Under review as a conference paper at ICLR 2026

ROSARL: REWARD-ONLY SAFE REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

An important problem in reinforcement learning is designing agents that learn
to solve tasks safely in an environment. A common solution is to define either a
penalty in the reward function or a cost to be minimised when reaching unsafe states.
However, designing reward or cost functions is non-trivial and can increase with the
complexity of the problem. To address this, we investigate the concept of a Minmax
penalty, the smallest penalty for unsafe states that leads to safe optimal policies,
regardless of task rewards. We derive an upper and lower bound on this penalty by
considering both environment diameter and solvability. Additionally, we propose
a simple algorithm for agents to estimate this penalty while learning task policies.
Our experiments demonstrate the effectiveness of this approach in enabling agents
to learn safe policies in high-dimensional continuous control environments.

1 INTRODUCTION

Reinforcement learning (RL) has recently achieved success across a variety of domains, such as video
games (Shao et al., 2019), robotics (Kalashnikov et al., 2018; Kahn et al., 2018) and autonomous
driving (Kiran et al., 2021). However, if we hope to deploy RL in the real world, agents must be
capable of completing tasks while avoiding unsafe or costly behaviour. For example, a navigating
robot must avoid colliding with objects and actors around it, while simultaneously learning to solve
the required task. Figure 1 shows an example.

Many approaches in RL deal with this problem by allocating arbitrary penalties to unsafe states
when hand-crafting the reward function. However, the problem of specifying a reward function for
desirable, safe behaviour is notoriously difficult (Amodei et al., 2016). Importantly, penalties that are
too small may result in unsafe behaviour, while penalties that are too large may result in increased
learning times. Furthermore, these rewards must be specified by an expert for each new task an agent
faces. If our aim is to design truly autonomous, general agents, it is then simply impractical to require
that a human designer specify penalties to guarantee optimal but safe behaviours for every task.

TRPO TRPO Lagrangian CPO TRPO Minmax (Ours)
®e., .0 ®e. .0 oo . %=
Ao S, Py
® ‘e ® ‘e ® ‘e
o ® o

Figure 1: Sample trajectories of representative prior works—TRPO (Schulman et al., 2015) (left-
most), TRPO-Lagrangian (Ray et al., 2019) (middle-left), CPO (Achiam et al., 2017) (middle-right)—
compared to ours (right-most) in the Safety Gym domain (Ray et al., 2019). For each, a point mass
agent learns to reach a goal location (green cylinder) while avoiding unsafe regions (blue circles).
The cyan block is a randomly placed movable obstacle. Our approach learns safer policies than the
baselines, and works by simply changing the rewards received for entering unsafe regions to a learned
penalty (keeping the rewards received for all other transitions unchanged).

Under review as a conference paper at ICLR 2026

When safety is an explicit goal, a common approach is to constrain policy learning according to
some threshold on cumulative cost (Schulman et al., 2015; Ray et al., 2019; Achiam et al., 2017).
While effective, these approaches require the design of a cost function whose specification can
be as challenging as designing a reward function. Additionally, these methods may still result in
unacceptably frequent constraint violations in practice, due to the large cost threshold typically used.

Rather than attempting to both maximise a reward function and minimise a cost function, which
requires specifying both rewards and costs and a new learning objective, we should simply aim to have
a better reward function—since we then do not have to specify yet another scalar signal nor change
the learning objective. This approach is consistent with the reward hypothesis (Sutton & Barto, 2018)
which states: “ All of what we mean by goals and purposes can be well thought of as maximisation
of the expected value of the cumulative sum of a received scalar signal (reward). ” Therefore, the
question we examine in this work is how to determine the Minmax penalty—the smallest penalty
assigned to unsafe states such that the probability of reaching safe goals is maximised by an optimal
policy. Rather than requiring an expert’s input, we show that this penalty can be bounded by taking
into account the diameter and solvability of an environment, and a practical estimate of it can be
learned by an agent using its current value estimates. We make the following contributions:

(i) Bounding the Minmax penalty: We provide analytical upper and lower bounds on the
Minmax penalty for unsafe transitions, and prove that using the upper bound results in
policies that minimise the probability of reaching unsafe transitions (Theorem 2).

(i) Learning safety bounds: We show that these bounds can be accurately estimated using
policy evaluation (Sutton & Barto, 2018) (Theorem 1). Additionally, we show that
estimating the Minmax penalty or bounds is NP-hard since it requires solving a longest
path problem (Theorem 3).

(iii) Learning safe policies: Building on our theoretical analysis, we present a practical,
model-free algorithm that allows agents to learn a sufficient penalty for unsafe transitions
while simultaneously learning task policies (Algorithm 1). Since this approach only
modifies the reward received for unsafe transitions, it is easily integrated into any existing
RL pipeline that uses value-based methods.

2 BACKGROUND

We consider the typical RL setting where the task faced by an agent is modelled by a Markov Decision
Process (MDP). An MDP is defined as a tuple (S, A, P, R), where S is a finite set of states, .4 is a
finite set of actions, P : S x A xS — [0 1] is the transition probability function, and R : Sx AxS —
[Rvmin Rmax] is the reward function. Our focus is on undiscounted MDPs that model stochastic
shortest path problems (Bertsekas & Tsitsiklis, 1991) in which an agent must reach some goals in
the non-empty set of absorbing states G C S. The set of non-absorbing states S \ G are referred to as
internal states. We will also refer to the tuple (S, A, P) as the environment, and the MDP (S, A, P, R)
as a task to be solved. The agent is then associated with a policy m : S — A which it uses to take
actions in the environment. The quality of a policy is usually defined by its value function V™ (s) =
E™[>",2 o R(st, ar, s¢+1)], which specifies the expected return under that policy starting from state s.

Standard RL: The standard goal of an agent is to learn an optimal policy 7* that maximises the
value function V™ (s) = max, V7 (s) for all s € S. Since tasks are undiscounted, 7* is guaranteed
to exist by assuming that the value function of improper policies is unbounded from below—where
proper policies are those that are guaranteed to reach an absorbing state (Van Niekerk et al., 2019).
Since there always exists a deterministic 7* (Sutton & Barto, 1998), and 7* is proper, we will focus
our attention on the set of all deterministic proper policies II.

Safe RL: This setting is typically modelled in prior works by a constrained Markov Decision Process
(CMDP) (S, A, P, R, K, 1), which augments an MDP with a cost function K : § x A x § — R and
a cost threshold [€ R (Altman, 1999). Here, a given policy 7 can also be characterised by its cost
value function VZ(s) = E™[Y 72) K (s¢, ar, s¢+1)], and the policy is feasible if VZ(s) < [for all
s € §. Where I1 is the set of all feasible policies, the goal of an agent here is now to learn an optimal

safe policy 7* that maximises the value function V7 (s) = max. g V7(s)forall s € S (Ray etal.,

2019). To ensure that 7* exists and is well defined, II must not be empty, which means that K and
! must be chosen carefully such that there exists a policy 7 that satisfies V7 (s) < [forall s € S.

Under review as a conference paper at ICLR 2026

ROSARL (Ours): In contrast to most prior works, in this work we are interested in learning safe
policies without the need to specify cost functions and cost thresholds. In particular, we are interested
in learning policies that can maximise rewards while avoiding unsafe transitions, where any unsafe
transition immediately leads to termination in a set of unsafe absorbing states G' C G. Since some
environments may have no policy that avoids unsafe transitions with probability 1, we formally define
a safe policy as a proper policy that minimises the probability of unsafe transitions (Definition 1).
Hence, where II is the set of all safe policies, the goal of an agent in this work is to learn an optimal
safe policy 7* that maximises the value function V7 (s) = max_ cfi V7(s)foralls € S.

Definition 1 Consider an environment (S, A, P) with unsafe states G' C G. Where st is the final
state of a trajectory starting from state s, let PT(sp € G') be the probability of reaching G' from s

under a proper policy m € I1. Then 7 is called safe if ™ € arg min PS’T/ (sp €G') foralls € S.
n/€ll

3 AVOIDING UNSAFE ABSORBING STATES

Given an environment, we aim to bound the smallest penalty (hence the largest reward) to use for
unsafe transitions to guarantee optimal safe policies. We define this penalty as the Minmax penalty
RuMinmax, Which is the largest reward for unsafe transitions that lead to optimal safe policies:

Definition 2 Consider an environment (S, A, P) where task rewards R(s, a,s') are bounded by
[Ryiv Ruax] forall s' € G'. Let w be an optimal policy for one such task (S, A, P, R). We define
the Minmax penalty of this environment as the scalar Ryjinmar € R that satisfies the following:

(i) If R(s,a,s") < Ruytipmax for all s' € G', then 7* is safe for all R;

(ii) If R(s,a,5") > Ryinmax for some s' € G' reachable from S \ G, then there exists an R s.t.
T is unsafe.

Hence, the Minmax penalty represents the boundary where on one side no reward function has an
optimal policy that is unsafe, and on the other there exist a reward function with an optimal policy
that is unsafe. Interestingly, when R(s, a,s’) = Ruinmax, there may exist optimal safe and unsafe
policies simultaneously—hence no RL algorithm with such rewards can be guaranteed to converge
to optimal safe policies. We next demonstrate this using the Chain-walk running example.

3.1 A MOTIVATING EXAMPLE: THE CHAIN-WALK ENVIRONMENT

To illustrate the difficulty in designing reward functions for safe behaviour, consider the simple
chain-walk environment in Figure 2a. It consists of four states s, s1, Sa2, 3 where G = {s1, 53}
and G' = {s1}. The agent has two actions a1, ag, the initial state is sg, and the diagram denotes the
transition probabilities. Task rewards for safe transitions are bounded by [Ryin Rmax] = [—1 0].
The absorbing transitions have a reward of 0 while all other transitions have a reward of Rg.p = —1,
and the agent must reach the goal state ss, but not the unsafe state s;. Hence, the question here is
what penalty to give for transitions from sg into s; such that the optimal policies are safe. Figures
2b-2d exemplify how too large penalties result in longer convergence times, while too small ones
result in unsafe policies, demonstrating the need to find the Minmax penalty.

Since the transitions per action can be stochastic, controlled by p;,ps € [0 1], and s3 is further
from the start state sg than s;, the agent may not always be able to avoid s;. Consider for example
the deterministic case when p; = py = 0. For any penalty less than —2 for transitions into s1, the
optimal policy in s is to always pick as which always reaches s;. For a sufficiently high penalty for
reaching s; (any penalty higher than —2), the optimal policy in sg is to always pick action a1, which
always reaches ss. Interestingly, if the penalty is exactly —2, then both action a; (safe transition
to s9) and action ay (unsafe transition to s;) are optimal—hence an RL algorithm here will not
necessarily converge to the optimal safe action a;. Additionally, for p; = ps = 0.4 (Figure 2¢), a
higher penalty is required for a; to stay optimal in state sg.

To capture this relationship between the stochasticity of an environment and the required penalty
to obtain safe policies, we introduce a notion of solvability, which measures the ability of an agent
to reach safe goals. Additionally, observe that as p» increases, the probability that the agent can

Under review as a conference paper at ICLR 2026

Penalty €[—10 0]
Penalty €[-10 0]
Penalty €[-10 0]

p1=p2€[01] Retep €[-1 0] Rstep € [=1 0]
(a) Chain-walk (b) Failure rates with (c) Failure rates (d) Total timesteps
Rotep = —1 with p1=p2=0.4 with p1=p2=0.4

Figure 2: The effect of different choices of penalty for unsafe transitions (sg to s1) on optimal policies
in the chain-walk environment. (a) The transition probabilities of the chain-walk environment (where
p1,p2 € [0 1]); (b) The failure rate for each penalty in [—10 0] and each transition probabilities
(p1 = p2 € [0 1)), with a task reward of R, = —1; (c) The failure rate for each penalty in [—10 0]
and each task reward in [—1 0], with transition probabilities given by p; = pa = 0.4; (d) The total
timesteps needed to learn optimal policies to convergence (using value iteration (Sutton & Barto,
1998)) for each penalty in [—10 0] and each task reward in [—1 0], with transition probabilities given
by p1 = p2 = 0.4. The black dashed lines in (b) and (c) show the Minmax penalty.

transition from ss to s3 decreases—thereby increasing the number of timesteps spent to reach the
goal. Therefore, the penalty for s; must also consider the environment’s diameter to ensure an optimal
policy will not simply reach s; to avoid self-transitions in ss.

3.2 ON THE DIAMETER AND SOLVABILITY OF ENVIRONMENTS

Clearly, the size of the penalty that needs to be given for unsafe states depends on the size of the
environment. We define this size as the diameter of the environment, which is the highest expected
timesteps to reach an absorbing state from an internal state when following a proper policy:

Definition 3 Define the diameter of an environment as D = mg\xg maﬁ(]E [T'(st € G|m)], where
s€ S

T(st € G|m) is the timesteps taken to reach G from s when following a proper policy .

This definition of diameter is similar to the one used in ?, except that here we are maximising
over deterministic proper policies instead of minimising over all deterministic policies. Given this
diameter, a possible natural choice for the reward for unsafe states is to give a penalty that is as
large as receiving the smallest task reward for the longest path to safe goal states: Ryax = RyinD’,

where D’ is the diameter for safe policies D’ = mg\xg maﬁcE [T(sr € G\ G'|r)] . However, while
s€ e

Ruax aims to make reaching unsafe states worse than reaching safe goals, it does not consider the
solvability of an environment, nor the possibility that an unsafe policy receives Ryax everywhere in
its trajectory. We can formally define the solvability of an environment as follows:

Definition 4 Define the degree of solvability as C := min min PT(sp ¢ G').

SES g well
\ PT (s 2G")#0

C measures the degree of solvability of the environment by simply taking the smallest non-zero
probability of reaching safe goal states by following a proper policy. For example, if the dynamics
are deterministic, then any deterministic policy 7w will either reach a safe goal or not. That is,
Pr(sy ¢ G') will either be 0 or 1. Since we require P"(sp € G') # 0, it must be that C' = 1.
Consider, for example, the chain-walk environment with different choices for p. Since actions in
s do not affect the transition probability, there are only 2 relevant deterministic policies 7 (s) — aq
and 72(s) — as. This gives PT (sp € G') = (1 —p1)1(p2 = 1) and P™2(sp € G') = p11(p2 = 1).
Here, C' = 1 when p; = ps = 0 because the task is deterministic and s3 is reachable. C' then
tends to 0.5 as p; and po gets closer to 0.5, making the environment uniformly random. Finally,
the environment is not solvable when p = 1 since s3 is unreachable from s5. Hence we can also
think of C' = 0 as the limit of C' when safe goals are unreachable. Interestingly, this means that in
deterministic environments our definition of solvability is similar to reachability in temporal-logic
tasks—where there may or may not exist a policy that satisfies a task specification (?).

Under review as a conference paper at ICLR 2026

{
pr=p2€101] 0,p2€[01]

(a) Rstep =—1 (b) Rstep =-1 (C) Rstep =-1 (d) pl=p2=0-4 (e) p1=07 p2=0-4 (f) P1=0-4, p2=0

.p1€[01] Rstep €[—1 01 Rstep €11 0]

Figure 3: Failure rates of optimal policies in the chain-walk environment. We show the effect of
stochasticity (p; and po) and task rewards (f24¢) on the bounds (Eyn and Ryax) of the Minmax
penalty (Ryinmax)- The solvability and diameter for the bounds are estimated using Algorithm 2.

Given the diameter and solvability of an environment, we can now define a choice for the Minmax
penalty that takes into account both D, C, and Ryax: RmiNv == (Rmin — RMAX)g. This choice of
penalty says that since stochastic shortest path tasks require an agent to learn to achieve desired termi-
nal states, if the agent enters an unsafe terminal state, it should receive the largest penalty possible by
a proper policy. We now investigate the effect of these penalties on the failure rate of optimal policies.

3.3 ON THE FAILURE RATE OF OPTIMAL POLICIES

We begin by proposing a simple model-based algorithm for estimating the diameter and solvability,
from which the penalties are then obtained. We describe the method here and present the pseudo-code
in Algorithm 2 in Appendix B. Here, the diameter is estimated as follows: (i) For each deterministic
policy 7, estimate its expected timesteps T'(s7 € G) (or T(s € G\ G') for D’) by using policy
evaluation (Sutton & Barto, 2018) with rewards of 1 at all internal states; (ii) Then, calculate D using
the equation in Definition 3. Similarly, the solvability is estimated by estimating the reach probability
Pr(sr ¢ G ") of each deterministic policy 7 using rewards of 1 for transitions into safe goal states
and zero otherwise. This approach converges via the convergence of policy evaluation (Theorem 1).

Theorem 1 (Estimation) Algorithm 2 converges to D and C' for any given solvable environment.

Figure 3 shows the result of applying this algorithm in the chain-walk MDP. Here, Ryinmax 15
compared to accounting for D only (Rmax) and accounting for both C' and D (Rwyn). Interestingly,
we can observe Ryn < RMinmax and Ryvax > RMinmax consistently, highlighting how considering
the diameter only is insufficient to guarantee optimal safe policies. It also indicates that these
penalties may bound Ryinmax in general. We show in Theorem 2 that this is indeed the case.

Theorem 2 (Safety Bounds) Consider a solvable environment where task rewards are bounded by
[Ryunv Ruax] forall ' & G'. Then Ryuy < Rutinmax < Ruax.

Theorem 2 says that for any MDP whose rewards for unsafe transitions are bounded above by
Rwvin, the optimal policy both minimises the probability of reaching unsafe states and maximises the
probability of reaching safe goal states. Hence, any penalty Ryn — €, where € > 0 can be arbitrarily
small, will guarantee optimal safe policies. Similarly, the theorem shows that any reward higher
than Ryax may have optimal policies that do not minimise the probability of reaching unsafe states.
These can be observed in Figure 3. The figure demonstrates why considering both the diameter and
solvability of an MDP is necessary to guarantee safe policies, because the diameter alone does not
always minimise the failure rate.

4 PRACTICAL ALGORITHM FOR LEARNING SAFE POLICIES

While the Minmax penalty of an MDP can be accurately estimated using policy evaluation (Algorithm
2), it requires knowledge of the environment dynamics (or an estimate of it). These are difficult
quantities to estimate from an agent’s experience, which is further complicated by the need to
also learn the true optimal policy for the estimated Minmax penalty. Hence, obtaining an accurate
estimate of the Minmax penalty is impractical in model-free and function approximation settings
where the state and action spaces are large. In fact, it is NP-hard since it depends on the diameter,
which requires solving a longest-path problem.

Under review as a conference paper at ICLR 2026

Theorem 3 (Complexity) Estimating the Minmax penalty Ryjinmax accurately is NP-hard.

Given the above challenges, we require a practical method for learning the Minmax
penalty. Ideally, this method should require no knowledge of the environment dynamics
and should easigl integrate with existing RL approaches. To achieve this, we first note that
(Rvin — Ruax) & = (DRuin — DRuax) ¢ = (Vi — VMAX)%, where Vamiv and Vvax are the
value function bounds. Hence, a practical estimate of the Minmax penalty can be efficiently learned
by estimating the value gap Vv — Vmax using observations of the reward and the agent’s estimate of
the value function. Algorithm 1 shows the full pseudo-code. The agent here receives a reward 7, after
each environment interaction and updates its estimate of the reward bounds Ryyn < min(Rmin, 7¢)
and Ryax < max(RMAX, Tt), the value bounds Vi = Il’liIl(‘/l\/HN7 RMIN; V(St)) and
VMAX — HlaX(VMAx, RMAX; V(Sf)), and the Minmax penalty RMIN — VMIN — VMAX: where V(St)
is the learned value function at time step ¢. We note how the solvability C is also not explicitly
considered in this estimate of Ry, since it is also expensive to estimate. Instead, given that the main
purpose of C'is to make Ryn more negative the more stochastic the environment is, we notice that
this is already achieved in practice by the reward and value estimates. Since Ry is estimated using
Ryin < min(Rwin,), then every time the agent enters an unsafe state, we have that: 7, < Ry,
Bvin < Rwin, and then Ry <~ Rwvin — Vmax. This means that when the estimated Viax is greater
than zero, the penalty estimate Ryn become more negative every time the agent enters an unsafe state.

Finally, whenever an agent encounters an unsafe state, the reward can be replaced by Ry to
disincentivise unsafe behaviour. Since Vyax is estimated using Vimax < max(Vmax, Rmax, V(st)),
it leads to an optimistic estimation of Ryyn. Hence, we observe no need to add an € > 0 to Ry

Algorithm 1: RL while learning Minmax penalty

Input :RL algorithm A, max timesteps 7'
Initialise : RMIN = 0, RMAX = 0, VMIN = RMIN; VMAX = RMAX, mand V as per A
for tin T do
observe a state s;, take an action a; using 7 as per A, and observe s; 1,7
Ryin, Rvax < min(Ryin, 7¢), max(Ryax, 1t)
Vmins Vmiax <= min(Vmin, Rvi, V(s¢)), max(Vmax, Rmax, V(s¢))
Bvin < Vv — Vmax
ry < Rvin if St+1 € g! else r;
update 7 and V' with (s, as, St41,7+) as per A
end for

5 EXPERIMENTS

While the theoretical Minmax penalty is guaranteed to lead to optimal safe policies, it is unclear
whether this also holds for the practical estimate proposed in Section 4. Hence, this section aims to
investigate three main natural questions regarding the proposed practical algorithm (see the Appendix
for more experiments): (i) How does Algorithm 1 behave when the theoretical assumptions are
satisfied? (ii) How does Algorithm 1 behave when the theoretical assumptions are not satisfied?
(iii) How does Algorithm 1 compare to prior approaches towards Safe RL? For each result, we report
the mean (solid line) and one standard deviation around it (shaded region).

5.1 BEHAVIOUR WHEN THEORY HOLDS

For this experiment, we consider the ? gridworld described below. It satisfies the setting we assumed
in Section 2 since it is a stochastic shortest path with finite states and actions.

Domain (LAVA GRIDWORLD) This is a gridworld with 11 positions (|S| = 11) and 4 cardinal
actions (|.A| = 4). The agent here must reach a goal location G while avoiding a lava location L
(hence G = {L,G} and G' = {L}). A wall is also present in the environment and, while not unsafe,
must be navigated around. The environment has a slip probability (sp), so that with probability sp the
agent’s action is overridden with a random action. The agent receives Ryax = +1 reward for reaching
the goal, as well as R, = —0.1 reward at each timestep to incentivise taking the shortest path to the

Under review as a conference paper at ICLR 2026

goal. To test our approach, we modify Q-learning (Watkins, 1989) with e-greedy exploration such that
the agent updates its estimate of the Minmax penalty as learning progresses and uses it as the reward
whenever the lava state is reached, following the procedure outlined in Section 4. The action-value
function is initialised to O for all states and actions, € = 0.1 and the learning rate o = 0.1.

Setup and Results We examine the performance of our modified Q-learning approach across three
values of the slip probability of the LAVA GRIDWORLD. A slip probability of O represents a fully
deterministic environment, while a slip probability of 0.5 represents a more stochastic environment.
Results are plotted in Figure 4. In the case of the fully deterministic environment, the Minmax penalty
bound obtained via Algorithm 2 is Ryyny = —9.9, since C' = 1 and D = 9. However, the agent is
able to learn a relatively smaller penalty (—1.1 in Figure 4b) to consistently minimise failure rate and
maximise returns (Figures 4c and 4d). The resulting optimal policy then chooses the shorter path that
passes near the lava location (sp = 0 in Figure 4a). As the stochasticity of the environment increases, a
larger penalty is learned to incentivise longer, safer policies (sp = 0.25 and sp = 0.5 in Figure 4a). We
can, therefore, conclude that while there is a gap between the true Minmax penalty and the one learned
via Algorithm 1, this algorithm can still learn optimal safe policies when the theoretical setting holds.

> 1.2 "
@ 0s , oo
2[|2 1 I 5—15 é % — sp=0
g . i S . ’ — sp=025
22 0o . — sp=05
episode led4 episode led episode led
(a) Trajectories (b) Learned penalty (c) Failure rate ({.) (d) Average returns (1)

Figure 4: Effect of increase in the slip probability (sp) of the LAVA GRIDWORLD on the learned
Minmax penalty and corresponding failure rate and returns. The black circle in (a) represents the agent.
The results are averaged over 20 random seeds—shaded regions represent one standard deviation.

5.2 BEHAVIOUR WHEN THEORY DOES NOT HOLD

For this experiment, we consider the Safety Gym (Ray et al., 2019) domain described below. It does
not satisfy the setting we assumed in Section 2 since it is continuous and not a shortest path task'.

Domain (Safety Gym PILLAR) This is a custom Safety Gym domain in which the simple point
robot must navigate to a goal location & around a large pillar @ (hence G = {§g, &} and G' = {@}).
All details of the environment are the same as in Ray et al. (2019) except when stated otherwise.
Just as in Ray et al. (2019), the agent uses pseudo-lidar to observe the distance to objects around
it (/S| = R%), and the action space is continuous over two actuators controlling the direction and
forward velocity (|.A| = [—1, 1]). This direction and forward velocity can be noisy, determined by
a noise scalar as follows: Gpewy = @ + (n0iS€)Anpise WheETe Gpey is the new direction and forward
velocity, a € A is the agent’s action, and a,,4;s¢ € A is a uniformly sampled random vector. The
goal, pillar, and agent locations remain unchanged for all episodes. Each episode terminates once the
agent reaches the goal or collides with the pillar (with a reward of —1). Otherwise, episodes terminate
after 1000 timesteps. To test our approach in this setting, we modify TRPO (Schulman et al., 2015)
(denoted TRPO-Minmax) to use the estimate of the Minmax penalty as described in Algorithm 1.

Setup and Results We examine the performance of TRPO-Minmax for five levels of noise in
the PILLAR environment, similarly to the experiments in Section 5.1. Results are plotted in Figure
5. We observe similar results to Section 5.1, where the agent uses its learned Minmax penalty (Figure
5b) to successfully learn safe policies (Figure 5c) while solving the task (Figure 5d), using safer
paths for more noisy dynamics (Figure 5a). Interestingly, it also correctly prioritises low failure rates
when the dynamics are too noisy to safely reach the goal (noise > 5). We can, therefore, conclude
that Algorithm 1 can learn safe policies even in discounted high-dimensional continuous-control
domains requiring function approximation.

'The PILLAR domain does not satisfy the formal shortest shortest path setting we assume since: it is
discounted and policies that do not reach G are not guaranteed to have value functions that are unbounded from
below (due to the default dense rewards in Safety Gym which positively rewards moving towards the goal).

Under review as a conference paper at ICLR 2026

e== noise = 0.0 == noise =2.5 e== noise =5.0 == noise=7.5 noise = 10.0

AveragePenalty

8 8 8

a 6 2 4 6 2 4 6
TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6

(a) Trajectories (b) Learned penalty (c) Failure rate ({) (d) Average returns (1)

Figure 5: Performance of TRPO-Minmax in the PILLAR environment with varying noise levels. Each
training run is over 10 million steps and the results are averaged over 10 random seeds—shaded
regions represent one standard deviation.

5.3 COMPARISON TO REPRESENTATIVE BASELINES

For this experiment, we consider representative baselines in the Safety Gym PILLAR domain.

Baselines As a baseline representative of typical RL approaches, we use Trust Region Policy
Optimisation (TRPO) (Schulman et al., 2015). To represent constraint-based approaches, we compare
against Constrained Policy Optimisation (CPO) (Achiam et al., 2017), TRPO with Lagrangian
constraints (TRPO-Lagrangian) (Ray et al., 2019), and Sauté RL with TRPO (Sauté-TRPO) (Sootla
et al., 2022). All baselines except Sauté-TRPO use the implementations provided by Ray et al.
(2019), and form a set of widely used baselines in safety domains (Zhang et al., 2020; Sootla et al.,
2022; Yang et al., 2023). Sauté-TRPO uses the implementation provided by Sootla et al. (2022).
As in Ray et al. (2019), all approaches use feed-forward MLPs, value networks of size (256,256),
and tanh activation functions. The cost threshold for the constrained algorithms is set to 0, the best
we found. The experiments are run over 10 million episodes and averaged over 10 runs.

Setup and Results We compare the performance of TRPO-Minmax to that of the baselines for
different levels of noise in the PILLAR domain. Figure 6 shows the results. We observe that in the
deterministic case noise = 0, all the algorithms achieve similar performance (except Sauté-TRPO),
successfully maximising returns (Figure 6d top) while minimising the failure rates (Figure 6¢ top).
However, for the stochastic cases noise > 0, we can observe that all the baselines except Sauté-TRPO
achieve significantly high returns (Figure 6d) at the expense of a rapidly increasing cumulative cost
(Figure 6b). These results are also consistent with the benchmarks of Ray et al. (2019) where the
cumulative cost of TRPO is greater than that of TRPO-Lagrangian, which is greater than that of CPO.
Interestingly, Sauté-TRPO is the worst-performing of all the baselines. It successfully maximises
returns while minimising cost only for the deterministic environment (noise = 0), but completely fails
for the stochastic ones (noise > 0). Finally, by examining the episode length (Figure 6a) and failure
rates (Figure 6¢) for all the baselines in the stochastic cases, we can conclude that they have all learned
risky policies that maximise rewards over short trajectories that are highly likely to result in collisions.

In contrast, the results obtained show that TRPO-Minmax successfully solves the tasks while min-
imising cost for both deterministic and stochastic environments, when the noise levels are not too
high (noise € [0,2.5]). When the noise level is too high (noise = 5), TRPO-Minmax consistently
prioritises maintaining low failure rates over maximising returns. In addition, we can observe from
the episode lengths that TRPO-Minmax chooses the shortest path to the goal when there is no noise,
but chooses longer paths as the noise increases. This demonstrates its ability to trade off between
rewards maximisation and safety, with a strong bias towards safety—in contrast to the baselines
which seem strongly biased towards reward maximisation. This can also be seen from evaluating the
learned policies, as shown in Table 1 in the Appendix.

6 RELATED WORK

Guiding agents toward desirable behaviors has been explored through reward shaping, which
augments reward functions to improve learning efficiency but requires that the optimal policy is

Under review as a conference paper at ICLR 2026

== TRPO e== TRPO Lagrangian === CPO SauteTRPO e== TRPO Minmax (Ours)

1000 7000 1.0

800

a
3
6000
B 0.8 5
3 5000
g OSP .

/

S
600 \ 2 4000 0
s 04
S 3000
w0 : £ :
{ 3 2000 02 2
200 M\
w00 o o 00 -3

4 6 8 4 6 2 a 6 8
TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6

EpLen
AverageEpCost
AverageEpRet

EpLen
3
=
fff’
umulativeCost
2
]
8
AverageEpCost

AverageEpRet

500 -
R
00 e OO

2 4 6 8
TotalEnvinteracts 1le6

10000 07
900 , 06
NWWWJWWWMWWMM 8000 %0. i
! 8
g

5 800 ;2 %ua %
8 “% 3 foo e it oy
500 3 Zoo W Ml NG <
0.1
-
TotalEnvinteracts le6 TotalEnvinteracts le6 TotalEnvinteracts le6 TotalEnvinteracts le6
(a) Episode length (1) (b) Cummulative cost (J.) (c) Failure rate ({) (d) Average returns (1)

Figure 6: Performance comparison in the PILLAR environment with varying noise. (top) noise = 0,
(middle) noise = 2.5, and (bottom) noise = 5. Since the environment is noisy, higher episode
lengths are better (1) because that means choosing safer longer paths (except for noise = 0). The
results are averaged over 10 random seeds and the shaded regions represent one standard deviation.

unaltered (Ng et al., 1999; Devidze et al., 2021). This is undesirable in safe RL where the optimal
policy may be unsafe according to some safety constraints. More popularly, works in constrained RL
usually impose safety constraints to limit cost violations while maximizing rewards (Ray et al., 2019;
Sootla et al., 2022). In contrast, our work optimizes terminal state rewards to minimize undesirable
behaviors directly. Finally, other works like Shielding complements these approaches by using model
or human interventions to prevent unsafe actions (Dalal et al., 2018; Wagener et al., 2021; Tennenholtz
et al., 2022). As shielding typically modifies transition dynamics rather than reward functions, it
aligns naturally with our reward-focused framework. See Appendix C for an expended related works.

7 DISCUSSION AND FUTURE WORK

This paper investigates a new approach towards safe RL by asking the question: Is a scalar reward
enough to solve tasks safely? To answer this question, we bound the Minmax penalty, which takes
into account the diameter and solvability of an environment in order to minimise the probability of en-
countering unsafe states. We prove that the penalty does indeed minimise this probability, and present
a method that uses an agent’s value estimates to learn an estimate of the penalty. Our results in tabular
and high-dimensional continuous settings have demonstrated that, by encoding the safe behaviour
directly in the reward function via the Minmax penalty, agents are able to solve tasks while prioritising
safety, learning safer policies than popular constraint-based approaches. Our method is also easy to
incorporate with any off-the-shelf RL algorithms that maintain value estimates, requiring no changes
to the algorithms themselves. By autonomously learning the penalty, our method also alleviates the
need for a human designer to manually tweak rewards or cost functions to elicit safe behaviour.

Finally, while we show that scalar rewards are indeed enough for safe RL, the current analysis is
only applicable to unsafe terminal states—which only covers tasks that can be naturally represented
by stochastic-shortest path MDPs. Given that other popular RL settings like discounted MDPs can
be converted to stochastic shortest path MDPs (Bertsekas, 1987; Sutton & Barto, 1998), a promising
future direction could be to find the dual of our results for other theoretically equivalent settings.
In conclusion, we see this reward-only approach as a promising direction towards truly autonomous
agents capable of independently learning to solve tasks safely.

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22-31. PMLR, 2017.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Koénighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Eitan Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in Al safety. arXiv preprint arXiv:1606.06565, 2016.

Dimitri P Bertsekas. Dynamic Programming: Determinist. and Stochast. Models. Prentice-Hall,
1987.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems. Mathe-
matics of Operations Research, 16(3):580-595, 1991.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. Advances in Neural Information Processing
Systems, 31, 2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable reward
design for reinforcement learning agents. Advances in Neural Information Processing Systems, 34:
20118-20131, 2021.

Aria HasanzadeZonuzy, Archana Bura, Dileep Kalathil, and Srinivas Shakkottai. Learning with safety
constraints: Sample complexity of reinforcement learning for constrained MDPs. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7667-7674, 2021.

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised deep
reinforcement learning with generalized computation graphs for robot navigation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5129-5136. IEEE, 2018.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651-673.
PMLR, 2018.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. I[EEE
Transactions on Intelligent Transportation Systems, 2021.

Zachary C Lipton, Kamyar Azizzadenesheli, Abhishek Kumar, Lihong Li, Jianfeng Gao, and
Li Deng. Combating reinforcement learning’s Sisyphean curse with intrinsic fear. arXiv preprint
arXiv:1611.01211, 2016.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning,
volume 99, pp. 278-287, 1999.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889-1897. PMLR,
2015.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep reinforce-
ment learning in video games. arXiv preprint arXiv:1912.10944, 2019.

10

Under review as a conference paper at ICLR 2026

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from? In Proceedings
of the Annual Conference of the Cognitive Science Society, pp. 2601-2606. Cognitive Science
Society, 2009.

Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun Wang, and
Haitham Ammar. Sauté RL: Almost surely safe reinforcement learning using state augmentation.
In International Conference on Machine Learning, pp. 20423-20443. PMLR, 2022.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
PID Lagrangian methods. In International Conference on Machine Learning, pp. 9133-9143.
PMLR, 2020.

Richard Sutton and Andrew Barto. Introduction to reinforcement learning, volume 135. MIT press
Cambridge, 1998.

Richard Sutton and Andrew Barto. Reinforcement learning: An introduction. MIT press, 2018.

Guy Tennenholtz, Nadav Merlis, Lior Shani, Shie Mannor, Uri Shalit, Gal Chechik, Assaf Hallak, and
Gal Dalal. Reinforcement learning with a terminator. Advances in Neural Information Processing
Systems, 35:35696-35709, 2022.

Benjamin Van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Composing value
functions in reinforcement learning. In International Conference on Machine Learning, pp.
6401-6409. PMLR, 2019.

Nolan C Wagener, Byron Boots, and Ching-An Cheng. Safe reinforcement learning using advantage-
based intervention. In International Conference on Machine Learning, pp. 10630-10640. PMLR,
2021.

C. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge, 1989.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter] Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe
reinforcement learning through neural barrier certificate. IEEE Robotics and Automation Letters, 8
(3):1295-1302, 2023.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338-15349, 2020.

11

Under review as a conference paper at ICLR 2026

A PROOFS OF THEORETICAL RESULTS

Theorem 1 (Estimation) Algorithm 2 converges to D and C for any given solvable environment.

Proof This follows from the convergence guarantee of policy evaluation (Sutton & Barto, 1998). B

Theorem 2 (Safety Bounds) Consider a solvable environment where task rewards are bounded by
[Ryun Ruax] forall s' & G'. Then Ryy < Rytinmax < Ruax.

Proof Let 7* be an optimal policy for an arbitrary task (S, .4, P, R) in the environment. Given the
definition of the Minmax penalty (Definition 2), we need to show the following:

(i) If R(s,a,s") < Ry forall s' € G', then 7* is safe for all R; and
(i) If R(s,a,s’) > Ryax for some s’ € G' reachable from S \ G, then there exists an R s.t. 7*
is unsafe.

(1) Since 7* is optimal, it is also proper and hence must reach G.

Assume 7* is unsafe. Then there exists another proper policy 7 that is safe, such that

PT(sp € G') < P¥ (sp € G') forsome s € S.

Then,
V™ (s) > V™ (s)
(o) o0
> R(si, a1, 5141) > R(si,a, 5t+1)]

t=0 t=0
= ET [G"7' + R(s7,ar, s741)] = ET [GT7' + R(sr, ar, s741)] |
T—1
where GT~1 = Z R(st, at, s¢+1) and T is a random variable denoting when spy1 € G.
t=0

- E‘g* [GT?l] + (P;r* (ST ¢ g!)R(ST; ar, 8T+1) + PSW* (ST € g!)Runsafe(sTaaTa 3T+1))
>ET [GT] + (P (sr & GYR(sr,ar, sr11) + P (sr € g!)Runsafe(sT;aTvsTJrl)) ,

where Rynsafe denotes the rewards for transitions into G "and ap = 7*(sT).
— B [G"7'] + (P;T*(ST ¢ G")R(sr,ar, s741) + Runsate(S7, 0, 5T+1))

> EY [GT?l] + (PJ(ST ¢ g!)R(ST,aT75T+1) + P (st € g!)Runsafe(STaaT75T+l)))
= Eg [GT_l] + (1 — PI'(sy € Q!)) Runsate (ST, a7, $741)

> B [T + (P (sr ¢ G') = P (51 € G)) R(srar, s741)
= ET [G"7'] + (1 - P (st €G")) Ru

> E7 [GT_l] + (PS’T(ST ¢G)— P (sp & g’)) R(sT,ar, sT7+1),

since Runsafe (ST, ar, 5T+1) < RMIN-

= ET > ET

— BT [67] + (1 - PT(sr € 6) (R — Runx) @

> BT [G7!] + (Pr(st ¢ 0) = PT (57 € 0Y)) Rlsr, oz, s741)
= ET [GT] + (Rvin — Rmax)D

>E7 [GT] + (PZ(ST ¢G')— P (sr ¢ 9’)) R(st,ar, s7+1), using definition of C.
= ET [G"7'] — RwaxD

12

Under review as a conference paper at ICLR 2026

>EL [T + (PX (st £ 9) = PT (s £ 9Y)) Rlsrar, s741) — RunD
= ET [G"7!] — RuaxD > 0,

since E [GT 1] + (P;T(ST ¢G') — PT (sr ¢ Q!)) R(st,ar,sr+1) > RminD
= ET [G"7'] > RuaxD.

But this is a contradiction since the expected return of following an optimal policy up to a terminal
state without the reward for entering the terminal state must be less than receiving Ryvax for every
step of the longest possible trajectory to G. Hence we must have 7* € arg min P7 (s € G').

T

(ii) Assume 7* is safe. Then, P (s & G') > P (sp ¢ G') forall s € S,/ € 1L

Let 7 be the policy that maximises the probability of reaching s’ € G' from some state s € G. Then,
similarly to (i), we have

V™ (s) > V7(s)
= ET [GT] (P (s €G')— Pl (st €G')) Runate (ST, a1, 5741)
> E7 (671 + (PX(sr ¢ G') = PX (51 ¢ GY)) Rlsr, ar, s741)
— E7 [G7- 1] + (P (st € G) = P (s € G)) Runsae (57 a7, 5741)
(P (st G')— Pl (st ¢ g!)) R(sr,ar,s741)
T(sr € G) = PT (1 € G)) Ruax
<ET [GT! (P (s7 € G) — P™(sp & g!)) R(sr,ar, s741), since Rumate > Bnmax.
: (

= ET [G"7']

(
-]
= ET [G"~ 1]+<
]
)+ (P

sp €G)—PT (sp e gl)) RuinD’

< E’; [GT*I] + (PS7r (st & Q!) — Pl'(sr & g!)) R(st,ar, s741), by definition of Ryax.
= E7 [G"7'] + RuwD’

<EI (G + (PF (50 ¢GY) — P (st € G)) R(srar,srim)
= E7 [G"7'] + RuinD’ < 0

But this is a contradiction when R is such that the agent receives a reward of Ryax > |Rwmin| D’ at
least once in its trajectory when following 7 and zero everywhere else.

Theorem 3 (Complexity) Estimating the Minmax penalty Rygipmax accurately is NP-hard.
Proof This follows from the NP-hardness of longest-path problems. Since the Minmax penalty

is bounded by Ryin and Ryax, both are defined by the diameter, which is in turn defined as the
expected total timesteps of the longest path. |

13

Under review as a conference paper at ICLR 2026

B ALGORITHMS

Algorithm 2: Estimating the Diameter and Solvability

Input :(S, A, P), Rp(s') == 1(s' € G), Rc(s,a,s') =1(s ¢ Gands' € G\ G')
Initialise : Diameter D = 0, Solvability C' = 1, Value functions V5 (s) = 0, V5 (s) = 0, Error
A=1

for m € Il do
/* Policy evaluation for D */
while A > 0 do
A+0
for s € S do
V'3 P(s/]s,7(s)(Rp(s') +VE(s))

for 7 € Il do
/* Policy evaluation for C */
while A > 0 do
A0
for s € S do
V'Y P(s'|s,m(s))(Rc(s, m(s),s)+VE(s))

_ s o
A = max{A, |VE(s) — v'|} A = max{A, [VZ(s) — |}

i VZ(s) « v
V5(s) v endcfo(r)
end f91‘ end while
end while for s € S do
for s € S do = mi ” it vz
D = max{D, V5(s)} g O VERHITE() 7 0cle
end for end for
end for end for

14

Under review as a conference paper at ICLR 2026

C EXTENDED RELATED WORK

C.1 REWARD SHAPING

The problem of designing reward functions to produce desired policies in RL settings is well-studied
(Singh et al., 2009). Particular focus has been placed on the practice of reward shaping, in which
an initial reward function provided by an MDP is augmented in order to improve the rate at which
an agent learns the same optimal policy (Ng et al., 1999; Devidze et al., 2021). While sacrificing
some optimality, other approaches like Lipton et al. (2016) propose shaping rewards using an idea of
intrinsic fear. Here, the agent trains a supervised fear model representing the probability of reaching
unsafe states in a fixed horizon, scales said probabilities by a fear factor, and then subtracts the scaled
probabilities from Q-learning targets.

These approaches differ from ours in that they seek to find reward functions that improve convergence
while preserving the optimality from an initial reward function. In contrast, we seek to determine the
optimal rewards for terminal states in order to minimise undesirable behaviours irrespective of the
original reward function and optimal policy.

C.2 CONSTRAINED RL

Disincentivising or preventing undesirable behaviours is core to the field of safe RL. A popular
approach is to define constraints on the behaviour of an agent using CMDPs, tasking the agent with
limiting the accumulation of costs associated with violating safety constraints while simultaneously
maximising reward (Altman, 1999; Achiam et al., 2017; Chow et al., 2018; Ray et al., 2019; Hasan-
zadeZonuzy et al., 2021). Widely used examples of these approaches include constrained policy
optimisation (CPO) (Achiam et al., 2017), which augments TRPO (Schulman et al., 2015) with
constraints to satisfy a constrained MDP, and TRPO-Lagrangian (Ray et al., 2019), which combines
Lagrangian methods with TRPO. Another example is Sauté RL (Sootla et al., 2022), which incor-
porates the cost function into the rewards and augments the state with the remaining ”cost budget”
spent by violating safety constraints. Other constraint-based approaches include Projection-based
CPO (Yang et al., 2020), which projects a TRPO policy onto a space defined by constraints, and PID
Lagrangian methods (Stooke et al., 2020), which augment Lagrangian methods with PID control.

In deterministic environments with a cost threshold of 0, the set of safe policies for these approaches
are the same as ours. However, in stochastic environments, these approaches require the correct
choice of inequality constraints to even be well defined. If the cost threshold is not carefully chosen,
there may exist no policy that satisfies the CMDP constraints, implying there would exist no optimal
safe policy to converge to. For example, in the LAVA GRIDWORLD or the PILLAR domains with
noise > 0, a cost threshold of 0 can never be satisfied by any policy for all states, making these
approaches theoretically ill-defined in these environments with that cost threshold. That said, we found
in practice that a cost threshold of 0 gave them the best performance in the safety-gym experiments
(compared to 1 and the default of 25). In contrast, we showed the existence of a Minmax penalty
irrespective of the stochasticity of the environment. Additionally, while these approaches in general
theoretically define or learn safety parameters—like Lagrange coefficients—for each reward function
even when the cost function and cost threshold remain unchanged, our minmax penalty approach is
theoretically defined and learned for all reward functions.

C.3 SHIELDING

Finally, another important line of work involves relying on interventions from a model (Dalal et al.,
2018; Wagener et al., 2021) or human (Tennenholtz et al., 2022) to prevent unsafe actions from being
considered by the agent (shielding the agent) or prevent the environment from executing those unsafe
actions by correcting them (shielding the environment). Other approaches here also look at using
temporal logics to define or enforce safety constraints on the actions considered or selected by the
agent (Alshiekh et al., 2018).

These approaches fit seamlessly into our proposed reward-only framework since they are primarily
about modifications on the transition dynamics and not the reward function—for example, unsafe
actions here can simply lead to unsafe goal states.

15

Under review as a conference paper at ICLR 2026

D SAFETY-GYM PILLAR TRAINING AND TESTING RESULTS WITH RAY ET AL.
(2019) BASELINES

@== TRPO e== TRPO Lagrangian === CPO SauteTRPO e== TRPO Minmax (Ours)
7000 1000 10 4
3
6000
. 800 08 2
v 5000 o o
S S 06 & 1
£ 4000 c 600 2 s
H g g S o
5 3000 & 400 § 04 g,
3 2000 z 02 2,
200
Y . -
0 0 oa -4
p . 3 s p . 3 s . 6 s p . 6 s
TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6

(a) Cumulative cost ({) (b) Episode length ({) (c) Failure rate ({) (d) Average returns (1)
Figure 7: Training curves in the PILLAR environment with noise = 0.

1100

°

12000 1000

10000 900

°

700 |}

600 W ",

CumulativeCost

8 3 8
g 8 8
EpLen
AverageEpCost
°
=
AverageEpRet

2000 400

°
8

N
[

4 6 8 4 6 2 a 6 4 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts 1le6 TotalEnvinteracts 1le6 TotalEnvinteracts 1le6

(a) Cumulative cost ({) (b) Episode length (1) (c) Failure rate ({) (d) Average returns (1)
Figure 8: Training curves in the PILLAR environment with noise = 2.5.

25
10000 1000 07
L 8000 s00 | oe
3 8os kil
S S 4
T 800 5
£ 000 5 Soalf 5
H & 700 4 -
2 4000 go3 g
3 00 202 ‘r/ <
2000 o1
500
o 00
4 6 8 2 4 6 8 2 4 6 8 4 6 8
TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6

(a) Cumulative cost ({) (b) Episode length (1) (c) Failure rate (J.) (d) Average returns (1)
Figure 9: Training curves in the PILLAR environment with noise = 5.

8000

04
7000
02
6000 mwf&
o Al
% ! A Pl W -
8 5000 WA ol g oo
2
¥ g i
S S _
2 3000 g { g "
£ ¥ o z-04
3 2000 I
1000 -06
o 600 00
—08
4 6 8 2 4 6 8 2 4 6 8 4 6 8
TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6 TotalEnvinteracts 1e6

(a) Cumulative cost ({) (b) Episode length (1) (c) Failure rate (J.) (d) Average returns (1)
Figure 10: Training curves in the PILLAR environment with noise = 7.5.

8000 075

0.50
6000

°

4000

CumulativeCost
AverageEpRet

°

s

g

Lol
)
N
g B

2000

-0.75

8

‘M
4 6 8 2 a 6 8
TotalEnvinteracts 1e6 TotalEnvinteracts 1e6

(a) Cumulative cost ({) (b) Episode length (1) (c) Failure rate (J.) (d) Average returns (1)
Figure 11: Training curves in the PILLAR environment with noise = 10.

8

4 6 2 4 6
TotalEnvinteracts 1le6 TotalEnvinteracts 1le6

16

Under review as a conference paper at ICLR 2026

Noise Algorithm Costs | Success Rate T Returns 1 Total Steps |
0.0 TRPO 0.00 £ 0.00 1.00 £+ 0.00 321 +£0.00 130.30 £ 14.94
TRPO-Lagrangian 0.00 £ 0.01 1.00 + 0.01 320+£0.02 132.16 = 14.43
CPO 0.00 £ 0.00 1.00 + 0.00 3.214+0.01 128.06 + 14.40
Sauté-TRPO 0.04 £0.19 0.95+0.21 3.09+ 055 176.51 +£117.93
TRPO-Minmax 0.00 £ 0.00 1.00 + 0.00 3.214+0.01 131.53 +15.15
Total Steps 1
2.5 TRPO 0.18 +0.03 0.82 +0.03 2.58 £0.12 351.33 +40.17
TRPO-Lagrangian 0.13 + 0.03 0.86 4+ 0.02 273 £0.09 364.41+32.24
CPO 0.08 + 0.03 0.92 + 0.03 291 +0.10 393.36 £+ 29.50
Sauté-TRPO 0.62 +0.49 0.16 +0.37 0.59 + 1.27 484.24 4+ 340.57
TRPO-Minmax 0.02 £+ 0.02 0.47 +£0.38 2.00£1.02 799.41 + 181.46
5.0 TRPO 0.32 +£0.07 0.41 £+ 0.16 1.66 £ 043 665.62 4+ 38.34
TRPO-Lagrangian 0.20 + 0.07 0.39 +0.16 1.78 £ 0.47 760.66 + 43.54
CPO 0.18 +£0.04 0.27 £0.21 1.53 £0.54 807.28 +51.38
Sauté-TRPO 0.62 +0.49 0.01 +£0.07 -0.09 + 0.54 594.09 4+ 363.81
TRPO-Minmax 0.05 £+ 0.03 0.00 4+ 0.00 -0.00 +0.19 975.59 + 17.81
7.5 TRPO 0.43 £ 0.06 0.02 £+ 0.03 045+021 726.97 +31.42
TRPO-Lagrangian 0.30 4 0.06 0.01 +£0.01 0.55+0.18 806.91 +-41.44
CPO 0.28 +0.04 0.00 £ 0.01 0.38 £0.13 830.78 4+ 25.03
Sauté-TRPO 0.54 +0.50 0.00 £+ 0.03 -0.15+0.48 650.94 &+ 364.90
TRPO-Minmax 0.02 £+ 0.02 0.00 4+ 0.00 -0.46 +0.20 989.69 + 7.78
10.0 TRPO 0.46 £+ 0.08 0.00 £ 0.00 0.13 +£0.11 725.03 +49.64
TRPO-Lagrangian 0.36 4+ 0.09 0.00 £ 0.00 0.17 £ 0.09 789.52 4+ 42.68
CPO 0.27 + 0.06 0.00 £ 0.00 0.10 £ 0.10 859.58 4+ 30.94
Sauté-TRPO 0.46 £+ 0.50 0.00 £ 0.00 -0.18 +£ 0.48 701.60 £ 355.32
TRPO-Minmax 0.07 £+ 0.05 0.00 £ 0.00 -0.48 +0.20 960.96 + 28.39

Table 1: Evaluation of trained models with Ray et al. (2019) baselines in the PILLAR environment
with varying noise levels. For each algorithm in each noise level, we train using 10 random seeds
for 10 million steps and evaluate the learned policies over 100 random seeds, for a total of 1000
evaluation episodes. We report the mean and standard errors of various performance metrics, bolding
the ones with the best mean. Figures 7-11 shows the training curves. Here, higher episode lengths are
better for noise > 0 because that means the policy is taking longer safer paths. We observe that only
TPRO-Minmax prioritises minimising the probability of unsafe transitions, consistently achieving the
lowest cost while trading off the rewards. It achieves the same highest success rate as the baselines
only in the deterministic case, since the pure maximisation of rewards here doesn’t come at the cost
of higher unsafe transitions. It also does not completely ignore the rewards when the noise is not too
large (noise = 2.5). We can also observe from the training curves of noise = 2.5 (Figure 8) that
TPRO-Minmax has not converged in its rewards performance and is still increasing.

17

Under review as a conference paper at ICLR 2026

=== noise = 0.0 === noise =2.5 === noise =5.0 === noise =7.5 noise = 10.0

PRTSSSER PSSR SR RS P
s e e

11

(b) TRPO-Lagrangian. Failures per noise left to right: 0, 5, 3

11
) 373

1111
> 3737373

¥ e

(e) TRPO-Minmax. Failures per noise left to right: 0, 0, 0, %, 0

Figure 12: Sample trajectories of policies learned by each baseline and our TRPO-Minmax approach
in the Safety Gym PILLAR environment with varying noise levels. To sample the trajectories for
each noise level, we use the same three environment random seeds across all the algorithms. We can
observe that noise > 5 is too noisy to learn safe policies, at least after 10 million training steps.

18

Under review as a conference paper at ICLR 2026

E ABLATIONS IN SAFETY-GYM DEFAULT ENVIRONMENTS WITH RAY ET AL.
(2019) BASELINES

.: "it:z; '

(a) POINTGOAL1 (b) POINTPUSHI
® e § » ® e & o
4“ ® .° ®© v e
©) .
= “te
(c) POINTBUTTON 1 (d) CARBUTTON1

Figure 13: Sample default task’s from OpenAI’s Safety Gym environments (Ray et al., 2019). We
use these to investigate the effect of termination in complex, high-dimensional, continuous control
tasks. In all of the default tasks, G =) by default. (a) Here, a simple robot must navigate to a
goal location §J across a 2D plane while avoiding several hazards (- The agent’s sensors, actions,
and rewards are identical to the PILLAR domain. Unlike the PILLAR domain, the goal location is
randomly reset when the agent reaches it, but does not terminate the episode. (b) This task is similar
to POINTGOALL, but with the addition of a pillar obstacle Q and a large box [| the agent must push
to the goal location Q to receive the goal reward. (c-d) These tasks are also similar to POINTGOALI,
but with the more complex car robot for CARBUTTON1 and the addition of: (i) Gremlins [ll, which
are dynamic obstacles that move around the environment and must be avoided; and (ii) Buttons @,
where the agent must reach the goal button with a cylinder Q to receive the goal reward.

19

Under review as a conference paper at ICLR 2026

== TRPO e== TRPO Lagrangian === CPO SauteTRPO e== TRPO Minmax (Ours)

1000 17500 125

10.0

700 £ 10000

AverageEpRet

8

4 6 2 4 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts le6

8

4 6 2 4 6 8
TotalEnvinteracts le6 TotalEnvinteracts 1e6

(a) Episode length (1) (b) Cumulative cost ({) (c) Failure rate (J.) (d) Average returns (1)

Figure 14: Comparison with baselines in POINTGOAL1, modified to terminate in G = G' = {O}-
Here, higher episode lengths are better because episodes only terminate when the agent reaches G'
or after 1000 timesteps. Similar to Figure 6, all the baselines except Sauté-RL achieve significantly
high returns at the expense of a rapidly increasing cumulative cost. By comparison, TRPO-Minmax
dramatically reduces the failure rate while still being able to solve the task, as observed by average
returns achieved as well as the trajectories observed. However, returns are lower since TRPO-Minmax
learns safer longer paths to the goals (see sample trajectories in Figure 18).

.
1000 6000 o7

5000

=

W

4000 S

umulativeCost
3

AverageEp

° °

o =

3000)

VY i

AverageEpRet
Lo

-4
600 1000 0.1
-6
o 0.0
a 6 8 2 a 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts le6

4 6 8 2 4 6
TotalEnvinteracts le6 TotalEnvinteracts le6

8

(a) Episode length (1) (b) Cumulative cost ({) (c) Failure rate (J.) (d) Average returns (1)

Figure 15: Comparison with baselines in POINTPUSH1, modified to terminate in G = G - {O, Q}

Here, higher episode lengths are better because episodes only terminate when the agent reaches G'
or after 1000 timesteps. Similar to Figure 6, the baselines achieve higher returns at the expense of
a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises maintaining low

failure rates by sacrificing rewards.

8

1000
50000

°

40000

20000

AverageEpCost
AverageEpRet

10000

EpLen
8 3
(§
CumulativeCost
w
g
g
\ \\
|
\
\
\
\
\
o
=

°

4 6 2 4 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts 1le6

a 6 8 2 4 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts 1le6

(a) Episode length (1) (b) Cumulative cost ({) (c) Failure rate (J.) (d) Average returns (1)

Figure 16: Comparison with baselines in POINTBUTTON1, modified to terminate in G = G' =
{©, M, ®}. Here, higher episode lengths are better since epsiodes only terminate when the agent
reaches G' or after 1000 timesteps. Similar to Figure 6, the baselines achieve significantly high returns

at the expense of a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises
maintaining low failure rates.

1000 70000
60000
2 50000

S
£ 40000

mulati

30000

AverageEpRet

3 20000

10000 — s m—

0
4 6 8 2 4 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts 1le6

8

4 6 2 4 6 8
TotalEnvinteracts 1le6 TotalEnvinteracts 1le6

(a) Episode length (1) (b) Cumulative cost ({) (c) Failure rate (J.) (d) Average returns (1)
Figure 17: Comparison with baselines in CARBUTTON1, modified to terminate in G = G' =
{©, M. @}). Here, higher episode lengths are better since epsiodes only terminate when the agent

reaches G' or after 1000 timesteps. Similar to Figure 6, the baselines achieve significantly high returns

at the expense of a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises
maintaining low failure rates.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 18: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 14. Trajectories that hit hazards or
take more than 1000 timesteps to reach the goal location are considered failures.

21

Under review as a conference paper at ICLR 2026

e== TRPO e== TRPO Lagrangian e== CPO SauteTRPO e== TRPO Minmax (Ours)
1.0
17500
15000 0.8
i i
S 12500 o
% 206
2 10000 o
o o)
S ©0.4
g 7500 5
=) >
O 5000 <
0.2
2500
0 0.0
2 4 6 8 2 4 6 8
TotalEnvinteracts le6 TotalEnvinteracts le6
(a) The cumulative cost. (b) Failure rate ({)
1000 12.5
900 10.0
800 —g 7.5
c 700 T 5.0
g)
S 600 ? 2.5
v |
500 z 00
400 —25
300 -5.0
-75
2 4 6 8 2 4 6 8
TotalEnvinteracts le6 TotalEnvinteracts le6
(c) Average episode length (d) Average returns (1)

Figure 19: Comparison with baselines in POINTGOAL 1, modified to terminate in G = G' = {D)}.
Here, higher episode lengths are better since episodes only terminate when the agent reaches a hazard
or after 1000 timesteps. This experiment is similar to Figure 14, but instead of a cost threshold of
0, it uses a cost threshold of 25 for the baselines (as in Ray et al. (2019)) to check its effect on the
performance of the baselines when episodes immediately terminate at unsafe states. We can observe
drastically worse failure rates and cumulative costs for the baselines compared to their performance in
Figure 14. Similar results where obtained when using a cost threshold of 1. These show how sensitive
such approaches are to the cost threshold, while a reward only approach like TRPO-Minmax does not
depend on such hyperparameters.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 20: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 19. Trajectories that hit hazards or
take more than 1000 timesteps to reach the goal location are considered failures.

Under review as a conference paper at ICLR 2026

@== TRPO e== TRPO Lagrangian e== CPO SauteTRPO e== TRPO Minmax (Ours)
600000
120
500000 100
I i
o 400000 8 80
[o
= w
% 300000 / 9 60
> ©
' ! il
§ 200000 g 20 [Ny ittt o o o
100000 20
0
0
2 4 6 8 2 4 6 8
TotalEnvinteracts le6 TotalEnvinteracts le6
(a) The cumulative cost. (b) Failure rate ({)
25
1040
20
1020]
% 15
& w
Q 10
2 1000 >
w —
g 5
980 T
960 -5
-10
2 4 6 8 2 4 6 8
TotalEnvinteracts le6 TotalEnvinteracts le6
(c) Average episode length (d) Average returns (1)

Figure 21: Comparison with baselines in the original Safety Gym POINTGOAL1 environment. Here,
episodes do not terminate when a hazard is hit (G = G' = (}). Hence every episode only terminates
after 1000 steps. We set the cost threshold for the baselines to 25 as in Ray et al. (2019). For TRPO-
Minmax, we replace the reward with the Minmax penalty every time the agent is in an unsafe state
(that is every time the cost is greater than zero), as in previous experiments and as per Algorithm 1.
While TRPO-Minmax still beats the baselines in safe exploration (a-b), unlike the previous results
with termination (Figure 19), it struggles to maximise rewards while avoiding unsafe states (d).

24

Under review as a conference paper at ICLR 2026

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307 (a) TRPO successes (top) and failures (bottom)
1308
1309
1310
1311
1312
1313
1314
1315
1316 (b) TRPO-Lagrangian successes (top) and failures (bottom)
1317
1318
1319
1320
1321
1322
1323
1324
1325 (c) CPO successes (top) and failures (bottom)
1326
1327
1328
1329
1330
1331
1332
1333
1334 (d) Sauté-TRPO successes (top) and failures (bottom)
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345 (e) TRPO-Minmax successes (top) and failures (bottom)

1346

1247 Figure 22: Sample trajectories of policies learned by each baseline and our Minmax approach in the

1925 Safety Gym POINTGOAL1 domain, in the experiments of Figure 21. Trajectories that hit hazards (the

1349 hits are highlighted by the red spheres) or take more than 1000 timesteps to reach the goal location
are considered failures.

N
W

Under review as a conference paper at ICLR 2026

F SAFETY-GYM PILLAR TRAINING AND TESTING RESULTS WITH ?

OMNISAFE BASELINES

Noise Algorithm Costs | Success Rate T Returns 1 Total Steps |
0.0 TRPO-Minmax (Ours) 0.00 + 0.00 1.00 + 0.00 321 +£0.00 136.60 + 12.32
TRPO-Lagrangian 0.00 + 0.00 1.00 £ 0.00 3.21 +0.00 137.52 + 14.50
Sauté-TRPO 0.00 £ 0.00 0.99 £+ 0.02 320£0.03 142.88 = 12.37
TRPO 0.00 £ 0.00 1.00 + 0.00 321 +0.00 138.92 4+ 14.47
CPO* 0.10 +0.29 0.18 +0.36 -0.51 +£3.42 818.85 + 289.68
P30 0.10 £ 0.30 0.83 +0.35 2.74 £1.01 205.50 + 220.31
Total Steps T
1.5 TRPO-Minmax (Ours) 0.06 + 0.02 0.94 £+ 0.02 3.01 £0.08 262.19 £ 28.06
TRPO-Lagrangian 0.09 +0.04 0.91 +0.04 290+ 0.12 255.55 4+ 26.62
Sauté-TRPO 0.11 + 0.04 0.89 + 0.04 2.81+0.14 23226 +£10.55
TRPO 0.13 £ 0.08 0.87 +0.08 274 +£029 26291 £+ 32.70
CPO* 0.08 +0.12 0.00 4+ 0.00 -0.44 +0.45 952.51 +74.45
P30 0.11 +0.13 0.76 + 0.33 243+ 1.04 391.09 + 221.08
2.5 TRPO-Minmax (Ours) 0.14 £+ 0.05 0.80 + 0.11 2.61 +0.27 503.49 4+ 98.67
TRPO-Lagrangian 0.20 + 0.05 0.72 +0.24 238 +046 461.89 +132.78
Sauté-TRPO 0.19 £ 0.09 0.76 £ 0.24 245+ 0.54 435.18 +104.06
TRPO 0.28 £ 0.10 0.63 +0.22 2.054+0.52 446.21 + 143.94
CPO* 0.09 + 0.10 0.00 + 0.01 -0.50 £ 0.40 962.74 +41.12
P30 0.17 £ 0.07 0.71 £ 0.16 242 +£0.34 552.42 +139.28

Table 2: Evaluation of trained models with ? OmniSafe baselines in the PILLAR environment with
varying noise levels. For valid comparison, TRPO-Minmax here is implemented by using Algorithm 1
with OmniSafe’s implementation of TRPO. For each algorithm in each noise level, we train using 10
random seeds for 10 million steps and evaluate the learned policies over 100 random seeds, for a total
of 1000 evaluation episodes. We report the mean and standard errors of various performance metrics,
bolding the ones with the best mean. Figures 23-28 shows the training curves, including other noise
levels for only TRPO-Minmax, TRPO-Lagrangian, and P30. Here, higher episode lengths are better
because that means the policy is taking longer safer paths. We observe CPO in general struggles to
learn to solve the tasks irrespective of noise level, even in the simplest case with noise = 0. We
suspect this could be due to an implemention issue with Omnisafe’s codebase, since Ray et al. (2019)
codebase did not have this issue. Hence we exclude CPO from our analysis (denoted by a *) since its
results are not consistent with those of Ray et al. (2019) and Achiam et al. (2017). All the other results
are consistent with ?. Given that, we observe that only TPRO-Minmax prioritises minimising the
probability of unsafe transitions, consistently achieving the lowest cost while trading off the rewards.
Interestingly, by using Algorithm 1 with OmniSafe’s implementation of TRPO, TPRO-Minmax
achieves the lowest cost, highest success rate, and highest returns across all noise levels.

26

Under review as a conference paper at ICLR 2026

1404
1405
1406
1407 e
1408 1000
1409
1410
1411 00
1412
1413
1414 o
1415 o
1416
1417 .
1418
1419 :
1420
1421
1422
1423
1424 -
1425

1426
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 427 Steps le7 Steps le7 Steps le7

PointPillar, Action Noise 0.0
1428

1429 Figure 23: Training curves using OmniSafe in the PILLAR environment with notse = 0
1430
1431

1432
1433 @=== TRPO === TRPOLag === TRPOSaute === CPQO === P30 === TRPOMinmax (Ours)

e TRPO @m== TRPOLag === TRPOSaute e=== CPO === P30 e=== TRPOMinmax (Ours)
Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost
25000
20000
800 15000

10000

5000
400

~5000

~10000

Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty

-6

1434 Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost

1435 1000
1436

1437 oo
1438
1439
1440
1441
1442 ¥ L0 e iy L o

1443 | 0
1444 Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty
1445

1446

1447

1448 :
1449 0
1450

1451

1452

1453 -

1454 0.0 02 04 06 08 10 00 02 04 06 08 10 0.0 0.2 04 06 08 10
Steps 1e7 Steps le7 Steps 1e7

7000
0.8

6000

0.6
5000

4000
0.4

3000
2000 02

1000

0.0

1455 PointPillar, Action Noise 1.5

1456

B Figure 24: Training curves using OmniSafe in the PILLAR environment with noise = 1.5

27

Under review as a conference paper at ICLR 2026

1458
1459
1460
1461
1462
1463
1464
1465 ”
1466 -
1467 500
1468 w0
1469 0
1470
1471
1472
1473 ;
1474
1475 :
1476
1477 °
1478
1479
1480

1481 * steps 1e7 . Steps.v . 1e7 * steps 1e7
PointPillar, Action Noise 2.5
1482

1483 Figure 25: Training curves using OmniSafe in the PILLAR environment with noise = 2.5
1484
1485
1486

1487 === TRPOLag === P30 === TRPOMinmax (Ours)

e TRPO @ TRPOLag e TRPOSaute w— CPO e P30 e TRPOMinmax (Ours)
Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost.
1000 10000
900
8000

800

6000

4000

2000

LRCh L A L

Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty

-15

-20

1488 Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost

1489

1490 e
1491

1492

1493 o
1494

1495

1496 s
1497

1498 — — p—
1499

1500

1501

1502 s
1503 o
1504

1505

1506 o
1507 s

1508 " steps o " teps et " eps o

8000

800

6000

4000

2000

-0.25

1 509 PointPillar, Action Noise 5.0

1510

- Figure 26: Training curves using OmniSafe in the PILLAR environment with noise = 5

28

Under review as a conference paper at ICLR 2026

1512
1513
1514
1515
1516

@ TRPOLag e P30 e TRPOMinmax (Ours)

Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost

10000

1517 b oo
1518 500

6000
1519

1 520 700
1521

4000

1522 600 2000
1523
0
1524 .)
o Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty
1525 ’ 0.025
-10
1526 0020
02
-15
1527 0015
1528 20
00 0010
1529
0,005 -25
1530 B
1531 0.000 2o
-0.005
1532 -0.4 ! -35
1533 | -0.010
-4.0
1534 00 02 0.4 06 08 10 00 02 0.4 06 08 10 00 02 04 06 08 10
1535 Steps 1e7 Steps 1e7 Steps 1e7

PointPillar, Action Noise 7.5

1536
1537 Figure 27: Training curves using OmniSafe in the PILLAR environment with noise = 7.5
1538
1539

1540
1541 @ TRPOLag === P30 === TRPOMinmax (Ours)
Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost
1542 1000
1543 om0
1544 - o
1545

5000

1546
1547

4000

1548 -
1549 " e
1550 1000
600
1551 o
1 5 52 Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty
1553 N
1554 *
1555 0o 0010
1556 -t
1557 “02 0.005
1558 03
1559 s '
1560 -0 ~0.005 pit (A
1561 06
1562 0.0 0.2 0.4 steps 0.6 0.8 1i27 0.0 0.2 0.4 steps 0.6 0.8]1.0e7 0.0 0.2 0.4 Steps 0.6 0.8 1;;7
1 563 PointPillar, Action Noise 10.0

1564

. Figure 28: Training curves using OmniSafe in the PILLAR environment with noise = 10

29

Under review as a conference paper at ICLR 2026

G ABLATIONS IN SAFETY-GYMNASIUM DEFAULT ENVIRONMENTS WITH ?
OMNISAFE BASELINES

Algorithm Costs | Success Rate T Returns 1 Total Steps
TRPO-Minmax (Ours) 0.04 &+ 0.03 0.50 +0.17 0.84 +045 532.08 4+ 148.18
PPO-Minmax (Ours) 0.04 + 0.02 0.84 + 0.06 1.64 +0.18 253.69 + 49.72
TRPO-Lagrangian 0.09 £+ 0.03 0.86 £+ 0.03 1.76 £0.08 119.18 4 19.82
Sauté-TRPO 0.12 + 0.03 0.87 + 0.03 1.77 + 0.09 77.97 £ 10.33
TRPO 0.10 + 0.02 0.90 + 0.02 1.84 + 0.04 73.86 + 4.37
CPO* 0.04 +0.04 0.06 £+ 0.02 -0.48 +£0.51 940.59 + 23.63
P30 0.08 + 0.02 0.91 + 0.02 1.86 = 0.06 101.98 4+ 13.03

Table 3: Evaluation of trained models with ? OmniSafe baselines in Safety-Gymnasium POINTGOALI,
modified to terminate in G = {iJ, @} where G' = {(Q}. Episodes terminate when the agent reaches
G or after 1000 timesteps, but due to the large number of hazards, shorter or longer timesteps are
better depending on the random positions of hazards. Similarly to Table 2, we exclude CPO from
our analysis (denoted by a *) since its results are not consistent with those of Ray et al. (2019) and
Achiam et al. (2017). Given that, we observe that our approach consistently achieves the lowest cost
while trading off the rewards.

Algorithm Costs | Success Rate 1 Returns 1 Total Steps 1

TRPO-Minmax (Ours) 0.08 + 0.05 045+ 0.16 1.87 £ 1.60 950.31 £+ 31.45
PPO-Minmax (Ours) 0.13 £ 0.05 0.63 + 0.13 4454245 927.75 + 28.89
TRPO-Lagrangian 0.62 + 0.07 0.34 + 0.06 10.17 £ 0.77 607.44 + 56.15
Sauté-TRPO 0.79 + 0.03 0.21 + 0.03 11.01 £ 0.55 493.01 £+ 24.51
TRPO 0.78 £ 0.05 0.22 +£0.05 10.68 + 0.74 483.42 £+ 33.07
CPO* 0.02 £+ 0.02 0.15 £ 0.06 -0.03 +£0.23 988.25 £+ 8.46
P30 0.56 + 0.07 0.42 + 0.07 10.63 £ 0.74 667.08 + 49.14

Table 4: Evaluation of trained models with ? OmniSafe baselines in Safety-Gymnasium POINTGOALI,
modified to terminate in G = G' = {@}. Here, higher episode lengths are better because episodes
terminate only when the agent reaches G' or after 1000 timesteps. Similarly to Table 2, we exclude
CPO from our analysis (denoted by a *) since its results are not consistent with those of Ray et al.
(2019) and Achiam et al. (2017). Given that, we observe that despite the absence of terminal safe
goals, our approach still prioritises minimising the probability of unsafe transitions, consistently
achieving the lowest cost while trading off the rewards.

Algorithm Costs | Success Rate 1 Returns 1 Total Steps

TRPO-Minmax (Ours) 4.11 +4.34 0.10 £ 0.04 -2.21+1.52 1000.00 + 0.00
PPO-Minmax (Ours) 3.38 + 3.08 0.13 + 0.05 -3.18 £2.71 1000.00 £+ 0.00
TRPO-Lagrangian 18.18 £ 5.03 0.48 + 0.05 9.24 +2.21 1000.00 + 0.00
Sauté-TRPO 449 4+ 3.12 0.17 £ 0.12 0.03 £ 0.63 1000.00 % 0.00
TRPO 52.90 + 3.27 0.07 + 0.02 27.16 £ 0.07 1000.00 £+ 0.00
CPO* 5.26 + 7.90 0.10 + 0.05 -1.34 £ 0.52 1000.00 £+ 0.00
P30 30.72 £ 56.92 0.05 + 0.03 -1.18 £0.79 1000.00 £ 0.00

Table 5: Evaluation of trained models with ? OmniSafe baselines the Safety-Gymnasium POINT-
GOAL1, modified to terminate in G = G' = (). Here, every episode terminates only after 1000
timesteps. Similarly to Table 2, we exclude CPO from our analysis (denoted by a *) since its results
are not consistent with those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe
that despite no termination in the environment, our approach still achieves the lowest cost.

30

Under review as a conference paper at ICLR 2026

Algorithm Costs | Success Rate T Returns 1 Total Steps

TRPO-Minmax (Ours) 0.08 £ 0.03 0.01 £0.01 047 £0.11 940.58 + 20.33
PPO-Minmax (Ours) 0.12 + 0.07 0.09 + 0.14 1.12 £1.30 927.77 £ 31.18

TRPO-Lagrangian 0.12 £ 0.05 0.03 £ 0.03 0.62 £0.21 914.53 £29.49
Sauté-TRPO 0.13 £ 0.05 0.08 £0.14 092 £0.73 905.51 £ 33.87
TRPO 0.14 + 0.06 0.05 £ 0.06 0.72 £ 0.37 903.23 + 37.82
CPO* 0.02 £ 0.02 0.01 £0.01 0.11 £0.12 989.71 + 8.27
P30 0.13 £ 0.04 0.06 + 0.05 0.76 £ 0.33 921.17 £ 26.78

Table 6: Evaluation of trained models with ? OmniSafe baselines in Safety-Gymnasium POINTPUSH1,
modified to terminate in G = {, O, W} where G' = {O, @} . Episodes terminate when the agent
reaches G or after 1000 timesteps, but due to the large object the agent needs to push to the goal while
avoiding both hazards and the pillar, shorter or longer timesteps are better depending on the random
positions of the hazards and pillar. Similarly to Table 2, we exclude CPO from our analysis (denoted
by a *) since its results are not consistent with those of Ray et al. (2019) and Achiam et al. (2017).
Given that, we observe that our approach consistently achieves the lowest cost while obtaining the
highest success rate and rewards.

Algorithm Costs | Success Rate T Returns 1 Total Steps T

TRPO-Minmax (Ours) 0.09 & 0.03 0.05 £ 0.04 0.53+0.15 905.26 + 20.12
PPO-Minmax (Ours) 0.10 £0.02 0.03 £0.02 0.52+0.07 914.64 +16.92

TRPO-Lagrangian 0.11 £+ 0.03 0.13 +0.18 0.83+0.49 844.21 +£110.39
Sauté-TRPO 0.12 £+ 0.05 0.10 £ 0.12 0.68 £ 0.30 838.98 £ 106.42
TRPO 0.15 + 0.07 0.16 + 0.21 0.86 +0.56 795.70 + 157.18
CPO* 0.02 £ 0.01 0.01 £ 0.01 0.16 £0.25 983.25 +11.54
P30 0.13 £ 0.06 0.11 £0.12 0.78 £0.36 859.75 £ 74.76

Table 7: Evaluation of trained models with ? OmniSafe baselines in Safety-Gymnasium POINTPUSH]1,
modified to terminate in G = G' = {D), @) . Here, higher episode lengths are better because episodes
terminate only when the agent reaches G' or after 1000 timesteps. Similarly to Table 2, we exclude
CPO from our analysis (denoted by a *) since its results are not consistent with those of Ray et al.
(2019) and Achiam et al. (2017). Given that, we observe that despite the absence of terminal safe
goals, our approach still prioritises minimising the probability of unsafe transitions, consistently
achieving the lowest cost while trading off the rewards.

31

Under review as a conference paper at ICLR 2026

1674
1675 @wws TRPO e=== TRPOLag === TRPOSaute === CPO === P30 e=== TRPOMinmax (Ours) === PPOMinmax (Ours)

1676 Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost

1000 20000

1677 b
1678)
1679

1680 »
1681

1682 o
1683

1684 o
1685
1686
1687
1688
1689 ‘fﬁ“mww,
1690 Bl
1691

1692 .
1693

1694 . ‘ ‘
1695 O bt

1 696 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 06 0.8 1.0
Steps 1e7 Steps 1e7 Steps 1e7

it 17500
AN b AL L
! 15000

N” “Wm “\\ ’\‘ 12500

Lw m”
JUS, |

10000
7500
5000

2500

1697 PointGoall (goal-unsafe-terminal)

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707 0
1708 o
1709

1710

1711

1712 o
1713

1714

1715

1716 o
1717 s
1718
1719
1720
1721 .
1722 s

1723
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1724 Steps 1e7 Steps 1e7 Steps 1e7

PointGoall (unsafe-terminal)
1725

1726 Figure 30: Training curves of models trained with ? OmniSafe baselines in the Safety-Gymnasium
1727 POINTGOALI environment, modified to terminate in G = G' = {Q}-

Figure 29: Training curves of models trained with ? OmniSafe baselines in the Safety-Gymnasium
POINTGOAL 1 environment, modified to terminate in G = {{J, @} where G' = {D}-

=== TRPO === TRPOLag === TRPOSaute === CPO === P30 === TRPOMinmax (Ours) === PPOMinmax (Ours)
Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost
17500
15000
12500
10000
7500
5000

2500

Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty

32

Under review as a conference paper at ICLR 2026

1728

1729 e TRPO e TRPOLag === TRPOSaute === CPO «=== P30 e=== TRPOMinmax (Ours) @ PPOMinmax (Ours)

1730 Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost

1731
1732
1733 om0 aoonno
1734 -
1735 1000
1736

1737 roonno
1738 o ,
1739 -

1740 Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty
1741 »
1742
1743
1744
1745
1746
1747 o
1748 -
1749 -

1750 0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10 0.0 0.2 04 06 08 10
Steps. 1e7 Steps 1e7 Steps 1e7

1040 500000

200000

-40000

~100000

~120000

~140000

1751 PointGoall (default)

1752
1753
1754
1755
1756 e TRPO === TRPOLag === TRPOSaute === CPQ === P30 === TRPOMinmax (Ours) === PPOMinmax (Ours)
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768 15
1769
1770 e
1771
1772
1773 00
1774
1775 e
1776
1777
1778
1779
1780 Figure 32: Training curves of models trained with ? OmniSafe baselines in the Safety-Gymnasium
1781 POINTPUSH1 environment, modified to terminate in G = {{J, ©, @} where ¢' = {D, ¥}

Figure 31: Training curves for trained models with ? OmniSafe baselines in the Safety-Gymnasium
POINTGOAL1 environment, modified to terminate in G = G' = ().

Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost
0.4

3000
1000

2500 03

2000

0.2

800 1500

1000

0.1

500

0.0

Metrics/EpRet Metrics/EpSuccess Misc/MinmaxPenalty

05

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Steps le7 Steps le7 Steps le7

PointPush1 (goal-unsafe-terminal)

33

Under review as a conference paper at ICLR 2026

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807 ’
a0s
1809
1810
1811 :
1812
1813 :
1814
1815
1816 ~
1817 ‘
o T T T T P TS
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

s TRPO @=== TRPOLag === TRPOSaute e=== CPO === P30 === TRPOMinmax (Ours) === PPOMinmax (Ours)

Metrics/EpLen Metrics/CumulativeCost Metrics/EpCost

2000

1500

1000

PointPushl (unsafe-terminal)

Figure 33: Training curves of models trained with ? OmniSafe baselines in the Safety-Gymnasium
POINTPUSH environment, modified to terminate in G = G' = {Q), ¢}

34

	Introduction
	Background
	Avoiding Unsafe Absorbing States
	A Motivating Example: The Chain-Walk Environment
	On the Diameter and Solvability of Environments
	On the Failure Rate of Optimal Policies

	Practical Algorithm for Learning Safe Policies
	Experiments
	Behaviour when theory holds
	Behaviour when theory does not hold
	Comparison to representative baselines

	Related Work
	Discussion and Future Work
	Proofs of Theoretical Results
	Algorithms
	Extended Related Work
	Reward shaping
	Constrained RL
	Shielding

	Safety-Gym Pillar Training and Testing results with Ray2019 baselines
	Ablations in Safety-Gym default environments with Ray2019 baselines
	Safety-Gym Pillar Training and Testing results with JMLR:v25:23-0681 OmniSafe baselines
	Ablations in Safety-Gymnasium default environments with JMLR:v25:23-0681 OmniSafe baselines

