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Abstract

To evaluate knowledge in large language mod-
els (LLMs), current methods query the model
and then evaluate its generated responses. In
this work, we ask whether evaluation can
be done before the model has generated any
text. Concretely, is it possible to estimate how
knowledgeable a model is about a certain entity,
only from its internal computation? We study
this question with two tasks: given a subject
entity, the goal is to predict (a) the ability of
the model to answer common questions about
the entity, and (b) the factuality of responses
generated by the model about the entity. Ex-
periments with a variety of LLMs show that
KEEN, a simple probe trained over internal sub-
ject representations, succeeds at both tasks —
strongly correlating with both the QA accu-
racy of the model per-subject and FActScore,
a recent factuality metric in open-ended gen-
eration. Moreover, KEEN naturally aligns with
the model’s hedging behavior and faithfully
reflects changes in the model’s knowledge af-
ter fine-tuning. Lastly, we show a more in-
terpretable yet equally performant variant of
KEEN, which highlights a small set of tokens
that correlates with the model’s lack of knowl-
edge. Being simple and lightweight, KEEN can
be leveraged to identify gaps and clusters of en-
tity knowledge in LL.Ms, and guide decisions
such as augmenting queries with retrieval.

1 Introduction

The standard approach for evaluating knowledge
in large language models (LLMs) relies on query-
ing the model, letting it generate responses, and
then evaluating the responses. This evaluation can
be done using various methods, including com-
paring responses to gold answers (Touvron et al.,
2023; Cohen et al., 2023a), measuring response
consistency over multiple generations (Cohen et al.,
2023b; Manakul et al., 2023; Kuhn et al., 2023),
checking the support of responses in external ev-
idence (Gao et al., 2023; Bohnet et al., 2022), or
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Figure 1: We show that simple probes (KEEN), trained
over hidden model representations, quantify the model’s
knowledge about a given subject entity — estimating the
model’s question-answering accuracy on entity-related
questions (bottom left) and forecasting the factuality of
model-generated texts about the entity ( ).

estimating the model’s uncertainty per-response
(Yu et al., 2024; Yuksekgonul et al., 2024; Li et al.,
2023; Snyder et al., 2023; Liu et al., 2022).

In this work, we take a step back and ask whether
it is possible to evaluate the model’s knowledge
before it generates any text, using only its internal
computation. This view is analogous to human
studies that show the effectiveness of non-verbal
communication for assessing witness credibility
in the courtroom (Remland, 1994; Denault et al.,
2024). Concretely, we propose to evaluate how
knowledgeable an LLM is about a given subject
entity (e.g. Napoleon or Empire State Building),
by considering only how it processes the name of
that entity, and before it generates a single token.

We formalize this problem as entity knowledge
estimation (§2) and devise two concrete tasks.
Given an entity, the goal is to predict: (a) how
many common questions about the subject entity
the model will answer correctly (Figure 1, bottom
left), and (b) how many of the claims in a model
generated response about the subject are factually
correct (Figure 1, right).



To tackle entity knowledge estimation, we capi-
talize on findings from recent interpretability works
which show that, during inference, the hidden repre-
sentations of an input entity capture many attributes
related to it (Geva et al., 2023; Meng et al., 2024),
and often these attributes can be extracted with lin-
ear functions (Hernandez et al., 2024). Therefore,
we propose (§3) to estimate how knowledgeable
a model is about a given entity by training sim-
ple probes, called KEEN (Knowledge Estimation of
ENtities), over the model’s representations of the
entity (Figure 1, upper left).

We evaluate KEEN in two experimental settings
(§4) of factual question answering (QA) and open-
ended generation (OEG) of biographies. In the QA
setting, we derive a set of questions per-subject
for subjects in PopQA (Mallen et al., 2023) and
evaluate how well KEEN predicts the model’s av-
erage accuracy per-subject across these questions.
In the OEG setting, we evaluate the correlation of
KEEN with FActScore (Min et al., 2023), a post-
generation hallucination detector. In both settings
and across models of different sizes and families —
GPT2 (Radford et al., 2019), Pythia (Biderman
et al., 2023), LLaMA?2 (Touvron et al., 2023),
and Vicuna (Chiang et al., 2023) — KEEN consis-
tently shows a strong correlation between 0.58-0.68
with model accuracy and 0.66-0.77 with factuality.
Moreover, KEEN probes trained on entity represen-
tations show substantially stronger correlation with
model accuracy and factuality than probes trained
on commonly-used intrinsic features, such as fully-
connected scores and self-attention activations, and
external features, such as entity-popularity.

Further analyzing the utility and features of KEEN
(§5), we show that KEEN faithfully correlates with
the model’s hedging behavior, i.e., the score pre-
dicted by KEEN decreases as the fraction of per-
entity questions that a model hedges on increases.
In addition, KEEN faithfully reflects changes in the
model’s knowledge following fine-tuning: training
LLaMAZ2 on Wikipedia articles about certain en-
tities increases their KEEN score while scores for
other entities tend to decrease. Lastly, we show
that training KEEN on the vocabulary projections of
entity representations (nostalgebraist, 2020; Geva
et al., 2021) increases the probe’s interpretability
without performance cost, identifying a small set
of tokens that signal a lack of entity knowledge.

To conclude, we present KEEN, a simple and
lightweight approach for quantifying how knowl-
edgeable a model is about a given entity from intrin-

sic properties, which well-estimates the accuracy
and factuality of model outputs about the entity.
We also show that KEEN scores are reflective of
both hedging behavior and changes in entity-based
knowledge over fine-tuning. KEEN could be used to
inform developer decisions such as whether to aug-
ment queries with retrieval, discard certain queries
(e.g. by abstaining), enhance models with external
tools, or identify “holes” in the model’s knowledge
to apply further training on. We release our code
and data at https://anonymized.

2 Entity Knowledge Estimation

Our goal is to evaluate how much knowledge an
LLM captures about an entity from how it pro-
cesses the entity’s name alone, without obtain-
ing model responses and evaluating them post-
generation. This view is motivated by growing
evidence from interpretability works which find
that, during model inference, knowledge is central-
ized in the hidden representations corresponding
to named entities (Meng et al., 2024; Geva et al.,
2023; Li et al., 2021).

Given a subject entity s (e.g. Napoleon or Em-
pire State Building) and a model M, our goal is to
estimate two related quantities: (a) the performance
of M on queries about s, and (b) the probability
that M will generate incorrect facts given any query
about s. These two quantities are expected to be
related, as they are both influenced by and reflect
the amount of knowledge M captures about s.

To evaluate entity knowledge, we propose two
concrete evaluation settings:

Question Answering (QA) For a subject en-
tity s and a set of common question-answer pairs
Q = {(¢i,a;)}, about s, denote by a; the an-
swer predicted by a model M for the query g;.
Given only the subject s, our goal is to estimate
the average accuracy of M over O, denoted as

yoh =130 1]a; = ajl.

Open-Ended Generation (OEG) For a general
information-seeking query ¢ about a subject s (e.g.
“Tell me facts about Napoleon” or “Generate a para-
graph about Napoleon™), let R = {(c;, a;) }1"4
be the set of claims in the response generated by
M, each with a 0/1 label indicating its correctness
with respect to external evidence. Claims can be
extracted and evaluated for correctness using vari-
ous automatic methods (e.g., Nenkova and Passon-
neau, 2004; Shapira et al., 2019; Zhang and Bansal,
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2021). Given only the subject s, the task is to pre-
dict the portion of factually correct claims in R,

denoted as ySI)EG = L5 a

A naive solution for both tasks would be to first
obtain queries about s, feed them to M, and eval-
uate the answers M generates. Here we seek an
efficient solution, which estimates the knowledge
of M about s, without iteratively executing M.

3 KEEN

Geva et al. (2023) showed that for a given subject
in the input, LLMs construct an information-rich
representation of the subject that encodes many of
its attributes. Furthermore, subject attributes can
be extracted from the subject representation with
a simple linear function (Hernandez et al., 2024).
We capitalize on these findings and propose to train
a simple probe over the model’s representations
of subjects to predict how much knowledge the
model captures about them. In our following for-
mulation (and the rest of the paper), we focus on
widely-adopted transformer-based auto-regressive
language models.

Notation Assuming a language model with L
layers, a hidden dimension d, a vocabulary V, and
an unembedding matrix Wy € RIVIXd, Let hy ; be
the hidden representation at position ¢ and layer /,
omitting normalization, hy ; is computed as:

hy; =hy_1;+a;; +my;

where ay; and my; denote the outputs from the
{-th multi-head self-attention and MLP sublayers,
respectively (Vaswani et al., 2017).

3.1 Features

Let tgs), .., 1% be the sequence of s, input tokens
corresponding to a given subject s (e.g. N, ap,
oleon for the subject Napoleon tokenized with
GPT2). We use the representations at the last sub-

ject position (s,), denoted as hg‘ir, ...,hf;r, to
construct a feature vector z(®) € R !

We use the following sets of features for z(*):

* Hidden states (HS): We take the subject repre-
sentation from multiple upper-intermediate lay-
ers, where attributes of the subject are often ex-
tracted during inference (Geva et al., 2023; Meng

'In practice, we obtain the hidden representations using the
query: “This document describes [s]”. This is to avoid
placing the subject in the first position of the input, which

often encodes biases that could affect performance on our task
(Xiao et al., 2024; Geva et al., 2023).

et al., 2024) and are easier to disentangle (Huang
et al., 2024; Hernandez et al., 2024). To account
for variations in the inference pass of different
subjects, we choose 3 consecutive layers £ =
{3L +k | ke {-1,0,1}}, from which we ex-
tract the hidden states {hgfs)r | £ € L}. Then, we
normalize these vectors (see details below) and
average them into a d-dimensional feature vector.

* HS with vocabulary projection (VP): We take
the same hidden states as in HS, but instead of us-
ing them as-is, we use their projections to the vo-
cabulary (nostalgebraist, 2020; Geva et al., 2021).
Namely, we normalize and average the vectors
{WUfL(hfS)T) | £ € L} into a |V|-dimensional
feature VG:C7tOI‘, where f, is the layer norm ap-
plied at the last layer of the model. While VP is
not expected to improve performance, it could
enhance interpretability, as the learned weight
for each token signifies feature importance in
quantifying subject-related knowledge.

¢ HS with top-% of vocabulary projection (VP-
k): Since the vocabulary space is typically large,
in order to make the probe more interpretable and
efficient, we perform feature selection over the
trained VP probe to extract the £ most influential
tokens from the vocabulary projections. We then
normalize and average the obtained 3 * k features
(k for each layer) to train a new smaller probe
over k-dimensional feature vectors.

For each of HS, VP, and VP-k, we apply Min-
Max normalization before averaging the extracted
vectors, which scales each feature to be within
[0,1]. For example, after extracting the hidden
states {héfs)r | ¢ € L} for some subject s, we nor-
malize the values of every entry ¢ € [d] and layer
¢ € L over a set of subjects S. Let flgss)r € Ribe

the normalized héss)r, so the feature vector for HS

is defined as z(*) = ﬁ Y oer h{Y eRe.

0,8y
3.2 Probing

We define the following probe for predicting the
model’s QA accuracy y(sll or response factuality

yS}EG given the features z(®) for a subject s:

f(z) :==0(0-2) (1)

Where o is the sigmoid function and @ € R% is
a single linear transformation. The sigmoid non-
linearity is necessary to aid the model in learning



scores in the range [0, 1].2

For each of the two tasks 7' € {QA, OEG}, we
optimize 6 over features and labels collected for a
set of subjects S by minimizing the MSE loss:

Lasp(0) = [|lys) — o(8-2))|3

For more details on the probes’ training, see §A.

4 Experiments

In this section, we evaluate KEEN and baselines that
rely on different intrinsic and external features. We
observed that the VP-50 probe obtained compa-
rable performance while being significantly more
interpretable (discussed in B.2) so we focus on
evaluating the VP and VP-50 variants of this probe.

4.1 Experimental Setting

Data For the QA task, we sample 3,472 sub-
ject entities from PopQA (Mallen et al., 2023)
and generate a set of 5.3 questions on aver-
age per subject. To generate questions, we
take subject-relation-object triplets from Wiki-
data (VrandecCi¢ and Krotzsch, 2014) and con-
vert them into question-answer pairs with hand-
written templates. For instance, the triplet
(Napoleon, place of birth, France) will be con-
verted to the question “Where was Napoleon born?”
and the answer “France”. In addition, we augment
each such example with multiple variants that cover
different answer granularities (Yona et al., 2024),
accounting for both answer and subject aliases, and
handling cases with multiple answers. We consider
a model’s prediction for a given subject-relation
pair as correct if it contains an exact match with
any answer alias in at least one question variation.

For the OEG setting, we use the FActScore
dataset (Min et al., 2023), which includes model-
generated biographies, extracted claims, and claim
labels which indicate whether the claim is sup-
ported or not-supported by the subject’s Wikipedia
page. We compare our results to the FActScore
scores of the same generating model.

Examples for the two tasks are shown in Table 1.
For both settings, we randomly split each dataset
into disjoint sets of subjects: 65% train, 15% devel-
opment, and 20% test. Importantly, the FActScore
dataset and QA train set have a negligible number
of overlapping subjects, 1 (0.2%), which allows us
to test transfer learning between the two settings.

We also experimented with linear probes and found that

they tended to converge to scores in a narrow range around
0.5, failing to capture the signals in the inputs.

Baselines We evaluate three baselines that utilize
intrinsic features and external features. For intrin-
sic features, we take the two best variants reported
by Snyder et al. (2023), which trained binary hallu-
cination detectors for QA. These detectors use the
outputs from the self-attention and MLP modules
as features, which were also considered by other
recent methods for similar tasks (Yu et al., 2024;
Yuksekgonul et al., 2024; Li et al., 2023).

¢ Entity popularity (Pop.): It has been established
that LLM performance is influenced by entity
popularity (Mallen et al., 2023; Kandpal et al.,
2023; Yona et al., 2024). We follow previous
works (e.g., Chen et al., 2021; Mallen et al., 2023;
Cohen et al., 2024) and approximate entity popu-
larity using statistics from Wikipedia. Concretely,
we use the total number of monthly views of the
entity’s page between the years 2000-2023.

* Self-attention outputs (ATTN): We train the

same probe of KEEN (Eq. 1), while using af)sr

as the feature vector z(s), i.e., the output of the
last self-attention sublayer for the last input token
(which is the last subject token in our setup).

e Fully-connected activations (FC): Here we
train a similar probe to ATTN, which sets z(5)
to mf)&, the output of the last MLP sublayer for

the last input token.

Models We analyze 7 auto-regressive language
models across various sizes, latent spaces, and
training objectives: GPT2-XL (Radford et al.,
2019), Pythia 6B and 12B (Biderman et al., 2023),
LLaMA?2 7B and 13B (Touvron et al., 2023), and
Vicuna 13B (Chiang et al., 2023).3 The vocabu-
lary sizes range between 30K-50K tokens and the
hidden state dimensions range from 4096-5120.

Evaluation For every model and subject s in our
data, we feed the model a generic prompt “This
document describes [s]” and extract the fea-
tures used for all methods: KEEN and the above
baselines. Using these features, we obtain predic-
tions for our two tasks for every method. For the
Pop. baseline, we simply take the corresponding
popularity value of the subject. We report Pearson
correlation and the MSE between the predicted and
gold scores, for every task, model and method. Cor-
relation results are provided in §4.2 and the MSE
results are reported in §B.

*We also analyzed Vicuna 7B, but due to its poor accuracy

in the QA setting and inconsistent behavior, we omitted it in
the main results. Results for Vicuna 7B can be found in §B.



Input Task Output Example {question, model answer) / {claim, correctness label) pairs
subject s ygi‘ / y(OSJ)EG from Q / R
(In what city was George Washington born?, Westmoreland County),
QA 0.67 (What is the religion of George Washington?, Episcopal Church)
George (Who is the father of George Washington?, Augustine Washington)
Washington (George Washington was a military man., 1),
OEG 0.74 (George Washington was the first President of the United States., 1),
(

He was educated at the College of William and Mary., 0)

Table 1: Example input subject and the expected outputs for the two tasks for Pythia 12B. The output labels were
computed based on the average QA accuracy over 12 questions (0.67), and the FActScore score for 35 claims (0.74).

GPT2 Pythia Pythia LLaMA2 LLaMA2 Vicuna

XL 6B 12B 7B 13B 13B
Pop. 030 032 028 0.27 0.25 0.26
FC 049 059 055 0.50 0.49 0.49
ATTN 0.53  0.63 0.60 0.58 0.50 0.52
VP-50 0.54 064 0.59 0.53 0.48 0.50
VP 0.61 0.68 0.64 0.64 0.58 0.60

HS 0.60 0.68 0.64 0.64 0.58 0.60

Table 2: Correlation with the average QA accuracy for
the KEEN QA probes and baselines.

4.2 Results

KEEN well-estimates the model’s knowledge
about the subject entity Table 2 and 3 show
the QA and OEG results, respectively.

In both settings and across all models, KEEN
probes trained on hidden representations and vocab-
ulary projections demonstrate the strongest correla-
tion of 0.60-0.68 with QA accuracy and 0.66-0.77
with FActScore. This shows that it is possible to
predict how knowledgeable a model is about an
entity from the entity’s hidden representations.

Predicting factuality based on common intrin-
sic features (FC and ATTN) consistently under-
performs with respect to KEEN, further supporting
the finding that entity knowledge is centralized in
entity representations during inference. Further-
more, the entity popularity baseline (Pop.) per-
forms poorly on both tasks, with low correlation
values of < 0.32 in QA and < 0.36 in OEG. This
shows that while external statistics of popularity
(such as Wikipedia page count) are useful in deriv-
ing general performance trends, they often fail to
provide fine-grained entity-level predictions.

Surprisingly, for the Pythia models even the
KEEN OEG VP-50 probe strongly correlates with
FActScore, indicating that there is a relatively
small set of tokens which are influential in increas-
ing/decreasing predicted accuracy. We further ana-
lyze these tokens in §5.4 and provide intuition for
interpreting them. Moreover, we discuss the trade-

Model Pop. FC ATTN VP-50 VP HS
Pythia 12B 036 0.61 0.77 0.72 0.75 0.77
Vicuna 13B 0.37 049  0.65 0.55 0.66 0.66

Table 3: Correlation with FActScore for the KEEN OEG
probes and baselines.

Model Pop. FC ATTN VP-50 VP HS

Pythia 12B 047 041 0.55 040 0.57 0.60
Vicuna 13B 040 0.52 0.50 048 0.61 0.62

Table 4: Transfer learning results, showing the corre-
lation between FActScore and KEEN QA probes and
baselines. Results are reported over all 500 subjects in
the FActScore dataset.

off between interpretability and score correlation
in B.2.

KEEN QA probes generalize to predict factuality
in OEG Since knowledge is centralized in the
internal representations of entities, their use in esti-
mating knowledge should transfer across different
settings. Table 4 shows that the predictions of KEEN
QA probes have a strong correlation of 0.60-0.62
with FActScore. Further, the correlation of KEEN
QA probes with QA accuracy and FActScore are
notably similar, e.g. 0.60 and 0.62 for Vicuna 13B
KEEN QA HS probes, respectively. These results
show that HS and VP features capture signals that
generalize across settings, regardless of whether
the task requires explicit (QA) or implicit (OEG)
recall of factual knowledge by the model.

5 Analysis

In this section, we further look into the predictions
and features of KEEN, evaluating its faithfulness
with respect to model hedging (§5.1) and changes
in the model’s knowledge following training (§5.2).
In addition, we analyze its errors (§5.3) and the
features of its VP-50 variant (§5.4).
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Figure 3: Changes in the KEEN QA score and average
QA accuracy after fine-tuning LLaMA?2 7B on para-
graphs about a target subject, for target and non-target
subjects. These results are aggregated over individually
fine-tuning for 20 subjects.

5.1 Correlation with Model Hedging

To prevent factually incorrect responses, LLMs are
trained to hedge in cases of uncertainty, for ex-
ample by generating “I don’t know” (Ganguli
et al., 2023). Therefore, it is expected that models
generally hedge on entities they are less knowl-
edgeable about. Since the KEEN QA probe score
estimates entity-based knowledge, we hypothesize
that it should correlate with the fraction of ques-
tions that a model hedges on about the entity.

Figure 2 confirms this hypothesis, showing that
the KEEN QA VP score decreases as the fraction
of queries the model hedges on increases. This
implies that models may hedge based on features
of the model’s internal representations of the entity,
similarly to KEEN.

5.2 Reflecting Changes in Model Knowledge

Our experiments so far evaluated KEEN while keep-
ing the underlying LLM fixed. A natural question
that arises is whether changes in the model’s knowl-
edge are reflected in changes in the KEEN score. We
test this by fine-tuning LLaMA2-7B on paragraphs
about a target subject and measuring changes in
both the average QA accuracy and the KEEN QA
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Figure 4: Predicted scores from the KEEN QA VP probe
and the golden QA Accuracy scores are positively lin-
early related.

score. Concretely, we sample 20 subjects from
the QA test dataset and retrieve paragraphs from
the Wikipedia page of each subject using BM25
(Robertson et al., 1995).* Then, we use LoRA (Hu
et al., 2022) to fine-tune < 0.5% of the model’s
parameters, separately for each subject. After fine-
tuning for a certain target subject, we compute the
KEEN score for that subject, as well as for 256 non-
target subjects from the QA test dataset. The KEEN
QA probe trained over the model’s hidden states
before fine-tuning is used to compute these scores.

Figure 3 shows that on average, QA accuracy
scores for the target entities increase by 0.16 and
KEEN QA scores increase by 0.18, as models are
fine-tuned on paragraphs related to them. Con-
versely, inline with works about catastrophic for-
getting which find that models tend to forget in-
formation about entities observed in pre-training
(Tirumala et al., 2022), the QA accuracy scores for
non-target entities decrease after fine-tuning. How-
ever, the KEEN scores for non-target entities stay
relatively constant. Since fine-tuning often doesn’t
erase residual information in LLMs (Patil et al.,
2024), and KEEN relies on intermediate represen-
tations, a possible explanation for this discrepancy
is that information is still encoded in the represen-
tations but the model fails to recall it.

*We use the Wikipedia dump from August 28, 2023.
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Figure 5: Predicted scores of the KEEN OEG VP probe
versus FActScore scores. KEEN scores are positively
linearly correlated with FActScore scores.

5.3 Error Analysis

To better understand the limitations of KEEN, we
plot the probes’ predicted scores against the refer-
ence QA accuracy and FActScore scores.

Figure 4 shows that the KEEN VP QA probes tend
to predict higher scores relative to QA accuracy for
subjects that the model knows less about, although
the KEEN scores for entities with QA accuracy be-
tween [0,0.5] do generally fall within a similar
range of [0.1,0.5]. For subjects that the model is
more knowledgeable about, KEEN QA scores are
more conservative, as seen by the cluster of scores
below the y = x line for QA accuracy values close
to 1.0. Generally, KEEN scores have less variance
than the QA accuracy scores since the slopes of the
trend-lines are < 1, which may suggest that more
complex predictors are needed to capture all the
variance of QA accuracy. These trends are consis-
tent across models of different families and sizes.

In §B, we include results for the other models,
which follow the same trends in Figure 4 and Fig-
ure 5. We also provide the scatter plots for probes
trained on the different KEEN features and baselines,
all demonstrating the same linear relations.

5.4 Feature Analysis for VP-25 and VP-50

We analyze the most influential features of the KEEN
QA VP probes to understand which tokens con-
tribute most to predicting average QA accuracy.
Our goal in this analysis is to identify tokens that
either increase or decrease predicted QA accuracy,
and to determine whether they are promoted in the
representations of subjects with high and low QA
accuracy, respectively. As a concrete example, for
subjects with low QA accuracy, we expect tokens
that decrease QA accuracy to generally be ranked
lower in the subject representations than tokens
that increase QA accuracy. Since the input nor-
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Figure 6: Difference, per subject, in the median rank of
tokens with negative weight and tokens with positive
weight. Pythia 12B VP-25 and VP-50 show the trade-
off between interpretability and performance — though
the median ranks of negative weight tokens are lower
on average than positive weight tokens in VP-50, there
is still a clear split in both accuracy groups.

Weight Example influential tokens

/M analysis, Statistical, Players, Senator,
S Pos R R .

; Quantum, nationality, investments

£ Neg Circadian, AMPK, lys, 16, jo, VERT, diese,
A g see, Mort, ))x, dep, imi, ac

fﬁ Pos athlet, kick, swing, developer, compiling,
- . official, sales, GitHub, Movie

=

'8 Ne sle, hurt, Circ, Alt, book, JK, ja, adow,
> g istema, ppings, adjust, istol

Table 5: Examples of the most influential tokens in the
KEEN QA VP probes that were assigned positive and
negative weights. These are some of the tokens that
correspond to the features of KEEN QA VP-50 probes.

malization scheme described in §3.1 normalizes a
token’s logit in a given hidden state by its magni-
tude across the other subjects (not with respect to
the other tokens in the hidden state), we can inter-
pret the weight learned by the KEEN QA VP probe
for each token as its direction and magnitude of
influence on the predicted score.

First, we identify the tokens associated with the
largest absolute weights in the KEEN QA VP probes,
as they are most influential on the predicted score.
Next, we compare the median rank of tokens with
negative weights to those with positive weights in
the vocabulary projections of subjects with high
QA accuracy (1.0) and low QA accuracy (0.0). Fig-
ure 6 shows that for low QA accuracy subjects, the
median rank of negative weight tokens is generally
lower than that of positive weight tokens. Con-
versely, for high QA accuracy subjects, the median



rank of negative weight tokens is generally higher
than that of positive weight tokens. This oppos-
ing trend in the two accuracy groups indicates that
there is a small set of tokens which hold signals for
differentiating between subjects the model knows
a lot about and those it knows less about.

We provide these important tokens in Table 5.
Tokens assigned positive weight are related to
meaningful concepts while tokens assigned neg-
ative weight are often numbers, abbreviations, or
suffixes. A possible interpretation of this semantic
difference between positive weight tokens and neg-
ative weight tokens is that the hidden states of low
accuracy subjects encode less content, reflecting
the model’s lack of knowledge about them.

6 Related Work

Evaluation of knowledge and factuality of LLMs
The common practice for estimating knowledge in
LLMs is to query the model and then evaluate its
outputs. This is often conducted though question-
answering setups with gold labels (Roberts et al.,
2020; Petroni et al., 2019; Cohen et al., 2023a,
inter alia), by letting the model generate multiple
responses and measuring response consistency (Co-
hen et al., 2023b; Manakul et al., 2023; Kuhn et al.,
2023), checking whether the generated output is
supported by external evidence (Gao et al., 2023;
Bohnet et al., 2022; Min et al., 2023), or by estimat-
ing the model’s uncertainty per-response (Zhang
et al., 2023; Jesson et al., 2024). Unlike these
methods, we focus on evaluating the model’s entity
knowledge beyond a single response, based on in-
trinsic features extracted before generating a single
token.

Probing internal representations of LLMs
Probing over internal representations has been used
to predict model behavior, such as truthfulness
(Marks and Tegmark, 2023; Azaria and Mitchell,
2023a), and properties of language, such as part-of-
speech (Belinkov et al., 2017; Nikolaev and Padd,
2023), syntax (Hewitt and Manning, 2019), and
sentence length (Adi et al., 2017) for a specific in-
put. Probing has also been used to identify which
hidden states are most influential on the perfor-
mance of tasks, like classification (Alain and Ben-
gio, 2017). Our use of probing differs from prior
work because we estimate a property that captures
model behavior over many inputs rather than a
single input. Namely, the KEEN score provides a
knowledge estimate relevant to any input concern-

ing the entity. Further, KEEN focuses on estimating
entity-specific knowledge and is useful in evalu-
ating several model behaviors, including hedging,
shifts in knowledge, and truthfulness.

Hallucination detection using intrinsic features
Our work is closely related to methods that leverage
intrinsic features for detecting factually incorrect
claims, but has two core differences. The first be-
ing in our choice of features: we specifically use
the hidden states corresponding to the named en-
tity from the upper intermediate layers. In contrast,
existing methods use various other features, like in-
termediate activation values (Azaria and Mitchell,
2023b), outputs from the self-attention modules
(Yu et al., 2024; Yuksekgonul et al., 2024; Li et al.,
2023; Snyder et al., 2023), soft-max prediction
probabilities, and fully-connected scores (Snyder
et al., 2023). Yu et al. (2024); Goloviznina and
Kotelnikov (2024); Su et al. (2024) also examine
the intermediate hidden representations, but for the
purpose of identifying whether there exists a sub-
space of hidden states that lead to hallucinations.
Similarly to our work, Yu et al. (2024) uses the
hidden representations of subjects, but rather to
train a binary hallucination detector. Unlike all
these works that use internal representations to pre-
dict the factuality of a specific claim, we learn to
estimate knowledge from a single internal repre-
sentation of an entity, which is applicable to any
claim pertaining to it.

7 Conclusion

We present the problem of estimating entity knowl-
edge solely from the model’s internal representa-
tions of the entity. We show that KEEN offers a
simple and interpretable solution which correlates
with model performance in both QA and OEG set-
tings, as well as with current hallucination detec-
tion methods. Further, KEEN is also reflective of
both hedging behavior and changes in knowledge
throughout fine-tuning. From a broad perspective,
our results demonstrate the potential of estimat-
ing model qualities and behavior for certain inputs
based on intrinsic features, and call for future work
to leverage simple and efficient methods like KEEN
to improve the factuality and reliability of LLMs.

Limitations

While our approach successfully estimates the ex-
tent of the model’s knowledge about a subject, it



does not identify specific gaps or clusters of knowl-
edge. For instance, KEEN can estimate that the
model will be 55% truthful when generating con-
tent about Napoleon, but it does not pinpoint that
the model is unable to answer the specific ques-
tion, What military academy did Napoleon attend?.
An interesting direction for future work would be
to develop a more fine-grained approach that pre-
dicts how knowledgeable the model is about spe-
cific aspects of the subject (e.g. military career of
Napoleon) or identifies specific facts encoded in
subject representations.

Another limitation is that this work focuses on
estimating knowledge for entities, however not all
subjects of questions are entities. For example,
there is no clear subject for which we can apply
KEEN in the question, How does exercise influence
mental health?. KEEN also assumes that the subjects
are already extracted for analysis. While identify-
ing named entities in text is a well-studied task in
NLP (Nadeau and Sekine, 2007), combining it with
KEEN could make this approach more complex and
computationally expensive.

Our evaluation focuses only on transformer-
based auto-regressive LLMs. While this is one of
the most popular and largest families of LLMs, it
would be valuable to study the applicability of KEEN
to other model architectures. Notably, Sharma et al.
(2024) shows that factual recall in Mamba is simi-
larly centered in the hidden states of the last subject
token from the intermediate layers, so we expect
our approach to generalize to other recurrent archi-
tectures.
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A KEEN Training Details

Hyper-parameter tuning for KEEN probes All
KEEN QA and OEG probes were trained with the
AdamW optimizer with weight decay 0.01, and
batch size of 32.

KEEN QA hyper-parameters were optimized over
the configuration combinations presented in Ta-
ble 6.

Hyper-parameter ~ Values
Learning Rate 1073, 5e73,5e7%,1074, 5e°
Epochs 100, 1K, 3K, 5K

Table 6: KEEN QA probe hyper-parameter configurations

KEEN OEG hyper-parameters were optimized
over the configuration combinations presented in
Table 7.

Hyper-parameter ~ Values
Learning Rate 5¢=4,107%,5¢7°,107°
Epochs 1K, 3K, 5K

Table 7: KEEN OEG probe hyperparameter configura-
tions

The best hyper-parameters for QA and OEG
KEEN probes are found in Table 8 and Table 9, re-
spectively.

KEEN Hyper GPT2 Pythia Pythia LLaMA LLaMA Vicuna Vicuna
Probe Param XL 6B 12B 7B 13B 7B 13B
HS Epoch 3K 100 100 1K 1K 1K 100
LR 107° 107* 107* 107° 107° 107° 107*
VP Epoch 3K 100 3K 1K 1K IK 3K
LR 107° 107* 107% 107° 107° 107°% 107°
VP-200 Epoch 3K 500 3K 3K 3K 3K 3K
LR 107° 107* 107% 10=* 107* 107* 107%
VP-100 Epoch 3K 500 3K 3K 3K 3K 3K
LR 107° 107* 10* 107* 10™* 107* 107*
VP-50 Epoch 3K 1K 3K 3K 3K 3K 3K
LR 107° 107* 107* 107* 107* 107* 107"
VP-25 Epoch 5K 3K 3K 3K 3K 3K 3K
LR 107° 107* 107% 107* 107* 107* 107%
VP-10 Epoch - - - 3K - - -
LR 107° 10%* 107% 10=* 107* 107* 107%
FC  Epoch 1K
LR 107°
ATTN Epoch 1K
LR 107°

Table 8: Best hyper-parameters for KEEN QA probes and
baselines.

Hyper-parameters for fine-tuning LLaMA2 7B
The training details for the fine-tuning experiment
in §5.2 are described in Table 10.
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KEEN Probe ~ Hyper-parameter ~ Pythia 12B Vicuna 13B
HS Epoch 1K K
LR 1075 1=
VP Epoch 5K 3K
LR 1075 le®
VP-200 Epoch 5K 3K
LR 10~ le”*
VP-100 Epoch 5K 5K
LR 10~ 5e*
VP-50 Epoch SK 5K
LR 10~ 5e*
VP-25 Epoch 5K 5K
LR 5e~* 173
VP-10 Epoch 5K, 5K
LR 108 5e4
FC Epoch 1K 1K
LR 5e”° 5¢°
ATTN Epoch 1K 1K
LR 1075 5¢°

Table 9: Best hyper-parameters for KEEN OEG probes
and baselines.

Optimizer LR Epoch Scheduler Warm Up LoRA LoRA LoRA
ratio  alpha dropout r

AdamW 2e¢~% 100  Linear 0.03 16 0.1 64

Table 10: Hyper-parameters for fine-tuning LLaMA?2
7B.

Resources All our experiments were conducted
using the PyTorch package (Paszke et al., 2019) on
a single A100 or H100 GPU.

B Additional Results

B.1 Mean Standard Error (MSE) for KEEN

Table 11, Table 12, Table 13, present the MSE
for the KEEN OEG probes with FActScore scores,
KEEN OEG probes with FActScore scores, the KEEN
QA probes with FActScore scores, and the KEEN
QA probes with average QA accuracy scores. The
performance of these probes is discussed in §4.2.

Model  Freq. FC ATTN VP-50 VP HS

Pythia-12B 0.028 0.026 0.014 0.020 0.017 0.014
Vicuna-13B 0.052 0.075 0.049 0.052 0.040 0.039

Table 11: MSE for KEEN OEG Probes between predicted
KEEN scores and FActScore scores.

B.2 Interpretability-Performance Tradeoff for
KEEN VP-k

Figure 7, Figure 8, and Figure 9 demonstrate di-
minishing returns in increasing the parameter count
beyond 50 tokens, suggesting that a small set of to-
kens contains significant signals for estimating en-
tity knowledge. There is a clear trade-off between



Model

Pythia 12B -
Vicuna 13B -

FC ATTN VP-50 VP HS

0.053 0.043 0.047 0.062 0.074
0.046 0.053 0.052 0.049 0.050

Freq.

Table 12: MSE for KEEN QA probes and FActScore.

Freq. FC ATTN| HS VP-50 VP
GPT2 XL 0.053 0.053 0.046 |0.041 0.045 0.040
Pythia 6B 0.063 0.052 0.048 |0.045 0.047 0.042
Pythia 12B 0.069 0.059 0.051 [0.056 0.052 0.053
LLaMA27B 0.069 0.068 0.057 |0.051 0.062 0.053
LLaMA2 13B 0.073 0.061 0.060 |0.053 0.061 0.053
Vicuna 7B 0.015 0.010 0.010 [0.011 0.015 0.010
Vicuna 13B 0.086 0.074 0.071 |0.064 0.072 0.062

Table 13: MSE for KEEN QA Probes between predicted
KEEN scores and QA accuracy scores.

the greater interpretability of smaller KEEN VP
probes and the reduced correlation. However, the
KEEN VP-50 variant remains highly interpretable
with a minimal number of tokens and does not suf-
fer a substantial correlation decline. Consequently,
we chose to focus on evaluating the KEEN VP and
VP-50 variants.

B.3 QA correlation plots

Figure 10, Figure 11, Figure 12, Figure 13, Fig-
ure 14, Figure 15, and Figure 16 show the results
for the QA experiments in §4.2 for GPT2 XL,
Pythia 6B, Pythia 12B, LLaMA 7B, LLaMA 13B,
Vicuna 7B, and Vicuna 13B, respectively.

B.4 OEG correlation plots

Figure 17 and Figure 18 show the results for the
OEG experiments in §4.2 for Vicuna 13B and
Pythia 12B, respectively.

Pythia 6B

Pearson Corr.
o o o
w w o
] vl &
Pearson Corr.
° o o
B w (=
IS A i

S o L. o
NP PSS &
<

Parameter Count
Llama2 13B

S O O O QO
) ,\,Q ’1«0 /‘&Q
>

Parameter Count

Pearson Corr.
o o o
N w w
©o o oo

Pythia 128

N 2
< &
* 3

<

N

S o H
P S

Parameter Count
Vicuna 13B
0.60

Pearson Corr.
o
>
o

0.42
Q5 PO L
N9 ,\,0 "9

2
2>
2
%

Parameter Count

Figure 7: Correlation of KEEN QA VP probe scores with
QA accuracy as a function of input parameter count.

Pythia 12B

Pearson Corr.
o o e
S o ~
J o o
Pearson Corr.
e o
wn o
(%] o

Parameter Count

Vicuna 13B

0.26
S o . ®
D P PLS 5

3

Parameter Count

Figure 8: Correlation of KEEN OEG VP probe scores
and FActScore as a function of input parameter count.

GPT2 XL

o A
S g

2
=
%

Pearson Corr.
o o o
N o o
= =) P
© W

Parameter Count
Llama2 7B

Pearson Corr.
o o
w o
=] &
Pearson Corr.
o e
N w
©o o

0.41

O 2P LS N
N 9 AN ’190
Parameter Count

Pythia 12B

Pearson Corr.
I o o
B o o
i > >
<,
o

>
G
N

Parameter Count

Pythia 6B

Pearson Corr.
o 4
w o
w =g

0.32
S D P 42
RN Q‘;b

Parameter Count
Llama2 13B
0.58

Q2 P LS L
~ 9 D7 A9 q,QQ
Parameter Count

Vicuna 13B
0.60

Pearson Corr.
I
>
o

0.42
S oSS o
NP PSS N
)
Parameter Count

Figure 9: KEEN QA probe correlation with QA accuracy
as a function of token count.



GPT2 XL

VP VP-200 VP-100
1.0 ,_ , 1.0]  _ , 1.0l  _ ,
y=0.369 x+0.183 , y=0.346 x+ 0.174 , y=0.305x+0.184 ,
0.8 0.8
< < <
S S S
» 0.6 2} » 0.6
e e e
g g g
204 2 204
o o o
- - -
0.2 0.2
0.0 0.0
0.00 0.25 0,50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00
QA Accuracy QA Accuracy QA Accuracy
VP-50 VP-25 VP-10
1.0 , _ P 1.0{  _ ’ 1.0l _ ,
y=0.250x+0.199 , y=0.207 x+0.212 P y=0.042 x+ 0.246 P
’
0.8 0.8 . 0.8
< < 4 <
g g ¢ g
3 0.6 3 0.6 e,/ 3 0.6
o o H o
g g | i : i g
3 0.4 =204 % i e S04
3 3 ROt E et 3
I I o H ¢ I
0.2 0.2 Wl 0.2
B 1!
; .
0.0 0.0{7 0.0
0.00 0.25 0,50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
QA Accuracy QA Accuracy QA Accuracy
Hidden State (HS) 100 Baseline: Entity Pop. Baseline: Self-Attention (ATTN)
101 =0.364 x+0.169 PR 101 y=0.309x+0.176 PR
v
7
0.8 w7 § 0.8
L s <
o ; 10! S
R 0.6 g 3 0.6
; 100 ;
%3 = %3
204 2 204
- fivi h=1
4 4 Qo
& 10 &
0.2 0.2
10 8
0.0 log(y) =1.298 x4+ 5.114 00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
QA Accuracy QA Accuracy QA Accuracy
Baseline: Fully Connected (FC)
1.01 1 =0.376 x+0.168 e
4
0.8
<
8
» 0.6
el
L
2o4
o
I
0.2
0.0

0.00 0.25 0.50 0.75 1.00
QA Accuracy

Figure 10: GPT2 XL: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 11: Pythia 6B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 12: Pythia 12B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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LLaMA2 7B
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Figure 13: LLaMA 7B, Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 14: LLaMA 13B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.

19



Vicuna 7B
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Figure 15: Vicuna 7B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 16: Vicuna 13B: Predicted scores from the KEEN QA probe versus the golden QA accuracy scores.
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Figure 17: Vicuna 13B: Predicted scores from the KEEN OEG probe versus the golden FActScore scores.
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Figure 18: Pythia 12B: Predicted scores from the KEEN OEG probe versus the golden FActScore scores.
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