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Abstract

Designing a neural network architecture for molecular representation is crucial for
AI-driven drug discovery and molecule design. In this work, we propose a new
framework for molecular representation learning. Our contribution is threefold: (a)
demonstrating the usefulness of incorporating substructures to node-wise features
from molecules, (b) designing two branch networks consisting of a transformer and
a graph neural network so that the networks fused with asymmetric attention, and
(c) not requiring heuristic features and computationally-expensive information from
molecules. Using 1.8 million molecules collected from ChEMBL and PubChem
database, we pretrain our network to learn a general representation of molecules
with minimal supervision. The experimental results show that our pretrained
network achieves competitive performance on 11 downstream tasks for molecular
property prediction.

1 Introduction

Predicting properties of molecules is one of the fundamental concerns in various fields. For instance,
researchers apply deep neural networks (DNNs) to replace expensive real-world experiments to
measure the molecular properties of a drug candidate, e.g., the capability of permeating the blood-
brain barrier, solubility, and affinity. Such an attempt significantly reduces wet-lab experimentation
that often takes more than ten years and costs $1 million [1, 2].

Among the DNN architectures, graph neural networks (GNNs) and Transformers are widely adopted
to recognize graph structure of molecules. GNNs are powerful in capturing local information of a
node, but may lack the ability to encode information from far-away nodes due to over-smoothing
and over-squashing issues [3, 4]. On the other hand, Transformer-based architectures can encode
global information effectively as they consider attention between every pair of nodes from the first
layer. However, naive Transformers cannot incorporate structural information such as the edge and
connectivity in graphs.

From the understanding of chemical structure, it is known that meaningful substructures can be found
across different molecules, also known as motif or fragments [5]. For example, carbon rings and
NO2 groups are typical substructures contributed to mutagenicity [6] showing that proper usage
of substructures can help a property prediction. Molecular substructures are often represented
as molecular fingerprints or molecular fragmentation. Molecular fingerprints such as MACCS
(Molecular ACCess System) keys [7] and Extended-Connectivity Fingerprints (ECFPs) [8] represent
a molecule into a fixed binary vector where each bit indicates the presence of a certain motif in the
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(a) Indistinguishable molecules by traditional GNNs (b) Indistinguishable molecules by MACCS keys

Figure 1: Traditional GNNs, such as GCN, cannot distinguish the two molecular graphs in (a).
However, it can be easily distinguished through simple 6-ring and 5-ring substructure information.
On the other hand, the two molecules in (b) have similar substructures, so atom features from
neighborhood are necessary to discriminate the two molecules.

molecule. With a predefined fragmentation dictionary, such as BRICS [9] or tree decomposition [10],
a molecule can be decomposed into distinct partitions.

We propose a fusion architecture between a GNN and Transformer to incorporate molecular graph
information and molecular substructures. Molecular substructures and graph are encoded through
Transformer and GNN, respectively. The Transformer is designed to recognize the molecular
substructures. With the Transformer only architecture, however, local information of molecules, such
as atoms, bonds, and connectivity, can be lost from the structures. For example, the two molecules
shown in Figure 1b share the same representation with MACCS keys while having different structures.
To overcome, we use a separate GNN branch for preserving local information. In our model, we
inject the GNN feature into the intermediate Transformer layers through the fusing network. In this
way, substructures and local node information are interactively fused, producing a final representation
for molecular graphs.

We name our network as Substructure-Atom Cross Attention (SACA) as it uses substructure as
well as atom information in molecules and fuses them through cross-attention. The architectural
choices allows us to avoid heuristic features and our model reduces the complexity for attention
calculation over the node-level Transformer models from O(N2) to O(N), where N is the number
of atoms. To demonstrate the empirical effectiveness of the proposed network and see the ability to
capture the general representation of molecules, we evaluate our model on 11 downstream tasks from
MoleculeNet [11]. Our approach achieves the competitive performance on 11 downstream tasks.

In what follows, we summarize the key contributions and benefits.

• We propose a novel network that combines the information from substructures and node
features in a molecule. Our model combines the advantages of both Transformer and GNN
architectures to represent the information given to each architecture.

• We show the effectiveness of our model for molecular representation learning. Our model
achieves competitive performance upon strong baseline models on 11 molecular property
tasks.

• Our model does not require computationally-expensive heuristic information of molecular
graphs.

2 Related Work

2.1 Architectures for Molecular representation learning

Graph neural networks (GNNs) Most common architecture for molecular representation learning
is the GNNs since molecules can be naturally represented as a graph structure; a node as an atom,
an edge as a connection. Researchers have actively investigated variations of GNN architectures
[12, 13, 14, 15], for molecules. For example, MPNN [12] generalizes the message passing frameworks
and explores some variants that predict molecular properties. Directed MPNN (DMPNN) [13]
proposed to replace the node-based message by edge-based messages to avoid unnecessary message
loops. Next, communicative MPNN (CMPNN) [15] improved DMPNN by additionally considering
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the node-edge interaction during the message passing phase. AttentiveFP [14] extends the graph
attention mechanism to allow for nonlocal effects at the intramolecular level.

Despite the advance of GNN architectures, there are known problems in GNN, such as over-smoothing
and over-squashing problems [3, 4], which means the node representations become too similar, and
the information from far nodes does not propagate well as the number of neighbors increases expo-
nentially. Furthermore, expressive powers of standard GNNs following neighborhood aggregation
scheme are bounded to Weisfeiler-Lehman test (WL-test) [16, 17]. Therefore, GNNs with standard
message passing cannot learn to discern a simple substructure such as cycles. For example, the two
molecules in Figure 1a cannot be distinguished by WL-test, hence standard GNNs cannot distinguish
these two molecules [18]. A solution to this limited representation power of GNNs is to directly
incorporate important substructures in the representation learning framework.

Transformers With recent advance of Transformer architectures and their promising performance
in various domains, including NLP and computer vision [19, 20], Transformer-based architectures
for molecular representation learning [21, 22, 23, 24] have been developed. Transformer architecture
calculates pair-wise attention between every node from the first layer. Therefore, it can effectively
capture the global information of a graph. However, a vanilla Transformer architecture [25] is
not directly applicable for molecular graph representation because it cannot incorporate structural
information such as the edge and connectivity in graphs. To bridge the gap, advanced Transformer
architectures alter the self-attention layer [21, 22, 24] or incorporate message passing networks
into Transformer architectures for input feature [23]. Specifically, MAT [21] uses adjacency and
distance matrix of atoms to augment the self-attention layer. GROVER [23] runs Dynamic Message
Passing Network (dyMPN) over the input node and edge features to extract queries, keys and values
for self-attention layers. CoMPT [26] uses the shortest path information between two nodes, and
Graphormer [22] encodes node’s degree, edges and the shortest path with edges between two nodes for
molecular data. Although these graph-specific features are found to be useful in graph representation,
these features can be heuristic and impose excessive computational overhead, which limits the
model’s applicability to large molecules. Our proposed model does not require any computationally
expensive heuristic features such as 3D information or shortest path for preprocessing or computation
in attention layer.

2.2 Molecular Substructure

Substructure information extracted from molecules has been widely used in molecular generation,
property prediction, and virtual screening [27, 28, 29, 10]. ECFPs [8] encode existing substructures
within a circular distance from each atom in a molecule. PMTNN [30] is a multi-task network that
takes ECFPs as an input to predict molecular properties. MACCS keys [7] extract substructures
from molecules depending on the presence of pre-defined functional groups. One example of the
usage of MACCS keys is to encode known ligands of each protein, which leads to an improvement
of prediction performance in protein-ligand interaction [31]. Molecular fragmentation method such
as BRICS fragmentation [9, 32] or tree decomposition [10] is to decompose molecules in non-
overlapping partitions with pre-defined rules. BRICS fragmentation divides molecules following
chemical reaction based rules. Tree decomposition proposed in Jin et al [10] also extracts junction
tree by contracting certain edges. One node in the junction tree represents a substructure of original
molecules. Our model receives molecular substructures as input to supplement GNN’s expressivity
and it can flexibly encode any substructure vocabulary.

Our model combines Transformer and GNN, with molecular substructures and molecular graph as
inputs to each network. There are existing studies that have also considered combining GNN and
Transformer architecture [33, 34, 35] to learn graph representations. Specifically, DMP [33] utilizes
GNN and Transformer to encode graphs and SMILES representation of molecules and train both
branches using a consistency loss to match the two outputs of input molecules. PoseGTAC [34] and
GraphFormers [35] combine GNN and Transformer layer alternatively to enlarge the receptive field or
to mix the output of Transformer. Our model is the first to encode substructures through Transformer
and inject atom features through a separate GNN. In this way, we preserve both substructures and
local atom features of molecules.
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Figure 2: Overall architecture. Our model consists of
Transformer and GNN branches. Transformer encodes
molecular substructures, while GNN encodes atomic
information. The self-attention and fusing network are
alternatively stacked N times, followed by M more
self-attention layer to refine the substructure feature.
The final CLS token is used to predict the molecular
properties.

In this section, we explain the architecture
of our model.

Overall architecture Figure 2 shows the
overall architecture of our model. Our net-
work consists of two branches: (i) a Trans-
former branch that uses the molecular sub-
structures as input and (ii) a GNN branch
that uses a molecular graph as input. The
two branches have different roles. First,
the Transformer branch is intended to cap-
ture global information of molecules. It
receives the molecular substructures that
have important role in molecular prop-
erties, but cannot be easily captured by
GNNs, and learn the overall representation
of molecules. On the other hand, the GNN
branch is intended to capture local node in-
formation of molecules. The two different
levels of information are mixed through the
fusing network in the Transformer branch.

Transformer branch Our Transformer
branch is to incorporate both molecular sub-
structure information and local node fea-
tures. The input token for Transformer is
the substructure embeddings of molecules.
Predefined substructures are first detected
and then projected into separate embedding
vectors. For example, in Figure 2, sub-
structures such as N-Heterocycle, carbon-
oxygen bond and methyl group are detected and embedded into learnable embedding vectors. To
identify substructure from the input molecules, we use MACCS keys [7], which indicates the presence
of motifs in a molecule. Note that our architecture is not limited to certain molecular substructures,
but it can flexibly receive any substructure vocabulary. The embeddings of substructures are mixed
together and refined as they are passed through the self-attention module.

The substructure embeddings after self-attention layer are fused with node embeddings from a
separate GNN branch. The fusing network computes cross-attention between substructures and nodes
where substructures are used as query and nodes are used as key and value. The detailed computation
of the fusing network is shown in Figure 3. In the fusing network, the cross-attention between each
pair of substructure embedding and node embedding is computed.

To be specific, for a given molecule having n atoms and m extracted substructures, we have sub-
structure embeddings Es ∈ Rm×d and node embeddings En ∈ Rn×d where d is the embedding
dimension. Then, the cross-attention is computed as follows:

Attention(Q,K, V ) = Softmax

(
(EsWQ)(EnWK)T√

dk

)
(EnWV ), (1)

where WQ,WK ,WV ∈ Rd×dk are learnable parameters. The cross-attention module outputs E′
s ∈

Rm×dk . Through this fusing network, the substructure embeddings aggregate the local information
from node embeddings. Structurally important nodes are aggregated with more weights. Instead
of designing heuristic weights on the nodes, our model can learn to select structurally important
nodes related to graph-level property by cross-attention. Additionally, as the attention is computed
between substructures and nodes, the space and time complexity of the self and cross attention map
of our model is linear to the number of atoms, i.e., O(N), whereas other transformer architectures
for molecular graphs have quadratic complexity.
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Figure 3: Illustration of structural and node em-
bedding for cross attention computation. Cross
attention is computed with the illustrated query,
key and value.

The self-attention between substructures and fus-
ing network with node embeddings are repeated
iteratively N times. Before making the final pre-
diction, we add M self-attention layers at the
end of the network for making refinement on
the substructures. We add a residual connection
from the input tokens to every output of the fus-
ing network. This ensures the input structural
information last throughout the entire network.
Furthermore, we use a CLS token similar to
special classification token in BERT [19] to ag-
gregate the global representation of molecules.
The CLS token is shown in Figure 2. It is a
learnable latent vector and passed to the Trans-

former branch attached to the substructure tokens as input. A CLS token has been used in many
Transformer-based architectures [21, 22] for molecular representation learning. We attach an MLP
head to the final CLS token to perform graph-level prediction tasks.

GNN branch The GNN branch is used to extract local node features from molecular graphs. For
GNN architecture, we use GIN [17] with jumping knowledge [36]. The computed node features are
injected into the Transformer through the fusing network with the same hierarchy. For example, 0-hop
node representations are injected into the first cross-attention module and 1-hop representations for
the second cross-attention module. This allows the model to encode local node features progressively
from the shallow to deeper layers.

The computation of node representation through GNNs and injection to the Transformer allow us
to take advantage of both GNNs and Transformer architectures. Substructures that are hard to be
captured by GNNs, but essential to molecular properties, are first detected and encoded through
Transformer. Meanwhile, local node information that can be lost in using substructures alone is
effectively captured by GNNs and fused with substructures. Additionally, our architecture does
not require computationally expensive high-order graph-level information. As Transformer cannot
naturally incorporate a graph’s edge connectivity information, existing work [23, 22, 26] mainly
focuses on how to add structural bias such as the shortest path or 3D distance between two nodes into
the Transformer self-attention computation. However, these structural biases require computationally
expensive preprocessing of the molecular datasets. Our network that utilizes GNN as a separate
branch can avoid these limitations.

4 Experiment

4.1 Experimental Setting

Pretraining We pretrain our network to obtain molecular representation transferable to various
molecular datasets and tasks. For pretraining, we extracted 200 real-valued descriptors of physico-
chemical properties from the pretraining datasets using RDKit [37] and train our network to predict
these properties. As the 200 molecular descriptors include a diverse set of molecular properties, the
model can learn a representation of molecules that can be used for various downstream tasks.

Dataset We collected 1,858,081 number of unlabeled molecules from ChEMBL and PubChem
databases [38, 39]. ChEMBL and PubChem are large-scale databases that include a variety of
chemical and physical properties, and biological activities of molecules. To obtain molecular
substructures, we utilize MACCS key [7], a 166 dimensional vector that indicates a presence of
certain substructure in molecules, and extract this for every molecule using RDKit [37]. We use OGB
package [40] to convert SMILES [41], a text-representation for molecules, to molecular graphs.

Implementation details We set M = 4 and N = 3, where M and N are defined in section 3. We
set 768-dimensional hidden units and 16 attention heads. When pretraining, we used the AdamW
optimizer [42] with a learning rate of 1e-4. We divide the pretraining dataset into a 9:1 ratio and use
them for training and validation sets. The model is trained for 10 epochs, and the model with the best
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validation loss is used for downstream tasks. Further details for pretraining setting is presented in
Appendix B.

4.2 Downstream tasks

Tasks We evaluate the performance on six classification tasks (BBBP, SIDER, ClinTox, BACE,
Tox21, and ToxCast) and five regression tasks (FreeSolv, ESOL, Lipo, QM7 and QM8) from
MoleculeNet [11]. Each task is related to molecular property from low-level, for example, water
solubility in ESOL to high-level, possibility of blood-brain barrier penetraion in BBBP. Further
details about the dataset statistics and the downstream tasks and are available in Appendix C.

Experimental setting To evaluate each model, we use 3 different scaffold splits [11] following [23].
Scaffold split divides structurally different molecules into different subsets and provides more
challenging and realistic test environment. From the pretrained model, we replace the last MLP
layer of the network with the task-specific MLP heads. For each downstream dataset, we train our
model for 100 epochs and report the test score corresponding to the best validation epoch. We tune
hyperparameters with Bayesian optimization search with a budget of 100 for learning rate, dropout,
weight decay and the number of last prediction heads. The hyperparameter search range is provided
in Appendix B.

We compare the performance of our model on the downstream tasks with several GNN and Trans-
former based state-of-the-arts approaches for molecule representation learning. TF-Robust [30] is a
DNN-based model that takes molecular fingerprints. GNN-based models include GraphConv [43],
Weave [44] and SchNet [45] which are 3 graph convolutional networks, MPNN [12], DMPNN [13],
MGCN [46] and CMPNN [15] which are GNN models considering the edge features during message
passing. AttentiveFP [14] is an extension of graph attention network for molecule representation.
Transformer-based models include GROVER [23], MAT [21], Graphormer [22] and CoMPT [26].
Among the baselines, N-GRAM [47], [48], GraphLoG [49], MAT, GROVER, Graphormer, GEM [50]
and MPG [51] are models that use pretraining strategies. We report GROVER base model for a
fair comparison in terms of the number of parameters. To reproduce the results for models using
pretraining strategies, we use the pretrained model made available by the authors. We reproduce the
results of MPG due to the different splits used in [51]2. We also evaluate our model with the same
data split used for MPG and the results can be found in Appendix G.

Results Table 1 shows the overall results of the baselines and our model on 11 MoleculeNet datasets.
Our model achieved the best performance on five downstream tasks: ClinTox, Tox21, ToxCast, ESOL
and QM8, and the second best performance on five downstream tasks: SIDER, BACE, FreeSolv, Lipo
and QM7. We also computed the average rank for the classification and regression tasks, separately.
Our model achieved the best average rank among all compared models. The result shows that our
model generalizes well across different downstream tasks, which means local information aggregated
from GNN can propagate globally as interacting with structural information in Transformer. We find
that some substructures weight high attention to nodes consisting of the substructures, and CLS token
used for prediction also focuses on the substructures from attention scores in self-attention.

4.3 Ablation study

We report ablation study to justify each component and flexibility of our model architecture. For the
ablation study, we reduce the hyperparameter search space to only 6 learning rates {1e-3, 5e-4, 1e-4,
5e-5, 1e-5, 5e-6} to facilitate the comparison between different models.

Ablation on model components Figure 4 shows the performance comparison between four varia-
tions of our model on four downstream datasets. We first verify the performance of our model without
GNN branch. To do that, we replace all cross-attention layers with self-attention layers and exclude
GNN branch. Begin-Concat and End-Concat examine different ways of combining substructure and
local features. Begin-Concat runs a vanilla-transformer encoder on top of a concatenated atom and

2Note that there is a mismatch between the splits used in the original paper of MPG and the one used in the
author’s repository. For both cases, our model performs better than MPG under the same splits. The additional
experiments are available in Appendix G.
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Table 1: Comparison on small-scale datasets. We report the average and standard deviation (in
brackets) over three splits. We mark the best and the second-best performances in bold yellow and
light yellow, respectively. The baseline results except for MAT, Graphormer, CMPNN, CoMPT,
GraphLoG, GEM and MPG are taken from [23].

Classification Tasks
Method Pre. BBBP ↑ SIDER ↑ ClinTox ↑ BACE ↑ Tox21 ↑ ToxCast ↑ Rank

TF_Robust [30] - .860(.087) .607(.033) .765(.085) .824(.022) .698(.012) .585(.031) 15.0
Weave [44] - .837(.065) .543(.034) .823(.023) .791(.008) .741(.044) .678(.024) 16.0
GraphConv [43] - .877(.036) .593(.035) .845(.051) .854(.011) .772(.041) .650(.025) 13.2
SchNet [45] - .847(.024) .545(.038) .717(.042) .750(.033) .767(.025) .679(.021) 16.2
MPNN [12] - .913(.041) .595(.030) .879(.054) .815(.044) .808(.024) .691(.013) 11.0
DMPNN [13] - .919(.030) .632(.023) .897(.040) .852(.053) .826(.023) .718(.011) 5.7
MGCN [46] - .850(.064) .552(.018) .634(.042) .734(.030) .707(.016) .663(.009) 17.0
AttentiveFP [14] - .908(.050) .605(.060) .933(.020) .863(.015) .807(.020) .579(.001) 10.0
CMPNN [15] - .940(.009) .612(.006) .931(.003) .868(.033) .805(.017) .722(.005) 5.0
CoMPT [26] - .930(.019) .605(.011) .818(.081) .851(.043) .790(.031) .716(.010) 9.5

N-GRAM [47] ✓ .912(.013) .632(.005) .855(.037) .876(.035) .769(.027) - 8.4
Hu. et.al [48] ✓ .915(.040) .614(.006) .762(.058) .851(.027) .811(.015) .714(.019) 9.2
MAT [21] ✓ .922(.035) .617(.012) .853(.079) .830(.045) .810(.015) .712(.004) 8.5
GROVER [23] ✓ .936(.008) .656(.006) .925(.013) .878(.016) .819(.020) .723(.010) 2.3
Graphormer [22] ✓ .938(.032) .625(.009) .913(.056) .848(.023) .801(.013) .718(.007) 6.7
GraphLoG [49] ✓ .913(.024) .595(.039) - .845(.012) .773(.010) .677(.008) 13.0
MPG* [51] ✓ .922(.039) .628(.014) - .864(.028) .800(.024) .712(.009) 7.4
GEM [50] ✓ .921(.026) .603(.012) - .872(.036) .815(.016) .720(.010) 6.6

Ours ✓ .934(.018) .646(.009) .935(.014) .877(.032) .829(.013) .730(.005) 1.8

Regression Tasks

Method Pre. FreeSolv ↓ ESOL ↓ Lipo ↓ QM7 ↓ QM8 ↓ Rank

TF_Robust [30] - 4.122(.085) 1.722(.038) .909(.060) 120.6(9.6) .024(.001) 15.2
Weave [44] - 2.398(.250) 1.158(.055) .813(.042) 94.7(2.7) .022(.001) 11.8
GraphConv [43] - 2.900(.135) 1.068(.050) .712(.049) 118.9(20.2) .021(.001) 12.2
SchNet [45] - 3.215(.755) 1.045(.064) .909(.098) 74.2(6.0) .020(.002) 11.4
MPNN [12] - 2.185(.952) 1.167(.430) .672(.051) 113.0(17.2) .015(.002) 10.0
DMPNN [13] - 2.177(.914) .980(.258) .653(.046) 105.8(13.2) .0143(.002) 7.8
MGCN [46] - 3.349(.097) 1.266(.147) 1.113(.041) 77.6(4.7) .022(.002) 13.6
AttentiveFP [14] - 2.030(.420) .853(.060) .650(.030) 126.7(4.0) .0282(.001) 8.8
CMPNN [15] - 2.254(.356) .841(.090) .606(.040) 70.6(2.7) .0136(.001) 4.8
CoMPT [26] - 2.125(.590) .898(.053) .632(.038) 65.3(3.4) .0145(.002) 5.6

N-GRAM [47] ✓ 2.512(.190) 1.100(.160) .876(.033) 125.6(1.5) .0320(.003) 14.0
MAT [21] ✓ 2.116(.152) .833(.122) .668(.025) 93.6(13.8) .0178(.002) 6.6
GROVER [23] ✓ 1.592(.072) .888(.116) .563(.030) 72.5(5.9) .0172(.002) 4.4
Graphormer [22] ✓ 2.089(.150) .827(.086) .674(.035) 171.3(10.7) .0140(.002) 7.2
MPG* [51] ✓ 2.44(.520) .926(.159) .682(.013) - - 10.7
GEM [50] ✓ 2.21(.374) .885(.115) .617(.023) 58.9(3.9) .0135(.001) 4.4

Ours ✓ 1.750(.170) .822(.073) .575(.009) 63.5(3.4) .0134(.002) 1.6
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Figure 4: Ablation study. Four variations of our model (Without GNN, End-Concat, Begin-Concat,
Random Embedding) on four downstream datasets.

7



substructure embeddings. End-Concat runs a vanilla-transformer encoder on top of atom embeddings
and concatenates the substructure feature at the end to make the final prediction. Random Embedding
examines the effect of substructural embeddings by replacing them with random learnable embed-
dings. Figure 4 shows our model outperforms other variations on all datasets, which justifies the
necessity of each component. Further details about ablation study are available in Appendix A

Different GNN branch Our model can flexibly utilize other GNN architectures as our GNN
branch. We test the changes in performance when our model design is applied with different
GNN architectures. Figure 5 shows the comparison between commonly-used GNNs, i.e., Graph
Convolutional Network (GCN), Graph Attention Network (GAT) [52] and GIN, and our models with
the GNN branch switched to each corresponding GNN on ToxCast dataset. There is a significant
performance improvement when our model is adopted to each GNN model.

Effectiveness of substructures Figure 6 shows the t-SNE embeddings of molecules with different
substructures. Our model discriminates molecules with similar substructures (aromatic rings with
one or two different atoms) better than GIN.
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Figure 5: Comparison between
standard three GNNs and our
model on ToxCast dataset.
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Figure 6: t-SNE embedding of molecules with different sub-
structures.
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Figure 7: Attention visualization. CLS token
strongly attends to Ring-Chain-Ring bond and Cl
substructures of the input molecule. The cross at-
tention maps show the substructures capture the
atoms related to the substructure.

Attention map Figure 7 shows the attention
weights. In the cross-attention layer, each row
and column correspond to substructure and node
so we can interpret the attention score as the
degree of focus between the substructures and
nodes. We check where the CLS token gives
more attention since it is used for prediction.
We find out the CLS token gives strong attention
to specific substructures. More interestingly, of-
ten a substructure gives more attention on the
nodes that consists the substructure itself. De-
spite of not having any structural information
between input substructures and nodes as input,
our model can identify structurally related nodes
in the cross attention layer, showcasing the abil-
ity of understanding molecular structure.

5 Conclusion

In this paper, we propose a novel framework that incorporates Transformer and GNN architecture for
molecular representation learning. Our model takes advantages of the two architectures to aggregate
substructure and local information. With the cross attention mechanism in fusing network, our model
could achieve state-of-the-art performance on various molecular property prediction benchmarks.
Overall, our work highlights the effectiveness of SACA for molecular representation learning.
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A Additional Ablation Study
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Figure 8: Comparison of our
model where the GNN branch
is replaced with 3D GNN.

Change GNN branch to 3D-aware GNN To observe the effect
of the choice of GNN architecture for GNN branch, we conduct
additional experiments with 3D-aware GNN. We changed our GNN
branch from GIN to SGCN [53] that utilizes 3d coordinates of input
molecules. Please note that the two models are trained on the down-
stream dataset from scratch. Figure 8 shows that the model with
3D-aware GNN shows better performance than our original model
on QM7 dataset whose task is closely related to 3D information.
The result shows the flexibility of our framework that can be further
tuned by using task-appropriate GNN architecture.

Other substructures as input tokens for Transformer Despite
our model utilizes MACCS keys for the input of Transformer, our
model can flexibly receive any substructure vocabulary. We conduct
experiments on ECFP fingerprints and Tree decomposition for other
substructures. Table 2 shows the results. It shows using MACCS
keys achieves better performance than ECFP fingerprint in most of
the downstream tasks. We speculate that MACCS keys include predefined functional groups whereas
ECFP encodes local substructure around an atom (i.e., a certain radius neighborhood of an atom). In
this aspect, ECFP fingerprint is similar to how GNN encodes node information and as we already
utilize GNN to encode local information, ECFP would not bring new information about molecules.

Table 2: Comparison between different substructures applied to our model.

Method BBBP ↑ BACE ↑ Tox21 ↑ ToxCast ↑ FreeSolv ↓ ESOL ↓ Lipo ↓ QM8 ↓
MACCS key 0.934 0.868 0.818 0.725 2.00 0.878 0.582 0.0140
ECFP 4 0.925 0.869 0.818 0.716 2.52 0.900 0.596 0.0152
ECFP 6 0.903 0.861 0.818 0.709 2.30 0.949 0.592 0.0151
Tree Decomposition 0.925 0.848 0.796 0.715 2.37 0.885 0.614 -

19

351

12037

56.8

0.65

2.24

Figure 9: Time required to compute
each feature per molecule with dif-
ferent number of atoms.

Computation time for graph features Figure 9 shows the
time required in millisecond to compute the MACCS keys,
shortest path and 3D distance for each molecule with different
number of atoms. As shown in the figure, the time required for
3D distance and the shortest path increases dramatically as the
number of atoms increase, which make these features impos-
sible to be applied in large molecules. However, identifying
the MACCS key substructures does not depend on the input
molecule’s number of atoms.
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B Experimental Setting

In this section, we explain further details of our experimental setting.

Pretraining. The default hyperparameters for pretraining are listed in Table 3. All attention layers
have 16 attention heads and 768 hidden dimension. Our model has 41M parameters.

Table 3: Model configurations and hyperparameters for pretraining.

Parameter

M 4
N 3
Model hidden dimension 768
FFN inner-layer dimension 768
# of attention heads 16
Learning rate 0.0001
Epoch 10
Dropout 0.1
Batch size 32

Hyperparameter Search Range. For each downstream task, we search for the best hyperparameter
combinations. We perform the Bayesian optimization over the validation set and use the hyperparam-
eters for the best validation score to report the test score. The hyperparameter range that we searched
over is shown in Table 4.

Table 4: Finetuning hyperparameter search range.

Hyperparameter Description Range

Learninng rate The learning rate 0.000001 ∼ 0.001
# of MLP layers The number of last MLP layers 1, 2, 3
Dropout Dropout ratio 0.0 ∼ 0.5
Weight decay Weight decay 0.0, 0.001, 0.0001, 0.00001

Pretraining Task. To pretrain our network, we extract the 200 real-valued descriptors for each
molecule using RDKit package [37]. This task is proposed by [54]. Through this task, we can make
the model to learn the physicochemical properties of the input molecules.
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C Details of Downstream Datasets

We used 11 binary graph classification and regression datasets: BBBP, SIDER, ClinTox, BACE,
Tox21, ToxCast, FreeSolv, ESOL, Lipophilicity, QM7 and QM8 from Moleculenet [11]. The statistics
of each dataset is shown in Table 5. The details of each dataset are shown in Table 6. Through the
various datasets, we can test the generalization ability of our pretrained model.

Table 5: Statistics of eleven datasets from MoleculeNet [11] used for downstream tasks.

(a) Classification tasks

Dataset Size # Tasks Metric

BBBP 2,039 1 ROC-AUC
SIDER 1,427 27 ROC-AUC
ClinTox 1,478 2 ROC-AUC
BACE 1,513 1 ROC-AUC
Tox21 7,831 12 ROC-AUC
ToxCast 8,575 617 ROC-AUC

(b) Regression tasks

Dataset Size # Tasks Metric

FreeSolv 642 1 RMSE
ESOL 1,128 1 RMSE
Lipophilicity 4,200 1 RMSE
QM7 6,830 1 MAE
QM8 21,786 12 MAE

Table 6: Detailed description for each downstream dataset.

Dataset Description

BBBP Binary classification task to predict a molecule’s blood-brain barrier penetration ability
SIDER Marketed drugs with its adverse drug reactions
ClinTox Qualitative data of drugs approved by the FDA and those that have failed clinical trials for toxicity reasons
BACE Binary classification task to predict a molecule’s binding result for a set of inhibitors of human β-secretase 1
Tox21 Qualitative toxicity measurements on 12 biological targets
ToxCast Toxicology data for a large library of compounds based on in vitro high-throughput screening, including experiments on over 600 tasks
FreeSolv Regression task to predict hydration free energy of small molecules in water
ESOL Regression task to predict water solubility in terms of log solubility in mols per litre
Lipophilicity Experimental results of octanol/water distribution coefficient
QM7 A subset of GDB-13 composed of all molecules of up to 23 atoms (including 7 heavy atoms C, N, O, and S), totalling 7165 molecules
QM8 Computer-generated quantum mechanical properties
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D Node and Edge Features

In this section, we present the node and edge features of molecules used for GNN branch. We used
OGB package [40] to convert SMILES strings [41] to molecular graphs. The molecular graphs are
encoded through GIN [17] and injected into the Transformer branch by the cross-attention. The
molecular graphs have the following node and edge features.

Node features. Each node has the following 9 dimensional features as shown in Table 7.

Table 7: Node Features.

Index Description Range

0 Atomic num [1, 118], other
1 Chirality unspecified, tetrahedral cw, tetrahedral ccw, other
2 Degree [0, 10], other
3 Formal Charge [-5, 5], other
4 Num Hydrogen [0, 8], other
5 Num Radical Electron [0, 4], other
6 Hybridization SP, SP2, SP3, SP3D, SP3D2, other
7 Is Aromatic False, True
8 Is in Ring False, True

Edge features. Each edge has the following 3 dimensional features as shown in Table 8.

Table 8: Edge Features.

Index Description Range

0 Bond Type single, double, triple, aromatic, other
1 Bond Stereo stereonone, stereoz, stereoe, stereocis, stereotrans, stereoany
2 Is Conjugated False, True
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E Molecular Structural Keys

In this section, we explain the details of molecular substructures that we used for our model, i.e.,
Molecular ACCess System (MACCS) keys [7]. We extract MACCS keys for each molecule using
RDKit package [37]. MACCS keys have 166-dimensional features where each binary label indicates
the presence of a particular substructure in the given molecule. For example, the 139th index of
MACCS keys indicates the presence of the Hydroxy group (-OH), and the 162nd index indicates the
presence of the aromatic ring in a molecule. The full list of 166 MACCS keys can be found in the
document 3.
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Figure 10: MACCS keys encoding.

Figure 10 shows examples of how MACCS keys encode substructure information into a bi-
nary bit string. The canonical SMILES representations of the left and right molecules are
C1=CC=C(C=C1)O and Cc1cc(Cl)cc(Cl)c1CNC(=O)c1cccs1, respectively.

Table 9 shows the MACCS keys statistics for pretraining and downstream datasets. It includes the
average number of MACCS keys that molecules in each dataset contain and the standard deviation.
Also, the minimum and the maximum number of MACCS keys for each dataset are reported.

Table 9: MACCS keys statistics for pretraining and downstream dataset.

Dataset Average S.D Min Max

Pretraining dataset 51.99 13.44 1 106
BBBP 46.03 14.48 2 96
SIDER 46.61 17.93 1 105
ClinTox 46.13 16.54 2 92
BACE 61.04 12.53 21 93
Tox21 32.73 16.63 2 99
ToxCast 33.50 17.30 2 101
FreeSolv 15.26 9.78 1 62
ESOL 23.63 15.52 1 76
Lipophilicity 51.61 14.26 7 93
QM7 18.75 7.80 1 50
QM8 23.00 8.10 1 48

3https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py
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F Parameters and space complexity of different models

We present the number of parameters of transformer-based molecular representation learning models
in Table 10. Except for CoMPT, our model has a comparable or lower number of parameters than
other transformer-based models.

We also present the space complexity in Table 10. The space complexity for our attention computation
is linear to the number of atoms (i.e., O(n) where n is the number of atoms). On the other hand, the
space complexity of other transformer-based molecule representation learning models is quadratic to
the number of atoms (i.e., O(n2)).

Table 10: Parameter and complexity comparison between different models.

Parameters Space Complexity for Attention

GROVER [23] 48M O(n2)
Graphormer [22] 47M O(n2)
MAT [21] 42M O(n2)
CoMPT [26] 2.7M O(n2)
Ours 41M O(n)

G Performance on MPG split

As MPG uses different splits to GROVER on the paper, we reproduce the result of our model on the
same split that MPG used for fair comparison. As shown in Table 11, our model outperforms MPG
on most of the downstream datasets.

Table 11: Comparison between MPG and our model on the split from MPG paper.

Method BBBP ↑ SIDER ↑ Clintox ↑ BACE ↑ Tox21 ↑ ToxCast ↑ FreeSolv ↓ ESOL ↓ Lipo ↓
MPG 0.922 0.661 0.963 0.920 0.837 0.748 1.269 0.741 0.556
Ours 0.943 0.665 0.958 0.931 0.847 0.748 1.278 0.719 0.546

H Others

URLs for pretrained model for baselines. We use the following sources for pretrained models to
reproduce the results.

Graphormer: https://github.com/microsoft/Graphormer

MAT: https://github.com/ardigen/MAT

GraphLoG: https://github.com/DeepGraphLearning/GraphLoG

GEM: https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/pretrained_
compound/ChemRL/GEM
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