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Abstract

Neural Operators can learn operators from data, for example, to solve partial
differential equations (PDEs). In some cases, this data-driven approach is
not sufficient, e.g., if the data is limited, or only available at a resolution that
does not permit resolving the underlying physics. The Physics-Informed
Neural Operator (PINO) aims to solve this issue by adding the PDE residual
as a loss to the Fourier Neural Operator (FNO). Several methods have
been proposed to compute the derivatives appearing in the PDE, such
as finite differences and Fourier differentiation. However, these methods
are limited to regular grids and suffer from inaccuracies. In this work, we
propose the first method capable of exact derivative computations for general
functions on arbitrary geometries. We leverage the Geometry Informed
Neural Operator (GINO), a recently proposed graph-based extension of
FNO. While GINO can be queried at arbitrary points in the output domain,
it is not differentiable with respect to those points due to a discrete neighbor
search procedure. We introduce a fully differentiable extension of GINO
that uses a differentiable weight function and neighbor caching in order to
maintain the efficiency of GINO while allowing for exact derivatives. We
empirically show that our method matches prior PINO methods while being
the first to compute exact derivatives for arbitrary query points.

1 Introduction

Real-world science and engineering problems frequently involve partial differential equations
(PDEs) [25], and existing numerical methods to solve them often require prohibitive com-
putational resources [23]. Physics-Informed Neural Networks (PINNs) [8, 21] are machine
learning methods to solve PDEs by using a neural network as the ansatz of the solution
function. While PINNs have been successfully applied to several problems, their widespread
application is limited by instabilities and optimization challenges [11]. The recently proposed
Physics Informed Neural Operator (PINO) [17] could mitigate these issues and outperform
PINNs. PINO is a neural operator, meaning that, unlike neural networks, it learns a map
between function spaces. It is trained on multiple PDE instances, resulting in an easier
optimization landscape compared to PINNs, which only solve a single instance.
Computing the PDE residual of a model output requires taking derivatives of that func-
tion. Several methods have been proposed to compute derivatives for PINO, such as finite
differences, Fourier differentiation, and improvements of the latter using Fourier continu-
ation [17, 19]. However, all of these methods suffer from discretization errors and cannot
compute exact derivatives. A key challenge for PINO models based on the Fourier Neural
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Figure 1: Adding EDAM to PINO: Overview of our physics-informed GINO
method using autograd. A discretized and padded function is processed by a series
of FNO blocks, which produces an output function on an extended regular grid. A GNO
layer, modified to be differentiable, is used to query the output function at arbitrary points,
and provide exact differentiation at that points. Note that irregular geometries can also be
handled as inputs by first having a GNO layer before the FNO blocks.

Operator (FNO) [15] is that a trade-off must be made, either sacrificing exact derivatives, or
the ability to query arbitrary output points.
In this work, we devise the first physics-informed neural operator capable of computing
exact derivatives for arbitrary geometries. To accomplish this, we extend the Geometry-
Informed Neural Operator (GINO) [12], a very recent extension of FNO that is able to
handle arbitrary geometries. However, the output of GINO is not differentiable with
respect to query coordinates due to a discrete neighbor search procedure. We introduce a
fully differentiable extension of GINO that uses a differentiable weight function instead of
the discrete neighbor search procedure, thus enabling the use of automatic differentiation
(autograd). To preserve the efficiency of GINO, we use a neighbor caching algorithm to store
the neighbors with nonzero weight. To also recover exact derivatives at the boundary, we
extend the domain on which GINO operates using suitable domain padding. See Figure 1
for an overview. We empirically show that our method is on par with other PINO methods
while being the first to allow querying arbitrary output points. We release our code at
https://anonymous.4open.science/r/exact-pino.

2 Background and Related Work

PINN: Physics-informed neural nets (PINNs) [8, 21] are a family of deep learning methods
whose loss function can include both agreement with training data points, as well as adherence
to physics constraints such as from a PDE. PINNs have seen empirical success in learning a
variety of PDEs [8, 21]. However, their training can be unstable and many follow-up works
have attempted to improve the optimization behavior [7, 11, 27].
FNO: On the other hand, neural operators are a family of neural architectures that learn
maps between function spaces rather than between finite-dimensional vector spaces [10], and
they can be used to approximate the solution operator of a given PDE. In particular, the
Fourier Neural Operator (FNO) has been successful in solving PDE-based problems with
significant speedups [1, 5, 9, 15, 18]. A neural operator architecture can be defined as

GFNO := Q ◦ (WL +KL) ◦ · · · ◦ σ (W1 +K1) ◦ P, (1)
where P and Q are pointwise lifting and projection operators, respectively. The intermediate
layers consist of pointwise operators W`, integral kernel operators K`, and an activation
function σ. In the case of the FNO, the integral kernel operators are linear transforms in
Fourier space, K`(v) = F−1(R` · F(v)), where R` are weight matrices, and F ,F−1 denote
the Fourier transform and its inverse.
GINO: Very recently, the Geometry-Informed Neural Operator (GINO) [16] proposes to
combine FNO with graph neural operators (GNO) [13, 14] in order to handle arbitrary
geometries. Specifically, the output function v of GFNO in Equation (1) is processed with a
graph operator,

GGNO(v)(x) :=

∫
Br(x)∩D

κ(x, y)v(y)dy =

∫
D

1Br(x)(y)κ(x, y)v(y)dy, (2)
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Figure 2: We show the weight function w in Equation (4) and its first and second derivatives
(from left to right) as a function of ‖x− y‖ for r = 0.1.

where D ⊂ Rd is the domain of v and Br(x) denotes a ball of radius r ∈ (0,∞) around x ∈ D.
Note that the radius r is a hyperparameter and the integral is, for instance, approximated
with a Riemann sum.
PINO: The physics-informed neural operator (PINO) [17] combines FNOs with the physics
loss from PINNs. PINO has already been successfully applied to many PDEs [20, 22, 24].
Moreover, it was extended to solve coupled forward-backward PDEs [2] and coupled ODEs [3],
and Fourier continuation has been proposed for better derivative computation [19]. Finally,
we mention that DeepONets, another neural operator architecture, have also leveraged the
PINN loss [6, 26, 28]. However, they can only be applied to a fixed input resolution.

3 Methodology

In this section, we present our new method, Exact Derivatives on Arbitrary geoMetries
(EDAM): the first PINO capable of computing exact derivatives on arbitrary geometries.
Recall from Equation (2) that the final layer in GINO computes an integral on a ball Br(x).
This relies on an indicator function 1Br(x), which is not differentiable with respect to x.
Instead, we propose a fully-differentiable final layer, which replaces the indicator function
1Br(x) by a differentiable weight function w as follows2:

GEDAM(v)(x) :=

∫
D̃

w(x, y)κ(x, y)v(y)dy, x ∈ D. (3)

Let us elaborate on the two new components, i.e., the weight function w and the extended
domain D̃ := D +Br(0) = {x+ y : x ∈ D, y ∈ Br(0)} in the next paragraphs.
Extended Domain: We pad the input function to the FNO, such that its output function
v is supported on the extended domain D+Br(0). If we then query the GNO on the domain
D, all kernel integrals are defined on the full ball Br(x); see Equation (2).

Weight function: We choose the radial weight function w : Rd × Rd → [0, 1] given by

w(x, y) := 1Br(x)(y) exp
(
− r2

r2 − ‖x− y‖2

)
, (4)

see also Figure 2. Note that the definition of w is inspired by mollifiers in functional analysis
(see, e.g., [4]), such that the indicator function is “smoothed out”, i.e., w is infinitely often
continuously differentiable. This allows us to compute the derivative

∂x GEDAM(v)(x) =

∫
D̃

∂x [w(x, y)κ(x, y)] v(y)dy =

∫
Br(x)

∂x [w(x, y)κ(x, y)] v(y)dy, (5)

see Appendix A for the details. The expression in Equation (5) shows that we do not need
to calculate the integral over the whole domain D, but can still rely on (a cached version
of) neighbor search, which makes the method as efficient as the original GINO up to the
negligible cost of evaluating the weight function w.
We emphasize that these definitions work for arbitrarily complex domains D. For regular
grids, one could alternatively rely on, e.g., finite difference methods. However, it is well-
known that such difference schemes suffer from the tradeoff between discretization error and
catastrophic cancellation. We also find empirically that the derivatives using autograd are
much smoother and more stable than the ones obtained with finite differences; see Figure 3.

2This can also be understood as considering the new kernel κ̃ := κw.
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Figure 3: Qualitative assessment of the smoothness of derivatives produced via
PINO. We fit GINO with PINO loss to the function u : [0, 1]2 → R, (x, y) → sin(4πxy),
and compare the derivatives ∂xxu of the groundtruth (left) with those obtained with our
approach (middle) and finite differences (right).

Table 1: Comparison of EDAM to other PINO methods on the Burgers’ Equation.

Method Full grid Rand. subsampling
Physics loss L2 Physics loss L2

FDM-PINO 5.19e-5 0.0358 N/A N/A
FDM-Fourier-PINO 4.61e-5 0.0315 N/A N/A
FC-PINO 9.14e-5 0.0311 N/A N/A
EDAM-PINO [ours] 8.67e-6 0.0343 1.03e-5 0.0361

4 Experiments
We validate our method on the 1D time-dependent Burgers’ equation with periodic boundary
conditions, initial condition u0 ∈ L2

per(D;R) with D = (0, 1) and viscosity coefficient ν = 0.01,
see Appendix B. Our setting leads to the loss function

LPINO(v) =
∥∥∂tv + ∂x(v

2/2)− ν∂xxv
∥∥2
L2(D×(0,1))

+ α ‖v(·, 0)− u0‖2L2(D) , (6)

where v = (GEDAM ◦ GFNO)(u0). We found α = 10 to work best for all considered methods.
We test EDAM as defined in the previous section, along with three different baselines for
computing the PDE loss in PINO: the finite difference method [17]; a hybrid method that
uses the finite difference method in the temporal dimension and Fourier differentiation in
the spatial dimension [17]; and Fourier continuation for Fourier differentiation [19]. For all
methods, we use the official implementation from prior work. To minimize confounding
factors, we set the base architecture to GINO for all methods [16].
We run experiments with instance-wise fine-tuning as in prior work [19] (see Appendix C
for full details). We train on a single initial condition for 1000 epochs, using only PDE loss,
and we compare the final PDE loss and L2 loss with the ground truth solution. For each
experiment, we average the results over three initial conditions. First, we run all methods on
a full, regular 128× 26 grid, showing that EDAM-PINO outperforms all other method in
terms of physics loss, and performs on par with all other methods in terms of L2 loss. Next,
we consider 3000 randomly sampled points from the domain D × (0, 1); EDAM-PINO is the
only method that can handle such unstructured point clouds; see Table 1 for the results.
While these points are sampled from a rectangular domain, EDAM-PINO can swiftly be
applied to arbitrary geometries as well.

5 Conclusion and Future Work
We propose the first method for exact gradient computation in physics informed neural
operators (PINOs) with arbitrary geometries. We empirically verify that our approach is
on par with prior PINO methods while being the first to handle arbitrary output queries.
Going forward, we will apply our method to irregular and large scale geometries.
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Figure 4: Comparison of the weight function w in Figure 2 with two other candidates based
on rescaled and shifted cosine or hyperbolic tangent functions.

A Weight function

We first provide details on the derivation in Equation (5). In the first equality, we have used
that the domain of integration does not depend on x anymore. Under suitable regularity
assumptions, we can thus interchange integration and differentiation. The second equality
follows by the definition of the weight function w in Equation (4), which implies that ∂xw = 0
for ‖x− y‖ > r. Note that similar computations also hold for higher-order derivatives.
We have flexibility in choosing the weight function w and we also experimented with versions
based on cosine and hyperbolic tangent functions; see Figure 4. However, we found that the
function w in Equation (4) had the best numerical performance.

B Burgers’ equation

The Burgers’ equation models the propagation of shock waves and the effects of viscosity in
fluid dynamics. We consider the 1D time-dependent Burgers’ equation with periodic boundary
conditions, initial condition u0 ∈ L2

per(D;R) with D = (0, 1) and viscosity coefficient ν = 0.01.
The goal is to learn the mapping from the initial condition to the solution, G† : u0 7→ u |[0,1],
where

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν∂xxu(x, t), x ∈ D, t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ D.

We use the dataset from prior work, which consists of 800 instances with 128×100 resolution,
where the initial condition is drawn from the Gaussian process N (0, 625(−∆+25I)−2 [15, 17].

C Experimental Details

We test four PINO methods: EDAM; finite difference method [17]; a hybrid method that
uses the finite difference method in the temporal dimension and Fourier differentiation in
the spatial dimension [17]; and Fourier continuation for Fourier differentiation [19]. We use
the official implementation of each baseline method. To minimize confounding factors, we
set the base architecture to GINO for all methods [16].
The GINO consists of an FNO with four Fourier kernel layers, each with 16 frequency modes.
Each intermediate weight matrix in the Fourier layers has a width of 26. We also learn
the kernel coefficients in tensorized form as in prior work [9, 16], specifically with a Tucker
factorization with rank 0.4. For GNO, we set the radius to 0.1, padding to 15, and the width
of the weight matrix to 40.
We run instance-wise fine-tuning as in prior work [17, 19]. We train on a single initial
condition for 1000 epochs, using only PDE loss. We use an initial learning rate of 0.0005,
with a step function with γ = 0.75 every 100 epochs. We compare the final PDE loss and L2

loss with the ground truth solution (averaged over three initial conditions).
For the complete experimental details, see our code at https://anonymous.4open.science/
r/exact-pino.
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