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Abstract
To evaluate knowledge in large language mod-001
els (LLMs), current methods query the model002
and then evaluate its generated responses. In003
this work, we ask whether evaluation can004
be done before the model has generated any005
text. Concretely, is it possible to estimate how006
knowledgeable a model is about a certain entity,007
only from its internal computation? We study008
this question with two tasks: given a subject009
entity, the goal is to predict (a) the ability of010
the model to answer common questions about011
the entity, and (b) the factuality of responses012
generated by the model about the entity. Ex-013
periments with a variety of LLMs show that014
KEEN, a simple probe trained over internal sub-015
ject representations, succeeds at both tasks —016
strongly correlating with both the QA accu-017
racy of the model per-subject and FActScore,018
a recent factuality metric in open-ended gen-019
eration. Moreover, KEEN naturally aligns with020
the model’s hedging behavior and faithfully021
reflects changes in the model’s knowledge af-022
ter fine-tuning. Lastly, we show a more in-023
terpretable yet equally performant variant of024
KEEN, which highlights a small set of tokens025
that correlates with the model’s lack of knowl-026
edge. Being simple and lightweight, KEEN can027
be leveraged to identify gaps and clusters of en-028
tity knowledge in LLMs, and guide decisions029
such as augmenting queries with retrieval.030

1 Introduction031

The standard approach for evaluating knowledge032

in large language models (LLMs) relies on query-033

ing the model, letting it generate responses, and034

then evaluating the responses. This evaluation can035

be done using various methods, including com-036

paring responses to gold answers (Touvron et al.,037

2023; Cohen et al., 2023a), measuring response038

consistency over multiple generations (Cohen et al.,039

2023b; Manakul et al., 2023; Kuhn et al., 2023),040

checking the support of responses in external ev-041

idence (Gao et al., 2023; Bohnet et al., 2022), or042
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Figure 1: We show that simple probes (KEEN), trained
over hidden model representations, quantify the model’s
knowledge about a given subject entity — estimating the
model’s question-answering accuracy on entity-related
questions (bottom left) and forecasting the factuality of
model-generated texts about the entity (right).

estimating the model’s uncertainty per-response 043

(Yu et al., 2024; Yuksekgonul et al., 2024; Li et al., 044

2023; Snyder et al., 2023; Liu et al., 2022). 045

In this work, we take a step back and ask whether 046

it is possible to evaluate the model’s knowledge 047

before it generates any text, using only its internal 048

computation. This view is analogous to human 049

studies that show the effectiveness of non-verbal 050

communication for assessing witness credibility 051

in the courtroom (Remland, 1994; Denault et al., 052

2024). Concretely, we propose to evaluate how 053

knowledgeable an LLM is about a given subject 054

entity (e.g. Napoleon or Empire State Building), 055

by considering only how it processes the name of 056

that entity, and before it generates a single token. 057

We formalize this problem as entity knowledge 058

estimation (§2) and devise two concrete tasks. 059

Given an entity, the goal is to predict: (a) how 060

many common questions about the subject entity 061

the model will answer correctly (Figure 1, bottom 062

left), and (b) how many of the claims in a model 063

generated response about the subject are factually 064

correct (Figure 1, right). 065
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To tackle entity knowledge estimation, we capi-066

talize on findings from recent interpretability works067

which show that, during inference, the hidden repre-068

sentations of an input entity capture many attributes069

related to it (Geva et al., 2023; Meng et al., 2024),070

and often these attributes can be extracted with lin-071

ear functions (Hernandez et al., 2024). Therefore,072

we propose (§3) to estimate how knowledgeable073

a model is about a given entity by training sim-074

ple probes, called KEEN (Knowledge Estimation of075

ENtities), over the model’s representations of the076

entity (Figure 1, upper left).077

We evaluate KEEN in two experimental settings078

(§4) of factual question answering (QA) and open-079

ended generation (OEG) of biographies. In the QA080

setting, we derive a set of questions per-subject081

for subjects in PopQA (Mallen et al., 2023) and082

evaluate how well KEEN predicts the model’s av-083

erage accuracy per-subject across these questions.084

In the OEG setting, we evaluate the correlation of085

KEEN with FActScore (Min et al., 2023), a post-086

generation hallucination detector. In both settings087

and across models of different sizes and families —088

GPT2 (Radford et al., 2019), Pythia (Biderman089

et al., 2023), LLaMA2 (Touvron et al., 2023),090

and Vicuna (Chiang et al., 2023) — KEEN consis-091

tently shows a strong correlation between 0.58-0.68092

with model accuracy and 0.66-0.77 with factuality.093

Moreover, KEEN probes trained on entity represen-094

tations show substantially stronger correlation with095

model accuracy and factuality than probes trained096

on commonly-used intrinsic features, such as fully-097

connected scores and self-attention activations, and098

external features, such as entity-popularity.099

Further analyzing the utility and features of KEEN100

(§5), we show that KEEN faithfully correlates with101

the model’s hedging behavior, i.e., the score pre-102

dicted by KEEN decreases as the fraction of per-103

entity questions that a model hedges on increases.104

In addition, KEEN faithfully reflects changes in the105

model’s knowledge following fine-tuning: training106

LLaMA2 on Wikipedia articles about certain en-107

tities increases their KEEN score while scores for108

other entities tend to decrease. Lastly, we show109

that training KEEN on the vocabulary projections of110

entity representations (nostalgebraist, 2020; Geva111

et al., 2021) increases the probe’s interpretability112

without performance cost, identifying a small set113

of tokens that signal a lack of entity knowledge.114

To conclude, we present KEEN, a simple and115

lightweight approach for quantifying how knowl-116

edgeable a model is about a given entity from intrin-117

sic properties, which well-estimates the accuracy 118

and factuality of model outputs about the entity. 119

We also show that KEEN scores are reflective of 120

both hedging behavior and changes in entity-based 121

knowledge over fine-tuning. KEEN could be used to 122

inform developer decisions such as whether to aug- 123

ment queries with retrieval, discard certain queries 124

(e.g. by abstaining), enhance models with external 125

tools, or identify “holes” in the model’s knowledge 126

to apply further training on. We release our code 127

and data at https://anonymized. 128

2 Entity Knowledge Estimation 129

Our goal is to evaluate how much knowledge an 130

LLM captures about an entity from how it pro- 131

cesses the entity’s name alone, without obtain- 132

ing model responses and evaluating them post- 133

generation. This view is motivated by growing 134

evidence from interpretability works which find 135

that, during model inference, knowledge is central- 136

ized in the hidden representations corresponding 137

to named entities (Meng et al., 2024; Geva et al., 138

2023; Li et al., 2021). 139

Given a subject entity s (e.g. Napoleon or Em- 140

pire State Building) and a model M , our goal is to 141

estimate two related quantities: (a) the performance 142

of M on queries about s, and (b) the probability 143

that M will generate incorrect facts given any query 144

about s. These two quantities are expected to be 145

related, as they are both influenced by and reflect 146

the amount of knowledge M captures about s. 147

To evaluate entity knowledge, we propose two 148

concrete evaluation settings: 149

Question Answering (QA) For a subject en- 150

tity s and a set of common question-answer pairs 151

Q = {⟨qi, ai⟩}ni=1 about s, denote by âi the an- 152

swer predicted by a model M for the query qi. 153

Given only the subject s, our goal is to estimate 154

the average accuracy of M over Q, denoted as 155

y
(s)
QA := 1

n

∑n
i=1 1[âi = ai]. 156

Open-Ended Generation (OEG) For a general 157

information-seeking query q about a subject s (e.g. 158

“Tell me facts about Napoleon” or “Generate a para- 159

graph about Napoleon”), let R = {⟨ci, ai⟩}mi=1 160

be the set of claims in the response generated by 161

M , each with a 0/1 label indicating its correctness 162

with respect to external evidence. Claims can be 163

extracted and evaluated for correctness using vari- 164

ous automatic methods (e.g., Nenkova and Passon- 165

neau, 2004; Shapira et al., 2019; Zhang and Bansal, 166
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2021). Given only the subject s, the task is to pre-167

dict the portion of factually correct claims in R,168

denoted as y(s)OEG := 1
m

∑m
i=1 ai.169

A naive solution for both tasks would be to first170

obtain queries about s, feed them to M , and eval-171

uate the answers M generates. Here we seek an172

efficient solution, which estimates the knowledge173

of M about s, without iteratively executing M .174

3 KEEN175

Geva et al. (2023) showed that for a given subject176

in the input, LLMs construct an information-rich177

representation of the subject that encodes many of178

its attributes. Furthermore, subject attributes can179

be extracted from the subject representation with180

a simple linear function (Hernandez et al., 2024).181

We capitalize on these findings and propose to train182

a simple probe over the model’s representations183

of subjects to predict how much knowledge the184

model captures about them. In our following for-185

mulation (and the rest of the paper), we focus on186

widely-adopted transformer-based auto-regressive187

language models.188

Notation Assuming a language model with L
layers, a hidden dimension d, a vocabulary V , and
an unembedding matrix WU ∈ R|V|×d. Let hℓ,i be
the hidden representation at position i and layer ℓ,
omitting normalization, hℓ,i is computed as:

hℓ,i = hℓ−1,i + aℓ,i +mℓ,i

where aℓ,i and mℓ,i denote the outputs from the189

ℓ-th multi-head self-attention and MLP sublayers,190

respectively (Vaswani et al., 2017).191

3.1 Features192

Let t(s)1 , ..., t
(s)
sr be the sequence of sr input tokens193

corresponding to a given subject s (e.g. N, ap,194

oleon for the subject Napoleon tokenized with195

GPT2). We use the representations at the last sub-196

ject position (sr), denoted as h
(s)
1,sr

, ...,h
(s)
L,sr

, to197

construct a feature vector z(s) ∈ Rdz .1198

We use the following sets of features for z(s):199

• Hidden states (HS): We take the subject repre-200

sentation from multiple upper-intermediate lay-201

ers, where attributes of the subject are often ex-202

tracted during inference (Geva et al., 2023; Meng203

1In practice, we obtain the hidden representations using the
query: “This document describes [s]”. This is to avoid
placing the subject in the first position of the input, which
often encodes biases that could affect performance on our task
(Xiao et al., 2024; Geva et al., 2023).

et al., 2024) and are easier to disentangle (Huang 204

et al., 2024; Hernandez et al., 2024). To account 205

for variations in the inference pass of different 206

subjects, we choose 3 consecutive layers L = 207{
3
4L+ k | k ∈ {−1, 0, 1}

}
, from which we ex- 208

tract the hidden states {h(s)
ℓ,sr

| ℓ ∈ L}. Then, we 209

normalize these vectors (see details below) and 210

average them into a d-dimensional feature vector. 211

• HS with vocabulary projection (VP): We take 212

the same hidden states as in HS, but instead of us- 213

ing them as-is, we use their projections to the vo- 214

cabulary (nostalgebraist, 2020; Geva et al., 2021). 215

Namely, we normalize and average the vectors 216

{WUfL(h
(s)
ℓ,sr

) | ℓ ∈ L} into a |V|-dimensional 217

feature vector, where fL is the layer norm ap- 218

plied at the last layer of the model. While VP is 219

not expected to improve performance, it could 220

enhance interpretability, as the learned weight 221

for each token signifies feature importance in 222

quantifying subject-related knowledge. 223

• HS with top-k of vocabulary projection (VP- 224

k): Since the vocabulary space is typically large, 225

in order to make the probe more interpretable and 226

efficient, we perform feature selection over the 227

trained VP probe to extract the k most influential 228

tokens from the vocabulary projections. We then 229

normalize and average the obtained 3∗k features 230

(k for each layer) to train a new smaller probe 231

over k-dimensional feature vectors. 232

For each of HS, VP, and VP-k, we apply Min- 233

Max normalization before averaging the extracted 234

vectors, which scales each feature to be within 235

[0, 1]. For example, after extracting the hidden 236

states {h(s)
ℓ,sr

| ℓ ∈ L} for some subject s, we nor- 237

malize the values of every entry i ∈ [d] and layer 238

ℓ ∈ L over a set of subjects S. Let ĥ(s)
ℓ,sr

∈ Rd be 239

the normalized h
(s)
ℓ,sr

, so the feature vector for HS 240

is defined as z(s) = 1
|L|

∑
ℓ∈L ĥ

(s)
ℓ,sr

∈ Rd. 241

3.2 Probing 242

We define the following probe for predicting the 243

model’s QA accuracy y
(s)
QA or response factuality 244

y
(s)
OEG given the features z(s) for a subject s: 245

f(z) := σ(θ · z) (1) 246

Where σ is the sigmoid function and θ ∈ Rdz is 247

a single linear transformation. The sigmoid non- 248

linearity is necessary to aid the model in learning 249
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scores in the range [0, 1].2250

For each of the two tasks T ∈ {QA, OEG}, we
optimize θ over features and labels collected for a
set of subjects S by minimizing the MSE loss:

LMSE(θ) = ∥y(s)T − σ(θ · z(s))∥22
For more details on the probes’ training, see §A.251

4 Experiments252

In this section, we evaluate KEEN and baselines that253

rely on different intrinsic and external features. We254

observed that the VP-50 probe obtained compa-255

rable performance while being significantly more256

interpretable (discussed in B.2) so we focus on257

evaluating the VP and VP-50 variants of this probe.258

4.1 Experimental Setting259

Data For the QA task, we sample 3,472 sub-260

ject entities from PopQA (Mallen et al., 2023)261

and generate a set of 5.3 questions on aver-262

age per subject. To generate questions, we263

take subject-relation-object triplets from Wiki-264

data (Vrandečić and Krötzsch, 2014) and con-265

vert them into question-answer pairs with hand-266

written templates. For instance, the triplet267

(Napoleon, place of birth, France) will be con-268

verted to the question “Where was Napoleon born?”269

and the answer “France”. In addition, we augment270

each such example with multiple variants that cover271

different answer granularities (Yona et al., 2024),272

accounting for both answer and subject aliases, and273

handling cases with multiple answers. We consider274

a model’s prediction for a given subject-relation275

pair as correct if it contains an exact match with276

any answer alias in at least one question variation.277

For the OEG setting, we use the FActScore278

dataset (Min et al., 2023), which includes model-279

generated biographies, extracted claims, and claim280

labels which indicate whether the claim is sup-281

ported or not-supported by the subject’s Wikipedia282

page. We compare our results to the FActScore283

scores of the same generating model.284

Examples for the two tasks are shown in Table 1.285

For both settings, we randomly split each dataset286

into disjoint sets of subjects: 65% train, 15% devel-287

opment, and 20% test. Importantly, the FActScore288

dataset and QA train set have a negligible number289

of overlapping subjects, 1 (0.2%), which allows us290

to test transfer learning between the two settings.291

2We also experimented with linear probes and found that
they tended to converge to scores in a narrow range around
0.5, failing to capture the signals in the inputs.

Baselines We evaluate three baselines that utilize 292

intrinsic features and external features. For intrin- 293

sic features, we take the two best variants reported 294

by Snyder et al. (2023), which trained binary hallu- 295

cination detectors for QA. These detectors use the 296

outputs from the self-attention and MLP modules 297

as features, which were also considered by other 298

recent methods for similar tasks (Yu et al., 2024; 299

Yuksekgonul et al., 2024; Li et al., 2023). 300

• Entity popularity (Pop.): It has been established 301

that LLM performance is influenced by entity 302

popularity (Mallen et al., 2023; Kandpal et al., 303

2023; Yona et al., 2024). We follow previous 304

works (e.g., Chen et al., 2021; Mallen et al., 2023; 305

Cohen et al., 2024) and approximate entity popu- 306

larity using statistics from Wikipedia. Concretely, 307

we use the total number of monthly views of the 308

entity’s page between the years 2000-2023. 309

• Self-attention outputs (ATTN): We train the 310

same probe of KEEN (Eq. 1), while using a
(s)
L,sr

311

as the feature vector z(s), i.e., the output of the 312

last self-attention sublayer for the last input token 313

(which is the last subject token in our setup). 314

• Fully-connected activations (FC): Here we 315

train a similar probe to ATTN, which sets z(s) 316

to m
(s)
L,sr

, the output of the last MLP sublayer for 317

the last input token. 318

Models We analyze 7 auto-regressive language 319

models across various sizes, latent spaces, and 320

training objectives: GPT2-XL (Radford et al., 321

2019), Pythia 6B and 12B (Biderman et al., 2023), 322

LLaMA2 7B and 13B (Touvron et al., 2023), and 323

Vicuna 13B (Chiang et al., 2023).3 The vocabu- 324

lary sizes range between 30K-50K tokens and the 325

hidden state dimensions range from 4096-5120. 326

Evaluation For every model and subject s in our 327

data, we feed the model a generic prompt “This 328

document describes [s]” and extract the fea- 329

tures used for all methods: KEEN and the above 330

baselines. Using these features, we obtain predic- 331

tions for our two tasks for every method. For the 332

Pop. baseline, we simply take the corresponding 333

popularity value of the subject. We report Pearson 334

correlation and the MSE between the predicted and 335

gold scores, for every task, model and method. Cor- 336

relation results are provided in §4.2 and the MSE 337

results are reported in §B. 338

3We also analyzed Vicuna 7B, but due to its poor accuracy
in the QA setting and inconsistent behavior, we omitted it in
the main results. Results for Vicuna 7B can be found in §B.
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Input Task Output Example ⟨question, model answer⟩ / ⟨claim, correctness label⟩ pairs
subject s y

(s)
QA / y

(s)
OEG from Q / R

George
Washington

QA
⟨In what city was George Washington born?, Westmoreland County⟩,

0.67 ⟨What is the religion of George Washington?, Episcopal Church⟩
⟨Who is the father of George Washington?, Augustine Washington⟩

OEG
⟨George Washington was a military man., 1⟩,

0.74 ⟨George Washington was the first President of the United States., 1⟩,
⟨He was educated at the College of William and Mary., 0⟩

Table 1: Example input subject and the expected outputs for the two tasks for Pythia 12B. The output labels were
computed based on the average QA accuracy over 12 questions (0.67), and the FActScore score for 35 claims (0.74).

GPT2 Pythia Pythia LLaMA2 LLaMA2 Vicuna
XL 6B 12B 7B 13B 13B

Pop. 0.30 0.32 0.28 0.27 0.25 0.26
FC 0.49 0.59 0.55 0.50 0.49 0.49
ATTN 0.53 0.63 0.60 0.58 0.50 0.52
VP-50 0.54 0.64 0.59 0.53 0.48 0.50
VP 0.61 0.68 0.64 0.64 0.58 0.60
HS 0.60 0.68 0.64 0.64 0.58 0.60

Table 2: Correlation with the average QA accuracy for
the KEEN QA probes and baselines.

4.2 Results339

KEEN well-estimates the model’s knowledge340

about the subject entity Table 2 and 3 show341

the QA and OEG results, respectively.342

In both settings and across all models, KEEN343

probes trained on hidden representations and vocab-344

ulary projections demonstrate the strongest correla-345

tion of 0.60-0.68 with QA accuracy and 0.66-0.77346

with FActScore. This shows that it is possible to347

predict how knowledgeable a model is about an348

entity from the entity’s hidden representations.349

Predicting factuality based on common intrin-350

sic features (FC and ATTN) consistently under-351

performs with respect to KEEN, further supporting352

the finding that entity knowledge is centralized in353

entity representations during inference. Further-354

more, the entity popularity baseline (Pop.) per-355

forms poorly on both tasks, with low correlation356

values of ≤ 0.32 in QA and ≤ 0.36 in OEG. This357

shows that while external statistics of popularity358

(such as Wikipedia page count) are useful in deriv-359

ing general performance trends, they often fail to360

provide fine-grained entity-level predictions.361

Surprisingly, for the Pythia models even the362

KEEN OEG VP-50 probe strongly correlates with363

FActScore, indicating that there is a relatively364

small set of tokens which are influential in increas-365

ing/decreasing predicted accuracy. We further ana-366

lyze these tokens in §5.4 and provide intuition for367

interpreting them. Moreover, we discuss the trade-368

Model Pop. FC ATTN VP-50 VP HS

Pythia 12B 0.36 0.61 0.77 0.72 0.75 0.77
Vicuna 13B 0.37 0.49 0.65 0.55 0.66 0.66

Table 3: Correlation with FActScore for the KEEN OEG
probes and baselines.

Model Pop. FC ATTN VP-50 VP HS

Pythia 12B 0.47 0.41 0.55 0.40 0.57 0.60
Vicuna 13B 0.40 0.52 0.50 0.48 0.61 0.62

Table 4: Transfer learning results, showing the corre-
lation between FActScore and KEEN QA probes and
baselines. Results are reported over all 500 subjects in
the FActScore dataset.

off between interpretability and score correlation 369

in B.2. 370

KEEN QA probes generalize to predict factuality 371

in OEG Since knowledge is centralized in the 372

internal representations of entities, their use in esti- 373

mating knowledge should transfer across different 374

settings. Table 4 shows that the predictions of KEEN 375

QA probes have a strong correlation of 0.60-0.62 376

with FActScore. Further, the correlation of KEEN 377

QA probes with QA accuracy and FActScore are 378

notably similar, e.g. 0.60 and 0.62 for Vicuna 13B 379

KEEN QA HS probes, respectively. These results 380

show that HS and VP features capture signals that 381

generalize across settings, regardless of whether 382

the task requires explicit (QA) or implicit (OEG) 383

recall of factual knowledge by the model. 384

5 Analysis 385

In this section, we further look into the predictions 386

and features of KEEN, evaluating its faithfulness 387

with respect to model hedging (§5.1) and changes 388

in the model’s knowledge following training (§5.2). 389

In addition, we analyze its errors (§5.3) and the 390

features of its VP-50 variant (§5.4). 391
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Figure 2: KEEN QA scores as a function of the fraction
of per-subject queries that Vicuna 13B and Pythia 12B
hedge on.

Figure 3: Changes in the KEEN QA score and average
QA accuracy after fine-tuning LLaMA2 7B on para-
graphs about a target subject, for target and non-target
subjects. These results are aggregated over individually
fine-tuning for 20 subjects.

5.1 Correlation with Model Hedging392

To prevent factually incorrect responses, LLMs are393

trained to hedge in cases of uncertainty, for ex-394

ample by generating “I don’t know” (Ganguli395

et al., 2023). Therefore, it is expected that models396

generally hedge on entities they are less knowl-397

edgeable about. Since the KEEN QA probe score398

estimates entity-based knowledge, we hypothesize399

that it should correlate with the fraction of ques-400

tions that a model hedges on about the entity.401

Figure 2 confirms this hypothesis, showing that402

the KEEN QA VP score decreases as the fraction403

of queries the model hedges on increases. This404

implies that models may hedge based on features405

of the model’s internal representations of the entity,406

similarly to KEEN.407

5.2 Reflecting Changes in Model Knowledge408

Our experiments so far evaluated KEEN while keep-409

ing the underlying LLM fixed. A natural question410

that arises is whether changes in the model’s knowl-411

edge are reflected in changes in the KEEN score. We412

test this by fine-tuning LLaMA2-7B on paragraphs413

about a target subject and measuring changes in414

both the average QA accuracy and the KEEN QA415

Figure 4: Predicted scores from the KEEN QA VP probe
and the golden QA Accuracy scores are positively lin-
early related.

score. Concretely, we sample 20 subjects from 416

the QA test dataset and retrieve paragraphs from 417

the Wikipedia page of each subject using BM25 418

(Robertson et al., 1995).4 Then, we use LoRA (Hu 419

et al., 2022) to fine-tune < 0.5% of the model’s 420

parameters, separately for each subject. After fine- 421

tuning for a certain target subject, we compute the 422

KEEN score for that subject, as well as for 256 non- 423

target subjects from the QA test dataset. The KEEN 424

QA probe trained over the model’s hidden states 425

before fine-tuning is used to compute these scores. 426

Figure 3 shows that on average, QA accuracy 427

scores for the target entities increase by 0.16 and 428

KEEN QA scores increase by 0.18, as models are 429

fine-tuned on paragraphs related to them. Con- 430

versely, inline with works about catastrophic for- 431

getting which find that models tend to forget in- 432

formation about entities observed in pre-training 433

(Tirumala et al., 2022), the QA accuracy scores for 434

non-target entities decrease after fine-tuning. How- 435

ever, the KEEN scores for non-target entities stay 436

relatively constant. Since fine-tuning often doesn’t 437

erase residual information in LLMs (Patil et al., 438

2024), and KEEN relies on intermediate represen- 439

tations, a possible explanation for this discrepancy 440

is that information is still encoded in the represen- 441

tations but the model fails to recall it. 442

4We use the Wikipedia dump from August 28, 2023.
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Figure 5: Predicted scores of the KEEN OEG VP probe
versus FActScore scores. KEEN scores are positively
linearly correlated with FActScore scores.

5.3 Error Analysis443

To better understand the limitations of KEEN, we444

plot the probes’ predicted scores against the refer-445

ence QA accuracy and FActScore scores.446

Figure 4 shows that the KEEN VP QA probes tend447

to predict higher scores relative to QA accuracy for448

subjects that the model knows less about, although449

the KEEN scores for entities with QA accuracy be-450

tween [0, 0.5] do generally fall within a similar451

range of [0.1, 0.5]. For subjects that the model is452

more knowledgeable about, KEEN QA scores are453

more conservative, as seen by the cluster of scores454

below the y = x line for QA accuracy values close455

to 1.0. Generally, KEEN scores have less variance456

than the QA accuracy scores since the slopes of the457

trend-lines are < 1, which may suggest that more458

complex predictors are needed to capture all the459

variance of QA accuracy. These trends are consis-460

tent across models of different families and sizes.461

In §B, we include results for the other models,462

which follow the same trends in Figure 4 and Fig-463

ure 5. We also provide the scatter plots for probes464

trained on the different KEEN features and baselines,465

all demonstrating the same linear relations.466

5.4 Feature Analysis for VP-25 and VP-50467

We analyze the most influential features of the KEEN468

QA VP probes to understand which tokens con-469

tribute most to predicting average QA accuracy.470

Our goal in this analysis is to identify tokens that471

either increase or decrease predicted QA accuracy,472

and to determine whether they are promoted in the473

representations of subjects with high and low QA474

accuracy, respectively. As a concrete example, for475

subjects with low QA accuracy, we expect tokens476

that decrease QA accuracy to generally be ranked477

lower in the subject representations than tokens478

that increase QA accuracy. Since the input nor-479

Figure 6: Difference, per subject, in the median rank of
tokens with negative weight and tokens with positive
weight. Pythia 12B VP-25 and VP-50 show the trade-
off between interpretability and performance – though
the median ranks of negative weight tokens are lower
on average than positive weight tokens in VP-50, there
is still a clear split in both accuracy groups.

Weight Example influential tokens

Py
th

ia
12

B Pos analysis, Statistical, Players, Senator,
Quantum, nationality, investments

Neg circadian, AMPK, lys, 16, jo, VERT, diese,
see, Mort, ))*, dep, imi, ac

V
ic

un
a

13
B

Pos athlet, kick, swing, developer, compiling,
official, sales, GitHub, Movie

Neg sle, hurt, Circ, Alt, book, JK, ja, adow,
istema, ppings, adjust, istol

Table 5: Examples of the most influential tokens in the
KEEN QA VP probes that were assigned positive and
negative weights. These are some of the tokens that
correspond to the features of KEEN QA VP-50 probes.

malization scheme described in §3.1 normalizes a 480

token’s logit in a given hidden state by its magni- 481

tude across the other subjects (not with respect to 482

the other tokens in the hidden state), we can inter- 483

pret the weight learned by the KEEN QA VP probe 484

for each token as its direction and magnitude of 485

influence on the predicted score. 486

First, we identify the tokens associated with the 487

largest absolute weights in the KEEN QA VP probes, 488

as they are most influential on the predicted score. 489

Next, we compare the median rank of tokens with 490

negative weights to those with positive weights in 491

the vocabulary projections of subjects with high 492

QA accuracy (1.0) and low QA accuracy (0.0). Fig- 493

ure 6 shows that for low QA accuracy subjects, the 494

median rank of negative weight tokens is generally 495

lower than that of positive weight tokens. Con- 496

versely, for high QA accuracy subjects, the median 497

7



rank of negative weight tokens is generally higher498

than that of positive weight tokens. This oppos-499

ing trend in the two accuracy groups indicates that500

there is a small set of tokens which hold signals for501

differentiating between subjects the model knows502

a lot about and those it knows less about.503

We provide these important tokens in Table 5.504

Tokens assigned positive weight are related to505

meaningful concepts while tokens assigned neg-506

ative weight are often numbers, abbreviations, or507

suffixes. A possible interpretation of this semantic508

difference between positive weight tokens and neg-509

ative weight tokens is that the hidden states of low510

accuracy subjects encode less content, reflecting511

the model’s lack of knowledge about them.512

6 Related Work513

Evaluation of knowledge and factuality of LLMs514

The common practice for estimating knowledge in515

LLMs is to query the model and then evaluate its516

outputs. This is often conducted though question-517

answering setups with gold labels (Roberts et al.,518

2020; Petroni et al., 2019; Cohen et al., 2023a,519

inter alia), by letting the model generate multiple520

responses and measuring response consistency (Co-521

hen et al., 2023b; Manakul et al., 2023; Kuhn et al.,522

2023), checking whether the generated output is523

supported by external evidence (Gao et al., 2023;524

Bohnet et al., 2022; Min et al., 2023), or by estimat-525

ing the model’s uncertainty per-response (Zhang526

et al., 2023; Jesson et al., 2024). Unlike these527

methods, we focus on evaluating the model’s entity528

knowledge beyond a single response, based on in-529

trinsic features extracted before generating a single530

token.531

Probing internal representations of LLMs532

Probing over internal representations has been used533

to predict model behavior, such as truthfulness534

(Marks and Tegmark, 2023; Azaria and Mitchell,535

2023a), and properties of language, such as part-of-536

speech (Belinkov et al., 2017; Nikolaev and Padó,537

2023), syntax (Hewitt and Manning, 2019), and538

sentence length (Adi et al., 2017) for a specific in-539

put. Probing has also been used to identify which540

hidden states are most influential on the perfor-541

mance of tasks, like classification (Alain and Ben-542

gio, 2017). Our use of probing differs from prior543

work because we estimate a property that captures544

model behavior over many inputs rather than a545

single input. Namely, the KEEN score provides a546

knowledge estimate relevant to any input concern-547

ing the entity. Further, KEEN focuses on estimating 548

entity-specific knowledge and is useful in evalu- 549

ating several model behaviors, including hedging, 550

shifts in knowledge, and truthfulness. 551

Hallucination detection using intrinsic features 552

Our work is closely related to methods that leverage 553

intrinsic features for detecting factually incorrect 554

claims, but has two core differences. The first be- 555

ing in our choice of features: we specifically use 556

the hidden states corresponding to the named en- 557

tity from the upper intermediate layers. In contrast, 558

existing methods use various other features, like in- 559

termediate activation values (Azaria and Mitchell, 560

2023b), outputs from the self-attention modules 561

(Yu et al., 2024; Yuksekgonul et al., 2024; Li et al., 562

2023; Snyder et al., 2023), soft-max prediction 563

probabilities, and fully-connected scores (Snyder 564

et al., 2023). Yu et al. (2024); Goloviznina and 565

Kotelnikov (2024); Su et al. (2024) also examine 566

the intermediate hidden representations, but for the 567

purpose of identifying whether there exists a sub- 568

space of hidden states that lead to hallucinations. 569

Similarly to our work, Yu et al. (2024) uses the 570

hidden representations of subjects, but rather to 571

train a binary hallucination detector. Unlike all 572

these works that use internal representations to pre- 573

dict the factuality of a specific claim, we learn to 574

estimate knowledge from a single internal repre- 575

sentation of an entity, which is applicable to any 576

claim pertaining to it. 577

7 Conclusion 578

We present the problem of estimating entity knowl- 579

edge solely from the model’s internal representa- 580

tions of the entity. We show that KEEN offers a 581

simple and interpretable solution which correlates 582

with model performance in both QA and OEG set- 583

tings, as well as with current hallucination detec- 584

tion methods. Further, KEEN is also reflective of 585

both hedging behavior and changes in knowledge 586

throughout fine-tuning. From a broad perspective, 587

our results demonstrate the potential of estimat- 588

ing model qualities and behavior for certain inputs 589

based on intrinsic features, and call for future work 590

to leverage simple and efficient methods like KEEN 591

to improve the factuality and reliability of LLMs. 592

Limitations 593

While our approach successfully estimates the ex- 594

tent of the model’s knowledge about a subject, it 595

8



does not identify specific gaps or clusters of knowl-596

edge. For instance, KEEN can estimate that the597

model will be 55% truthful when generating con-598

tent about Napoleon, but it does not pinpoint that599

the model is unable to answer the specific ques-600

tion, What military academy did Napoleon attend?.601

An interesting direction for future work would be602

to develop a more fine-grained approach that pre-603

dicts how knowledgeable the model is about spe-604

cific aspects of the subject (e.g. military career of605

Napoleon) or identifies specific facts encoded in606

subject representations.607

Another limitation is that this work focuses on608

estimating knowledge for entities, however not all609

subjects of questions are entities. For example,610

there is no clear subject for which we can apply611

KEEN in the question, How does exercise influence612

mental health?. KEEN also assumes that the subjects613

are already extracted for analysis. While identify-614

ing named entities in text is a well-studied task in615

NLP (Nadeau and Sekine, 2007), combining it with616

KEEN could make this approach more complex and617

computationally expensive.618

Our evaluation focuses only on transformer-619

based auto-regressive LLMs. While this is one of620

the most popular and largest families of LLMs, it621

would be valuable to study the applicability of KEEN622

to other model architectures. Notably, Sharma et al.623

(2024) shows that factual recall in Mamba is simi-624

larly centered in the hidden states of the last subject625

token from the intermediate layers, so we expect626

our approach to generalize to other recurrent archi-627

tectures.628
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A KEEN Training Details976

Hyper-parameter tuning for KEEN probes All977

KEEN QA and OEG probes were trained with the978

AdamW optimizer with weight decay 0.01, and979

batch size of 32.980

KEEN QA hyper-parameters were optimized over981

the configuration combinations presented in Ta-982

ble 6.

Hyper-parameter Values

Learning Rate 10−3, 5e−3, 5e−4, 10−4, 5e−5

Epochs 100, 1K, 3K, 5K

Table 6: KEEN QA probe hyper-parameter configurations
983

KEEN OEG hyper-parameters were optimized984

over the configuration combinations presented in985

Table 7.

Hyper-parameter Values

Learning Rate 5e−4, 10−4, 5e−5, 10−5

Epochs 1K, 3K, 5K

Table 7: KEEN OEG probe hyperparameter configura-
tions

986

The best hyper-parameters for QA and OEG987

KEEN probes are found in Table 8 and Table 9, re-988

spectively.989

KEEN Hyper GPT2 Pythia Pythia LLaMA LLaMA Vicuna Vicuna
Probe Param XL 6B 12B 7B 13B 7B 13B

HS Epoch 3K 100 100 1K 1K 1K 100
LR 10−5 10−4 10−4 10−5 10−5 10−5 10−4

VP Epoch 3K 100 3K 1K 1K 1K 3K
LR 10−5 10−4 10−5 10−5 10−5 10−5 10−5

VP-200 Epoch 3K 500 3K 3K 3K 3K 3K
LR 10−5 10−4 10−4 10−4 10−4 10−4 10−4

VP-100 Epoch 3K 500 3K 3K 3K 3K 3K
LR 10−5 10−4 10−4 10−4 10−4 10−4 10−4

VP-50 Epoch 3K 1K 3K 3K 3K 3K 3K
LR 10−5 10−4 10−4 10−4 10−4 10−4 10−4

VP-25 Epoch 5K 3K 3K 3K 3K 3K 3K
LR 10−5 10−4 10−4 10−4 10−4 10−4 10−4

VP-10 Epoch - - - 3K - - -
LR 10−5 10−4 10−4 10−4 10−4 10−4 10−4

FC Epoch - - - 1K - - -
LR - - - 10−5 - - -

ATTN Epoch - - - 1K - - -
LR - - - 10−5 - - -

Table 8: Best hyper-parameters for KEEN QA probes and
baselines.

Hyper-parameters for fine-tuning LLaMA2 7B990

The training details for the fine-tuning experiment991

in §5.2 are described in Table 10.992

KEEN Probe Hyper-parameter Pythia 12B Vicuna 13B

HS Epoch 1K 1K
LR 10−5 1−4

VP Epoch 5K 3K
LR 10−5 1e−5

VP-200 Epoch 5K 3K
LR 10−4 1e−4

VP-100 Epoch 5K 5K
LR 10−4 5e−4

VP-50 Epoch 5K 5K
LR 10−4 5e−4

VP-25 Epoch 5K 5K
LR 5e−4 1−3

VP-10 Epoch 5K 5K
LR 10−3 5e−4

FC Epoch 1K 1K
LR 5e−5 5e−5

ATTN Epoch 1K 1K
LR 10−5 5e−5

Table 9: Best hyper-parameters for KEEN OEG probes
and baselines.

Optimizer LR Epoch Scheduler Warm Up LoRA LoRA LoRA
ratio alpha dropout r

AdamW 2e−4 100 Linear 0.03 16 0.1 64

Table 10: Hyper-parameters for fine-tuning LLaMA2
7B.

Resources All our experiments were conducted 993

using the PyTorch package (Paszke et al., 2019) on 994

a single A100 or H100 GPU. 995

B Additional Results 996

B.1 Mean Standard Error (MSE) for KEEN 997

Table 11, Table 12, Table 13, present the MSE 998

for the KEEN OEG probes with FActScore scores, 999

KEEN OEG probes with FActScore scores, the KEEN 1000

QA probes with FActScore scores, and the KEEN 1001

QA probes with average QA accuracy scores. The 1002

performance of these probes is discussed in §4.2.

Model Freq. FC ATTN VP-50 VP HS

Pythia-12B 0.028 0.026 0.014 0.020 0.017 0.014
Vicuna-13B 0.052 0.075 0.049 0.052 0.040 0.039

Table 11: MSE for KEEN OEG Probes between predicted
KEEN scores and FActScore scores.

1003

B.2 Interpretability-Performance Tradeoff for 1004

KEEN VP-k 1005

Figure 7, Figure 8, and Figure 9 demonstrate di- 1006

minishing returns in increasing the parameter count 1007

beyond 50 tokens, suggesting that a small set of to- 1008

kens contains significant signals for estimating en- 1009

tity knowledge. There is a clear trade-off between 1010

13



Model Freq. FC ATTN VP-50 VP HS

Pythia 12B - 0.053 0.043 0.047 0.062 0.074
Vicuna 13B - 0.046 0.053 0.052 0.049 0.050

Table 12: MSE for KEEN QA probes and FActScore.

Freq. FC ATTN HS VP-50 VP

GPT2 XL 0.053 0.053 0.046 0.041 0.045 0.040
Pythia 6B 0.063 0.052 0.048 0.045 0.047 0.042
Pythia 12B 0.069 0.059 0.051 0.056 0.052 0.053
LLaMA2 7B 0.069 0.068 0.057 0.051 0.062 0.053
LLaMA2 13B 0.073 0.061 0.060 0.053 0.061 0.053
Vicuna 7B 0.015 0.010 0.010 0.011 0.015 0.010
Vicuna 13B 0.086 0.074 0.071 0.064 0.072 0.062

Table 13: MSE for KEEN QA Probes between predicted
KEEN scores and QA accuracy scores.

the greater interpretability of smaller KEEN VP1011

probes and the reduced correlation. However, the1012

KEEN VP-50 variant remains highly interpretable1013

with a minimal number of tokens and does not suf-1014

fer a substantial correlation decline. Consequently,1015

we chose to focus on evaluating the KEEN VP and1016

VP-50 variants.1017

B.3 QA correlation plots1018

Figure 10, Figure 11, Figure 12, Figure 13, Fig-1019

ure 14, Figure 15, and Figure 16 show the results1020

for the QA experiments in §4.2 for GPT2 XL,1021

Pythia 6B, Pythia 12B, LLaMA 7B, LLaMA 13B,1022

Vicuna 7B, and Vicuna 13B, respectively.1023

B.4 OEG correlation plots1024

Figure 17 and Figure 18 show the results for the1025

OEG experiments in §4.2 for Vicuna 13B and1026

Pythia 12B, respectively.1027

Figure 7: Correlation of KEEN QA VP probe scores with
QA accuracy as a function of input parameter count.

Figure 8: Correlation of KEEN OEG VP probe scores
and FActScore as a function of input parameter count.

Figure 9: KEEN QA probe correlation with QA accuracy
as a function of token count.
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Figure 10: GPT2 XL: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 11: Pythia 6B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 12: Pythia 12B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 13: LLaMA 7B, Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 14: LLaMA 13B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 15: Vicuna 7B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 16: Vicuna 13B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 17: Vicuna 13B: Predicted scores from the KEEN OEG probe versus the golden FActScore scores.

Figure 18: Pythia 12B: Predicted scores from the KEEN OEG probe versus the golden FActScore scores.
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