the demand between O-D pairs by combining a Graph Neural

Network and the Kalman filter. [18] applies a graph convolutional
neural network to predict demand. The convolutions over the net-
work structure allow the extraction of information from nodes and
their neighbors. [37] proposes a three-dimensional convolution-
based deep neural network to capture the complex relationships
between local traffic patterns and time-of-day patterns, enabling
accurate predictions of travel demand. [41] forecasts bus passenger
flows (demand) between regions using two steps. First, the O-D
data is processed by a Convolutional Neural Network (CNN) to
capture spatial relationships and patterns within the data. Then,
these results are given to an LSTM neural network to remember
information over long periods and generate the predictions. [31]
includes urban congestion and taxi flow to predict O-D taxi travel
time. After including these data, the paper uses a Gated Recurrent
Unit neural network (GRU) for the prediction. [12] predicts travel
time using a support vector regressor over a set of features gener-
ated by four different neural networks (CNN, LSTM, multiplayer
perceptron, and GRU). Lastly, [23] proposed a personalized O-D
travel time estimation using Transformers and active adversarial
inverse reinforcement learning. Finally, [47] also considers the O-D
time travel prediction as a graph problem. In this case, after a feature
extraction process of the graph, the paper considered several neural
networks (Double Deep Q-Network, SSML, and MetaER-TTE) to
make the final prediction.

3 Proposed Method
This section presents a two-step framework to improve the predic-
tion times between an origin and destination (O-D) using 𝑘-means
and 𝐾𝑁𝑁 −𝑊𝐻 . The proposed framework combines two models:
𝑘-means [13] and a weighted 𝐾-Nearest Neighbor with Haver-
sine distance (𝐾𝑁𝑁 −𝑊𝐻 , [21]). The first step of the framework
groups similar data points, and then these groups are used sepa-
rately as the input for the predictive model (𝐾𝑁𝑁 −𝑊𝐻 ). Applying
𝐾𝑁𝑁 −𝑊𝐻 to individual clusters reduces the number of computa-
tions compared to using the entire training dataset, which decreases
prediction time with only a slight impact on model performance.

The proposed 𝑘−𝐾𝑁𝑁 −𝑊𝐻 framework is shown in Figure 1,
where 𝑘-means has been previously trained. As can be observed
in the left plot of Figure 1, a data point has four attributes corre-
sponding to a trip’s origin and destination coordinates. So, let x𝑖
be (𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑜 , 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑜 , 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑑 , 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑑 ), where the sub-
indexes 𝑜 and 𝑑 mean origin and destination, respectively. Then, in
the center plot, x𝑛 is used as input into the learned 𝑘-means model
and assigned to 𝐺𝑚 one of the 𝑁𝑘 possible clusters (𝐺1, . . . ,𝐺𝑁𝑘

).
Finally, in the right plot, the time travel for x𝑛 is predicted using
the 𝐾𝑁𝑁 −𝑊𝐻 model, based only on the data of the 𝐺𝑚 cluster.

The 𝑘-means model is a centroid-based iterative clustering algo-
rithm [13]. It aims to separate a set of observationsX = {x1, . . . , x𝑁𝑡

}
into 𝑁𝑘 different groups/clusters G = {𝐺1, ...,𝐺𝑁𝑘

}, where each clus-
ter 𝐺 𝑗 has a representative center point called centroid c𝑗 . The
model seeks to minimize the within-cluster distance (WCD) given
by Eq. (1). This metric calculates the total distance between each
observation (x𝑖 ) and its centroid (c𝑗 ), i.e., the WCD is the sum of
the clusters’ wcd which corresponds to the distance between each
point x𝑖 (that belongs to𝐺 𝑗 ) and its centroid c𝑗 . Note, 𝑑𝑖𝑠𝑡 from Eq.
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Figure 1: 𝑘−𝐾𝑁𝑁−𝑊𝐻 Framework. Left: training datasets corresponding to origin and destination (O-D) points. Center: k-means
is applied to the new datapoint (x𝑛), which is assigned to the cluster 𝐺𝑚 (each black line shows the centroid of a cluster
represented by its origin (circle) and destination point (end of line)). Right: the final prediction is estimated using the data
points from 𝐺𝑚 and the 𝐾𝑁𝑁 −𝑊𝐻 model with 𝑁𝑝 = 3.

(1) is usually the Euclidean distance, but for this paper, we use the
Haversine distance to be consistent with the 𝐾𝑁𝑁 −𝑊𝐻 model.

WCD(G) =
𝑁𝑘∑︁
𝑗=1

wcd(𝐺𝑛) =
𝑁𝑘∑︁
𝑗=1

∑︁
x𝑖 ∈𝐺 𝑗

dist(x𝑖 , c𝑗 ) (1)

There aremultiple algorithms and strategies tominimize𝑊𝐶𝐷 (G)
(Eq. (1)). One of the simplest algorithms is to randomly select 𝑁𝑘
data points as initial centroids (c1, . . . , c𝑁𝑘

) and assign each point
x𝑖 to one of the centroids. Then, the centroids are recalculated as the
average of all the data points belonging to each cluster. Finally, this
process is repeated until convergence (the centroids do not change
in one iteration). To select the number of clusters (𝑁𝑘 ), a typi-
cal heuristic is the “elbow” method. This heuristic plots𝑊𝐶𝐷 (G)
against different numbers of clusters, and the “correct” number of
clusters corresponds to the inflection point (“elbow”) of the curve
[1]. This paper does not aim to determine the optimal number of
clusters, as the primary focus is to evaluate the performance of our
proposed framework (combining 𝑘-means with 𝐾𝑁𝑁 −𝑊𝐻 ) in
terms of error and processing time.

The 𝐾𝑁𝑁 −𝑊𝐻 model [21] is a supervised learning method
based on 𝐾𝑁𝑁 regressor [32]. For this paper, given a set of ob-
servations X = {x1, . . . , x𝑁𝑡

}, 𝐾𝑁𝑁 predicts the time 𝑡𝑛 of a trip
x𝑛 , based on the information of its 𝑁𝑝 nearest points (also called
neighbors). This proximity between points is determined using a
distance metric, such as the Euclidean distance. 𝐾𝑁𝑁 starts by
calculating the distance between x𝑛 and each point x𝑖 ∈ X, then
it generates N(x𝑛) corresponding to the 𝑁𝑝 closest neighbors of
x𝑛 . Finally, the estimated 𝑡𝑛 is the average over the outputs of each

x𝑖 ∈ N (x𝑛). For example, if 𝑁𝑝 = 3 and N(x𝑛) = {x3, x6, x19},
then 𝑡𝑛 =

𝑡3+𝑡6+𝑡19
3 .

The 𝐾𝑁𝑁 −𝑊𝐻 model considers three modifications with re-
spect to KNN regressor. First, it uses the Haversine distance instead
of the Euclidean distance. Second, instead of assigning equal impor-
tance to each neighbor (averaging their values), the 𝐾𝑁𝑁 −𝑊𝐻

assigns a weight 𝑤𝑖 to each neighbor of x𝑛 (x𝑖 ∈ N (x𝑛)). The
weight is defined by Eq. (2), and it is inversely proportional to the
distance of the data point to its neighbors. Note, these weights
are also a common approach in the original KNN regressor model
[32]. Finally, the estimated time of 𝑡𝑛 is given by Eq. (3), where
𝐾𝑁𝑁 −𝑊𝐻 corrects the potential bias generated by the 𝑁𝑝 chosen
observations by considering the traveled distance of each neighbor
trip (x𝑖 ∈ N (x𝑛)). So, the value for 𝑡𝑛 is adjusted based on two dis-
tances, the distance of the trip being predicted (𝑑𝑛) and the distance
trip of each neighbor (𝑑𝑖 ). Continuing with the previous example,
whereN(x𝑛) = {x3, x6, x19}, while the basic KNNmodels estimates
𝑡𝑛 =

𝑡3+𝑡6+𝑡19
3 , 𝐾𝑁𝑁 −𝑊𝐻 predicts 𝑡𝑛 = 𝑑𝑛 [𝑤3𝑡3

𝑑3
+ 𝑤6𝑡6

𝑑6
+ 𝑤19𝑡19

𝑑19
].

A pseudocode of the proposed framework 𝑘−𝐾𝑁𝑁 −𝑊𝐻 can
be observed in Algorithm 1. The algorithm receives as input the
training data (X) with their outputs (t), the clusterization of the
original data generated by k-means (G), the number of data points
using for the estimation (𝑁𝑝 ), and the data point to estimate x𝑛 .
Lines 3 to 6 calculate the distance for each centroid to every point
using the information fromG. Then, lines 7 and 8 calculate the index
of the closest centroid to x𝑛 . Line 9 obtains the output corresponding
to the data points from cluster𝐺𝑚 (obtaining all the training data
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points for 𝐾𝑁𝑁 −𝑊𝐻 ). Finally, line 10 estimates the trip distances
using the 𝐾𝑁𝑁 −𝑊𝐻 model.

Algorithm 1 : 𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 (𝑘-means & 𝐾𝑁𝑁 −𝑊𝐻 )
1: Input: X, t, G, 𝑁𝑝 , x𝑛
2: Output: 𝑡𝑛 (time travel prediction)
3: #Assigning the data point to a cluster
4: for 𝑖 from 1 to |G| ≡ 𝑁𝑘 do
5: 𝑑𝑖,𝑛 = distance between centroid c𝑖 and x𝑛
6: end for
7: # Obtaining the index of the closest centroid to x𝑛
8: 𝑚 = argmin

𝑖
𝑑𝑖,𝑛

9: X𝐺𝑚
, t𝐺𝑚

= training data corresponding to cluster 𝐺𝑚
10: 𝑡𝑛 = 𝐾𝑁𝑁 −𝑊𝐻 (X𝐺𝑚

, t𝐺𝑚
, 𝑁𝑝 , x𝑛).

𝑤𝑖 =
©­«

∑︁
x𝑗 ∈N(x𝑛 )

1
𝑑 (x𝑛, x𝑗 )

ª®¬
−1

1
𝑑 (x𝑛, x𝑖 )

, ∀x𝑖 ∈ N (x𝑛) (2)

𝑡𝑛 =
∑︁

x𝑖 ∈N(x𝑛 )

𝑑𝑛

𝑑𝑖
𝑤𝑖𝑡𝑖 (3)

4 Experimental methodology
In this section, we describe the dataset, evaluation, and experiment
to demonstrate the speedup in the estimation processing time of
our proposal.

This paper uses the Fantaxico data set available in the GitHub
repository ‘k-KNN-WH’, and previously used in [14, 15, 21, 45]. The
Fantaxico data set corresponds to a real dataset with 356,930 taxi
trips from Santiago, Chile [21]. The dataset has four variables corre-
sponding to the latitude and longitude of the origin and destination
(O-D pairs), one variable corresponds to the trajectory distance, and
the final variable is the travel time of the trip (our objective variable).
The dataset corresponds to taxi trips within the latitude -33.87 to
-33.15 and longitude -70.98 to -70.40, corresponding to Santiago,
Chile. The trips were collected over weekdays from three different
months in different years (March 2014, 2015, 2016, July 2014, 2015,
2016, and November 2014, 2015). The trips have a distance of at
least 30 meters, an average speed of less than 110 kilometers per
hour, and a trip time of less than 3 hours.

We evaluated our framework 𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 , using two differ-
ent metrics, time in minutes and Mean Absolute Percentage Error
(MAPE), for different numbers of clusters. The time corresponds
to the original prediction time of the 𝐾𝑁𝑁 −𝑊𝐻 model against
our framework’s training (k-means) and prediction time. We also
estimate the MAPE performance over the dataset to corroborate
that 𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 still performs well for time travel prediction.
The MAPE is given by equation (4), and it corresponds to the av-
erage percentage error of the prediction (𝑡𝑖 − 𝑡𝑖 ) with respect to
the real value (𝑡𝑖 ). One of the main problems of the MAPE is the
undefined value of the equation when 𝑡𝑖 = 0. However, this is not
a problem for this dataset, given that the shortest time equals 1
minute. We discard other metrics, such as mean square error, to

keep a fair comparison against the original 𝐾𝑁𝑁 −𝑊𝐻 , which
focused on MAPE [21].

𝑀𝐴𝑃𝐸 =
1
𝑁𝑡

𝑁𝑡∑︁
𝑖=𝑖

���� 𝑡𝑖 − 𝑡𝑖𝑡𝑖

���� × 100 (4)

To estimate the metrics (time in minutes and MAPE), we use
a 𝑘-fold cross-validation with 𝑘 = 5. 𝑘-fold is a methodological
process where the dataset is separated into 𝑘-folds, 𝑘 − 1 folds are
used as training data, and the remaining fold is used as test data.
The process is repeated 𝑘 times, so each fold is used as test data.
After applying 𝑘-fold cross-validation, we obtain 𝑘 different values
for training and test, so the final results correspond to the mean
and standard deviation over these 𝑘 folds.

For the experiment, we limited the hyperparameter tuning to
the number of clusters. Recall that the main focus of this paper is to
speed up the estimation process of the model, keeping a comparable
performance. So, to keep a fair comparison, we fixed the number
of neighbors to 𝑁𝑝 = 20, replicating the experiment from [21],
and varied the number of clusters 𝑁𝑘 from 1 to 30, where 𝑁𝑘 = 1
corresponds to the 𝐾𝑁𝑁 −𝑊𝐻 model.

5 Results
The results of this paper can be observed in Figures 2 to 4. While
the first two figures show the time in minutes of the k-means
and estimation process, Figure 4 shows the MAPE of our proposal
against the baseline (𝑁𝑘 = 1). The experiments were run on a
2023 Mac Studio equipped with an Apple M2 Ultra chip, 64 GB
of RAM, and macOS Sonoma 14.3.1. The authors implemented all
the code, which is available in the following GitHub repository
https://github.com/Sofialcist/k-KNN-WH.

As can be observed in Figure 2, the average 𝑘-means time varies
between 0.0 and 0.3 seconds. Note that this time is offline. This
implies that the training process of the 𝑘-means can be applied
before we get any set of data points to predict (test set). For this
reason, we omit 𝑘-means in the final prediction time. Also, the small
standard deviation shows that all times are stable.

Figure 3 shows themean and standard deviation of the total times
in minutes to analyze the test fold using the 𝐾𝑁𝑁 −𝑊𝐻 model. As
can be observed, when 𝑁𝑘 = 1, the original𝐾𝑁𝑁 −𝑊𝐻 can take up
to 54 minutes to predict one fold of test data (approximately 71,386
data points). In contrast, increasing the number of clusters (𝑁𝑘 )
considerably reduced the time to make the prediction, reducing
from 54 to 34 minutes by just separating the data into two clusters.
As can be expected, the reduction of time can be even larger when
𝑁𝑘 increases, decreasing the time to approximately 20 minutes
with 𝑁𝑘 = 4. However, the impact on the reduction time is smaller
when 𝑁𝑘 increases, and with 𝑁𝑘 > 20, it starts to plateau around
10 minutes. Similarly to the training time of the 𝑘-means, the small
standard deviations show that the estimation times are stable.

Figure 3 shows the mean and standard deviation of the MAPE
performance using the 𝑘 −𝐾𝑁𝑁 −𝑊𝐻 framework on the test data,
where 𝑁𝑘 = 1 corresponds to the original 𝐾𝑁𝑁 −𝑊𝐻 model. Note,
the training data has MAPE=0 because the closest neighbor of a
training data point is itself, and an infinite importance is assigned
in the prediction. As expected, the performance decreases when
the number of clusters is increased. This behavior can be explained

https://github.com/Sofialcist/k-KNN-WH
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Figure 2: first stage of the 𝑘−𝐾𝑁𝑁 −𝑊𝐻 framework: 𝑘-means
training time inminutes using 1 to 30 clusters, in the training
set.

Figure 3: Second stage of the 𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 framework:
𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 prediction time in minutes, in the test set,
using 1 to 30 clusters.

by the lower number of data points used to predict each data point.
However, as can be observed in the plot, even though the perfor-
mance decrease is statistically significant, the MAPE increase is
minimal compared to the time that can be saved using the proposed
framework. Just as an example, if we use 𝑁𝑘 = 4, increasing the
MAPE from 35.98%±0.16% to 37.54%±0.18% (a 1.56% difference), the
time prediction is reduced from approximately 50 to 20 minutes, a
60% decrease with respect to the original time.

6 Conclusions
In this paper, we propose 𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 , a two-step framework
(𝑘-means and 𝐾𝑁𝑁 −𝑊𝐻 ), to speed up the prediction time of the

Figure 4:MAPE performance of the𝑘−𝐾𝑁𝑁−𝑊𝐻 framework,
in the test set, using 1 to 30 clusters.

𝐾𝑁𝑁 −𝑊𝐻 model, with minimal impact on the original perfor-
mance. The framework starts by clustering the original training
data with 𝑘-means using 𝑁𝑘 clusters. Then, when a new set of data
points is used as input for prediction, each data point is assigned
to one of the 𝑁𝑘 clusters, and the 𝐾𝑁𝑁 −𝑊𝐻 model is used to
predict the travel time with 𝑁𝑝 = 20 neighbors.

The empirical study shows an increment of MAPE from 35.98%
to 38.91% for 𝑁𝑘 = 30 while decreasing the prediction time from
54 to 10 minutes. Although minimal hyperparameter tuning was
performed, setting 𝑁𝑘 = 4 produces a negligible impact on the
performance (1.56%), but a significant time reduction (30 minutes).

The proposed 𝑘 − 𝐾𝑁𝑁 −𝑊𝐻 framework shows promising
results, but the framework can still be improved. First, instead of
using 𝑁𝑝 = 20 for all the clusters, a hyperparameter tuning over
𝑁𝑝 for each of the 𝑁𝑘 clusters should reduce the overall MAPE.
This reduction could lead to even better results than the original
model. We also propose to change the 𝑘-means model for 𝑂𝐷-
means.𝑂𝐷-means is a two-step hierarchical clustering process able
to obtain general and local patterns on O-D data points. Better
clusters over the data should also help to improve the model’s
MAPE performance.
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