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Abstract

While Reinforcement Learning (RL) has made great strides towards solving increasingly
complicated problems, many algorithms are still brittle to even slight environmental changes.
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in
a principled manner, thereby enabling flexible, precise and interpretable task specification
and generation. Therefore cRL formalizes the study of generalization in RL. Our goal is
to show how the framework of cRL can contribute to both our theoretical understanding
and practical solutions of generalization. We show that theoretically optimal behavior in
contextual Markov Decision Processes requires explicit context information. We empirically
validate this result on various context-extended versions of common RL environments. They
are part of the first benchmark library designed for generalization based on cRL extensions of
popular benchmarks, CARL, which we propose as a testbed to study general agents further.

1 Introduction

Reinforcement Learning (RL) has shown successes in a variety of domains, including (video-)game playing
(Silver et al., 2016; Badia et al., 2020), robot manipulation (Lee et al., 2020a; Ploeger et al., 2020), traffic
control (Arel et al., 2010), chemistry (Zhou et al., 2017), logistics (Li et al., 2019) and nuclear fusion (Degrave
et al., 2022). At the same time, RL has shown little success in real-world deployments that require
generalization. We believe this can largely be explained by the fact that modern RL algorithms are not
designed with generalization in mind, making them brittle when faced with even slight variations of their
environment (Yu et al., 2019; Meng & Khushi, 2019; Lu et al., 2020).

To address this limitation, recent research has increasingly focused on generalization capabilities of RL
agents. Ideally, general agents should be capable of zero-shot transfer to previously unseen environments
and robust to changes in the problem setting while interacting with an environment (Ponsen et al., 2009;
Henderson et al., 2018; Cobbe et al., 2020; Zhang et al., 2021b; Fu et al., 2021b; Yarats et al., 2021; Abdolshah
et al., 2021; Sodhani et al., 2021b; Adriaensen et al., 2022; Kirk et al., 2023). Steps in this direction have
been taken by proposing new problem settings where agents can test their transfer performance, e.g. the
Arcade Learning Environment’s flavors (Machado et al., 2018) or benchmarks utilizing Procedural Content
Generation (PCG) to increase task variation, e.g. ProcGen (Cobbe et al., 2020), NetHack (Küttler et al.,
2020) or Alchemy (Wang et al., 2021). Furthermore, robustness to distribution shift as well as multi-task
learning have been long-standing topics in meta-RL, both in terms of benchmarks (Yu et al., 2019; Sodhani
et al., 2021a) and solution methods (Pinto et al., 2017; Finn et al., 2017; Zhu et al., 2020; Zhang et al., 2021d).

While these extended problem settings in RL have expanded the possibilities for benchmarking agents in
diverse environments, the degree of task variation is often either unknown or cannot be controlled precisely.
We believe that generalization in RL is held back by these factors, stemming in part from a lack of problem
formalization (Kirk et al., 2023). In order to facilitate generalization in RL, cRL proposes to explicitly take
environment characteristics, the so called context (Hallak et al., 2015), into account. This inclusion enables
precise design of train and test distributions with respect to this context. Thus, cRL allows us to reason
about which types of generalization abilities RL agents exhibit and to quantify their performance on them.
Overall, cRL provides a framework for both theoretical analysis and practical improvements.
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(a) Example of a contextual extension of Brax’
Fetch (Freeman et al., 2021) as part of CARL

(b) Variations in target distances

(c) Ground friction simulating grass, concrete and ice

Figure 1: CARL allows to configure and modify existing environments through the use of context. This context
can be made visible to agents through context features to inform them directly about the current instantiation
of the context (see a). Specific instances of CARLFetch with variations in goal distance (see b) and with
different ground frictions (grass, concrete and ice, see c).

In order to empirically study cRL, we introduce a benchmark library for Context-Adaptive Reinforcement
Learning: CARL. CARL collects well-established environments from the RL community and extends them with
the notion of context. To ensure interpretability, CARL considers context which is mainly based on physical
properties and thus intuitive to humans. For example, CARL extends Brax (Freeman et al., 2021) environments
with properties such as friction, gravity, or the mass of an object (see Figure 1). Through CARL’s interface, it
is possible to meticulously define the context distributions on which RL agents are trained and evaluated. We
use our benchmark library to empirically show how different context variations can significantly increase the
difficulty of training RL agents, even in simple environments. We further verify the intuition that allowing
RL agents access to context information is beneficial for generalization tasks in theory and practice.

In short, our contributions are: (i) We provide a theoretical and empirical characterization of Contextual
Reinforcement Learning (cRL); (ii) We introduce our benchmark library CARL which enables fine-grained
context control in benchmarking cRL; and (iii) We demonstrate that context-oblivious agents are not suitable
to solve contextual environments on their own.

2 Contextual Markov Decision Processes

In order to facilitate generalization, we first have to rethink how we model the RL problem. While we could
follow the common notion of modeling environments as Markov Decision Processes (MDPs), this way of
modeling typically assumes a single, clearly defined environment. We believe this problem formulation is
overly restrictive. Agents trained under such an assumption fail when the underlying environment does not
behave exactly as they have experienced during training. Modeling the problem as a contextual MDP instead
(cMDP) (Hallak et al., 2015), we assume that there are multiple related but distinct environments which an
agent might interact with and which can be characterized through context. This notion of context provides
us with the means necessary to study the generalization abilities of RL agents in a principled manner.

What is Context? To help build intuition on what context is and how it might influence the learning
problem, we first give an informal treatment of context. In essence, context features characterize how the
environment behaves and what its goals look like. In contrast to the state features of an MDP, which describe
the changes to the environment step by step, context allows us to reason about how the state will evolve
without requiring access to the true transition and reward functions. Further, context features are typically
static (i.e., do not change during an episode) or change at a much slower time scale than state features.

In a robot, for example, joint friction could inform an RL controller how much torque to apply to execute
some desired action. In the short horizon, the friction will not change. However, especially if the robot is not
well maintained, the friction can increase due to mechanical degradation with the need to adapt accordingly.
Context information can now help to appropriately compensate. Another example could be different payloads
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as context for a robot. Note that such a feature does not need to provide the exact change in transition
dynamics, rather it needs to provide a signal of how transition (and reward) functions relate to each other.

Context does not need to influence reward and transition functions at the same time. In goal-based
reinforcement learning (e.g., Schaul et al., 2015; Eysenbach et al., 2019), the notion of goals influences the
reward function, typically without changing the transition dynamics. For example, an agent needs to traverse
an empty gridworld. A goal that is placed to the right of the agent yields high rewards by moving closer. If
another goal is now on the left of the agent, the reward for actions switches without changing how the agent
traverses the grid (i.e. the transition function).

By its nature, context enables agents to learn more discriminative and thus more general policies and could
even aid in life-long learning. This makes context very well suited to study generalization of RL agents (Kirk
et al., 2023). However, context has yet to be widely explored or leveraged in reinforcement learning, and
there are many open questions to be addressed. A prominent one among them is how to use context during
learning. In the following section, we discuss contextual RL more formally. Later on, we will show how to
transform RL methods to make explicit use of contexts to facilitate better generalization.

Contextual Markov Decision Processes (cMDP) (Hallak et al., 2015; Modi et al., 2018; Biedenkapp
et al., 2020) allow us to formalize generalization across tasks by extending the standard definition of an MDP
in RL. An MDP M = (S,A, T ,R, ρ) consists of a state space S, an action space A, transition dynamics T ,
a reward function R and a distribution over the initial states ρ. Through the addition of context, we can
define, characterize and parameterize the environment’s rules of behavior and therefore induce task instances
as variations on the problem. In the resulting cMDP, the action space A and state space S stay the same;
only the transition dynamics Tc, the reward Rc and the initial state distribution ρc change depending on the
context c ∈ C. Through the context-dependent initial state distribution ρc, as well as the change in dynamics,
the agent may furthermore be exposed to different parts of the state space for different contexts. The context
space C can either be a discrete set of contexts or defined via a context distribution pC . A cMDPM therefore
defines a set of contextual MDPsM = {Mc}c∼pC .

cMDPs Subsuming Other Notions of Generalization Even though a lot of work in RL makes no
explicit assumptions about task variations and thus generalization, there are extensions of the basic MDP
models beyond cMDPs that focus on generalization. One of these is Hidden-Parameter MDPs (Doshi-Velez
& Konidaris, 2016), which allows for changes in dynamics just as in cRL, but keeps the reward function fixed.
The reverse is true in goal-based RL (Florensa et al., 2018), where the reward function changes, but the
environment dynamics stay the same. Block MDPs (Du et al., 2019) are concerned with a different form of
generalization than cMDPs altogether; instead of zero-shot policy transfer, they aim at learning representations
from large, unstructured observation spaces. An alternative approach is the epistemic POMDP (Ghosh et al.,
2021) as a special case of a cMDP. Here, transition and reward functions may vary, but the context is assumed
to be unobservable. The corresponding approaches then model the uncertainty about which instance of the
cMDP the agent is deployed on during test time.

Settings that can be described as a collection of interacting systems, e.g. multi-agent problems, can be
formalized as such through Factored MDPs (Boutilier et al., 1999; Guestrin et al., 2001). The generalization
target here is again not necessarily zero-shot policy transfer, but generalization with respect to one or more
of the factored components, e.g. the behavior of a competing agent. Both Block MDPs and Factored MDPs
are compatible with cMDPs, i.e., we can construct a Block cMDP or a Factored cMDP in order to focus on
multiple dimensions of generalization (Sodhani et al., 2021a).

Apart from these MDP variations, there are also less formalized concepts in RL related to or subsumed by
cMDPs. Skill-based learning, for example, relates to cMDPs (da Silva et al., 2012). Some variations of the
environment, and therefore areas of the context space, will require different action sequences than others. The
past experience of an agent, i.e. its memory, can also be seen as a context, even though it is rarely treated
as such. Frame stacking, as is common in e.g. Atari (Bellemare et al., 2016) accomplishes the same thing,
implicitly providing context by encoding the environment dynamics through the stacked frames.

Obtaining Context Features Not every task has an easily defined or measurable context that describes the
task in detail. Therefore, it is important to examine how context can be obtained in such cases. Often we can
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Figure 2: Different train and test relationships result in different generalization tasks: interpolation between
known friction levels (left), generalizing to goals further away than seen in training (middle), generalizing to
the goal distances in the training distribution with lower friction (right).

only extract very simple context features for a task. For example, even though procedural generation (PCG)
based environments do not allow control over the training and test distributions, they can still be considered
contextual environments since they are usually seeded. This would give us the random seed as context
information (Kirk et al., 2023). However, the seed provides no semantic information about the instance it
induces. Obtaining more useful context features should therefore be a focus of cRL. Learned representations
provide an opportunity (Jaderberg et al., 2017b; Gelada et al., 2019; Zhang et al., 2021a; Castro et al., 2021)
to do this in a data-driven manner. As these representations encode the tasks the agent needs to solve,
subspaces of the context space requiring different policies should naturally be represented differently. This
idea has previously been applied to detecting context changes in continuous environments (da Silva et al.,
2006; Alegre et al., 2021) and finding similar contexts within a training distribution (da Silva et al., 2012).
Thus, even without readily available context, representation learning can enable the reliable availability of
information relevant for generalization to tasks both in- and out-of-distribution.

3 Reinforcement Learning with Context

In this section, we provide an overview of how context can influence the training of RL agents. We discuss
training objectives in the contextual setting and give a theoretical overview of the implications of treating
generalization problems that can be modeled as cMDPs like standard MDPs. This should serve as a
demonstration of why using the cMDP framework for generalization problems is beneficial and should be
explored further. Note that we assume standard cMDPs in this section, meaning the context, if provided to
the agent, is fully observable and reflects the true environment behavior.

3.1 Solving cMPDs

Objectives Having defined context and cMDPs, we can now attempt to solve cMDPs. To this end, we
must first formulate potential objectives being addressed by cRL. In contrast to standard RL, cRL offers
several different objectives for the same training setting depending on what kind of generalization we are
aiming for. We can provide this objective via a target context distribution that induces the target cMDP
M. Depending on the relation between target and training distributions, we can measure interpolation
performance, robustness to distribution shift, out-of-distribution generalization, and more, e.g., solving a
single expensive hard task by only training on easy ones. Thus, the cRL objective is defined by the relationship
between train and test settings, similar to supervised learning, but on the level of tasks rather than the level
of data points (see Figure 2).

Optimality Regardless of the specific objective, we solve cMDPs in the same way we would solve standard
MDPs, though we need to extend the definition of the return. Instead of maximizing the expected reward
over time, we use the expected reward over both time and target context distribution. Therefore we define
optimality in a cMDP in the following way:

Definition 1 A policy π∗ is optimal for a given cMDPM with target context distribution pC iff π∗ optimally
acts on every MDP inM (i.e. maximizes the return G):

∀c ∼ pC : π∗ ∈ arg max
π∈Π

Eπ[Gc,π]
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Note that such an optimal policy does not necessarily exist. Malik et al. (2021) showed that the problem of
learning a policy π that satisfies Definition 1 may be intractable for some context distributions, even if the
contexts are similar.

In order to compare policies across a given target distribution, we propose to compare the gap between
optimal and actual performance, what we call the Optimality Gap OG. Formally, we define OG as the gap
between the optimal return Gc,π∗ over the target context distribution c and the return of the given policy π:

OG := EpC [Gc,π∗ ]− EpC [Gc,π]. (1)

In settings where the optimal return is known, we can directly evaluate the optimality gap as the difference
between the return of a trained policy and the optimal return. However, in cases where the optimal return is
either unknown or intractable, we can instead use an agent trained on each single context as an approximation
of the optimal return. However, we have two sources of uncertainty: First, the specialized agent might not
reach the best performance achievable in the MDP and second, the uncertainty of the optimal return also
depends on the number of context samples for the specialized agent.

3.2 Optimal Policies Require Context

In this section, we give an intuition and a proof sketch of why conditioning the policy not only on the state
space S but also on the context space C can be beneficial. As a reminder, a standard RL policy is defined as
a mapping π : S → A from a state observation s ∈ S to an action a ∈ A.1 In contrast to standard RL, in
cRL the state space S is shared among all MDPs within a cMDP, meaning that states can occur in multiple
MDPs even though the transition and reward functions might differ.

3-State cMDP A simple way to exemplify this is through the 3-state cMDP in Figure 3. For the first
MDP on the left, the optimal action would be a0 leading to state S1 with a high reward of 10. The
MDP in the middle is a variation of the same state and action space, where the transition function
has changed: while the reward in state S1 remains 10, action a0 now leads to state S2 with a lower
reward of 1. Similarly, the MDP on the right is another variation changing the reward function instead
of the transition function: a0 still leads to S1, but the associated reward now is 1. An agent exposed to
such changes would not be able to react appropriately unless the policy is conditioned on the context ci.

Figure 3: A sample cMDP with
three contexts. The original one
(left), one changing the transition
function (middle) and another
the reward function (right).

In contrast, a context-conditioned policy can distinguish between the con-
texts and thus receives more guiding feedback during training. Also, it can
be more capable to perform optimally at test time given an approximation
of the context. We define context-conditioned policies as follows:

Definition 2 A context-conditioned policy is a mapping π : S × C → A
with state space S, context space C and action space A.

In order to formalize this intuitive explanation of why context is helpful
in generalization, let us first recall what optimal performance means in
cMDPs. Definition 1 requires that there exists a policy π∗ that is optimal
on every context. We will now show that optimal context-oblivious policies
like this do not exist in general, but that to obtain optimality, the policy
needs to have access to the context.

Proposition 1 For a given cMDPM = {Mc1 ,Mc2} defined over two possible contexts c1 and c2, there is
either a common (context-oblivious) optimal policy π∗ for both contexts or there is at least one conflict state
s′ at which the optimal policy differs between the contexts.

Proof Sketch Let us look at a given state s ∈ S that is reachable in Mc1 . Further, let us assume π∗c1
is the

optimal policy for Mc1 that is defined only on states reachable in Mc1 . We have to consider the following
1Alternatively, one can also define a policy as a probability distribution P(a|s) over the actions given a state. The following

line of arguments also holds for stochastic policies but we only outline it for deterministic policies to not clutter notation.
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three possible cases for each state s ∈ S: (i) s is reachable in Mc2 and π∗c1
(s) is not optimal on Mc2 ; (ii) s

is reachable in Mc2 and π∗c1
(s) is optimal on Mc2 ; (iii) s is not reachable in Mc2 . We assume that we act

within one MDP.

If (i) is true for at least one state s ∈ S, the optimal policy obviously is different between the contexts in this
state, and therefore we have found a conflict state s′. The other two cases do not produce such a conflict.
We can, however, construct a policy π∗ that is optimal on Mc1 and Mc2 from π∗c1

if for all s ∈ S either (ii)
or (iii) is true. For any state s where (ii) holds, we simply set π∗(s) = π∗c1

(s). For states s that are not
reachable in Mc1 as stated in (iii), π∗c1

is not defined. We can therefore extend π∗ by these states without
changing its optimality on Mc1 . Let a∗ be the optimal action in such s on Mc2 . Then, we define π∗(s) = a∗.
By construction, π∗ is then optimal on all states s ∈ S, and it exists iff there is no state reachable in both
contexts where the optimal action for Mc1 differs from the one for Mc2 . �

Theorem 1 An optimal policy π∗ for any given cMDPM is only guaranteed to exist if it is conditioned on
the context: π : S × C → A.

Proof Sketch Let us assume we know an optimal policy π∗c for any context c ∈ C. As c induces an MDP
and with it a corresponding optimal policy, we know that π∗c exists. Furthermore, let the sets of optimal
policies between at least two MDPs Mc1 and Mc2 be disjoint. This means no policy exists that is optimal on
both c1 and c2.

Now let us examine the optimal policy π∗ and assume that it exists for this cMDPM. By definition, π∗ is
optimal on c1 and c2. If it is only conditioned on the state, π∗(s) results in the same action independent of
the context. Because the sets of optimal policies for c1 and c2 are disjoint, there must be at least one state s′,
where π∗c1

(s′) 6= π∗c2
(s′) according to Proposition 1. As both are optimal in their respective contexts but not

in the other and do not result in the same action for s, π∗ cannot actually be optimal for both c1 and c2.
Thus, the optimal policy π∗ does not exist. On the other hand, if we can condition the policy on the context,
such that π : S × C → A, we can circumvent this problem (for a discussion on how this relates to partial
observability, see Appendix A). π∗(s, c) = π∗c is optimal for each context. �

Discussion Theorem 1 raises the question of how performance changes if the policy is not conditioned
on the context. Apart from the fact that we can construct cMDPs where a policy not conditioned on the
context may perform arbitrarily poorly, we intuitively assume the optimality gap should grow the broader pC
becomes and the more impact slight changes in c have on the transitions and rewards. Formally assessing the
optimality gap OG is another challenge in itself. Another question is how relevant the assumption of disjoint
sets of optimal policies for different contexts is in practice. For the case where the state features implicitly
encode the context, a single policy can solve different contexts optimally by never entering the conflict above.
Assuming this is how generalization is commonly handled in RL. However, we deem this not to be a reliable
mechanism to avoid conflicts between context-optimal policies on the same state. In conclusion, depending on
the environment and on how context reflects on the state, it might be beneficial to explicitly include context,
especially on harder and more abstract generalization tasks.

4 The CARL Benchmark Library

To analyze how the context and its augmentation influence the agent’s generalization capabilities, learning,
and behavior, we propose CARL: a library for Context Adaptive Reinforcement Learning benchmarks following
our Contextual Reinforcement Learning formalism. In our release of CARL benchmarks, we include and
contextually extend classic control and box2d environments from OpenAI Gym (Brockman et al., 2016),
Google Brax’ walkers (Freeman et al., 2021), a selection from the DeepMind Control Suite (Tassa et al.,
2018), an RNA folding environment (Runge et al., 2019) as well as Super Mario levels (Awiszus et al., 2020;
Schubert et al., 2021), see Figure 4.

Benchmark Categories Often the physics simulations (brax, box2d, classic control and dm control) define
a dynamic body in a static world with similar physical entities like gravity, geometry of the moving body
and mass. In our example CARLFetch from Figure 1a the goal is to move the agent to the target area. The
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context features joint stiffness, gravity, friction, (joint) angular damping, actuator strength, torso mass as
well as target radius and distance define the context and influence the exact instantiation and dynamics of
the environment. In principle, the designer is free to select the context features from the set of parameters
defining the environment. For Fetch, this could also be limb length of the body. Out of practicality, we choose
to vary the most common physical attributes across the environments. When selecting an environment’s
parameter to become a context feature, it must be guaranteed that the physics and the environment’s purpose
are not violated, e.g. by setting a negative gravity such that the body flies up and is never able to reach the
goal. Please see Appendix G for all registered context features per environment.

Figure 4: The CARL benchmarks

Besides physical simulation environments, CARL pro-
vides two more specific, challenging environments.
The first is the CARLMarioEnv environment built
on top of the TOAD-GAN level generator (Awiszus
et al., 2020; Schubert et al., 2021). It provides a
procedurally generated game-playing environment
that allows customization of the generation process.
This environment is therefore especially interesting
for exploring representation learning for the pur-
pose of learning to better generalize. Secondly, we
move closer to real-world application by including the
CARLRNADesignEnvironment (Runge et al., 2019).
The challenge here is to design RNA sequences given
structural constraints. As two different datasets of
structures and their instances are used in this benchmark, it is ideally suited for testing policy transfer
between RNA structures.

4.1 Properties of Benchmarks

While the categorization of the CARL benchmarks above provides an overview of the kinds of environments
included, we also discuss them in terms of relevant environment attributes that describe the nature of their
problem setting, see Figure 5.

State Space Most of our benchmarks have vector-based state spaces, allowing to concatenate context
information. Their sizes range from only two state variables in the CARLMountainCar environments
to 299 for the CARLHumanoid environment. The notable exceptions here are CARLVehicleRacing and
CARLToadGAN, which exclusively use pixel-based observations.

Action Space We provide both discrete and continuous environments, with six requiring discrete actions and
the other 14 continuous ones. The number of actions can range from a single action to 19 different actions.

Quality of Reward We cover different types of reward signals with our benchmarks, ranging from relatively
sparse step penalty style rewards where the agent only receives a reward of −1 each step to complex composite
reward functions in e.g. the Brax-based environments. The latter type is quite informative, providing updates
on factors like movement economy and progress toward the goal whereas the former does not let the agents
distinguish between transitions without looking at the whole episode. Further examples for sparse rewards
are the CARLCartPoleEnv and CARLVehicleRacingEnv.

Context Spaces While the full details of all possible context configurations can be seen in Appendix G, for
brevity here we only discuss the differences between context spaces and the configuration possibilities they
provide. Depending on the environment the context features have different influences on the dynamics and
the reward. Of all 145 registered context features, 99 % influence the dynamics. This means that if a context
feature is changed then the transition from states to their successors is affected and likely changed as well.
Only 4 % of the context features shape the reward. Most context features (91 %) are continuous; the rest are
categorical or discrete.

Summary Comparing our benchmarks along these attributes, we see a wide spread in most of them
( Figure 5). CARL focuses on popular environments and will grow over time, increasing the diversity of
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Figure 5: Characteristics of each environment of the environment families showing the action space size,
state space size (log-scale), number of context features (ncf ), the number of context features directly shaping
the reward (ncf,reward) and the ones changing the dynamics (ncf,dynamics). All axes are scaled to the global
extrema and the state space size is additionally on a logarithmic scale.

benchmarks. Already now, CARL provides a benchmarking collection that tasks agents with generalizing in
addition to solving the problem most common in modern RL while providing a platform for reproducible
research.

5 Experiments

Having discussed the framework of cRL and the implications of context in training, we now study several
research questions regarding the empirical effects of context: (i) How much does varying context influence
performance? Can agents compensate across context variations in a zero-shot manner? (ii) Can we observe
the effects discussed in Section 3 in practice? I.e., is there an observable optimality gap on cMDPs, does the
context visibility influence the performance and which role does the width of the context distribution play?
(iii) How can we assess generalization performance, and how does the test behavior of agents change when
exposed to the context information?

To explore our research questions, we use our benchmark library CARL. Details about the hyperparameter
settings and used hardware for all experiments are listed in Appendix C. In each experiment, if not
specified otherwise, we train and evaluate on 10 different random seeds and a set of 128 uniformly sampled
contexts. All experiments can be reproduced using the scripts we provide with the benchmark library at
https://anonymous.4open.science/r/CARL-54F4/.

5.1 How Does Varying Context Influence Performance?

To get an initial understanding on the generalization capabilities, we train a well-known SAC agent (Haarnoja
et al., 2018) on the default version of the Pendulum (Brockman et al., 2016) environment. Pendulum is a
very simple environment (see Appendix Appendix B for dynamic equations) compared to the majority of RL
benchmarks and has been considered solved by deep RL for years. However, we show that we can increase the
difficulty of this environment substantially when considering even single context features. The agent is not
provided with any explicit information about the context, i.e., it is context-oblivious. Then, for evaluation,
we vary each defined context feature by magnitudes A = 0.1, 0.2, . . . 2.2 times the default value for 10 test
episodes. In Figure 6, we plot the empirical cumulative distribution functions (eCDF) for the return showing
the range of observed returns on the x-axis and the proportion on the y-axis. The further to the right the
curve is, the better the observed returns. For the eCDF plots of other CARL environments, see Appendix D.2.

First and foremost we observe that some context features do not have an influence on the generalization
performance when varied, see Figure 6. Even in this zero-shot setting, the agent solves all context variations
of the initial_angle_max and initial_velocity_max features similarly well. Yet, the agent’s performance
is very brittle to other context features, i.e. max_speed, simulation timestep dt, gravity g and length l. The
trained agent cannot compensate for the effect the context has on the policy and thus performs poorly on
several context variations. It is worth noting that the performance curves across the variations depends on
the context feature. max_speed, for example, is hard for values below A = 0.7, but then the challenge level
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for the agent decreases abruptly. This transition is smoother for l where both very small and very large
values are hard to solve. We conclude that it is not straightforward to estimate the impact of changing the
environment on agent behavior, especially for physics simulations or similarly complex environments. We also
clearly see that zero-shot generalization cannot compensate for variations in environment dynamics. Context
variations introduce a significant challenge, even on a simple environment like Pendulum. The next step,
therefore, is to train the agent on varying contexts and re-evaluate its generalization performance.
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Figure 6: CARLPendulumEnv: eCDF Plot. A is the magnitude multiplied with the default value of each
context feature. So, A = 1.0 refers to the standard environment.

5.2 Does the Optimality Gap Exist in Practice?

In the previous section, we saw that context variation heavily influences the test performance of a standard
agent. Here, we take a closer look and connect this to the Optimality Gap OG (Equation (1)). In order to
demonstrate how significant this gap is in practice, we train a C51 agent (Bellemare et al., 2017) on our
contextually extended CartPole environment Brockman et al. (2016) as well as a SAC agent (Haarnoja et al.,
2018) on Pendulum. Similarly as above, we use simple environments to demonstrate the induced difficulty by
context variation.

To generate instances of both environments, we vary the length of the pole across a uniform distribution
pC = U(0.25, 0.75) around the standard pole length for CartPole and the pole length across pC = U(1, 2.2)
for Pendulum. For training, we sample 64 contexts from this distribution and train a general agent which
experiences all contexts during training in a round robin fashion. However, we do not explicitly provide the
context information to the agent. We approximate the optimal performance by training a separate specialized
agent on each context. Afterwards, each agent is evaluated on each context it was trained on for 10 episodes.

Comparing the general and specialized agents, we see a difference of at least 30 reward points in median,
mean and estimated IQM performance (as proposed by Agarwal et al. (2021)) for CartPole and a smaller,
but similar effect on Pendulum. While this is not a huge decrease in performance, looking at how these
rewards are distributed across the evaluation instances shows that the general agent solves significantly fewer
instances than the general agent with a decrease of around 40% of finished episodes on CartPole. This shows
that while most instances can be solved by the agent one at a time, training an agent that solves all of them
jointly is a significant challenge.

5.3 Does Access To Context Improve Training?

We have seen that agents without access to context information are not always able to entirely solve even
simple contextual environments. Can these agents improve with access to the context information? We choose
a very simple approach of adding either the whole context (concat all) or only the actively changing context
feature (concat non-static) to the state. Obviously this is a simplistic approach that in the case of concat
all significantly alters the size of the state space. Though, even with this simple idea, training performance
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Figure 8: Train (left) and test performance (right) of agents with visible and hidden context on CARLDm-
cWalker with different viscosity values and 5 seeds (top) and CARLPendulum with different lengths and 20
seeds (bottom). Shown is the mean performance with 95% confidence interval and testing across 200 test
contexts.

improves by a large margin in some cases, see Figure 8. Here, the agent, this time on CARLDmcWalker with
changing viscosity (∼ U [1, 2.5] times the default value), learns faster, is more stable, and reaches a higher final
performance with the additional information added to the state. In testing, we see significantly more failures
in the hidden agent compared to the concat ones, with only the concat non-static agent learning to solve the
contextual environment without a large decrease in overall test performance. Effective generalization seems
to be a matter of a reasonable feature set, similar to supervised learning.

On Pendulum, however, this is not the case; we see no meaningful difference in mean performance of concat
(non-static) and hidden when varying length (∼ U [1, 2.2] times the default value). Please note that the
large confidence interval stems from runs where the algorithm did not find a meaningful performance, see
Appendix Figure 19. The concat agents perform better on some unseen contexts in evaluation, though the
hidden agent is far superior on a slice of the instance set. We expect the reason for these mixed results
to be that simply appending the context to the state is not an ideal way to communicate these complex
environmental factors. Instead, context embeddings could be a more potent way of capturing the way a context
feature changes an environment, as we have seen in some prior work on incorporating goals (Sukhbaatar
et al., 2018; Liu et al., 2022) into training. Since our goal was to show the potential of context information,
we leave it to future work to investigate better representations of context features.

5.4 How Far Can Agents Learn To Act Across Contexts?

As we saw different evaluation behaviors from hidden and visible agents in the last section, we want to further
investigate their generalization capabilities in- and out-of-distribution. To this end, we follow a three mode
evaluation protocol for Contextual Reinforcement Learning that tests the agent’s interpolation capabilities
and out-of-distribution generalization under different training distribution shapes (Kirk et al., 2023). This is
in contrast to PCG environments where we cannot define evaluation protocols and instead have to rely on
the given instance generation procedure.

We define train and test distributions for each dimension of the context space individually, allowing us to
study different relationships between train and test settings. If at least parts of the test context are within
the train distribution, we speak of interpolation, if the whole context is outside, of extrapolation. By choosing
two context features and defining uniform train distributions on both, we construct a convex training set in
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Figure 9: In- and Out-of-Distribution Generalization on CartPole. We vary the pole length and up-
date_interval. The blue polygon marks the train context area. Black dots mark gaps in the context space
due to random sampling. First row: Context-oblivious agent, second row: Concat.

the context feature space (mode A: ). The context feature distributions can also be defined to allow only a
small variation (mode B: ) or a single value per feature (mode C: ), creating non-convex train sets. Thus,
the convex hull of this non-convex set tests combinatorial interpolation.
To demonstrate this, we again choose contextual CartPole (Brockman et al., 2016) from CARL, and the
C51 (Bellemare et al., 2017) agent known to perform well on it. We train the agent for 100 000 timesteps
and vary the update_interval and the pole length in the environment, once without access to the context
(hidden) and once concatenating pole length and gravity to the state (concat). We repeat this with 10 random
seeds and 5 test episodes per context. For the train and test context sets, we sample 1000 contexts each for
the train and test distributions defined in the evaluation protocol, see Figure 9. The test performances are
discretized and aggregated across seeds with the interquartile mean (25th-75th quartile).
In Figure 9, we show that both hidden (context-oblivious) and visible (concatenate) agents perform fairly
well within their training distribution for evaluation mode A and even generalize to fairly large areas of the
test distribution, more so for concat. Large update intervals combined with extreme pole lengths proves to
be the most challenging area.

Interestingly, the concat agent is able to solve more of the large update intervals in contrast to the hidden
agent which is most pronounced on train distribution C. This itself is counterintuitive, we would expect that
the larger the train distribution, the larger the out-of-distribution generalization. The hidden agent in general
performs well for low update intervals. This resonates with the intuition that smaller update intervals are easier
because there is more granularity (and time) to react to the current state. In addition, we provide results for
varying the update interval and the gravity. Here, the results are similar but subdued, see Appendix Figure 20.
Varying the pole length together with the gravity paints a different image (Appendix Figure 21. In this case,
the hidden agent performs much better. We suspect that the effects of gravity and pole length cancel out and
thus context information is not needed to learn a meaningful policy. These three variations again show that
providing context by concatenation can be helpful but not in every case, demanding further investigation
on alternatives. Finally, neither agent shows reliable combinatorial interpolation performance, let alone
out-of-distribution generalization. We see here a major open challenge for the RL community, for which CARL
will support them in the development and precise studies of RL generalization capabilities.
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6 Related Work

Transferring and generalizing the performance of an RL agent from its training setting to some test variation
has been at the center of several sub-communities within RL. Robustness, for example, can be seen as a
subcategory of generalization where variations to the context are usually kept small, and the goal is to
avoid failures due to exceptions on a single task (Morimoto & Doya, 2000; Pinto et al., 2017; Mehta et al.,
2019; Zhang et al., 2021d). Policy transfer is also concerned with generalization in a sense, though here
the goal has often been fine-tuning a pre-trained policy, i.e., few-shot generalization instead of zero-shot
generalization (Duan et al., 2016; Finn et al., 2017; Nichol et al., 2018). The goal in Multi-Task Learning is
to learn a fixed set of tasks efficiently (Yu et al., 2019), not necessarily being concerned with generalizing
outside of this set. Meta-Learning in RL usually aims at zero-shot policy generalization similar to Contextual
Reinforcement Learning (cRL). This field is very broad with different approaches like learning to learn
algorithms or their components (Schulman et al., 2016; Duan et al., 2016; Wang et al., 2017), generating task
curricula (Matiisen et al., 2020; Nguyen et al., 2021) or meta-learning hyperparameters (Runge et al., 2019;
Zhang et al., 2021c).

The previously mentioned methods were not conceived with cRL in mind but use context implicitly. Many
meta-RL methods, however, can or do make use of context information to guide their optimization, either
directly (Klink et al., 2020; Eimer et al., 2021) or by utilizing a learnt dynamics model (Kober et al., 2012).
The idea of context-aware dynamics models has also been applied to model-based RL (Lee et al., 2020b). These
approaches use context in different ways to accomplish some generalization goal, e.g. zero-shot generalization
to a test distribution or solving a single hard instance. In contrast, we do not propose a specific Meta-Learning
method but examine the foundations of cRL and how context affects policy learning in general.

Zero-shot generalization across a distribution of contexts, specifically, has become a common goal in standard
RL environments, often in the form of generalization across more or less randomly generated tasks (Juliani
et al., 2019; Cobbe et al., 2020; Samvelyan et al., 2021). The larger the degree of randomness in the generation
procedure, however, the less context information and control are available for Meta-Learning methods (Kirk
et al., 2023). Such underspecification of tasks can even make evaluations more challenging (Jayawardana
et al., 2022). In contrast to other works on generalization in RL, we therefore focus on sampling context
without PCG but from explicitly defined distributions. This allows us to analyze the capabilities of our agents
in a more fine-grained manner, e.g. how far away from their training distribution generalization performance
starts to decrease, instead of relying only on the test reward across all task instances. Whiteson et al. (2011)
propose an evaluation protocol for general RL to avoid overfitting on particular training environments, where
they argue for generalized methodologies assessing the performance of an agent on a set or distribution of
environments. cMDPs easily fit into this line of evaluation protocols with the advantage of interpretable
generalization capabilities because of the definition of interpretable context features. Kirk et al. (2021)
similarly propose evaluation protocols, but already with cMDPs in mind. For further ways cRL opens new
directions in ongoing work, see Appendix F.

7 Conclusion

Toward our goal of creating general and robust agents, we need to factor in possible changes in the environment.
We model these changes with the framework of contextual Reinforcement Learning (cRL) and reason about
what demands Contextual Reinforcement Learning introduces to the agents and the learning process,
specifically regarding the suboptimal nature of conventional RL policies in cRL. With CARL, we provide
a benchmark library which contextualizes popular benchmarks and is designed to study generalization in
Contextual Reinforcement Learning. It allows us to empirically demonstrate that contextual changes disturb
learning even in simple settings and that the final performance and the difficulty correlate with the magnitude
of the variation. We also verify that context-oblivious policies are not able to fully solve even simple contextual
environments, as indicated by our theoretical discussion. We expect this to be a first step towards better
solution mechanisms for contextual RL problems and therefore one step closer to general and robust agents.
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Broader Impact Statement

We foresee no new direct societal and ethical implications other than the known concerns regarding autonomous
agents and RL (e.g., in a military context).
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Appendix
A Partial Observability in cMDPs

Discussing the visibility of context for an agent can be linked to the partial observability we see in POMDPs.
We believe it is useful to differentiate between the visibility of context and state features as both serve a
different function in a cMDP. The state features describe the current state while the context describes the
current MDP. Therefore making one only partially observable should influence the learning dynamics in
different ways. Therefore we define a cMDP as a special case of a POMDP, analogous to Kirk et al. (2023),
where we have an emission function φ : S × pC → Os ×Oc mapping the state space to some state observation
space Os and context observation space Oc. φ differentiates between state s and context c to allow different
degrees of observability in state and context, e.g. hiding the context completely but exposing the whole state,
in order to enable more flexible learning. It can also introduce the additional challenge of learning from
imperfect or noisy context information.

B Pendulum’s Dynamic Equations

Figure 10: CARLPendulumEnv

Because we use CARLPendulumEnv embedding gym’s
Pendulum (Brockman et al., 2016) for our task varia-
tion experiment (see Section 5.1), we provide the dy-
namic equations to show the simplicity of the system.
The state consists of the angular position θ and velocity
θ̇ of the pendulum. The discrete equation defining the
behavior of the environment is defined as follows:

θ̇k+1 = θ̇k +
(
−3g

2l sin(θk + π) + 3
m · l2

uk

)
·∆t

θk+1 = θk + θ̇k+1 ·∆t .

Here, k is the index of the iteration/step. The dynamic
system is parametrized by the context, which consists
of g the gravity, l and m the length and mass of the
pendulum, u the control input and ∆t the timestep.
Figure 10 shows how Pendulum is embedded in CARL.

C Hyperparameters and Hardware

Hyperparameters and Training Details We implemented our own agents using coax (Holsheimer et al.,
2023) with hyperparameters specified in Table 1. All experiments can be reproduced using the scripts we
provide with the benchmark library at https://anonymous.4open.science/r/CARL-54F4/.

Table 1: Hyperparameters for algorithm and environment combinations

algorithm c51 c51 sac c51 c51 sac sac sac
env CartPole Acrobot Pendulum MountainCar LunarLander DmcWalker DmcQuadruped Halfcheetah
n_step 5 5 5 5 5 5 5 5
gamma 0.99 0.99 0.9 0.99 0.99 0.9 0.9 0.99
alpha 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
batch_size 128 128 128 128 128 128 128 256
learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001
q_targ_tau 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005
warmup_num_frames5000 5000 5000 5000 5000 5000 5000 5000
pi_warmup_num_frames7500 7500 7500 7500 7500 7500 7500 7500
pi_update_freq 4 4 4 4 4 4 4 2
replay_capacity 100000 100000 100000 100000 100000 100000 100000 1000000
network {’width’: 256,

’num_atoms’:
51}

{’width’: 256,
’num_atoms’:
51}

{’width’:
256}

{’width’: 32,
’num_atoms’:
51}

{’width’: 256,
’num_atoms’:
51}

{’width’:
256}

{’width’:
256}

{’width’:
1024}

pi_temperature 0.1 0.1 NaN 0.1 0.1 NaN NaN NaN
q_min_value 0.0 -50.0 NaN -100.0 -100.0 NaN NaN NaN
q_max_value 110.0 0.0 NaN 100.0 100.0 NaN NaN NaN
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Hardware All experiments on all benchmarks were conducted on a slurm CPU and GPU cluster (see Table
2). On the CPU partition there are 1592 CPUs available across nodes.

Table 2: GPU cluster used for training

Type Model Quantity RAM CPU (G)
GPU NVIDIA Quattro M5000 1 256
GPU NVIDIA RTX 2080 Ti 56 384
GPU NVIDIA RTX 2080 Ti 12 256
GPU NVIDIA RTX 1080 Ti 6 512
GPU NVIDIA GTX Titan X 4 128
GPU NVIDIA GT 640 1 32

D Additional Experimental Results

In this section, we provide additional information and results for our experiments section (section 5).

D.1 Test Performance on Context Variations

In this section we show the test performance of an agent trained on the default context of selected environments
which is oblivious to the context. For evaluation we run 10 episodes on contexts with different magnitudes of
variation. We vary each context feature by a magnitude A = 0.1, 0.2, 0.3, . . . , 2.2.

Figure 11: CARLAcrobotEnv: ECDF Plot. A is the magnitude multiplied with the default value of each
context feature.

D.2 Task Variation Through Context

Following the experimental setup in Section 5.1 we conducted further experiments on representative CARL-
environments.
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Figure 12: CARLCartPoleEnv: ECDF Plot. A is the magnitude multiplied with the default value of each
context feature.

Figure 13: CARLDmcQuadrupedEnv: ECDF Plot. A is the magnitude multiplied with the default value
of each context feature.
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Figure 14: CARLDmcWalkerEnv: ECDF Plot. A is the magnitude multiplied with the default value of
each context feature.

Figure 15: CARLHalfcheetah: ECDF Plot. A is the magnitude multiplied with the default value of each
context feature.

23



Under review as submission to TMLR

Figure 16: CARLLunarLanderEnv: ECDF Plot. A is the magnitude multiplied with the default value of
each context feature.

Figure 17: CARLPendulumEnv: ECDF Plot. A is the magnitude multiplied with the default value of
each context feature.
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D.3 Optimality Gap

Here we show the optimality exists for other agent-environment combinations. We repeated the experiment
in Section 5.2 with SAC (Haarnoja et al., 2018) on CARLPendulumEnv and CARLDMCWalkerEnv. Both
experiments show the optimality gap exists as well, see Figure 18.
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(a) CARLPendulumEnv
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(b) CARLDmcWalkerEnv

Figure 18: Optimality Gap

D.4 Adding Context to the State

When we concatenat all available context features to the state for CARLPendulum, we often see that the
algorithm fails to learn a meaningful policy on some seeds, see Figure 19.
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R
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hidden

Figure 19: CARLPendulum with different lengths and 20 seeds. Train performance.

D.5 Generalization Results

Here we provide two more combinations for CARLPendulum for the Kirk generalization protocol (Kirk et al.,
2021) from Section 5.4 (same experimental setup).
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Figure 20: Varying gravity and update interval on CARLPendulumEnv. First row: Hidden agent, second
row: Concat agent.

E Hyperparameter Optimization in cRL

We have observed significant differences in learning performance for hidden and full visible context, but
the same is also true for hyperparameter tuning in both of these settings. We use the same DQN and
DDPG algorithms as in our other experiments with a narrow context distribution of 0.1 for the CARL
Pendulum, Acrobot and LunarLander environments to show this point. To tune the hyperparameters, we use
PB2 (J. Parker-Holder et al., 2020) for the learning rate, target update interval and discount factor.

As shown in Figure 22, the evaluation performances of the found hyperparameter schedules differ significantly
in terms of learning speed, stability and results per environment. Providing the context sometimes seems
to increase the difficulty of the problem (see Section 5.4), i.e. finding a good hyperparameter configuration
happens more often and more reliably when the policy is not given the context. We can only speculate on
the reasons why this happens, but shows that context introduces complexities to the whole training process
beyond simply the policy architecture.

F Open Challenges in cRL

We used the concept of Contextual Reinforcement Learning and its instantiation in CARL to demonstrate the
usefulness of context information in theory and in practice. More specifically, we showed that making such
information about the environment explicitly available to the agent enables faster training and transfer of
agents (see Section 5). While this already provides valuable insights to the community that increasingly cares
about learning agents capable of generalization (see Sections 1 & 6) Contextual Reinforcement Learning and
by extension CARL enables to study further open challenges for general RL.

F.1 Challenge I: Representation Learning

Our experiments demonstrated that an agent with access to context information can be capable of learning
better than an agent that has to learn behaviors given an implicit context via state observations, but the
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Figure 21: Varying gravity and pole length on CARLPendulumEnv. First row: Hidden agent, second row:
Concat agent.

(a) CARLAcrobotEnv (b) CARLLunarLanderEnv (c) CARLPendulumEnv

Figure 22: Hyperparameter Optimization with PB2 (J. Parker-Holder et al., 2020). Hidden means that the
context is hidden, and visible means that the full context is appended to the state.

naive method of including context information in the state does is not reliable. We theorize that disentangling
the representation learning aspect from the policy learning problem reduces complexity. As CARL provides
ground truth for representations of environment properties we envision future work on principled studies
of novel RL algorithms that, by design, disentangle representation learning and policy learning (see, e.g.,
(Rakelly et al., 2019; Fu et al., 2021a; Zhang et al., 2021b) as first works along this line of research). The
ground truth given by the context would allow us to measure the quality of learned representations and
allows us to relate this to the true physical properties of an environment.

Another direction of research under the umbrella of representation learning follows the work of environment
probing policies (Zhou et al., 2019). There, exploratory policies are learned that allow one to identify which
environment type an agent encounters. This is complementary to the prior approaches as representations
are not jointly learned with the behaviour policies as in the previously discussed approaches but rather in a
separate offline phase. Based on CARL, huge amounts of meta-data could be collected that will enable the
community to make use of classical meta-algorithmic approaches such as algorithm selection (Rice, 1976) for
selecting previously learned policies or learning approaches.
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F.2 Challenge II: Uncertainty of RL Agents

With access to context information, we are able to study the influence of noise on RL agents in a novel way.
While prior environments enabled studies on the behavior of agents when they could not be certain about
their true state in a particular environment, the framework of Contextual Reinforcement Learning further
allows studying agents’ behaviors in scenarios with uncertainty on their current contextual environment, e.g.,
because of noise on the context features. In the practical deployment of RL, this is a reasonable concern since
context features have to be measured somehow by potentially noisy sensors. As this setting affects the overall
transition dynamics, Contextual Reinforcement Learning provides a unique test-bed in which the influence of
uncertainty can be studied and how RL agents can deal with such.

F.3 Challenge III: Continual Learning

In the current definition of cRL, continual learning, i.e. shifting context during learning can be formalized as
long as the context only changes between episodes. This is especially interesting for the long-term practical
deployment of RL agents as their environment may similarly shift over time. With the flexibility and easy
modifiability of contexts, Contextual Reinforcement Learning can therefore be used for studying continual
reinforcement learning agents. To take an example from CARL, we could evaluate the behaviour of an agent
in the Brax environments where one or more joints become stiffer over time. A learning agent would need to
be able to handle this and adapt its gait accordingly. In particular, one could at some point “repair” the
agent and reset the joints to their original stiffness. This would then allow evaluation of whether the agent
has “unlearned” the original gait. In the same way, Contextual Reinforcement Learning also allows studying
how agents would react to spontaneous, drastic changes, e.g., broken legs or changes in the environment such
as changes in weather conditions.

F.4 Challenge IV: Interpretable and Explainable Deep RL

Trust in the policy is a crucial factor, for which interpretability or explainability often is mandatory. With
the provided ground truth through the explicit use of context features, Contextual Reinforcement Learning
could be the base for studying the interpretability and explainability of (deep) RL. By enabling AutoRL
studies and different representation learning approaches, Contextual Reinforcement Learning will contribute
to better interpreting the training procedures.

Contextual Reinforcement Learning further allows studying explainability on the level of learned policies.
We propose to study the sensitivity of particular policies to different types of contexts. Thus, the value and
variability of a context might serve as a proxy to explain the resulting learned behavior. Such insights might
then be used to predict how policies might look or act (e.g., in terms of frequency of action usage) in novel
environments, solely based on the provided context features.

F.5 Challenge V: AutoRL

AutoRL (Parker-Holder et al., 2022) addresses the optimization of the RL learning process. To this end,
hyperparameters, architectures or both of agents are adapted either on the fly (Jaderberg et al., 2017a; Franke
et al., 2021) or once at the beginning of a run (Runge et al., 2019). However, as AutoRL typically requires
large compute resources for this procedure, optimization is most often done only on a per-environment basis.
It is reasonable to assume that such hyperparameters might not transfer well to unseen environments, as the
learning procedures were not optimized to be robust or to facilitate generalization, but only to improve the
reward on a particular instance.

As we have shown above in Appendix E, Contextual Reinforcement Learning provides an even greater
challenge for AutoRL methods. On the other hand, as CARL provides easy-to-use contextual extensions of a
diverse set of RL problems, it could be used to drive research in this open challenge of AutoRL. First of all,
it enables a large scale-study to understand how static and dynamic configuration approaches complement
each other and when one approach is to be preferred over another. Such a study will most likely also lead to
novel default hyperparameter configurations that are more robust and tailored to fast learning and good
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generalization. In addition, it will open up the possibility to study whether it is reasonable to use a single
hyperparameter configuration or whether a mix of configurations for different instances is required (Xu et al.,
2010). Furthermore, with the flexibility of defining a broad variety of instance distributions for a large set of
provided context features, experiments with CARL would allow researchers to study which hyperparameters
play a crucial role in learning general agents similar to studies done for supervised machine learning (van
Rijn & Hutter, 2018) or AI algorithms (Biedenkapp et al., 2018).

F.6 Challenge VI: High Confidence Generalization

The availability of explicit context enables tackling another challenge in the field of safe RL. High Confidence
Generalization Algorithms (HCGAs) (Kostas et al., 2021) provide safety guarantees for the generalization of
agents in testing environments. Given a worst-case performance bound, the agent can be tasked to decide
whether a policy is applicable in an out-of-distribution context or not. This setting is especially important
for the deployment of RL algorithms in the real world where policy failures can be costly and the context of
an environment is often prone to change. Contextual Reinforcement Learning has the potential to facilitate
the development of HCGAs that base their confidence estimates on the context of an environment.

G Context Features for Each Environment

We list all registered context features with their defaults, bounds and types for each environment family in
Table 3 (classic control), Table 4 (box2d), Table 5 (brax) and Table 7 (RNA and Mario).
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Table 3: Context Features: Defaults, Bounds and Types for OpenAI gym’s Classic Control environ-
ments (Brockman et al., 2016)

(a) CARLCartPoleEnv

Context Feature Default Bounds Type

force_magnifier 10.00 (1, 100) int
gravity 9.80 (0.1, inf) float
initial_state_lower -0.10 (-inf, inf) float
initial_state_upper 0.10 (-inf, inf) float
masscart 1.00 (0.1, 10) float
masspole 0.10 (0.01, 1) float
pole_length 0.50 (0.05, 5) float
update_interval 0.02 (0.002, 0.2) float

(b) CARLPendulumEnv

Context Feature Default Bounds Type

dt 0.05 (0, inf) float
g 10.00 (0, inf) float
initial_angle_max 3.14 (0, inf) float
initial_velocity_max 1.00 (0, inf) float
l 1.00 (1e-06, inf) float
m 1.00 (1e-06, inf) float
max_speed 8.00 (-inf, inf) float

(c) CARLMountainCarEnv

Context Feature Default Bounds Type

force 0.00 (-inf, inf) float
goal_position 0.50 (-inf, inf) float
goal_velocity 0.00 (-inf, inf) float
gravity 0.00 (0, inf) float
max_position 0.60 (-inf, inf) float
max_position_start -0.40 (-inf, inf) float
max_speed 0.07 (0, inf) float
max_velocity_start 0.00 (-inf, inf) float
min_position -1.20 (-inf, inf) float
min_position_start -0.60 (-inf, inf) float
min_velocity_start 0.00 (-inf, inf) float

(d) CARLAcrobotEnv

Context Feature Default Bounds Type

initial_angle_lower -0.10 (-inf, inf) float
initial_angle_upper 0.10 (-inf, inf) float
initial_velocity_lower -0.10 (-inf, inf) float
initial_velocity_upper 0.10 (-inf, inf) float
link_com_1 0.50 (0, 1) float
link_com_2 0.50 (0, 1) float
link_length_1 1.00 (0.1, 10) float
link_length_2 1.00 (0.1, 10) float
link_mass_1 1.00 (0.1, 10) float
link_mass_2 1.00 (0.1, 10) float
link_moi 1.00 (0.1, 10) float
max_velocity_1 12.57 (1.257, 125.7) float
max_velocity_2 28.27 (2.827, 282.7) float
torque_noise_max 0.00 (-1.0, 1.0) float
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Table 4: Context Features: Defaults, Bounds and Types for OpenAI gym’s Box2d environments (Brockman
et al., 2016)

(a) CARLBipedalWalkerEnv

Context Feature Default Bounds Type

FPS 50.00 (1, 500) float
FRICTION 2.50 (0, 10) float
GRAVITY_X 0.00 (-20, 20) float
GRAVITY_Y -10.00 (-20, -0.01) float
INITIAL_RANDOM 5.00 (0, 50) float
LEG_DOWN -0.27 (-2, -0.25) float
LEG_H 1.13 (0.25, 2) float
LEG_W 0.27 (0.25, 0.5) float
LIDAR_RANGE 5.33 (0.5, 20) float
MOTORS_TORQUE 80.00 (0, 200) float
SCALE 30.00 (1, 100) float
SPEED_HIP 4.00 (1e-06, 15) float
SPEED_KNEE 6.00 (1e-06, 15) float
TERRAIN_GRASS 10.00 (5, 15) int
TERRAIN_HEIGHT 5.00 (3, 10) float
TERRAIN_LENGTH 200.00 (100, 500) int
TERRAIN_STARTPAD 20.00 (10, 30) int
TERRAIN_STEP 0.47 (0.25, 1) float
VIEWPORT_H 400.00 (200, 800) int
VIEWPORT_W 600.00 (400, 1000) int

(b) CARLLunarLanderEnv

Context Feature Default Bounds Type

FPS 50.00 (1, 500) float
GRAVITY_X 0.00 (-20, 20) float
GRAVITY_Y -10.00 (-20, -0.01) float
INITIAL_RANDOM 1000.00 (0, 2000) float
LEG_AWAY 20.00 (0, 50) float
LEG_DOWN 18.00 (0, 50) float
LEG_H 8.00 (1, 20) float
LEG_SPRING_TORQUE 40.00 (0, 100) float
LEG_W 2.00 (1, 10) float
MAIN_ENGINE_POWER 13.00 (0, 50) float
SCALE 30.00 (1, 100) float
SIDE_ENGINE_AWAY 12.00 (1, 20) float
SIDE_ENGINE_HEIGHT 14.00 (1, 20) float
SIDE_ENGINE_POWER 0.60 (0, 50) float
VIEWPORT_H 400.00 (200, 800) int
VIEWPORT_W 600.00 (400, 1000) int

(c) CARLVehicleRacingEnv

Context Feature Default Bounds Type

VEHICLE 0 - categorical
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Table 5: Context Features: Defaults, Bounds and Types for Google Brax environments (Freeman et al., 2021)

(a) CARLAnt

Context Feature Default Bounds Type

actuator_strength 300.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 35.00 (0, inf) float
joint_stiffness 5000.00 (1, inf) float
torso_mass 10.00 (0.1, inf) float

(b) CARLHalfcheetah

Context Feature Default Bounds Type

angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 20.00 (0, inf) float
joint_stiffness 15000.00 (1, inf) float
torso_mass 9.46 (0.1, inf) float

(c) CARLFetch

Context Feature Default Bounds Type

actuator_strength 300.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 35.00 (0, inf) float
joint_stiffness 5000.00 (1, inf) float
target_distance 15.00 (0.1, inf) float
target_radius 2.00 (0.1, inf) float
torso_mass 1.00 (0.1, inf) float

(d) CARLGrasp

Context Feature Default Bounds Type

actuator_strength 300.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 50.00 (0, inf) float
joint_stiffness 5000.00 (1, inf) float
target_distance 10.00 (0.1, inf) float
target_height 8.00 (0.1, inf) float
target_radius 1.10 (0.1, inf) float

(e) CARLHumanoid

Context Feature Default Bounds Type

angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.80 (-inf, -0.1) float
joint_angular_damping 20.00 (0, inf) float
torso_mass 8.91 (0.1, inf) float

(f) CARLUr5e

Context Feature Default Bounds Type

actuator_strength 100.00 (1, inf) float
angular_damping -0.05 (-inf, inf) float
friction 0.60 (-inf, inf) float
gravity -9.81 (-inf, -0.1) float
joint_angular_damping 50.00 (0, 360) float
joint_stiffness 40000.00 (1, inf) float
target_distance 0.50 (0.01, inf) float
target_radius 0.02 (0.01, inf) float
torso_mass 1.00 (0, inf) float
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Table 6: Context Features: Defaults, Bounds and Types for Google Deepmind environments (Tassa et al.,
2018)

(a) CARLDmcWalkerEnv

Context Feature Default Bounds Type

actuator_strength 1.00 (0, inf) float
density 0.00 (0, inf) float
friction_rolling 1.00 (0, inf) float
friction_tangential 1.00 (0, inf) float
friction_torsional 1.00 (0, inf) float
geom_density 1.00 (0, inf) float
gravity -9.81 (-inf, -0.1) float
joint_damping 1.00 (0, inf) float
joint_stiffness 0.00 (0, inf) float
timestep 0.00 (0.001, 0.1) float
viscosity 0.00 (0, inf) float
wind_x 0.00 (-inf, inf) float
wind_y 0.00 (-inf, inf) float
wind_z 0.00 (-inf, inf) float

(b) CARLDmcQuadrupedEnv

Context Feature Default Bounds Type

actuator_strength 1.00 (0, inf) float
density 0.00 (0, inf) float
friction_rolling 1.00 (0, inf) float
friction_tangential 1.00 (0, inf) float
friction_torsional 1.00 (0, inf) float
geom_density 1.00 (0, inf) float
gravity -9.81 (-inf, -0.1) float
joint_damping 1.00 (0, inf) float
joint_stiffness 0.00 (0, inf) float
timestep 0.01 (0.001, 0.1) float
viscosity 0.00 (0, inf) float
wind_x 0.00 (-inf, inf) float
wind_y 0.00 (-inf, inf) float
wind_z 0.00 (-inf, inf) float

(c) CARLDmcFingerEnv

Context Feature Default Bounds Type

actuator_strength 1.00 (0, inf) float
density 5000.00 (0, inf) float
friction_rolling 1.00 (0, inf) float
friction_tangential 1.00 (0, inf) float
friction_torsional 1.00 (0, inf) float
geom_density 1.00 (0, inf) float
gravity -9.81 (-inf, -0.1) float
joint_damping 1.00 (0, inf) float
joint_stiffness 0.00 (0, inf) float
limb_length_0 0.17 (0.01, 0.2) float
limb_length_1 0.16 (0.01, 0.2) float
spinner_length 0.18 (0.01, 0.4) float
spinner_radius 0.04 (0.01, 0.05) float
timestep 0.00 (0.001, 0.1) float
viscosity 0.00 (0, inf) float
wind_x 0.00 (-inf, inf) float
wind_y 0.00 (-inf, inf) float
wind_z 0.00 (-inf, inf) float

(d) CARLDmcFishEnv

Context Feature Default Bounds Type

actuator_strength 1.00 (0, inf) float
density 5000.00 (0, inf) float
friction_rolling 1.00 (0, inf) float
friction_tangential 1.00 (0, inf) float
friction_torsional 1.00 (0, inf) float
geom_density 1.00 (0, inf) float
gravity -9.81 (-inf, -0.1) float
joint_damping 1.00 (0, inf) float
joint_stiffness 0.00 (0, inf) float
timestep 0.00 (0.001, 0.1) float
viscosity 0.00 (0, inf) float
wind_x 0.00 (-inf, inf) float
wind_y 0.00 (-inf, inf) float
wind_z 0.00 (-inf, inf) float

Table 7: Context Features: Defaults, Bounds and Types for RNA Design (Runge et al., 2019) and Mario
Environment (Awiszus et al., 2020; Schubert et al., 2021)

(a) CARLRnaDesignEnv

Context Feature Default Bounds Type

mutation_threshold 5 (0.1, inf) float
reward_exponent 1 (0.1, inf) float
state_radius 5 (1, inf) float
dataset eterna - categorical, n = 3
target_structure_ids f(dataset) (0, inf) list of int

(b) CARLMarioEnv

Context Feature Default Bounds Type

level_index 0 - categorical, n = 15
noise f(level_index,

width, height)
(-1, 1) float

mario_state 0 - categorical, n = 3
mario_inertia 0.89 (0.5, 1.5) float
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