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Abstract

Hierarchical methods in reinforcement learning have the potential to reduce the amount
of decisions that the agent needs to perform when learning new tasks. However, finding
reusable useful temporal abstractions that facilitate fast learning remains a challenging
problem. Recently, several deep learning approaches were proposed to learn such temporal
abstractions in the form of options in an end-to-end manner. In this work, we point out
several shortcomings of these methods and discuss their potential negative consequences.
Subsequently, we formulate the desiderata for reusable options and use these to frame the
problem of learning options as a gradient-based meta-learning problem. This allows us to
formulate an objective that explicitly incentivizes options which allow a higher-level decision
maker to adjust in few steps to different tasks. Experimentally, we show that our method
is able to learn transferable components which accelerate learning and performs better than
existing prior methods developed for this setting. Additionally, we perform ablations to
quantify the impact of using gradient-based meta-learning as well as other proposed changes.

1 Introduction

In hierarchical reinforcement learning (HRL), an agent uses various levels of abstraction to simplify learning
in large or complex environments. This is commonly achieved by utilizing a multi-level policy which can be
broken up into making high-level decisions (e.g., which out of several low level controllers should be active)
and low-level decisions (which actions should a low level controller take). Many such approaches utilize
temporal abstraction, ie., the notion that high-level actions are only chosen at certain time steps and then
continue to influence the decision making over multiple time steps in the future. A clear benefit of utilizing
such high-level decisions is the abstraction of the problem to a simpler one and consequently, easier learning.
For example, consider a navigation problem where the agent needs to travel to a city on the other side of
the country. In this problem, it is much easier to learn which route to take if the agent considers a few high-
level decisions: sequence of cities, rather than low-level actions: sequence of intersections. However, when
solving this problem with high-level actions, a mapping from high-level actions to corresponding sequence of
low-level actions that move the agent from one city to another needs to be available. This mapping can be
provided as a form a prior knowledge, but in most settings this information is not available. Therefore, it is
often necessary to learn such mapping from experience and then reuse it when learning similar new tasks.

In order to study these types of problems in the context of reinforcement learning, one can utilize the options
framework (Sutton et al., 1999). In this framework, a hierarchical policy is composed of options (modules
that encapsulate low-level sub-policies), and a high-level policy that chooses among them. Options have their
own termination function, and control is given back to the high-level policy only when the earlier option
terminates. Therefore, options define temporally extended behaviors through their sub-policies and can be
seen as a mapping from high-level actions to a sequence of low-level actions.

Recent prior work on options proposed a way to learn the options in an end to end manner from experience
with policy gradient methods (Bacon et al., 2017; Smith et al., 2018). These methods learned the options in
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the context of a single task. However, options learned by single-task algorithms are not incentivized to be
reusable, and thus often end up too task-specific to be used in related tasks (Harb et al., 2018).

To overcome this issue, the followup work by Frans et al. (2018) proposed to learn shared options in multiple
tasks by alternating between fine-tuning of the high-level policy to the sampled task and joint optimization
of both high-level policy and options. While this optimization scheme worked well in practice, it does
not pass any gradient signal between high-level policy and options during the training. Furthermore, even
though the options produced by this method were more suited for the subsequent learning of new tasks, it
used options that terminate after fixed number of low-level actions. Such adjustment simplifies the learning
problem because it fixes a termination function. However, the need to define a shared option length can
be prohibitive because different suitable high-level actions may have very different lengths. Additionally,
these lengths can also depend on the randomness in the environment. In such cases, the length of high-level
actions cannot be captured with a single hyperparameter. Moreover, the value of this hyperparameter is not
learned and thus requires some prior knowledge about the tasks.

In this work, we identify the shortcomings of current methods and their ability to learn shared reusable
options from multiple tasks in a setting where limited to no prior knowledge about tasks is available. We
discuss the desired properties of such shared reusable options and use these properties to formulate this
learning problem as a concrete meta-learning problem. This formulation then allows us to connect this
problem to gradient-based meta-learning and to propose a method that adapts a well-known meta-learning
algorithm (Finn et al., 2017) to learn reusable options from multiple tasks. This new method provides a
more principled alternative to optimize the meta-learning objective when compared to prior work developed
for this setting (Frans et al., 2018). Additionally, it allows one to use state-dependent terminations and learn
multiple options from the same experience. In our experiments, we empirically verify that both gradient-
based meta-learning and learned terminations contribute to learning reusable options that achieve better
performance when applied on new unseen tasks from the same domain.

2 Background and Notation

We will consider environments which are episodic Markov decision processes (MDPs). An MDPM is a tuple
⟨S,A, p0, ps, R, γ⟩ with S being a set of states, A a set of actions, p0(s0) a probability distribution of initial
states, ps(s′|s, a) a transition probability distribution, R(s, a) a reward function and γ a discount factor.

An agent with a stochastic policy π interacts with an environment in the following way. At every timestep
t, the agent receives a state of the environment st ∈ S and selects an action at ∈ A according to a
policy π(at|st, θ) parametrized by θ. Depending on the current state and the action performed, the en-
vironment provides the agent with a new state st+1 ∼ ps(st+1|st, at) and a scalar reward rt = R(st, at).
This process is repeated until a so-called terminal state is reached. We define a trajectory τ as an or-
dered sequence of all states actions and rewards in a single episode τ = (s0, a0, r0, ..., sT ). Similarly, the
history at timestep t consists of all states and actions preceding at, ht = (s0, a0, ..., st). The state value
function is defined as V π(s) = Eτ∼p(τ |π) [Gt(τ)|st = s] where the discounted return at timestep t is de-
fined as Gt(τ) =

∑T
t′=t γ(t′−t)rt′ . The agent’s objective is to maximize the expected discounted return

J = Eτ∼p(τ |π) [G0(τ)]. We can maximize the objective with gradient descent by estimating the policy gra-
dient ∇θJ ≈ Eτ∼p(τ |π(θ))[

∑T
t=0∇θ log π(at|st, θ)Aπ(st, at)] using Monte Carlo sampling, where Aπ is an

advantage estimator such as the generalized advantage estimator AGAE (Schulman et al., 2015).

2.1 Options

The options framework (Sutton et al., 1999) is a framework for temporal abstraction in reinforcement learning
that consists of options ω = ⟨Iω, πω, ξω⟩ and a policy over options πΩ(ω|s, θΩ). Each option ω has an initiation
set, a sub-policy and a termination function. The initiation set Iω is a set of states in which an option can be
selected (initiated) and in our case it is the whole state space (Iω = S). A sub-policy πω(a|s, θω), also called
low-level policy, is a regular policy that acts in the environment. Lastly, the termination function ξω(s, θξ)
is a function that outputs the probability of the termination for option ω in a given state. We denote the
parameters of policy over options, sub-policies and termination functions as θΩ, θω and θξ respectively.
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In our work, we use the Inferred Option Policy Gradient (IOPG, Smith et al. (2018)), a recently introduced
policy gradient method for learning options that treats options as latent variables during gradient calculation.
This method allows for updating all options based on their responsibilities for a given action which results
in better data efficiency. The IOPG gradient can be calculated from sampled trajectories:

∇θJ ≈ Eτ∼p(τ |π(θ))

[
T∑

t=0
∇θ log π(at|ht, θ)Aπ(st, at)

]
︷ ︸︸ ︷∑
ωi

p(ωi
t|s[0:t], a[0:t−1], θ)πωi

(at|st, θω)
, (1)

where π(at|ht, θ) can be decomposed as indicated in Equation 1 and we use θ to denote the concatenation
of all parameters (θΩ, θω, θξ). The probability p(ωi

t|s[0:t], a[0:t−1], θ) represents the probability that option
ωi was active at timestep t given past actions and states and can be computed recursively:

p(ωj
t+1|s[0:t+1], a[0:t], θ) =

∑
ωi p(ωi

t|s[0:t], a[0:t−1], θ)πωi(at|st, θω)π̃Ω(ωj
t+1|ωi

t, st+1, θΩ, θξ)∑
ωk p(ωk

t |s[0:t], a[0:t−1], θ)πωk (at|st, θω)
, (2)

with option transition probability π̃Ω(ωj
t+1|ωi

t, st+1, θΩ, θξ) given by:

π̃Ω(ωj
t+1|ωi

t, st+1, θΩ, θξ) = ξωi

(st+1, θξ)πΩ(ωj |st+1, θΩ) + 1ωj=ωi

[
1− ξωi

(st+1, θξ)
]

. (3)

2.2 Model-Agnostic Meta-Learning (MAML)

Model-Agnostic Meta-Learning (Finn et al., 2017) is a meta-learning technique that trains a model for
maximum post-adaptation performance on a distribution of tasks M ∼ p(M). The adaptation consists of
one or several inner gradient updates. If we consider an estimator fθ with parameters θ and a task-specific
loss LM, a supervised learning objective with a single inner update can be formalized as shown in Equation 4.
In order to optimize this objective one only needs to take a gradient of this expression. This can be easily
achieved with automatic differentiation frameworks by backpropagating through the gradient update.

min
θ

EM∼p(M)
[
LM (

fθ−α∇θLM(fθ)
)]

(4)

One can similarly use this approach with a reinforcement learning objective:

max
θ

EM∼p(M)

[
Eτ ′∼p(τ ′|π(θ+α∇θEτ∼p(τ|π(θ))[GM

0 (τ)]))
[
GM

0 (τ ′)
]]

(5)

However, the implementation with an automatic differentiation framework differs because a simple backprop-
agation through the computation graph of the gradient produces biased gradients (Al-Shedivat et al., 2018;
Stadie et al., 2018). This is due to an additional dependency of the sampling distribution on parameters that
is not present in the supervised learning objective. To produce correct higher order gradients with automatic
differentiation frameworks we utilize an objective with DiCE1 (Foerster et al., 2018; Farquhar et al., 2019).

3 Reusable Options

Despite extensive research on options, there is not yet a single answer to the question: What is a good option?
Consequently, there is also no consensus on the objective for an option learning method. In this paper we
take the view that good options should accelerate the learning of new tasks. In other words, we consider
options good if they allow us to achieve high return on new tasks as fast as possible. We assume that we
are given a distribution of relevant training tasks p(M) with similar (hierarchical) structure but different
reward or transition functions. Our goal is then to learn options that maximize expected return on this task
distribution as well as the expected return achieved on unseen tasks from the same task distribution.

1For more details about DiCE see Appendix A.
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One could formulate this as maximizing EM∼p(M)
[
Eτ∼p(τ |π(θ))

[
GM(τ)

]]
where trajectories τ are generated

using a hierarchical policy with options parametrized by θ. However, maximizing immediate return with
such objective directly is not beneficial because it learns a single fixed policy that solves multiple tasks. The
solutions to these tasks can have conflicting requirements as shown in Figure 1, where some tasks require
different decisions in certain states. Consequently, a single trained policy would likely be a compromise that
performs reasonably well, but sub-optimally, on each individual task. Since the learning of a hierarchical
policy that would lead to good zero-shot performance is not feasible, we instead aim for shared options that
capture reusable sub-behaviors. Such options should achieve good performance after the policy over options
adapts to the task at hand. This objective can be formulated as:

max
θω,θξ

EM∼p(M)

[
Eτ∼p(τ |π(θω,θξ,θ∗

Ω))
[
GM

0 (τ)
]]

(6)

θ∗
Ω = arg max

θΩ
Eτ∼p(τ |π(θω,θξ,θΩ))

[
GM

0 (τ)
]

, (7)

where θ∗
Ω is a high-level policy adapted to the specific task M. While one could also perform maximization

over all parameters in Equations 6 and 7, such an approach would not enforce options that capture reusable
sub-behaviors. This is because the algorithm can choose to not change the high-level policy and instead
make a large change in sub-policies during the adaptation. Nevertheless, we consider this variant in our
experiments as an ablation.

The two-level optimization problem in Equations 6 and 7 consist of inner maximization over the parameters
of the high-level policy θΩ, which are used to select options, and outer maximization over option parameters
θω, θξ. Consequently, it is not trivial to optimize with commonly used methods such as the gradient descent
because of two reasons. Firstly, in order to get the gradient of the outer objective, one needs to differentiate
through the inner maximization in Equation 7 and secondly, the inner optimization problem is not trivial to
solve and may require tens or hundreds of gradient steps to optimize. However, we can nullify the latter by
simplifying the problem and restricting the number of inner adaptation gradient steps to a fixed number L:

max
θω,θξ

EM∼p(M)

[
EτL∼p(τL|π(θω,θξ,θL

Ω))
[
GM

0 (τ)
]]

(8)

θj+1
Ω = θj

Ω+αin∇θj
Ω
Eτj∼p(τj |π(θω,θξ,θj

Ω))
[
GM

0 (τ j)
]

. (9)

This adjustment also fixes the differentiability of the inner optimization problem because Equations 8 and
9 are conceptually similar to MAML applied to reinforcement learning (Equation 5). The two differences
with the standard MAML are multiple inner updates L and limiting inner optimization to a subset of all
parameters θΩ. Such adjustments are well supported in the MAML framework. Finn et al. (2017) used
multiple inner updates and as was demonstrated by Zintgraf et al. (2019) and Antoniou et al. (2019),
reducing the number of parameters that are tuned in the inner updates can be beneficial and lead to better
performance. Consequently, we propose to use this MAML-like objective with a policy gradient method
to learn reusable options. Note that it is also possible to learn the initial high-level policy parameters by
performing the maximization over θΩ in Equation 8. However, we chose fixed uniform initial high-level policy
to facilitate exploration during both training and test phases and to encourage more uniform option usage.
Additionally, it was shown that fixed initialization of inner loop MAML parameters in supervised learning
setting makes the algorithm more robust to the choice of inner learning rate (Zintgraf et al., 2019).

Another important questions from the options research are: How many options should one use? and When
should a termination occur?. Although these do not seem to be connected at first glance, we show that in the
task of learning options from multiple environments, there is a link between these two questions. This link
is demonstrated by the example in Figure 1. In this example, we consider four tasks with the same starting
location but different goals. The optimal trajectories for each task lead from the starting location straight
to the goal. We assume that learned options should be as long as possible to simplify the optimization of
high-level policy when faced with a task. This assumption is based on the premise that learning problems
that contain fewer decisions (high-level actions) should be easier to solve. Consequently, the adaptation to
new tasks with longer options should also be faster as long as some of the learned sub-behaviors can be used
in new tasks.

4



Published in Transactions on Machine Learning Research (03/2023)

Figure 1: Example in which optimal trajectories in multiple tasks cannot be represented with a single shared
policy. The maximum length of options that can represent such optimal trajectories changes with number
of options. Options are shown in different color. Necessary terminations are depicted as a filled square.

If we set the number of options equal to the number of tasks, each sub-policy can learn to solve one task
and there is no need to combine multiple options. Therefore, the longest options are options without
terminations. However, once we start to decrease the number of options, parts of trajectories have to be
reused to represent optimal trajectories of 4 tasks with only 3 options. This is demonstrated in the middle
of Figure 1, where only one option needs to terminate after several timesteps. Similarly, when using only 2
options, more terminations are needed and the options tend to become shorter. In addition to showing the
connection between the amount and positions of desirable terminations and number of options, this example
also highlights why choosing a hyperparameter that represents predetermined length of options, as done
in a number of prior approaches (Frans et al., 2018; Li et al., 2020), can be challenging. This is because
the appropriate hyperparameter value can change based on the number of available options and is usually
not known apriori. Additionally, such an approach would most likely not work well in environments where
movement actions can fail with certain probability because agent could arrive into a state in which it needs
to terminate after taking different amount of steps.

These two examples demonstrate why using terminations that depend on current state as proposed in
the original options framework work (Sutton et al., 1999) may be preferred. To this end we propose to
learn reusable options (including terminations) from multiple tasks by combining the Inferred Option Policy
Gradient (IOPG) with the adapted version of MAML. Similar to prior work, we assume that number of
options is given as a hyperparameter. The objective we propose in Equations 8 and 9 then implicitly
discourages pathological options. For example, the scenario where only a single option is ever used (option
collapse) is discouraged as the agent that only uses a single option to solve multiple tasks would achieve lower
average return. Similarly, the scenario where options terminate every time step is discouraged because by
optimizing for fast adaptation of high-level policy, the algorithm is incentivized to use options that are not
too short (degenerate 1-step options). This is because options that are too short would not allow high-level
policy to fully adapt to new tasks within several inner updates and would also lead to lower average return.

IOPG also allows us to learn terminations and to update all options at the same time based on their
responsibilities, i.e., the probability that the option was active given the history ht of states and actions so
far. This can lead to better data-efficiency when compared to other methods that only update a single option
at a time, such as the Option Critic (Bacon et al., 2017), but comes at the cost of increased computation
time. Additionally, IOPG is also not reliant on a learned option-value function which is helpful in the meta
learning setting because the option-value function changes after every inner update. This is in contrast
with the Option Critic and several recent methods that extend it (Khetarpal et al., 2020; Klissarov &
Precup, 2021). Combining these methods with MAML would thus be difficult. Additionally, there is no
straightforward way to apply these algorithms in a setting with multiple tasks when the agent does not know
which environment it is in.

3.1 Fast Adaptation of Modular Policies

The resulting algorithm for Fast Adaptation of Modular Policies (FAMP) is outlined in Algorithm 1. After L
inner updates, the gradient of the objective with respect to the outer parameters is calculated. In principle,
we would like to optimize for performance after a moderate number of gradient updates L such as 10 or 20.
However, with more inner updates the resulting gradient of the objective becomes noisier due to the usage
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Algorithm 1: Fast Adaptation of Modular Policies (FAMP)
input : A distribution of tasks p(M), number of options N , env samples per update M , adaptation

steps L, episodes per update k, learning rates αin, αout
1 randomly initialize θΩ, θξ, θω

2 while not converged do
3 g⟨θξ,θω⟩ = 0 ▷ zero accumulated gradients
4 for env← 1 to M do
5 sample task M∼ p(M)
6 set θ′

Ω = θΩ
7 for l← 1 to L + 1 do
8 sample k episodes τ1:k on M using π (θ′

Ω, θω, θξ)
9 fit a baseline using data from τ1:k

10 compute AGAE and log π(at|ht, θ′
Ω, θω, θξ) for all τ1:k

11 compute loss J according to Equation 1
12 if l < L + 1 then
13 θ′

Ω = θ′
Ω + αin∇θ′

Ω
J ▷ adapt πΩ

14 else
15 g⟨θξ,θω⟩ = g⟨θξ,θω⟩ +∇⟨θξ,θω⟩J ▷ accumulate gradients of outer objective
16 end
17 end
18 end
19 ⟨θξ, θω⟩ = ⟨θξ, θω⟩+ αout

1
N g⟨θξ,θω⟩ ▷ update options

20 end
output: initial policy over options πΩ(ω|s, θΩ), sub-policies πω(a|s, θω), terminations ξω(s, θξ)

of Monte Carlo estimates in each inner update. Furthermore, the time complexity of gradient computation
and sample complexity both scale linearly with the number of inner updates. In practice we found a range
from 2 to 4 update steps to be acceptable. A benefit of gradient-based meta-learning is that even though
the model is optimized for performance after L adaptation steps, it can still be improved after L updates by
performing more steps of gradient descent. An important design choice is the state value function estimator.
In the MAML RL setting the policy constantly changes in every inner update. It is thus difficult to use past
trajectories for fitting the value function. Furthermore, a different value function needs to be computed for
each task. We therefore use a linear time-state dependent baseline (Duan et al., 2016a), which works better
than more complex baselines with little data.

4 Experiments

In order to evaluate our method empirically and show the benefits of learned terminations as well as end-to-
end learning with gradient-based meta-learning, we perform experiments in Taxi and AntMaze domains 2.
In these experiments, we compare to the closest state of the art method and perform ablations to highlight
the effects of different objectives and learned terminations on the final performance. In both domains, we
are interested in the final average performance on the set of test tasks. Single-task algorithms are trained on
these tasks directly. On the other hand, meta-learning algorithms, including our own, are first pre-trained
on a set of different but related training tasks until their performance stops improving or they reach one
week of training time. We then plot the performance as the function of the number of episodes during the
adaptation.

2Our code is publicly available at https://github.com/Kuroo/FAMP.
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Figure 2: Left: Map of a taxi environment with special states and an example task. Middle and Right: Visu-
alization of the option usage in this task. Middle part shows states without passenger on board. Right part
shows states with passenger. Arrows represent directional actions, pick-up/drop-off is shown as a square.
Each action is colored according to the active option.

4.1 Taxi

In the first set of experiments we use a modified Taxi environment3 (Dietterich, 2000). This environment is
commonly used in works on hierarchical learning and options (Dietterich, 2000; Igl et al., 2020) and allows one
to create many different tasks with shared parts to test the reusability of learned options. Furthermore, sub-
tasks and optimal trajectories have different lengths across tasks and thus may require options with different
lengths. Finally, since both state and action space are discrete, the learned options can be visualized and
examined. The map of the environment is displayed in Figure 2. An agent acts as a taxi driver who starts
in one of the special (colored) locations. Its goal is to pick-up a passenger from one special location and
drive him to another special location. Different tasks use different combinations of start, goal and passenger
locations. We use 48 combinations as training tasks and 12 as test tasks.

Each task is an MDP in which the agent can use 4 directional actions and two special actions: pick-up/drop-off
and no-op. The state space is represented as a one-hot vector that does not encode any information about the
location of the passenger or goal state. Therefore, in order to facilitate fast adaptation to the (unobservable)
passenger and goal locations, the agent must acquire options that can serve as building blocks for exploration.
The reward is 2 for reaching the goal and −0.1 per step otherwise. Episodes terminate if they take longer
than 1500 timesteps. We use a tabular representations for the policy over options, terminations and sub-
policies. Our experiments are set up to answer following questions:
(1) How does FAMP compare to the closest hierarchical method in terms of performance?
We chose Meta-Learning Shared Hierarchies (MLSH, Frans et al. (2018)) as the strongest meta-learning
baseline with options, because it is the closest hierarchical method designed for similar setting in which no
extra information about the environment is available. This is in contrast with many other hierarchical and
non-hierarchical meta reinforcement learning methods for learning options(Pickett & Barto, 2002; Barreto
et al., 2019), which utilize extra information such as the ID of a sampled environment (Mankowitz et al., 2016;
Igl et al., 2020; Veeriah et al., 2021). However, unlike our method, MLSH uses time-based terminations and
does not use gradient-based meta-learning to optimize its objective. We pre-train MLSH on all training tasks
to learn sub-policies. During the test-time we freeze these sub-policies and only allow the high-level policy
to adapt to test tasks. This setting is identical to the one used in the original work albeit with a different
environment. (2) How does FAMP compare to a policy that is not trained for fast adaptation
and a policy trained from scratch? We use the multi-task baseline to show the performance of a
hierarchical policy that optimizes for the immediate average return in multiple tasks rather than the return
after several adaptation steps. The whole hierarchical policy of this baseline is first meta-learned and then
fine-tuned on test tasks. It corresponds to using Algorithm 1 with L = 0 and ⟨θΩ, θξ, θω⟩ instead of ⟨θξ, θω⟩
in lines 3, 15 and 19 during training. We also use the single-task baseline which learns to solve the test tasks
from scratch without any pre-training using IOPG. Therefore, since it does not need to generalize to many
tasks and has a flexible policy, we expect it to perform better than other methods after sufficiently long
training. However, a meta-learned policy with desirable options should find a good solution quicker. (3) Is

3Details are included in Appendix A.
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Figure 3: Average performance of different algorithms on Taxi test tasks. Plots show mean and 95% bootstrap
confidence intervals over 9 seeds.

it important to restrict the inner and outer update to specific parts of the hierarchical policy?
To answer this question, we compare the performance of FAMP to learn high-level and learn all baselines.
The former also uses a hierarchical policy with learned terminations but it learns all initial parameters. This
corresponds to adjusting line 15 in Algorithm 1 to update all parameters ⟨θΩ, θξ, θω⟩. Similarly, the learn
all baseline also learns all initial parameters but it also additionally adapts the whole hierarchical policy
in the inner update step. This corresponds to adjusting both line 13 and 15 in Algorithm 1 to update all
parameters ⟨θΩ, θξ, θω⟩ and can be seen as simply optimizing a hierarchical policy with MAML objective.
In addition to the two aforementioned ablations, we use a no hierarchy baseline to evaluate the performance
of non-hierarchical policy with MAML objective. This can be implemented in practice by using Algorithm
1 with learn all adjustments and 1 option. (4) Are learned terminations important to perform well
in this setting? In order to quantify how important learned terminations are in this setting, we use an
ablation of our algorithm with fixed options length as a second baseline (Ours + FT ). This baseline uses
Algorithm 1 to learn the sub-policies but does not learn terminations. Instead, it uses a termination scheme
of MLSH where the termination occurs every c steps where c is a hyperparameter. (5) Does the value of
c affect the final performance? We vary the option length hyperparameter in both MLSH and FAMP
to determine whether its value affects the adaptability of learned options and the final performance on test
tasks. (6) How does the number of options and inner updates used during training affect the
performance? We compare the performance of FAMP with different number of options ranging from 2 to
16 and different number of inner update steps L ∈ {1, 2, 3}.

Results

The performance comparison with baselines is shown in Figure 3. Plots with meta-training curves are in-
cluded in Appendix B. Our method is able to outperform both MLSH and multi-task meta-learning baselines
reaching a final performance of −0.315. In addition to reaching good final performance, FAMP also out-
performs other algorithms in terms of adaptation speed. As expected, the single-task baseline eventually
overtakes FAMP after more than 200 episodes and reaches a final performance of −0.284. However, reach-
ing such performance takes significantly longer than when policies with pre-trained options are used. This
demonstrates that FAMP can learn sub-policies and terminations that allow for fast adaptation in similar
unseen environments at the cost of slightly lower asymptotic performance. An example trajectory that was
produced by the FAMP agent in one of the hardest test tasks is displayed in Figure 2. In this task, the agent
is able to combine three options to form an optimal solution.

We further observe in Figure 3 that the learn all ablation, which meta-learns all policy parameters, reaches
comparable albeit a bit lower performance than FAMP. This highlights the strength of using gradient-based
meta-learning in this problem. However, as we have discussed in Section 3, adapting the whole policy usually
does not lead to reusable options because a lot of the adaptation is done in sub-policies which may no longer
be feasible in more complex tasks. We revisit this issue in the next sub-section. Trained policies of FAMP
and learn all baseline are available in Appendix B for comparison. Lastly, we observe that the performance

8



Published in Transactions on Machine Learning Research (03/2023)

0 20 40 60 80 100
Episodes

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

D
is

co
u

n
te

d
R

et
u

rn

Ours + FT 2

Ours + FT 4

Ours + FT 10

MLSH 2

MLSH 4

MLSH 10

0 20 40 60 80 100
Episodes

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

D
is

co
u

n
te

d
R

et
u

rn

4 opts L=3

4 opts L=2

4 opts L=1

2 opts L=3

8 opts L=3

16 opts L=3

Figure 4: Left: Performance of FAMP with fixed terminations and MLSH with terminations after different
amount of steps on Taxi test tasks. Right: Average performance of our method with different hyperparameter
values on Taxi test tasks. Plots show mean and 95% bootstrap confidence intervals over 9 seeds.

of no hierarchy and learn high-level is lower than when one uses a hierarchical policy and meta-learns options
without high-level policy.

In Figure 4 (left), we show the performance of FAMP and MLSH with different option length c. We
observe that the performance of our algorithm is lower when fixed terminations are used instead of learned
terminations. This difference in performance suggests that the termination scheme with fixed amount of
steps is too restrictive for this setting. We further observe that FAMP outperforms MLSH across different
values of c and both algorithms perform better with smaller option lengths.

In Figure 4 (right), we show how the performance varies with changes to important hyperparameters, namely,
the number of options and adaptation steps. We observe that decreasing the number of adaptation steps
during training leads to a clear drop in performance especially for L = 1. This can be attributed to the
policy not being able to switch from exploratory to exploitatory behavior in a single inner update. Unlike
the number of adaptation steps, the number of options does not seem to affect the performance much. This
highlights the advantage of using inference-based method (IOPG) for learning options since all options are
also updated with experience that was generated by other options.

The only noticeable changes in performance are the extremes with 2 or 16 options. A slight drop in perfor-
mance with 2 options can be explained by noticing that in some states, such as the state 2 squares above
the blue special state, one needs to perform 3 different actions to follow the optimal path to red, blue and
yellow states. Thus the agent cannot represent the optimal policies with only 2 options. Interestingly, even
in this case, the agent is still able to separate trajectories in such a way that it can reach all goals albeit with
slightly worse performance. This further illustrates how choosing the appropriate option length a priori can
be difficult since it can depend on the number of available options.

We observed that throughout our experiments, the length of options increased with the number of available
options. While this is usually a desirable property, increasing the number of options too much can negatively
affect reusability of options and may require more episodes per adaptation step in settings with sparser
rewards. For example, if the initial high-level policy that is used to select sub-policies is close to uniform
and one uses too many options, 10 episodes may be insufficient to try various options before performing
a high-level policy update. Determining which option should be selected and appropriately adapting the
high-level policy becomes difficult in such cases. Similarly, using too few options can lead to sub-optimal
solutions if there are too few options to represent optimal trajectories in all tasks. In such case, the drop in
performance may be less or more severe depending on the task.

4.2 AntMaze

In the second experiment, we demonstrate the applicability of our method to more complex environments with
continuous state and action spaces and perform similar ablations. We use the ant maze domain introduced
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Figure 5: Ant maze tasks. The agent needs to control a simulated 4-legged ant-like robot and move it from
yellow square to the green square. Four rightmost tasks are tests tasks.

by Frans et al. (2018) whose tasks are shown in Figure 5. This domain allows us to perform the best
possible comparison with MLSH because we can reuse the code and hyperparameter values chosen by the
original authors. The only adjustment is removing the orientation resets of the ant, which occurred every
200 steps, because they introduced discontinuities and were not realistic for the robotics scenario they are
supposed to imitate. The results of experiments with FAMP and MLSH in the original implementation of
the environment were similar and are available in Appendix B.

We use 9 tasks for training and 4 test tasks. In each task the agent needs to move a simulated MuJoCo
(Todorov et al., 2012) 4-legged ant-like robot through a small maze towards the goal. Both state space and
action space are continuous with 29 and 8 dimensions respectively and the agent receives a positive reward
for moving closer to the goal location. However, states do not contain any information about the maze
layout or the location of the goal. In this settings we consider questions 1-4 from previous environment and
verify whether the takeaways from the discrete setting also translate to continuous setting. Similar to the
experiments in Taxi domain, we use MLSH as a closest hierarchical baseline, PPO as a single-task baseline,
the learn all baseline and FAMP with fixed option length (Ours + FT ). Additionally, we use MAML with
a flat policy to compare to an established meta-learning algorithm without options. We used two hidden
layers of 64 nodes to represent the components of hierarchical policies and the policy of PPO. For MAML,
we increased the layer sizes to 128. In addition to aforementioned baselines, we have also trained an agent
with RL2 (Duan et al., 2016b) on these tasks. Because its performance was comparable to MAML, which is
another meta-learning algorithm without options that is directly related to our method, we decided to omit
RL2 in the plots to keep them uncluttered. Its meta-training curve can be found in Appendix B. For all
baselines, we used existing implementations for training and evaluation. Exact hyperparameters and details
can be found in Appendix A.

Results

The comparison of the performance and the speed of adaptation on both train and test tasks can be seen in
Figure 6. In both settings, FAMP outperforms the baselines. However, unlike in the previous experiment,
FAMP with fixed option length has lower variance and performs slightly better on training tasks. This
is likely because in this environment, the terminations do not have to occur at the exact position as was
the case in Taxi. Having pre-determined option length thus does not have such adverse effect on the
final performance. We have observed similar trends across individual environments (plots are available in
Appendix B). Furthermore, we observe that MAML is able to sharply increase its performance during the first
few steps of adaptation but is unable to reach the performance of hierarchical methods that utilize options.
This suggests that the adaptation of a single policy might not be sufficient to make abrupt enough changes
in the agent’s behavior that are required to successfully adapt to these tasks. Similarly, meta-learning a
hierarchical policy without restricting the adaptation to high-level policy results in low performance. While
learn all improves its performance during the adaptation, it is the worst of all meta-learning methods. This
is in contrast with the simpler environment in which its performance was similar to FAMP. Lastly, we observe
that while PPO continuously improves, its performance does not come close to the meta-learning algorithms
after 200 episodes. It takes about 1000 episodes to reach the performance of MLSH and if ran sufficiently
long, we expect that it would eventually catch up with or even outperform FAMP.
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Figure 6: Left: Average performance of algorithms on ant training tasks (multi-task setting). Right: Average
performance of algorithms on ant test tasks (meta-learning setting). Plots show mean and 95% bootstrap
confidence intervals over 9 seeds.

While it is not possible to visualize learned options due to the high dimensionality of both state and actions
spaces, we can visualize which option is active at each part of the state space. After the high-level policy is
fine-tuned, we use the x and y positions of the ant in sampled trajectories to highlight the active option. An
example option usage of FAMP in different tasks is shown in Figure 7. In general, the agent uses the cyan
option to move upwards and blue to move towards lower parts of the maze while the combination of options
is used to fine-tune the direction. This shows that the agent learned a useful abstraction that allows it to
perform several different useful behaviors in similar parts of the state space by using meta-trained options
and by combining them with a fine-tuned high-level policy.

5 Related Work

One of the aims of hierarchical reinforcement learning is to decompose a complex task or policy into simpler
units. A thorough overview and classification of existing HRL methods that learn and use such policies can
be found in the recent survey by Pateria et al. (2021). Prior approaches include (among others) methods
that learn a set of diverse skills (Florensa et al., 2017; Achiam et al., 2018; Eysenbach et al., 2019), or
methods that rely on the manager-worker task-decomposition of Feudal Reinforcement Learning (Dayan &
Hinton, 1993; Vezhnevets et al., 2017; Nachum et al., 2018). The goal of diversity-based methods is to learn
skills that lead to different parts of the state space and behaviors in an unsupervised setting. On the other
hand, Feudal Reinforcement Learning methods are guided by the reward function and aim to learn a policy
in which each level (manager) provides sub-tasks to the lower level (worker). However, providing sub-goals
can be difficult for some tasks (e.g. run in a circle) and manager-worker architecture leads to recursively
optimal policies (Dietterich, 2000). This means that in each level the manager is optimal given its workers
but the policy as a whole may be sub-optimal. Instead, we can look at the alternative paradigm of the
options framework (Sutton et al., 1999).

Several different strategies have been proposed to learn options within this framework. Some works rely on
so-called bottleneck states that can be used as sub-goals (McGovern & Barto, 2001; Menache et al., 2002;
Niekum & Barto, 2011) whereas others use spectral clustering (Machado et al., 2017). These approaches
are particularly suited for settings without reward function but often require prior knowledge about the
environment which restricts their applicability. Different from aforementioned methods, end-to-end methods
such as the ones which rely on the Option-Critic architecture (Bacon et al., 2017; Riemer et al., 2018;
Khetarpal et al., 2020; Klissarov & Precup, 2021) are applicable in more general settings. However, they
can be less efficient than concurrently introduced inference-based end-to-end methods (Daniel et al., 2016;
Fox et al., 2017; Smith et al., 2018) because they only update the option that generated the action whereas
inference-based methods update all options according to their responsibilities for each action. The recently
introduced Multi-updates Option Critic (Klissarov & Precup, 2021) is a notable exception since it allows
one to update multiple options using the same experience within the Option Critic architecture.
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Figure 7: Option usage visualization on ant maze tasks. Plots were created using positions of the ant in
trajectories created by adapted policy. Each color represents a different option.

A common problem when using end-to-end methods that learn terminations in a single-task setting is the
option collapse (Bacon et al., 2017). It causes the options to terminate after every action or to never
terminate. This phenomenon occurs because a single-task can be solved without using options. Consequently,
the policy often does not have sufficient incentive to utilize terminations and learn options that are useful
for transfer. In such cases the learning of terminations can be facilitated by augmenting the objective with
entropy regularization (Smith et al., 2018) or deliberation cost (Harb et al., 2018), regularizing towards a
termination prior (Igl et al., 2020), or by using a different objective for terminations (Harutyunyan et al.,
2019). Preliminary results also show that the learning of interest functions (Khetarpal et al., 2020) could help
to alleviate this issue. In our work, we instead incentivize the algorithm to learn appropriate terminations
by training a small amount of options in a multi-task setting. Since the number of available options is lower
than the amount of tasks, the agent needs to learn to terminate and combine options in order to solve all
tasks. While options were sometimes learned in multi-task setting in prior work (Frans et al., 2018; Li et al.,
2020), these works utilized time-based terminations with fixed (Frans et al., 2018) or randomized length (Li
et al., 2020). However, as we have discussed in Section 1 and as our ablations have shown, this can lead to
problems and degraded performance when options with different lengths are required.

There exist methods which do not employ the techniques mentioned above but still rely on the options
framework (Konidaris & Barto, 2007; Zhang & Whiteson, 2019; Li et al., 2020) or task-specific policies (Teh
et al., 2017). These approaches often make different assumptions about the tasks and settings in which
they are applied and therefore are not directly comparable to our work. Some require policies that solve
each environment (Pickett & Barto, 2002) whereas others need environment ID (Mankowitz et al., 2016;
Igl et al., 2020) or cumulants that accurately represents task dynamics (Barreto et al., 2019). Close to our
work are Adaptive Skills Adaptive Partitions (ASAP) (Mankowitz et al., 2016) and Meta Learning Shared
Hierarchies (MLSH) (Frans et al., 2018). ASAP uses a policy gradient method to optimize immediate
performance on multiple tasks with known environment ID but does not use neural networks and does
not learn terminations. On the other hand, MLSH uses a hierarchical structure with predefined option
lengths (time-based terminations) and a problem setting with unknown environment ID. It optimizes for
post-adaptation performance by using two alternating phases that either only update the high-level policy
or both high-level policy and sub-policies simultaneously. The number of updates in each of these phases
is modulated by important task-specific hyperparameters. Because MLSH does not pass the gradient signal
between the master and sub-policies, the sub-policies are not explicitly optimized for fast adaptation of
high-level policy. This can potentially hinder the adaptability of the final policy and its final performance.

The method we propose instead assumes that policy parameters are updated with gradient descent and aims
to learn the parameter values of options. Thus, its problem formulation is closely related to the one of a
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recent gradient-based Model-Agnostic Meta-Learning method (Finn et al., 2017), which uses gradient-based
meta learning to learn initial parameter values in supervised learning and reinforcement learning settings.
The work of Finn et al. (2017) on MAML was extended in followup works that only trained a part of the
network (Zintgraf et al., 2019; Raghu et al., 2020) or showed benefits of per-parameter learning rates (Li
et al., 2017; Antoniou et al., 2019). Furthermore, several works focused on MAML in a reinforcement learning
setting (Al-Shedivat et al., 2018; Stadie et al., 2018; Liu et al., 2019). In particular, Al-Shedivat et al. (2018)
and Stadie et al. (2018) pointed out a difference between theory and practical implementation of MAML
in automatic differentiation frameworks. This issue was further discussed and resolved in followup works
(Foerster et al., 2018; Rothfuss et al., 2019; Farquhar et al., 2019). However, the connection between the
learning of reusable options and this type of gradient-based meta-learning has not been explored in prior
work.

Instead, a recent work (Veeriah et al., 2021) that utilized both options and meta-learning relied on meta-
gradients (Xu et al., 2018; Zheng et al., 2018). Unlike MAML, these have been mainly applied in single-task
(single lifetime) settings to learn hyperparameters (Xu et al., 2018; Zahavy et al., 2020) or intrinsic rewards
(Zheng et al., 2018; 2020). Consequently, there are some key differences between our work and the work of
Veeriah et al. (2021). Firstly, their work meta-learns option reward networks in addition to terminations.
Both of these are used to guide the learning of sub-policies and only the high-level policy is trained with
a task reward. In our work, all parts of the network are trained using the task reward. Secondly, they
let the agent use primitve options that always terminate after a single action and use a switching cost to
prevent high-level policy from selecting primitive options too often. Lastly, they use both current state and
a task-specific goal encoding as an input to the high-level policy. The agent thus knows which task it is
currently in. Their method is thus not applicable in our setting because we consider a setting in which this
information is not available.

6 Discussion and Future Work

We considered the problem of learning a useful temporal abstraction from multiple tasks in the setting in
which there is little prior knowledge available about the environments. Specifically, we were interested in
learning options that can accelerate learning in new tasks that are similar to training tasks. We pointed out
some of the weaknesses that prior methods for learning of options in similar settings posses. In particular,
we have discussed how choosing a fixed options length apriori can be restrictive and detrimental. This
is because the ideal value of this hyperparameter can change based on the number of available options.
Subsequently, we used a meta-learning formulation of this problem to propose a method that combines
the options framework with gradient-based meta-learning and explicitly optimizes learned sub-policies and
terminations for performance after several adaptation steps. In our experiments, we have shown that this
method outperforms the closest hierarchical and non-hierarchical methods designed for similar meta-learning
setting in one discrete and one continuous setting. Finally, we have performed several ablations to better
evaluate the benefit of learned terminations and gradient-based meta-learning which distinguish our approach
from prior work.

The main limitation of our method is the computationally more expensive calculation of responsibilities in
IOPG which cannot be computed in parallel. The computation of responsibilities scales linearly with the
amount of timesteps and can become a computation bottleneck during the backpropagation. Alleviating this
issue could be a potential direction for future work. Similarly, because IOPG uses policy gradient to update
the policy, our method is less data efficient at train time than other methods such as MAML which use TRPO
or PPO for their (outer) updates. Extension that would allow for one of the more advanced policy updates
to be used in combination with our method could potentially improve the data efficiency. Lastly, while
our objective implicitly encourages appropriate terminations, it does not explicitly constrain the number
of option terminations. Consequently, learned options may be shorter or longer than intuitively expected
as long as they lead to good performance. Future research in this direction could focus on combining our
objective with regularization techniques such as deliberation costs to softly encourage more intuitive option
lengths.
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