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Abstract

Diffusion Probabilistic Models (DPMs) are powerful generative models that have
achieved unparalleled success in a number of generative tasks. In this work, we
aim to build inductive biases into the training and sampling of diffusion models to
better accommodate the target distribution of the data to model. For topologically
structured data, we devise a frequency-based noising operator to purposefully
manipulate, and set, these inductive biases. We first show that appropriate ma-
nipulations of the noising forward process can lead DPMs to focus on particular
aspects of the distribution to learn. We show that different datasets necessitate dif-
ferent inductive biases, and that appropriate frequency-based noise control induces
increased generative performance compared to standard diffusion. Finally, we
demonstrate the possibility of ignoring information at particular frequencies while
learning. We show this in an image corruption and recovery task, where we train a
DPM to recover the original target distribution after severe noise corruption.

1 Introduction

Diffusion Probabilistic Models (DPMs) have recently emerged as powerful tools for approximating
complex data distributions, finding applications across a variety of domains, from image synthesis to
probabilistic modeling (Yang et al., [2024; Ho et al., |2020; |[Sohl-Dickstein et al., [2015} [Venkatraman
et al.}2024;|Sendera et al.||2024)). These models operate by gradually transforming data into noise
through a defined diffusion process and training a denoising model (Vincent et al., 2008} |Alain
& Bengio, [2014) to learn to reverse this process, enabling the generation of samples from the
desired distribution via appropriate scheduling. Despite their success, the inductive biases inherent
in diffusion models remain largely unexplored, particularly in how these biases influence model
performance and the types of distributions that can be effectively modeled.

Inductive biases are known to play a crucial role in deep learning models, guiding the learning process
by favoring certain types of data representations over others (Geirhos et al., 2019; Bietti & Mairal,
2019; Tishby & Zaslavskyl, 2015)). A well-studied example is the Frequency Principle (F-principle)
or spectral bias, which suggests that neural networks tend to learn low-frequency components of data
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before high-frequency ones (Xu et al.,|2019; |Rahaman et al.,2019). Another related phenomenon is
what is also known as the simplicity bias, or shortcut learning (Geirhos et al., [2020; |Scimeca et al.,
2021} 2023b), in which models are observed to preferentially pick up on simple, easy-to-learn, and
often spuriously correlated features in the data for prediction. If left implicit, it is often unclear
whether these biases will improve or hurt the performance of generative model on downstream
task, and they could lead to flawed approximations(Scimeca et al.| 2023al). In this work, we aim to
explicitly tailor the inductive biases of DPMs to better learn the target distribution of interest.

Recent studies have begun to explore the inductive biases inherent in diffusion models. For instance,
Kadkhodaie et al. (2023) analyze how the inductive biases of deep neural networks trained for image
denoising contribute to the generalization capabilities of diffusion models. They demonstrate that
these biases lead to geometry-adaptive harmonic representations, which play a crucial role in the
models’ ability to generalize beyond the training data (Kadkhodaie et al.,|2023). Similarly, Zhang et
al. (2024) investigate the role of inductive and primacy biases in diffusion models, particularly in
the context of reward optimization. They propose methods to mitigate overoptimization by aligning
the models’ inductive biases with desired outcomes (Zhang et al., [2024). Other methods, such as
noise schedule adaptations (Sahoo et al.,[2024)) and the introduction of non-Gaussian noise (Bansal
et al., [2022) have shown promise in improving the performance of diffusion models on various tasks.
However, the exploration of frequency domain techniques within diffusion models is a relatively
new area of interest. One of the pioneering studies in this domain investigates the application of
diffusion models to time series data, where frequency domain methods have shown potential for
capturing temporal dependencies more effectively (Crabbé et al.| 2024). Similarly, the integration
of spatial frequency components into the denoising process has been explored for enhancing image
generation tasks (Qian et al., [2024; |Yuan et al., [2023)), showcasing the importance of considering
frequency-based techniques as a means of refining the inductive biases of diffusion models.

In this work, we explore a new avenue, to build inductive biases in DPMs by frequency-based noise
control. The main hypothesis in this paper is that the noising operator in a diffusion model has a direct
influence on the model’s representation of the data. Intuitively, the information erased by the noising
process is the very information that the denoising model has pressure to learn, so that reconstruction
is possible. Accordingly, we propose that by strategically manipulating the noising operation, we
can effectively steer the model to learn particular aspects of the data distribution. We focus our
attention to the generative learning of topologically structured data, and propose an approach that
involves designing a frequency-based noise schedule that selectively emphasizes or de-emphasizes
certain frequency components during the noising process. In this paper, we refer to our approach
as frequency diffusion. Because the Fourier transform of a Gaussian is just another Gaussian in the
frequency domain, this approach allows us to maintain the Gaussian assumptions of the diffusion
process while reorienting the noising operator within the frequency domain, enabling the generation
of Gaussian noise at different frequencies and thereby influencing the model’s learning trajectory.

We report several findings. First, we show that when the information content in the data lies more
heavily in particular frequencies, frequency diffusion yields better samplers. Furthermore, we test
this in several natural datasets, and show that depending on the dataset characteristic, different
settings of our frequency diffusion approach yield optimal results, often with comparable or superior
performance to standard diffusion. Finally, we show that through frequency-denoising we can recover
complex distributions after severe noise corruption at particular frequencies, opening interesting
venues for applications within the generative landscape.

‘We summarize our contributions as follows:

1. We introduce a frequency-informed noising operator that can shape the inductive biases of
diffusion models.

2. We empirically show that frequency diffusion can steer models to better approximate infor-
mation at particular frequencies of the underlying data distribution.

3. We provide empirical evidence that models trained with frequency-based noise schedules
can outperform traditional diffusion schedules across multiple datasets.

4. We show that through frequency-denoising we can recover complex distributions after severe
noise corruption at particular frequencies.
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Figure 1: Frequency diffusion under a generalized framework.
2 Methods

2.1 Denoising Probabilistic Models (DPMs)

Denoising Probabilistic Models are a class of generative models that learn to reconstruct complex
data distributions by reversing a gradual noising process. DPMs are characterized by a forward and
backward process. The forward process defines how data is corrupted, typically by Gaussian noise,
over time. Given a data point xo sampled from the data distribution ¢(Xp), the noisy versions of the
data x1, Xy, . . ., X7 are generated according to:

q(X; | X;-1) = N(Xt§ Vo x; 1, (1—%)1), (1
with variance schedule a;. The reverse process models the denoising operation, attempting to recover
X;_; from x;:

po(Xi—1 | X;) = N(Xt—l; Ho(Xs, 1), O'tzl), 2)
where ug(x;,t) is predicted by a neural network fy, and the variance 0',2 can be fixed, learned, or
precomputed based on a schedule. We train the denoising model with the standard e—parameterization
by minimizing

L = B xg, e~N(O,D) [||€—66(Xt,f)||2], X, = V@ X0 + oy €, 3)

where @, = I—[;:l a and a’,2 =1 - @, € is the Gaussian noise added to x(, and €g4 is the model’s
prediction of this noise. To generate new samples, we start from noise and apply the learned reverse
process iteratively.

2.2 Frequency Diffusion

The objective of this section is to generate spatial Gaussian noise whose frequency content can be

systematically manipulated according to an arbitrary weighting function. From [subsection 2.1] x; is
generated by adding Gaussian noise € ~ N (0,I) to x,_; via

X; = \/Q/_[X[7] + \/l—a, €. (4)

Let us denote by x € R”*W an image (or noise field) in the spatial domain, and by ¥ the two-
dimensional Fourier transform operator. We let Nieq € CH*W be a complex-valued random field
whose real and imaginary parts are i.i.d. Gaussian:

Nfreq = Nreal + l.Nimag, Nreal, Nimag ~ N(O, 1)7 )

where each pixel (or frequency bin) in Niea1 and Niy,g is drawn independently from a standard normal

distribution. We introduce a weighting function w( fx, fy) that scales the amplitude of each frequency

. . ky
component. Let f = (fy, f,) denote coordinates in frequency space, where f, = ka, =7

and k,, ky are integer indices (ranging over the width and height), while H and W are the image

dimensions. We define the frequency-controlled noise NIE:;; (f) as:

Nimd (f) = Nireg() © w(f), ©



After applying w(f) in the frequency domain, we invert back to the spatial domain to obtain ™),
our frequency-shaped noise:

") = %(T‘l (Nlﬁje”(;)), ©)
where R (-) ensures that our final noise field is purely realm
In summary, any frequency weighting can be represented in this unified framework:

w(f)

F w
€ > Nfreq N Erecf

T e

Note that standard white Gaussian noise is a special case of this formulation, where w(f) = 1 for all
f. In contrast, more sophisticated weightings allow one to emphasize, de-emphasize, or even remove
specific bands of the frequency domain.

Theoretical consistency We keep the forward process Gaussian while reshaping its spectrum. Let
F be the unitary DFT and w(f) > 0 a fixed spectral weight. The linear map T,, = ¥~ 'Diag(w)F
sends white noise to frequency-shaped noise €™) = T,, € with covariance

Y, = T, T, = F 'Diag(lw(f)|*) F. (8)
Replacing € by €™) in the forward step yields the marginal

gw(X; | X0) = N(Va xo, 07 Z). ©)

Training with the standard £, objective on the added noise remains optimal: €};(x;,?) = Ele™) | x,].
The corresponding score satisfies

1 __
Vi, 10g g (x1) = —— x! € (% 1), (10)
t

so converting e-predictions to scores simply multiplies by £!. Ast— 0, if £,, =0 and g has a locally
positive density with Vloggq € Llloc, the anisotropic Gaussian smoothing collapses to a Dirac and
Vlog g — Vlog g almost everywhere. Thus, shaping the forward spectrum preserves the endpoint

score while altering the path (see Appendix for proofs and extensions).

2.3 Frequency Noise operators

In this work, the design of w(f) is especially important. We propose a particular choice of w(f) and

propose alternative formulations of w(f) in

Band-Pass Masking and Two-Band Mixture
A band-pass mask can be viewed as a special case of a more general weighting function:
w(f) € {0,1}. (11)

In this case, the frequency domain is split into a set of permitted and excluded regions, or radial
thresholds. With this, we can construct several types of filters, including a low-pass filter retaining
only frequencies below a cutoff (e.g., ||f|| < w.), a high-pass filter keeping only frequencies above a
cutoff, or more generally a filter restricting ||f|| to lie between two thresholds [a, b]. We thus define a
simple band-pass filter as:

1, ifa<d(fe fy) < b,

12
0, otherwise, (12

w(f) = Miap)(fx. fy) = {

2 2
Here, d(fx, fy) = \/ ( fx — %) + ( fy - %) measures the radial distance in frequency space. In this

special case, w(f) is simply a binary mask, selecting only those frequencies within [a, b].

ISince the DFT of a real signal has Hermitian symmetry, multiplying by a real, pointwise weight w preserves
Hermitian symmetry and yields a real-valued inverse transform.



For the experiments in this paper we formulate a simple two-band mixture, where we limit ourselves
to constructing noise as a linear combination of two band-pass filtered components. Specifically, as
in the original band-based approach, we generate frequency-filtered noise € via:

€Ff = YVi€ap] t Yh€an,byl (13)

where y;, v, > 0 denote the relative contributions of a low- and a high-frequency component
(y1 + yn = 1), each filtering noise respectively in the ranges [a;, b;] (low-frequency range) and
[an, by] (high-frequency range). We uniquely refer to €[, 5] as the noise filtered in the [a, b]
frequency range following [Equation 6| and [Equation 7} Standard Gaussian noise emerges as a
particular instance (with y; = 0.5, y, = 0.5, a; = 0, b; = 0.5, a5, = 0.5, and b, = 1) of this
formulation.

Selective omission. If w vanishes on a band, then X,, is rank-deficient and the model learns the score
projected onto range(Z,,); we exploit this in corruption—recovery, but it cannot recover frequencies
never presented during training.

3 Datasets

For the experiments, we consider five datasets, namely: MNIST, CIFAR-10, Domainnet-Quickdraw,
Wiki-Art and CelebA; providing examples of widely different visual distributions, scales, and domain-

specific statistics. We provide more information in[Appendix A]

4 Results

All experiments involve separately training
and testing DPMs with various frequency dif-
fusion schedules, as well as baseline stan-
dard denoising diffusion training. We con-
sider five datasets, namely: MNIST, CIFAR-10,
Domainnet-Quickdraw, Wiki-Art and CelebA;
providing examples of widely different visual
distributions, scales, and domain-specific statis-
tics. Unless stated otherwise, all runs use the
same «; schedule and deterministic DDIM sam-
pling (7=0), so no step noise is injected at test
time. For frequency diffusion we normalize w
with C,, to match the per-step variance across
settings. This keeps the effective SNR compara-
ble and isolates the effect of the frequency profile
of the forward noise. Across the experiments,
we report FID and KID scores as similarity score
estimate metrics of the generated samples with
respect to a held-out set of data samples. In all
relevant experiments, we compute the metrics
on embeddings from block 768 of a pre-trained
Inception v3 model.
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Figure 2: Power spectra and image visuals of the
forward Process in standard diffusion, as compared
4.1 Improved Diffusion Sampling to high and low-frequency noise settings of a two-
via Frequency-Based Noise Control band mixture noise parametrization.

In the first set of experiments, we wish to test our main hypothesis, i.e. that appropriate manipulation
of the frequency components of the noise can better support the learning of the distribution of interest.
We follow the formulation in[Equation 13]to train and compare diffusion models with a noisy operator
prioritizing different parts of the frequency distribution. In these experiments we fix a; =0, by = 1,
and b; = a; = 0.5, while performing a linear sweep of the y; and y;, parameters by searching
Y € [.1, 2, ., .9] and Yh = 1 =i



4.1.1 Qualitative Overview

First, we show a qualitative example of a standard linear noising schedule forward operation in
as compared to two particular settings of our constant high and low-frequency linear
schedules of the band-pass filter. With standard noise, information is uniformly removed from the
image, with sample quality degrading evenly over time. In the high-frequency noising schedule,
sharpness and texture are removed more prominently, while in the low-frequency noising schedule,
general shapes and homogeneous pixel clusters are affected most, yielding qualitatively different
information destruction operations. As discussed previously, we hypothesize that this will in turn
purposely affect the statistics of the information learned by the denoiser model, effectively focusing
the diffusion sampling process on different parts of the distribution.

4.1.2 Learning Target Distributions from Frequency-Bounded Information

We conduct experiments to learn the distribution
of data where, by construction, the information FID Comparison
content lies in the low frequencies. We use the
CIFAR-10 dataset, and corrupt the original data

N
~

with high-frequency noise €[ 31 , thus erasing £ 2.6
the high-frequency content while predominantly &
preserving the low-frequency details in the range 2 2>

€[0.,.3]- We train 9 diffusion models, including a
standard diffusion (baseline) model, and 8 mod-
els trained with frequency-based noise control RN N N N N NS P
spanning 8 combinations of y; (y, = 1 — y;). O I I

We repeat the experiment over three seeds and S ) )
report the average FID and error in[Figure 3 In Flg'ure 3: FID of 'dlfquIOl’l samplers t'ramed with
the figure, we observe the DPMs trained with ~Various combinations of frequency noise. The set-
higher amounts of low-frequency noise (higher Fings for y; = 0.5 yields standard diffusion train-
v1) to perform significantly better than both the 18-

baseline (y; = 0.5), and higher frequency de-

noising models (lower y;). Furthermore, we see a mostly monotonically descending trend in FID for
increasing values of lower frequency noise in the diffusion forward schedule, supporting the original
intuition of how the frequency manipulation of the noising operator can directly steer the denoiser’s
learning trends, and therefor how progressively higher amount of low-frequency forward noise aid in
the learning of samplers for data containing mostly low-frequency information.

N
>

4.1.3 Frequency-Based noise control in natural datasets

We further test our hypothesis by training 9 models for each of the datasets considered, inclusive
of all y-variations of our two-band mixture frequency-based noise schedule. We train these models
on MNIST, CIFAR-10, Domainnet-Quickdraw, Wiki-Art and CelebA, and report the FID and KID
metrics for all ablations in[Table 1] In the table, we observe three out of five datasets to significantly
benefit from frequency-controlled noising schedules, achieving the lowest FID and KID scores across
all tested models. Interestingly, the performance trends are also mostly monotonic, which together
with our previous experiments is indicative of where the learned information lies. For simple datasets,
such as MNIST or CIFAR-10, most frequency denoising settings perform well, with balanced high-to-
low-frequency schedules performing best overall. Denoisers for Domainnet-Quickdraw and CelebA
yield better performance for slightly higher frequency noising schedules, suggesting higher frequency
information content for good FID and KID approximations, while Wiki-Art shows slight biases
towards lower frequency schedules.

4.2 Selective Learning: Frequency-Based Noise Control to Omit Targeted Information

Following our original intuition, a denoising model has pressure to learn the very information that is
erased by the forward noising operator to achieve successful reconstruction. Conversely, when the
noising operator is crafted to leave parts of the original distribution intact, no such pressure exists,
and the denoising model can effectively discard the left-out statistics during generation.



Table 1: Results for FID and KID across different settings of (7y;, y;) for our frequency diffusion
two-band mixture schedule across different datasets (mean =+ standard error across 3 seeds). The
baseline runs correspond to y; = y, = 0.5.

Dataset — MNIST CIFAR-10 Domainnet-Quickdraw Wiki-Art CelebA
Algo | Metric »  FID(]) KID (|) FID (1) KID (|) FID (|) KID (1) FID (|) KID (1) FID (1) KID (|)
baseline 0.0168:00010  0.0000:0.0000  0.1055:0.0042  0.0001:0.000  0.0875:0.0060 1.69%-04s1.61¢-05 0.1622:0.0133  2.53e-04s150¢ —05  0.086320.004  0.0001+0.0000
0.1 9 0.2624:02184 7.90e-0416.85 - 04  0.2648:00601 4.31e-04:1.30e 04  0.5250:0.3007 1.46-0321.21e 03 0.267320.0273 01555100273 2.97e-0416.93¢ 05

0.0432:0.0187
0.02670.0029

0.1843+0.0723  4.20e-04:2.15¢ - 04 0.2048:0.0063 -
0.1248:0.0375  2.70e-0421.13c - 04 0.1865:0.0181

1.10e-0415.24c —05  0.219140.0223  3.86e-0446.72¢ - 05
6.40e-05:8.63¢ —06  0.1506+0.0168  2.28e-0443.34¢ - 05

0.1024-40.0045
0.08380.0107

1.85e-042.72¢ - 06
1.44e-04:1.89¢ - 05

0.022420.0032  5.29e-05+8.15¢ 06 0.113120.0079  1.64e-04x2.15¢ - 05 0.0799:0.0166 0.0001:0.0000 0.15970.0122  2.62e-04x3.23¢ - 05 0.0875:0.0020  1.49e-04x1.71¢ - 06
0.025320.0039  5.81e-05+7.63¢ 06 0.1131x0.0074  1.56e-04x1.95¢ —05  0.11280.0174  2.57e-04=5.56c - 05 0.1348=0.0126 0.0002:£0.0000 0.1068+0.0030  2.04e-04x1.07¢ - 05
y1=07.y,=03 0.0363:00075 9.14e-05:2.04c -05  0.1432+0.0203 2.19e-04x3.66c -05  0.135320.0223  2.91e-! 0.1561=0.0123 46e 0.0990:0.0082

1.84e-04+2.12¢ - 05
0.1053+0.0185  1.95e-044.34¢ - 05
0.229110.0605 ~ 4.86e-04-+1.52¢ -

v1=0.8,y,=0.2 0.0512z0.0119
¥1=09,y,=0.1 03403:0.1513

1.36¢-0423.60¢ - 05 0.1898:0.0095  2.88¢-04=1.85 -05  0.2288:0.0737  5.85e-04
9.74e-04x4.47¢ - 04 0.3226:0.0660  5.31e-04x1.20e —04  0.9827:0.4220  2.84¢-03:1.29¢

0.2256+0.0096
0.3250:0.0270  5.57e-

Table 2: Resulting FID and KID between standard diffusion and frequency diffusion DPMs trained
on noise-corrupted data, with respect to samples from the true uncorrupted distribution (mean +
standard error across 3 seeds). We report eight ablation experiments across different non-overlapping
corruption noise schemes.

Baseline Ours

FID (1)

Dataset —

Corruption | KID () FID () KID ()

€[0.1,0.2] 3.2273+8.50¢ - 03 0.0114+3.13¢ - 05  2.7572+3.56¢ — 02 0.0095+1.47¢ - 04
€[0.2,0.3] 3.6601+4.43¢ —03  0.0132+1.67¢ - 05 3.0416+4.47¢ - 02  0.0107+1.79¢ - 04
€[0.3,0.4] 3.47712+4.79¢ - 03 0.0125£1.89¢ - 05  2.9952+3.35¢ - 02 0.0106+1.23¢ — 04
€[0.4,0.5] 3.4281+5.46e —03  0.0123£1.98¢ -05 2.9218+2.54¢ -02  0.0105+8.79¢ - 05
€[0.5,0.6] 3.3638+6.31e - 03 0.0121+2.32¢ - 05 2.8267+2.81¢ -02  0.0102+9.32¢ - 05
€[0.6,0.7] 3.2444+7.10e -03  0.0116+2.55¢ —05  2.7026+3.90¢ - 02 0.0097+1.28¢ — 04
€[0.7,0.8] 3.0442+6.32¢ -03  0.0109+2.29¢ - 05 2.546916.39¢ — 02  0.0091+2.00¢ — 04
€[0.8,0.9] 3.4660+7.90¢ - 03  0.0124+2.96e - 05  2.5138+9.63¢ - 02  0.0090+3.07¢ - 04

In this section, we perform experiments whereby the original data is corrupted with noise at different
frequency ranges. The objective is to manipulate the inductive biases of diffusion denoisers to avoid
learning the corruption noise, while correctly approximating the relevant information in the data. We
formulate our corruption process as X’ = A (x), where:

Ac(X) =X+ Yc€flac,be] (14)

Here, €[4, 5. denotes noise in the [a, b.] frequency range. We default y. = 1. and show samples
of the original and corrupted distributions in For any standard DPM training procedure,
the denoiser would make no distinction of which information to learn, and thus would approximate
the corrupted distribution presented at training time. As such, the recovery of the original, noiseless,
distribution would normally be impossible. Assuming knowledge of the corruption process, we
frame the frequency diffusion learning procedures as a noiseless distribution recovery process, and
seta; =0, by, =1, by = a., and a;, = b.. This formulation effectively allows for the forward
frequency noising operator to omit the range of frequencies in which the noise lies. In line with our
previous rationale, this would effectively put no pressure on the denoiser to learn the noise part of the
distribution at hand, and focus instead on the frequency ranges where the true information lies.

We compare original and corrupted samples from MNIST, as well as samples from standard and
frequency diffusion-trained models in In line with our hypothesis, we observe frequency
diffusion DPMs trained with an appropriate frequency noise operator to be able to discard the
corrupting information and recover the original distribution after severe noisy corruption. We further
measure the FID and KID of the samples generated by the baseline and frequency DPMs against the
original (uncorrupted) data samples in[Table 2] We perform 8 ablation studies, considering noises
at 0.1 non-overlapping intervals in the [0.1,.9] frequency range. We observe frequency diffusion
to outperform standard diffusion training across all tested ranges. Interestingly, we observe better
performance (lower FID) for data corruption in the high-frequency ranges, and reduced performance
for data corruptions in low-frequency ranges, suggesting a marginally higher information content in
the low frequencies for the MNIST dataset.
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Figure 4: Samples from the original data distribution, the degraded data distribution, a standard
diffusion sampler trained on the degraded data distribution, and a frequency diffusion sampler trained
on the degraded data distribution. We generate noise for data corruption in the frequency range
[ac = 0.5, b, =0.6)].

5 Discussion and Conclusion

In this work, we studied the potential to build inductive biases in the training and sampling of
Diffusion Probabilistic Models by purposeful manipulation of the forward, noising, process. We
introduced frequency diffusion, an approach that enables us to guide DPMs toward learning specific
statistics of the data distribution. We compare frequency diffusion to DPS trained with standard
gaussian noise on generative visual tasks set by several datasets, with significant varying structure and
scales. We show several key findings. First, we show that appropriate manipulation of the forward
noising process can serve as a stong inductive bias for diffusion models to better learn the information
of the distribution at particular frequencies. Second, we show that this important characteristic can
be readily used when training diffusion models on natural dataset, some of which may be better
supported by appropriate frequency diffusion schedules, yielding higher sampling quality. Third, we
show how this processes can be used to discard unwanted information at particular frequency ranges,
yielding DPMs capable of extract noiseless signals from the remaining ranges.

In our approach, we have limited the results to a simple two-band pass frequency filter. We propose
in several other alternatives, which may serve as more flexible tools to inject useful
inductive biases for similar tasks. Moreover, the approach can be extended beyond constant schedules.
For instance, it may prove useful to introduce dynamic frequency noise strategies that shift the focus
from low-frequency (general shapes) to high-frequency (sharp edges and textures) components over
the time discretization of the sampling process. Such methods could more closely align with human
visual processing, which progressively sharpens details over time, offering a more natural sampling
process. Additionally, other domains of noise manipulation—outside of the frequency domain may
also present new opportunities for further improving DPMs across various tasks.

Finally, a current limitation of this approach lies in the complexity of understanding the relationship
between visual data in spatial and frequency domains. The perception of information in the frequency
domain does not always translate straightforwardly to visual content, complicating the process of
designing optimal noise schedules. As such, it is not trivial to design appropriate frequency schedules
for a particular distribution. In practice, empirical validation may still be required to identify the best
inductive biases for a given dataset. Future work could focus on refining analytical tools for frequency
analysis or exploring alternative inductive bias mechanisms that extend beyond frequency-based
manipulations.

Overall, this work opens the door for more targeted and flexible diffusion generative modeling by
building inductive biases through the manipulation of the forward nosing process. The ability to
design noise schedules that align with specific data characteristics holds promise for advancing the
state of the art in generative modeling.
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A Datasets

For the experiments, we consider five datasets, namely: MNIST, CIFAR-10, Domainnet-Quickdraw,
Wiki-Art and CelebA; providing examples of widely different visual distributions, scales, and domain-
specific statistics.

MNIST: MNIST consists of 70, 000 grayscale images of handwritten digits (0-9) (Matthey et al.,
2017). MNIST provides a simple test-bed to for the hypothesis in this work, as a well-understood
dataset with well-structured, and visually coherent samples.

CIFAR-10: CIFAR-10 contains 60,000 color images distributed across 10 object categories
(Krizhevsky et al.l|2009). The dataset is highly diverse in terms of object appearance, backgrounds,
and colors, with the wide-ranging visual variations across classes like animals, vehicles, and other
common objects.

DomainNet-Quickdraw: DomainNet-Quickdraw features 120, 750 sketch-style images, covering
345 object categories (Peng et al., [2019). These images, drawn in a minimalistic, abstract style,
present a distribution that is drastically different from natural images, with sparse details and heavy
visual simplifications.

WikiArt: WikiArt consists of over 81, 000 images of artwork spanning a wide array of artistic styles,
genres, and historical periods (Saleh & Elgammal, [2015). The dataset encompasses a rich and varied
distribution of textures, color palettes, and compositions, making it a challenging benchmark for
generative models, which must capture both the global structure and fine-grained stylistic variations
that exist across different forms of visual art.

CelebA: CelebA contains 202, 599 images of celebrity faces, each 178 x 218 pixels in resolution
(Liu et al.L|2015)). The dataset presents a diverse distribution of human faces with variations in pose,
lighting, and facial expressions.

B Frequency Noise operators

In this section, we propose two alternatives to the design of w(f), which can be considered as viable
alternatives for frequency manipulations of the noise.

Power-Law Weighting

We implement a radial power-law frequency noising operator that imposes a linear slope in the

log—log power spectrum. Let £ = (fy, fy) denote normalized frequency coordinates on [—%, %]2, and

define the radial frequency
r(f) = 2+ f

Given white spatial Gaussian noise n ~ N'(0,I), we form its Fourier transform Ngeq = # (n) and
scale each frequency bin by

wo(f) = (r(H+e)”,  e=107", (15)
where a € R controls the slope and & prevents the DC singularity. The shaped spectrum and spatial
noise are () o)

Niea(£) = Nieg(f) -wo(f), €@ = RF[N), (16)

which we use in the forward step x; = va; x,—1 + V1 — a; el

Effect on spectrum. Because power spectra scale with |w|?, the radially averaged power spectral
density (RAPSD) obeys
logPSD(r) = (2a) logr + const.
——
slope
Thus @ > 0 emphasizes high frequencies (sharper textures), @ < 0 emphasizes low frequencies
(coarser structure), and @ = 0 recovers white noise.
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Discretization and batching. In code, we construct the grid with f, (k) = % - % and fy(£) = % - %
fork € {0,...,W—1},£€{0,...,H—1} (equivalently, np.linspace(-0.5,0.5, W) and H). The
weight w, is broadcast across batch (and channels, if present). For convenience, one may multiply
in the fftshift-centered domain and undo the shift before the inverse FFT; this is equivalent to
multiplying in the unshifted domain because w, is radial.

Optional variance calibration. To keep E||e(®) ||§ roughly constant across @, an energy-preserving
scalar

7

1
Co = (ﬁ ;|Wrt(fuv)|2

can be applied in equation ie., Nﬁr‘;; ¢ Cg Nieq - Wo. (Our experiments omit this by default,

matching the implementation in the main text.)

Exponential Decay Weighting

Another alternative is an exponential decay function, defined as as:

w(f) = exp(-BIIfl%), (18)

where B > 0, and frequencies with larger norms ||f|| are exponentially suppressed. This weighting
effectively imposes spatial correlations, e.g. for 8 close to O the function induces the retention of
more high-frequency components, while for large 3, the function quickly damps out high frequencies,
resulting in a smoothing of the spatial domain.

C Noise Parameterization, Scores, and Frequency-Shaped Dynamics

In this section, we wish to formalize the role of frequency diffusion in correctly learning the gradient
of the log probability density of the data distribution at various noise levels (the score function). We
model frequency-shaped corruption as an anisotropic Gaussian forward process, derive the score—e
relation for this general case, and prove that as  — 0 the learned score converges to the true data score
whenever all frequencies are represented (full-rank covariance). We also derive the reverse/posterior
formulas and discuss how shaping the forward covariance changes the path to the score, shifting the
information burden across frequencies. Finally, we formalize the selective-omission case when some
bands are removed.

Setup and notation. Let o, € (0, 1) be the per-step scaling, & = []_; @, and c2=1-a.In
standard DDPM, the forward marginal is

q(x |%0) = N(yarxo, o7 1), (19)
and one trains an e-predictor €4 (X;, #) by minimizing
-Esimple = Et,xo, e~N(0,I) [ ”6 — €9 (Xt’ t)”% ]’ X = \/d'_tXO + 0 €. (20)

The optimal predictor is €} (x;, ) = E[€|x,] and the true score relates to it via

1
Vx, log g, (x;) = > €x(Xr,1), where € (X;,1) = E[e|x,]. (21)
'

C.1 Frequency-Shaped Forward Process as Anisotropic Gaussian

Let w(f) > 0 be a (time-independent) radial spectral weight and let ¥ denote the discrete Fourier
transform (unitary). The linear operator

T, := ¥ 'o Diagw(f)) o F (22)

maps spatial white noise to frequency-shaped noise. Writing & ~ N'(0,I) and ™) = T,, £, we have
€™ ~ N(0, Z,,) with
¥, = T,T) = F Diag|w(f)*) F, (23)
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i.e., X, is circulant and diagonalized by the Fourier basis, with eigenvalues given by the power
spectrum |w|2E]

Our forward process uses this shaped noise at each step:

X, = Varxeo1 + - et(w), et(w) . N(0,Z%,). 24)

A simple induction gives the marginal

gw(X: 1X0) = N(va, xo, o7 Z). (25)

Hence, relative to equation we have replaced the isotropic covariance by %,,,, while @, and o
remain unchanged.

Support condition. If w(f) > 0 for all f, then X,, > 0 (full rank) and the forward kernels have full
support in R”W_ If w vanishes on a band, X,, is singular and the forward kernels are supported on a
strict subspace (Section[C.5). In practice, adding a small DC floor (e.g., r(f) > r(f) + & with £ > 0)
ensures w(0) > 0 and thus X,, > 0.

C.2 Score-¢ Relation under Anisotropic Covariance

From equation 23]
|- =
Vy, log g, (X; | X0) = —— ol (% = Va xo). (26)
t

Taking the posterior expectation over ¢, (Xo | X;) and using X, — Va; Xo = oy €™), we obtain the
marginal score

I
Vs, log g (i) = —— I B[™) x| @7
? N ———
=M (x1.1)

Training with the natural generalization of equation [20]
L = By xo. con-n0.5) | 1€™) = €a(xe.0)]13 ] X, =Va xo+o, €™, (28)

simple
the optimal predictor is €} (x;,1) = E[e™) | x,]. Therefore, a consistent score estimator is
|
so(X1,1) = Vy, logqw (X)) = _;z X, €9(xs,1). (29)
Equation equation 29| reduces to equation 2] when X,, = I. Since the corruption covariance X,, is

fixed, the £, objective needs no reweighting—the optimal €, remains the conditional mean; X!
appears only when converting €y to the score via Eq. equation [29]

C.3 Tweedie’s Identity and the Limit 1 — 0

Write the marginal as a (scaled) Gaussian smoothing of the data:
a9 = [ 4l Nix: VG, o7,) dxo. (30)

Let z, := x,/+/@;; then z, = xo + &; € ") with 62 = 07?/a,. The anisotropic Tweedie identity gives
E[xo | z,] =1z, + 5}2 2, Vg, log pi(z:), pr = law(z;). (3D

Equivalently, in the original variable,

(T X
Vi 102 gy (%) = \qzwl (E[Xolxt] __t)

P V&)

2With the usual Hermitian pairing in the discrete Fourier basis, €™) is real-valued.

(32
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Ast =0, — 1,0y = 0,and g, = ¢q. If Z,, > 0 and g admits a locally positive C! density
with Vloggqg € Llloc, the anisotropic Gaussian mollifier is an approximate identity and

lin(l) Vi, log gy :(X;) = Vxlogg(x) forae.x. (33)
t—>

Intuitively, the anisotropic Gaussian kernel in equation [30]shrinks to a Dirac as o; — 0 regardless
of its orientation, so the smoothed score converges to the true data score. Combining equation 27}
equation [33] the e-parameterization with frequency-shaped noise yields a correct score at t = 0,
provided X, > 0.
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Figure C.1: Particle trajectories under the probability—flow ODE from a Gaussian prior to a mixture-
of-Gaussians target (black contours), visualized at five equally spaced times (left to right). Rows: (top)
isotropic noise (@=0), (middle) high-frequency tilt (@=0.1), (bottom) low-frequency tilt (a=—0.1).
Frequency noising alters the path by reweighting modes via X,, while keeping the endpoint consistent
under full support (cf. Sec. [C).

To visualize how frequency noising alters trajectories and score geometry through time, Fig.[C.I|shows
particle flows under the probability—flow ODE for isotropic noise (top), high-frequency tilt (a=0.1,
middle), and low-frequency tilt (¢=—-0.1, bottom), while Fig. [C.2] shows the corresponding score
fields Vy log p,(X) at five equally spaced times. Frequency noising changes the path deterministically
by reweighting modes through X,,, while preserving the t—0 endpoint score under full support (see

Sec.[0).

C.4 Reverse/Posterior with Frequency-Shaped Noise

Since all covariances are proportional to the same X,,, linear-Gaussian posteriors retain the standard
scalar coefficients while the covariances inherit X, as a factor. In particular,

aw (i x0%0) = N (7 (% %0), B S ), (34)
with
Bi= (1 ay), (35)
a,
1 1-a; —
i (X4, Xg) = \/—a_t (x, - 1o ;t (x — \/a_,xo)) . (36)
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Figure C.2: Evolving score fields Vy log p, (x) for the same three settings as Fig. Arrows indicate
the instantaneous score on a grid; black contours show the target density. Anisotropic shaping
stretches/compresses the field along principal modes, biasing the trajectory toward frequencies
emphasized by Z,,,.

Replacing x¢ by R0 in equation [36 yields the usual mean update. For the e-parameterization we
recover an estimate of xg via

1
Ro(X;,1) = \/T&—(XI_O-t €9(X;,1)) . 37
t

Stochastic DDPM sampling: if one samples stochastically, the injected noise should be drawn as
nt(w) ~ N(0,%,) (not N(0,1)) for consistency with the forward process.

DDIM / probability-flow ODE: if one uses the deterministic sampler (i.e., 7 = 0), no step noise is
injected. In continuous time, the associated probability-flow ODE with frequency-shaped forward

noise reads J
X
- = -1B()x — L B(t) T, Vxlog p(x), (38)

which reduces to the standard probability—flow ODE when X,, = I. In practice with the e-

parameterization, one uses Xo from equation [37]in the standard DDIM deterministic update; no
extra noise term appears.

C.5 Selective Omission and Rank-Deficient %,

If w vanishes on a measurable band, then X,, = 0 is singular. The forward kernels in equation 23] are
supported on an affine subspace determined by range(Z,,), and the smoothed marginals ¢,, ; are not
strictly positive in R””W_ The score Vlog ¢,y ; exists only on that subspace and is undefined along
the null space. Training with equation 28| then recovers the projected score, i.e., the model learns to
ignore the omitted bands by construction (this is the mechanism exploited in our corruption-recovery
experiments).

C.6 How Frequency Noising Changes the ‘“Path to the Score”

Even though the r — 0 limit recovers the true data score under X, > 0, the evolution of the score with
t changes substantially:
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1. Geometry of the score. From equation the conversion from e-prediction to score
multiplies by £!. In the Fourier basis (where %, is diagonal), modes with larger variance
(large |w|?) are downweighted in the score, while low-variance modes are amplified. Thus,
shaping the forward spectrum changes the relative gradient magnitudes across frequencies
during training and sampling.

2. Signal-to-noise during supervision. The target ) has covariance X,,, so its per-mode
variance follows |w|?. The £, loss in equationtherefore exposes the model to larger target
amplitudes (and larger gradients) in bands where |w| is large, shifting the inductive bias
toward fitting those modes sooner/more accurately.

3. Reverse dynamics. The reverse posterior covariance in equation is B; 2, so the
stochasticity injected at each reverse step is anisotropic. This changes the trajectory taken
from ¢ down to 0O, biasing the generation process to consolidate structure along directions
favored by Z,,. Under DDIM (n = 0), no step noise is instead injected, so the anisotropic
stochastic effect disappears. However, the drift in the probability-flow ODE equation [38]still
carries X, through the term —8(¢) Z,, Vx log p;(x). Hence trajectories remain frequency-
biased deterministically: modes emphasized by X,, contribute more strongly to the drift,
reshaping the path from =T to =0 even without randomness.

Collectively, these effects explain why different datasets benefit from different w: the endpoint
score is consistent (under full rank), but the path—and thus the optimization landscape and sample
trajectories—is reshaped by frequency weighting.

Time-varying weights. If one uses a schedule w, (f), the #-step marginal covariance becomes a
scalar-weighted sum of commuting matrices:

t

Cov(x, |xg) = Zt:(ﬁ [1e)2w,  Bo=1-a (39)
s=1

k=s+1

When all %, are diagonal in the Fourier basis (true for any per-frequency diagonal weight, not neces-

sarily radial), the analysis carries through modewise with eigenvalues replaced by the corresponding

positive weighted sums Y., wg |wg(f)|> (which form a convex combination after normalization by
2

Of = 25 W)
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