JOINT TRAINING DOES NOT TRANSFER INFORMATION BETWEEN EEG AND IMAGE CLASSIFIERS

Anonymous authors

Paper under double-blind review

Abstract

Caution is necessary with machine-learning methods, and especially computervision methods, to support brain processing claims from neuroimaging data. A recent paper (Palazzo et al., 2021) proposes (i) a joint-training process that does not use class information and (ii) a bidirectional transfer of (a) image information to an EEG classifier and (b) brain-activity information to an image classifier, such that the joint embedding includes the shared image and brain-activity information. These claims cannot be maintained: the training process is initialized with class information, and joint training with EEG degrades rather than improves the performance of the image encoder. Moreover, theoretical solutions exist that entail no transfer beyond class information in the joint embedding space.

1 INTRODUCTION

A recent paper (Palazzo et al., 2021) proposes a method for jointly training two neural networks, one to map images to encodings and the other to map EEG data from subjects viewing those images to encodings, so that the encodings for the images are similar to those from the EEG data. Specifically, they claim that

- I) class labels are not used anywhere in the equation. This makes sure that the resulting embedding does not just associate class discriminative vectors to EEG and images, but tries to extract more comprehensive patterns that explain the relations between the two data modalities. (Palazzo et al., 2021, § 3 ¶ 5) and
- II) our multimodal approach learns a joint brain-visual embedding and finds similarities between brain representations and visual features (Palazzo et al., 2021, § 1 ¶ 2).

They use the resulting encodings for EEG classification, image classification, saliency detection, and producing activation maps that decode brain representations. Central are the additional implicit claims

- III) that the joint embedding space encodes both information about the images and subjects' brain activity from viewing the images and
- IV) that the joint-training process bidirectionally transfers information from the image encoders to the EEG encoders, and information from the EEG encoders to the image encoders.

Other work (Li et al., 2021; Ahmed et al., 2022) questioned these claims due to confounds in the data (Spampinato et al., 2017), which was collected with a block design with all stimuli of a given class presented to subjects in close proximity and the training and test sets containing samples from the same block. Since EEG data contains temporal drift, this drift is classified rather than stimulus-related brain activity. Li et al. (2021) and Ahmed et al. (2022) note that it is critical to remove the confound by breaking the correlation between temporal drift and stimulus class by randomizing stimulus presentation order. Li et al. (2021) and Ahmed et al. (2022) demonstrated that numerous classifiers, including the one used in Palazzo et al. (2021), lose high classification accuracy seen on the data from Spampinato et al. (2017) used in Palazzo et al. (2021), dropping to chance with nonconfounded data properly collected from randomized trials.

Here, we focus on a separate issue. We demonstrate that their method itself does not exhibit claims I– IV, whether applied to confounded or nonconfounded data. We contribute the novel observations that independently refute the claims in Palazzo et al. (2021) beyond Li et al. (2021) and Ahmed et al. (2022):

- A) Prior to joint training, the pretrained image encoders contain close to perfect class information, and likely very little information other than class information. This calls claim I above into question.
- B) The models used as EEG and image encoders, and the loss function used to jointly train those encoders, have the representational capacity to memorize one-hot EEG and image encodings that minimize the loss function on the training set. These models can be found with separate training. Thus it is unlikely that joint training transfers information from the image encoders to the EEG encoders or vice versa, or includes anything other than class information. This calls claims II–IV above into question.

We demonstrate that their method doesn't support their claims, even when applied to data that remedies the confound. Since their claims are contingent upon production of joint embeddings that include both image and brain-activity information, this calls all claims in Palazzo et al. (2021) into question.

Beyond this, we further demonstrate

- C) that joint training appears to (1) use the class information included in the pretrained image encoders to train the EEG encoder as a classifier, but (2) otherwise degrades performance of the image encoder as a classifier and
- D) that while the EEG encoders so trained can perform above chance on confounded data, they critically perform at chance on nonconfounded data.

Thus their joint-training method is ineffective.

Here, we limit our analyses and discussion to claims A–D, in so far as they refute claims I–IV. This does not hinge on the confound reported in Li et al. (2021) and Ahmed et al. (2022); in fact, we perform the same analyses both on confounded and nonconfounded data, obtaining the same results. Our logical arguments all are based on the information content in the encodings at various stages of various kinds of training, where information content is measured by principal component analysis (PCA). It is expressly not based on absolute classification accuracy, *i.e.*, how well the classifiers perform. We are concerned with relative classification accuracy of various reconstructions of the encodings with limited sets of components derived through PCA as a way of assessing information content of the encodings.

Palazzo et al. (2021) use the EEG and image encodings produced by jointly trained EEG and image encoders to produce saliency and activation maps. The validity of these maps hinges on the claim that these encodings contain both visual and brain-activity information. We demonstrate this to be false, calling the validity of these maps into question. Li et al. (2021, § 5.4) already questioned this validity both on methodological grounds and as a result of the confound. Our results here offer additional independent reason to question the validity of these maps.

We make no claim that it is difficult or impossible to perform the central task attempted by Palazzo et al. (2021), namely to perform joint training of EEG and image encoders to transfer image information to the EEG encoder and brain-activity information to the image encoder and yield a joint embedding that contains both image and brain-activity information, without providing class information. It might be possible to perform this task with a different method, or even with the same method but with different data. Our sole claim is that their experiments and analyses do not demonstrate that they have performed this central task as stated by claims I–IV made in Palazzo et al. (2021).

2 Method

We jointly train the EEG encoder (EEGChannelNet, Palazzo et al., 2021) with each of the same image encoders employed by Palazzo et al. (2021): Inception v3 (Szegedy et al., 2016), ResNet-101 (He et al., 2016), DenseNet-161 (Huang et al., 2017), and AlexNet (Krizhevsky et al., 2012). Our analyses report results for all four image encoders, each analyzed two ways: without pretraining ('no pretraining') and pretrained on the ILSVRC 2012 training set ('pretraining'). As we evaluate just the encodings, we do not postpend classifiers to these encoders. Thus these encoders produce 1000-element output vectors, not 40-element ones.

We train the encoders in two ways: (1) joint training as described in Palazzo et al. (2021), with triplet loss, and (2) separate training individually with MSE loss against one-hot class encodings.

After separate training, we run a single epoch of joint training, without updating the weights, just to compute the triplet loss. We report three kinds of results: 'before' is before any joint or separate training, 'after joint' is after joint training, and 'after separate' is after separate training.

We repeat this analysis for three different EEG datasets: 'their' refers to the data from Spampinato et al. (2017) used by Palazzo et al. (2021), 'block' refers to subject 6 first image block run from Li et al. (2021), and 'randomized' refers to subject 6 image rapid-event run from Li et al. (2021). 'Their' and 'block' are confounded; 'randomized' is not.

We use the encoders, trained just on the training sets, to produce encodings on the validation and test sets for all splits and pool the results. For 'block' and 'randomized' data, the validation and test sets are a disjoint cover of the dataset so each sample has exactly one encoding. Critically, the data from Spampinato et al. (2017) does not have this property. We perform two analyses on these encodings. First, we perform principal-component analysis (PCA) and reconstruct the encodings two ways: one with just the 'top 40' components and one with just the 'bottom 960' components and report the fraction of variance in the encodings explained by the top 40 components. Second, for both the raw encodings ('original') and the reconstructed encodings ('top 40' and 'bottom 960'), we compute the accuracy when using the encodings for classification, without postpending any classifier (a $1000 \rightarrow 40$ FC layer followed by a softmax as done by Palazzo et al. 2021). Since the 40 classes employed by Palazzo et al. (2021) are a subset of the 1000 classes in ILSVRC 2012, and the image stimuli used by Spampinato et al. (2017) to elicit EEG response are a subset of the training images in ILSVRC 2012, one can read off the class label directly from the 1000-element encoding produced by either the EEG or image encoders by choosing the index of the maximal element. We do this two ways. The first ('1000 classes') considers maximal elements outside of the 40 classes to be misclassification. The second ('40 classes') ignores elements outside of the 40 classes and only computes the maximal element among the 40 classes.

We also analyze the value of the loss function: for the triplet loss after both 'joint' and 'separate' training, on all four image encoders, both with and without 'pretraining,' and all three datasets, and also the MSE loss when separately training the 'EEG' and 'image' encoders. These losses are computed per sample and per element of the 1000-element encoding, averaged over samples and splits.

The appendix contains more details of our method.

3 RESULTS

Table 1 shows the fraction of variance explained by the top 40 principal components of the encodings produced for both modalities ('EEG' and 'image') for all image encoders and datasets, 'before' joint or separate training, 'after joint' training, both with and without 'pretraining,' and 'after separate' training.¹

- The top 40 principal components explain a large portion of the image-encoding variance (≥63.9%) before training (column v; Table 6²). This together with Tables 2 and 3 implies that the pretrained image encoders produce encodings that contain (primarily) class information on all data. This supports claim A and calls claim I into question.
- After joint training with pretraining on their data, the top 40 principal components explain almost all (≥94.9%) of the variance in the image encodings (column vi, for rows i–iv; Table 7). This implies that the image encoders jointly trained on their data produce encodings with little more than class information.
- After separate training, the top 40 principal components explain almost all of the variance (≥96.8%) in the image encodings (column viii; Table 8). This implies that the separately trained image encoders produce encodings with little more than class information on all data.

¹Note that while the entries in Table 1 are percentages, they are not classification accuracies. Explained variance measures how close a reconstruction of the encodings using just the top 40 components is to the original encodings. High values indicate that the reconstruction is close to the original encodings because the bulk of the information in the encodings resides in the top 40 components.

²Here and throughout, tables numbered six and higher refer to those in the appendix. These contain variants of the five main tables with the indicated columns and rows highlighted in color.

Table 1: Explained variance (%) in the top 40 principal components of the encodings, 'before' joint or separate training, 'after joint' training, both with and without 'pretraining,' and 'after separate' training. Rows i–iv 'their,' rows v–viii 'block,' and rows ix-xii 'randomized'. Rows i, v, and ix Inception v3. Rows ii, vi, and x ResNet-101. Rows iii, vii, and xi DenseNet-161. Rows iv, viii, and xii AlexNet.

			EEG			i	mage	
	before	2	after	after	before	2	after	after
			oint	separate			oint	separate
		pretraining	no pretraining			pretraining	no pretraining	_
	i	ii	iii	iv	v	vi	vii	viii
i	44.7	37.2	15.3	99.5	64.1	94.9	98.9	100.0
ii	46.5	36.2	17.7	99.5	82.0	98.9	98.2	96.8
iii	48.2	25.6	22.7	100.0	75.4	97.4	90.2	100.0
iv	46.3	21.7	18.5	99.5	82.3	nan	100.0	99.7
V	83.3	75.9	69.4	42.3	63.9	57.4	98.3	99.9
vi	85.4	79.8	72.8	41.9	81.9	99.5	99.0	99.7
vii	84.0	79.3	76.3	42.9	75.3	69.4	94.3	99.5
viii	84.4	78.9	73.2	40.0	82.2	78.9	99.9	98.9
ix	62.1	40.5	38.3	19.3	63.9	60.2	98.1	99.9
х	61.9	52.2	43.6	19.7	81.9	99.1	98.8	99.8
xi	63.5	48.5	46.5	19.6	75.3	70.8	93.9	99.7
xii	63.6	49.5	41.3	19.2	82.2	86.9	99.9	98.8

• After separate training, the top 40 principal components explain almost all of the variance (≥96.8%) in both the EEG and image encodings on their data (columns iv and viii, for rows i–iv; Table 9). This implies that the separately trained EEG and image encoders produce encodings with little more than class information on their data.

Collectively this suggests that after either joint or separate training the image encodings contain class information and mostly class information. Likewise, after separate training on their data, the EEG encodings contain primarily class information. This is not surprising, as has been noted, their data is confounded. This supports claim B and calls claims II–IV into question.

Tables 2 and 3 show the accuracy of classifying the encodings of both modalities ('EEG' and 'image') for all image encoders and datasets, 'before' joint or separate training, 'after joint' training, both with and without 'pretraining,' and 'after separate' training, using the raw encodings ('original') or the encodings reconstructed from the 'top 40' or 'bottom 960' principal components, both when considering all ILSVRC 2012 classes ('1000 classes') and when only considering the '40 classes' used by Palazzo et al. (2021).

- Image classification accuracy is near perfect with all components with 40 classes (≥95.5%; column i, for rows v-viii, xiii-xvi, and xxi-xxiv; Table 10) and very high with 1000 classes (≥77.9%; column xiii, for rows v-viii, xiii-xvi, and xxi-xxiv; Table 11) before training. Likewise with just the top 40 principal components (≥ 85.7% and ≥72.2%; columns v and xvii, for rows v-viii, xiii-xvi, and xxi-xxiv; Table 12). This holds both for 'their' data and the 'block' and 'randomized' data. This demonstrates that they are giving class information implicitly to their training by use of image encoders pretrained on ImageNet, supporting claim A, and calling claim I into question.
- Image classification accuracy is much lower (≤46.0%) before training when discarding the top 40 principal components (columns ix and xxi, for rows v–viii, xiii–xvi, and xxi–xxiv; Table 13). This holds both for 40 classes and 1000 classes and both for 'their' data and the 'block' and 'randomized' data. Thus there is much less class information outside the top 40 principal components. This demonstrates that they are giving little more than class information implicitly to their training by use of image encoders pretrained on ImageNet, further supporting claim A and calling claim I into question.
- With only five exceptions, all in the bottom 960 principal components, image classification accuracy decreases after joint training with pretraining (compare columns ii, vi, x, xiv, xviii, and xxii to i, v, ix, xiii, xvii, and xxi, respectively, for rows v–viii, xiii–xvi, and xxi–xxiv; Table 14). This holds both for 40 classes and 1000 classes, both for 'their' data and the

'block' and 'randomized' data, and whether using all components or just the 40 principal components. This suggests that joint training is hurting, not helping, supporting claim C(2).

- With the exception of a small number of cases that are marginally above chance, EEG classification accuracy is at chance except after separate training on confounded data either on all components or the top 40 components (columns iv, viii, xvi, and xx, for rows i–iv and ix–xii; Table 15). It is also above chance after separate training on block data in the bottom 960 components (columns xii and xxiv, for rows ix—xii; Table 16). This suggests that separate training is able to extract class from confounded data but not nonconfounded data and that joint training is not able to extract class from any data, supporting claims C(1) and D.
- Classification accuracy is at chance after joint training without pretraining (columns iii vii, xi, xv, xix, and xxiii; Table 20). This holds both for EEG classification and image classification, both for 40 classes and 1000 classes, both for 'their' data and the 'block' and 'randomized' data, and whether using all components, just the 40 principal components, or the bottom 960 components. This suggests that their method completely breaks down when not provided with class information through pretraining, and further supports claim A and calls claim I into question.

The results in Tables 2 and 3 exhibit some differences between different image encoders for each analysis ('EEG' vs. 'image,' '40 classes' vs. '1000 classes,' 'original' vs. 'top 40' vs. 'bottom 960,' and 'before' vs. 'after joint' vs. 'after separate'). This is not surprising. Different image classifiers exhibit different classification accuracy, especially when pretrained with different training regimens. It is further not surprising that this difference manifests with different PCA reconstructions with different components and also manifests when subjected to joint fine tuning with noisy EEG data or separate fine tuning on the tiny subset of ImageNet used here, because fine tuning can break different models in different ways. None of these differences impact our claims A–D or the refutation of claims I–IV from Palazzo et al. (2021).

Table 4 reports the per-sample triplet loss on the training set, after 'joint' training, both with and without 'pretraining,' and 'separate' training, for all image encoders and datasets.

- With only two exceptions, separate training gets to a lower loss than joint training with pretraining (compare columns vii, viii, and ix to i, ii, and iii, respectively; Table 21). This critically suggests that there is a point within the representational-capacity space of their model and loss function that achieves lower loss than achieved by their joint-training procedure. The joint-training procedure could have achieved it, it just didn't. The fact that point was achieved with separate training, indicates that the resulting EEG encodings do not have any image information and the resulting image encodings do not have any brain-activity information. This supports claim B and calls claims II–IV into question.
- With only three exceptions, joint training without pretraining gets to a lower loss than with pretraining (compare columns iv, v, and vi to i, ii, and iii, respectively; Table 22). Yet classification accuracy is at chance after joint training without pretraining (columns iii vii, xi, xv, xix, and xxiii of Tables 2 and 3; Table 20). This suggests that joint training without pretraining can memorize the training set yet fail to generalize at all, and further supports claim A and calls claim I into question.

Table 5 reports the per-sample MSE loss of the individual encoders of both modalities ('EEG' and 'image') on the training set, after separate training, for all image encoders and datasets.

• Separate training against one-hot labels can get to very low MSE (all columns and rows), indicating that the model has the representational capacity to memorize both the EEG and image training data. Achieving this point in the representational-capacity space with separate training and the encodings being one-hot implies that at this point, the EEG and image encodings have nothing but class information. Since this point could have been achieved

		after	separate		xii	2.3	2.3	2.5	2.5	2.5	39.4	2.6	2.4	32.1	28.1	25.9	27.8	2.5	3.7	2.6	2.3	1.6	1.8	1.9	2.4	2.5	2.2	3.0	
40 classes	1 960	5	t	no pretraining	xi	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	2.3	
	bottom 960	afte	joint	pretraining ne	x	3.1	3.1	3.2	2.5	29.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	46.8	14.7	50.9	15.6	2.2	2.7	2.0	2.8	57.1	9.4	36.1	
		before		ч	ix	2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9	
		after	separate		viii	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.0	
SS				no pretraining	vii	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	2.5	
40 classes	top 40	after	joint	pretraining no pi	vi	2.6	2.4	2.6	2.6	13.5	7.3	4.4	2.6	7.1	4.2	3.8	4.2	94.7	68.5	86.8	50.9	2.9	2.7	2.3	2.4	84.7	53.1	36.0	
		before				2.2	2.8	2.4	2.4	99.4	98.3	97.9	85.8	1.8	1.1	1.2	2.5	99.4	98.5	97.7	85.7	2.6	2.8	2.5	2.2	99.4	98.5	97.7	
		after	separate		iv	55.5	54.7	57.4	57.3	3.4	82.5	23.3	18.7	77.0	76.6	77.0	76.5	9.3	11.0	5.7	3.5	1.6	2.1	1.5	2.2	9.4	11.2	5.1	-
				no pretraining	Ξ	2.5	2.6	2.4	2.4	2.7	2.4	2.4	2.7	1.9	2.2	2.0	2.9	3.0	2.4	2.5	2.5	2.5	2.8	2.3	3.0	3.4	2.9	2.1	
	original	after	joint	pretraining no pr		3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	60.9	2.5	2.4	2.2	2.8	91.1	69.8	65.6	
		before		ď		2.6	2.3	2.5	2.3	99.7	99.4	99.2	95.8	2.4	1.6	1.4	2.9	99.8	99.3	99.1	95.5	2.6	2.6	2.1	2.5	99.8	99.3	99.1	
	-						н	ij	iv	>	vi	vii	viii	ix	x	xi	xii	xiii	xiv	XV	xvi	XVII	xviii	xix	xx	xxi	xxii	xxiii	-

I. Kows IV, VIII,	•	•	, ли, л	VI, AA, au	ALL, AVI, AX, AUL ANEANEL. 1000 classes	Sc	-				
original	,	,			top 40			,	botto	bottom 960	,
after	after		Ă	before	after		after	before	aft	after	afteı
. <u>c</u>		separate			<u>.</u>		separate			int	separate
pretraining no pretraining	no pretraining				pretraining no pre	no pretraining			pretraining	no pretraining	
xiv xv		xvi		хѵіі	xviii	xix	хх	xxi	xxii	xxiii	xxiv
0.1 0.1		55.5		0.1	0.1	0.1	55.5	0.1	0.1	0.1	2.3
		54.7		0.0	0.0	0.1	54.7	0.1	0.1	0.1	2.3
0.1 0.1		57.4		0.0	0.1	0.0	57.4	0.1	0.1	0.1	2.5
		57.3		0.0	0.1	0.1	57.3	0.1	0.1	0.1	2.5
16.5 0.1		0.0		98.9	4.0	0.0	0.0	12.8	9.3	0.0	0.0
0.0		82.5		95.6	0.3	0.0	70.5	9.5	0.7	0.0	39.2
0.1 0.0		12.1		95.8	0.0	0.0	0.1	14.2	0.0	0.1	0.0
0.0 0.3		18.7		72.5	0.0	0.3	19.1	12.5	0.0	0.0	2.4
0.4 0.0		77.0		0.0	0.2	0.1	69.8	0.0	0.2	0.1	28.0
0.1 76.6	76.6			0.0	0.1	0.1	70.5	0.0	0.0	0.1	24.0
0.1 0.0 77.0	77.0			0.0	0.0	0.0	72.2	0.1	0.1	0.1	22.3
0.1 0.1 76.4	76.4			0.0	0.3	0.2	70.0	0.0	0.0	0.1	24.2
75.1 0.1		0.5		98.8	87.0	0.0	0.0	13.2	11.7	0.0	0.0
0.0		2.0		96.2	52.4	0.0	0.1	9.8	0.2	0.0	0.0
71.1 0.1 0.2	0.2			96.4	67.2	0.4	0.2	15.0	17.9	0.0	0.0
25.4 0.0 2.6	2.6			72.2	19.7	0.0	2.5	12.9	4.2	0.0	2.3
0.1 0.1 1.5	1.5			0.1	0.1	0.0	2.5	0.2	0.1	0.2	1.4
0.1 1.9	1.9			0.0	0.1	0.2	2.3	0.1	0.2	0.1	1.6
0.1 0.1 1.5	1.5		_	0.0	0.0	0.1	2.0	0.1	0.1	0.1	1.7
0.1 0.2 2.2	2.2			0.3	0.0	0.1	1.6	0.1	0.1	0.1	1.9
64.0 0.1 0.6	0.6			98.8	73.3	0.0	0.0	13.2	20.4	0.0	0.0
42.0 0.0 2.0	2.0			96.2	28.5	0.0	0.1	9.8	3.5	0.0	0.0
		0.0		96.4	11.7	0.0	0.0	15.0	13.6	0.0	0.0
0.0 0.0 2.6	2.6			2.2	0.0	0.0	2.6	12.9	0.0	0.0	2.5

				jo	int				separ	ate
			pretrai	ning		no pretra	aining			
		their	block	randomized	their	block	randomized	their	block	randomized
		i	ii	iii	iv	v	vi	vii	viii	ix
Inception v3	i	1.303	1.098	0.932	1.074	0.938	0.919	1.150	1.027	1.104
ResNet-101	ii	1.155	0.925	1.019	0.963	1.006	1.080	0.885	0.936	0.884
DenseNet-161	iii	1.027	1.080	1.047	0.988	0.919	0.929	1.007	0.982	1.029
AlexNet	iv	1.417	1.142	0.981	1.136	1.055	1.034	0.925	0.956	0.935

Table 4: Per-sample triplet loss on the training set, after joint training, both with and without 'pretraining,' and after separate training, averaged over samples and splits.

Table 5: Per-sample MSE loss of the individual encoders on the training set, after separate training, averaged over samples and splits.

		Î	EEC	G		imag	ge
		their	block	randomized	their	block	randomized
		i	ii	iii	iv	V	vi
Inception v3	i	0.001	0.001	0.001	0.002	0.010	0.010
ResNet-101	ii	0.001	0.001	0.001	0.001	0.002	0.002
DenseNet-161	iii	0.001	0.001	0.001	0.001	0.002	0.002
AlexNet	iv	0.001	0.001	0.001	0.001	0.001	0.001

with joint training, joint training could have produced a set of encodings that have nothing but class information. This supports claim B and calls claims II–IV into question.

Collectively our results³ suggest that:

- Their statement (claim I) about not incorporating any class information in joint training is false (our claim A).
- Their encoder models combined with their triplet loss function allow a point in the space where the encodings on the training set are one-hot and thus cannot possibly contain anything other than class information. This point has zero triplet loss and thus is the minimum. It is achievable. Thus their framework can produce encodings with nothing but class information.
- This point can be reached by an alternate separate-training regimen that clearly does not transfer any information between the EEG and image encoders.

It is highly unlikely that the suboptimal EEG model that they produce by joint training has any image information, the suboptimal image model that they produce by joint training has any brain-activity information, and neither suboptimal model produced by joint training has anything other than class information, even when run on nonconfounded data. This supports claim B and calls claims II–IV into question.

4 CONCLUSION

Several independent lines of research have completely refuted a large body of completely flawed work (Spampinato et al., 2017; Palazzo et al., 2017; Kavasidis et al., 2017; Tirupattur et al., 2018; Palazzo et al., 2020; 2021) along completely different axes. Li et al. (2021) demonstrated that the dataset used, and the methods used to collect that dataset, suffer from a temporal confound, correlating stimulus class with experiment timing. Accuracy drops to chance when the confound is removed. Ahmed et al. (2021) demonstrated that this holds even with a much larger dataset. Ahmed et al. (2022) demonstrated that this holds for the additional classifiers used in Palazzo et al. (2020; 2021). Bharadwaj et al. (2023) demonstrated that this holds even when using supertrials. This is important because this invalidates a huge body of work that uses that dataset and other datasets collected with the same methods. See Ahmed et al. (2021).

³The raw data that produced these results is available at http://dx.doi.org/10.21227/x2gf-5324. Our code, included in the supplementary material, is built on top of the code in http://dx.doi.org/10.21227/x2gf-5324.

Here we show that not only are the dataset and data collection methods fundamentally flawed, the joint training regimen is also fundamentally flawed. This is important not only because the confounded dataset and flawed collection methods continue to be used, but also because the same joint training regimen continues to be used (Bai et al., 2023; Zeng et al., 2023; Ahmadieh et al., 2023; Lan et al., 2023; Du et al., 2023; Liu et al., 2023; Song et al., 2023; Ye et al., 2024). None of the work that jointly trains EEG and image classifiers even attempts to assess whether joint training is effective in information transfer. In most cases, we can't perform the analysis because the published work does not contain sufficient information to do so, including but not limited to stimulus timing and presentation order. Without this, one cannot even be sure that the data is free from confounds.

We implore all future EEG image classification effort to release **raw data** that includes stimulus timing and presentation order, not preprocessed data. We further implore all future effort to jointly train EEG and image classifiers to employ the methods presented here to assess the effectiveness of purported information transfer attributed to joint training, and not to assume such effectiveness due to classification accuracy and image reconstruction.

Recent progress in computer vision and machine learning has been gauged largely by improvement in performance metrics of methods on datasets and results that 'look good.' Palazzo et al. (2021) largely base their claims on similar criteria. While synthetic engineering methods can be evaluated by the utility of artifacts, analytic scientific claims about the underlying physical world can only be evaluated by finding hypotheses that resist falsification. We have falsified all of the claims of Palazzo et al. (2021).

AUTHOR CONTRIBUTIONS

REDACTED

ACKNOWLEDGMENTS

REDACTED

REFERENCES

- Hajar Ahmadieh, Farnaz Gassemi, and Mohammad Hasan Moradi. A hybrid deep learning framework for automated visual image classification using EEG signals. *Neural Computing and Applications*, pp. 1–17, 2023.
- Hamad Ahmed, Ronnie B. Wilbur, Hari M Bharadwaj, and Jeffrey Mark Siskind. Object classification from randomized EEG trials. In *Computer Vision and Pattern Recognition*, pp. 3845–3854, 2021.
- Hamad Ahmed, Ronnie B Wilbur, Hari M Bharadwaj, and Jeffrey Mark Siskind. Confounds in the data—Comments on "Decoding brain representations by multimodal learning of neural activity and visual features". *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(12): 9217–9220, 2022.
- Yunpeng Bai, Xintao Wang, Yan pei Cao, Yixiao Ge, Chun Yuan, and Ying Shan. DreamDiffusion: Generating high-quality images from brain EEG signals, 2023.
- Hari M Bharadwaj, Ronnie B Wilbur, and Jeffrey Mark Siskind. Still an ineffective method with supertrials/erps—comments on "decoding brain representations by multimodal learning of neural activity and visual features". *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023. doi: 10.1109/TPAMI.2023.3292062.
- Changde Du, Kaicheng Fu, Jinpeng Li, and Huiguang He. Decoding visual neural representations by multimodal learning of brain-visual-linguistic features. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):10760–10777, 2023.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Computer Vision and Pattern Recognition*, pp. 770–778, 2016.
- Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Computer Vision and Pattern Recognition*, pp. 4700–4708, 2017.

- Isaak Kavasidis, Simone Palazzo, Concetto Spampinato, Daniela Giordano, and Mubarak Shah. Brain2Image: Converting brain signals into images. In ACM Multimedia Conference, pp. 1809– 1817, 2017.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105, 2012.
- Yu-Ting Lan, Kan Ren, Yansen Wang, Wei-Long Zheng, Dongsheng Li, Bao-Liang Lu, and Lili Qiu. Seeing through the brain: Image reconstruction of visual perception from human brain signals. *arXiv preprint arXiv:2308.02510*, 2023.
- Ren Li, Jared S. Johansen, Hamad Ahmed, Thomas V. Ilyevsky, Ronnie B Wilbur, Hari M Bharadwaj, and Jeffrey Mark Siskind. The perils and pitfalls of block design for EEG classification experiments. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(1):316–333, 2021.
- Dongjun Liu, Weichen Dai, Hangkui Zhang, Xuanyu Jin, Jianting Cao, and Wanzeng Kong. Brainmachine coupled learning method for facial emotion recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):10703–10717, 2023.
- Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, and Mubarak Shah. Generative adversarial networks conditioned by brain signals. In *International Conference on Computer Vision*, pp. 3410–3418, 2017.
- Simone Palazzo, Francesco Rundo, Sebastiano Battiato, Daniela Giordano, and Concetto Spampinato. Visual saliency detection guided by neural signals. In *International Conference on Automatic Face* and Gesture Recognition, pp. 434–440, 2020.
- Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, Joseph Schmidt, and Mubarak Shah. Decoding brain representations by multimodal learning of neural activity and visual features. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(11):3833–3849, 2021.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition challenge. *arXiv*, 1409.0575, 2014.
- Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding natural images from EEG for object recognition. *arXiv*, 2308.13234, 2023.
- Concetto Spampinato, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Nasim Souly, and Mubarak Shah. Deep learning human mind for automated visual classification. In *Computer Vision and Pattern Recognition*, pp. 6809–6817, 2017.
- Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the Inception architecture for computer vision. In *Computer Vision and Pattern Recognition*, pp. 2818–2826, 2016.
- Praveen Tirupattur, Yogesh Singh Rawat, Concetto Spampinato, and Mubarak Shah. ThoughtViz: Visualizing human thoughts using generative adversarial network. In ACM Multimedia Conference, pp. 950–958, 2018.
- Zesheng Ye, Lina Yao, Yu Zhang, and Sylvia Gustin. Self-supervised cross-modal visual retrieval from brain activities. *Pattern Recognition*, 145:109915, 2024.
- Hong Zeng, Nianzhang Xia, Dongguan Qian, Motonobu Hattori, Chu Wang, and Wanzeng Kong. DM-RE2I: A framework based on diffusion model for the reconstruction from EEG to image. *Biomedical Signal Processing and Control*, 86:105125, 2023.

A METHOD

We report all results for three sets of EEG data: the data reported by Spampinato et al. (2017) as used by Palazzo et al. (2021) ('their'), the data reported by Li et al. (2021) for subject 6 first image block run ('block'), and the data reported by Li et al. (2021) for subject 6 image rapid-event run ('randomized'). We report all results for four off-the-shelf image classifiers taken as image encoders: Inception v3 (Szegedy et al., 2016), ResNet-101 (He et al., 2016), DenseNet-161 (Huang et al., 2017), and AlexNet (Krizhevsky et al., 2012). We report all results both before joint training ('before'), where the EEG encoder is randomly initialized, after joint training ('after joint'), and after separate training ('after separate'). For 'before' and 'after separate' the image encoder is initialized with off-the-shelf weights trained on the ILSVRC 2012 training set (Russakovsky et al., 2014). For 'joint', we report results both where the image encoder is initialized with off-the-shelf weights trained on the ILSVRC 2012 training set (Russakovsky et al., 2014) ('pretraining') and where the image encoder is randomly initialized ('no pretraining'). The EEG and image encoders both output a 1000 element encoding. During joint training, a triplet loss is used to drive the EEG and image encodings to have a high dot product when the EEG signal is associated with the stimulus image that elicited the associated EEG signal and a low dot product when the EEG signal is associated with a different image, irrespective of class. We do not postpend a classifier (ReLU, $1000 \rightarrow 40$ FC, softmax) to the encoders, either during training or after training. All analyses are done directly on the unmodified encodings produced by the encoders. For both the EEG encodings ('EEG') and the image encodings ('image'), we analyze the unmodified encodings ('original') and encodings reconstructed by principal component analysis ('PCA'). For PCA, we analyze two reconstructions: one with only the top 40 principal components ('top 40') and one with only the bottom 960 principal components ('bottom 960'). We classify original and reconstructed EEG and image encodings, before and after joint and separate training, in two ways. In the first, we simply select the label of the maximal element among all 1000 elements ('1000 classes'). In the second, we select the label of the maximal element among only the 40 classes used as stimuli ('40 classes'). In both cases, correct labels are considered positives. In the former, negatives can result from incorrect labels, both within and outside the subset of 40 ILSVRC classes used as stimuli. In the latter, negatives can result only from incorrect labels within the subset of 40 ILSVRC classes used as stimuli.

Table 6: The top 40 principal components explain a large portion of the image-encoding variance
$(\geq 63.9\%)$ before training (column v). This together with Tables 2 and 3 implies that the pretrained
image encoders produce encodings that contain (primarily) class information on all data. This
supports claim A and calls claim I into question.

				-	EEG			i	image	
			before	8	ufter	after	before	2	after	after
					oint	separate			oint	separate
				pretraining	no pretraining			pretraining	no pretraining	
			i	ii	iii	iv	v	vi	vii	viii
their	Inception v3	i	44.7	37.2	15.3	99.5	64.1	94.9	98.9	100.0
	ResNet-101	ii	46.5	36.2	17.7	99.5	82.0	98.9	98.2	96.8
	DenseNet-161	iii	48.2	25.6	22.7	100.0	75.4	97.4	90.2	100.0
	AlexNet	iv	46.3	21.7	18.5	99.5	82.3	nan	100.0	99.7
block	Inception v3	v	83.3	75.9	69.4	42.3	63.9	57.4	98.3	99.9
	ResNet-101	vi	85.4	79.8	72.8	41.9	81.9	99.5	99.0	99.7
	DenseNet-161	vii	84.0	79.3	76.3	42.9	75.3	69.4	94.3	99.5
	AlexNet	viii	84.4	78.9	73.2	40.0	82.2	78.9	99.9	98.9
randomized	Inception v3	ix	62.1	40.5	38.3	19.3	63.9	60.2	98.1	99.9
	ResNet-101	x	61.9	52.2	43.6	19.7	81.9	99.1	98.8	99.8
	DenseNet-161	xi	63.5	48.5	46.5	19.6	75.3	70.8	93.9	99.7
	AlexNet	xii	63.6	49.5	41.3	19.2	82.2	86.9	99.9	98.8

Table 7: After joint training with pretraining on their data, the top 40 principal components explain almost all (\geq 94.9%) of the variance in the image encodings (column vi, for rows i–iv). This implies that the image encoders jointly trained on their data produce encodings with little more than class information.

					EEG			i	image	
			before	1	after	after	before		after	after
					oint	separate			oint	separate
				pretraining	no pretraining			pretraining	no pretraining	
			i	ii	iii	iv	v	vi	vii	viii
their	Inception v3	i	44.7	37.2	15.3	99.5	64.1	94.9	98.9	100.0
	ResNet-101	ii	46.5	36.2	17.7	99.5	82.0	98.9	98.2	96.8
	DenseNet-161	iii	48.2	25.6	22.7	100.0	75.4	97.4	90.2	100.0
	AlexNet	iv	46.3	21.7	18.5	99.5	82.3	nan	100.0	99.7
block	Inception v3	v	83.3	75.9	69.4	42.3	63.9	57.4	98.3	99.9
	ResNet-101	vi	85.4	79.8	72.8	41.9	81.9	99.5	99.0	99.7
	DenseNet-161	vii	84.0	79.3	76.3	42.9	75.3	69.4	94.3	99.5
	AlexNet	viii	84.4	78.9	73.2	40.0	82.2	78.9	99.9	98.9
randomized	Inception v3	ix	62.1	40.5	38.3	19.3	63.9	60.2	98.1	99.9
	ResNet-101	x	61.9	52.2	43.6	19.7	81.9	99.1	98.8	99.8
	DenseNet-161	xi	63.5	48.5	46.5	19.6	75.3	70.8	93.9	99.7
	AlexNet	xii	63.6	49.5	41.3	19.2	82.2	86.9	99.9	98.8

Table 8: After separate training, the top 40 principal components explain almost all of the variance
$(\geq 96.8\%)$ in the image encodings (column viii). This implies that the separately trained image
encoders produce encodings with little more than class information on all data.

1					EEG				image	
			before	8	after	after	before	:	after	after
					oint	separate			joint	separate
				pretraining	no pretraining			pretraining	no pretraining	
			i	ii	iii	iv	v	vi	vii	viii
their	Inception v3	i	44.7	37.2	15.3	99.5	64.1	94.9	98.9	100.0
	ResNet-101	ii	46.5	36.2	17.7	99.5	82.0	98.9	98.2	96.8
	DenseNet-161	iii	48.2	25.6	22.7	100.0	75.4	97.4	90.2	100.0
	AlexNet	iv	46.3	21.7	18.5	99.5	82.3	nan	100.0	99.7
block	Inception v3	v	83.3	75.9	69.4	42.3	63.9	57.4	98.3	99.9
	ResNet-101	vi	85.4	79.8	72.8	41.9	81.9	99.5	99.0	99.7
	DenseNet-161	vii	84.0	79.3	76.3	42.9	75.3	69.4	94.3	99.5
	AlexNet	viii	84.4	78.9	73.2	40.0	82.2	78.9	99.9	98.9
randomized	Inception v3	ix	62.1	40.5	38.3	19.3	63.9	60.2	98.1	99.9
	ResNet-101	x	61.9	52.2	43.6	19.7	81.9	99.1	98.8	99.8
	DenseNet-161	xi	63.5	48.5	46.5	19.6	75.3	70.8	93.9	99.7
	AlexNet	xii	63.6	49.5	41.3	19.2	82.2	86.9	99.9	98.8

Table 9: After separate training, the top 40 principal components explain almost all of the variance $(\geq 96.8\%)$ in both the EEG and image encodings on their data (columns iv and viii, for rows i–iv). This implies that the separately trained EEG and image encoders produce encodings with little more than class information on their data.

					EEG			i	image	
			before	1	after	after	before	1	after	after
				j	oint	separate		j	oint	separate
				pretraining	no pretraining			pretraining	no pretraining	
			i	ii	iii	iv	v	vi	vii	viii
their	Inception v3	i	44.7	37.2	15.3	99.5	64.1	94.9	98.9	100.0
	ResNet-101	ii	46.5	36.2	17.7	99.5	82.0	98.9	98.2	96.8
	DenseNet-161	iii	48.2	25.6	22.7	100.0	75.4	97.4	90.2	100.0
	AlexNet	iv	46.3	21.7	18.5	99.5	82.3	nan	100.0	99.7
block	Inception v3	v	83.3	75.9	69.4	42.3	63.9	57.4	98.3	99.9
	ResNet-101	vi	85.4	79.8	72.8	41.9	81.9	99.5	99.0	99.7
	DenseNet-161	vii	84.0	79.3	76.3	42.9	75.3	69.4	94.3	99.5
	AlexNet	viii	84.4	78.9	73.2	40.0	82.2	78.9	99.9	98.9
randomized	Inception v3	ix	62.1	40.5	38.3	19.3	63.9	60.2	98.1	99.9
	ResNet-101	x	61.9	52.2	43.6	19.7	81.9	99.1	98.8	99.8
	DenseNet-161	xi	63.5	48.5	46.5	19.6	75.3	70.8	93.9	99.7
	AlexNet	xii	63.6	49.5	41.3	19.2	82.2	86.9	99.9	98.8

						_				_																_		
atior		after	separate		xix	2.3	2.3	2.5	2.5	0.0	39.2	0.0	2.4	28.0	24.0	22.3	24.2	0.0	0.0	0.0	2.3	1.4	1.6	1.7	1.9	0.0	0.0	2.5
xiii-xvi, and xxi-xxiv) before training that they are giving class information motione				aining.	xxiii	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0
efore inf	bottom 960	after	oint	no pretraining																								
v) bo class	bot	с э	. –	pretraining	ххіі	0.1	0.1	0.1	0.1	9.3	0.7	0.0	0.0	0.2	0.0	0.1	0.0	11.7	0.2	17.9	4.2	0.1	0.2	0.1	0.1	20.4	2	0.0
-xxi ing (ore		pre		1.0	0.1	0.1	0.1	2.8	9.5	4.2	2.5	0.0	0.0	0.1	0.0	3.2	9.8	5.0	2.9	0.2	0.1	0.1	0.1	3.2	8.6	12.9
giv	_	r before	ate				54.7						19.1															2.6
, and , are		afte	separate	-																								
-xvi, they	2			no pretraining	xix	ō	0	0.0	0	0	0.0	0	0	ö	0	0.0	0	0.0	0	°.	0.0	0.0	0	0	0	00	5	0.0
xiii– that t n.	top 40	after	joint		1		0.0	1.0	0.1	0.1	.3	0.0	0.0	0.2	1.0	0.0	.3	0.0	4	12	7.0	0.1	1.0	0.0	0.0	53	2	0.0
-viii, ates estic				pretraining	XX		0	0	0	4	0	0	0		0	0	0	8	52	67	15			0	0	52	5	= 0
components with 40 classes ($\geq 95.5\%$; column i, for rows v-viii, zed' data. This, together with Tables 11 and 12, demonstrates t ed on ImageNet, supports claim A, and calls claim I into question		before			xvii	0.1	0.0	0.0	0.0	98.9	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	98.8	7.96	96.4 72.2
emo emo		after	eparate		xvi	55.5	54.7	57.4	57.3	0.0	82.5	12.1	18.7	77.0	76.6	77.0	76.4	0.5	2.0	0.2	2.6	1.5	1.9	1.5	2.2	0.6	0.7	2.6
i, foi 2, d			8	50	XV	0.1	0.1	0.1	0.1	1.0	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.0
nd 1 ls clâ	ginal	after	nt.	no pretraining																								
colu 11 ai 1 call	ori	af	.of	pretraining	xiv	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	71.1	25.4	0.1	0.1	0.1	0.1	64.0	42.0	20.5 0.0
5%; les] and		ę		pretr	=	L	0	-	_	~	5	4	4	L	0	_	0	0	5	5	6	_	0	_	5	0,	<u>~</u>	n 6
≥95. Tab		before	e				3 0.0					_	4 78.4						_									3.0 89.5 2.5 77.9
1 40 classes (≥95.5%; column i, fc cogether with Tables 11 and 12, d supports claim A, and calls claim		after	separate		XII	~1	Cİ.	Ci.	ci.	ci.	39.	Cİ.	2.4	32.	28	25.	27.	2.5	ς.	ci.	ci.	1	-	-	ci.	ci (ગંભં
lass her v orts	0			no pretraining	x	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	25
40 c ogetl upp	bottom 960	after	joint		×	L	_	2	2	4	0	~	6	6	~	2	4	~	~	6	0	5	~		~		÷.	- 2
with is, to let, s	~			pretraining		с.	ć	с,	6	29.	6	ć	6	с,	6	ć	ć	46.	14.	50.	15.	2.	ci.	ci	ci.	57.	5	36.1 2.5
ents wil . This, ugeNet		before		-	X.	2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9 34.6
with all compone indomized' data. retrained on Ima	_	-	eparate		viii	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.5
com ed' , d on			•		NI.	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	07	5.2
with all c ndomize retrained	top 40	H	Ħ	no pretraining																								
	tot	aft	joi	guin	5	2.6	2.4	2.6	2.6	13.5	7.3	4.4	2.6	7.1	4.2	3.8	4.2	94.7	68.5	86.8	50.9	2.9	2.7	2.3	2.4	84.7	53.1	36.0 3.6
rfect id 'r; lers J		0		pretrai	2	~	~		+	Ļ	~	~	~	~	_	~	6		6	-	-	~	~	6	~	.	~	
ur pe: a, an ncod	_	before	e		>	5	2	4	3		5 98.3		7 85.8	0	6 1.	0	5		_	7.79 7.7		6 2.6		5		4 99.4		5 85.
s nea dati ge ei		after	separate			55.	54.7	57.4	57.	3.	82.5	23.	18.	17.0	76.6	77.0	76.5	9.3	Ξ	ì.	3.5	1.	2.1	2	2	9.4	=	3.5
icy is ock' ima				no pretraining	Ξ	2.5	2.6	2.4	2.4	2.7	2.4	2.4	2.7	1.9	2.2	2.0	2.9	3.0	2.4	2.5	2.5	2.5	2.8	2.3	3.0	3.4	5.2	241
cura , 'bl	original	after	joint		_		_	_	6		~	~	2 V	~	6	_	_		_	~	•		-+	~	~		~	0.00
on ac data y us				pretraining	-	3.0	3.0		2.5	43.2	24.2	1	5	9	3.5	4	4.1	-96	75.(95.8	60.0	2.5	2.4	2	5	16	66.6	3.6
catic eir' , ng b		before		4	-	2.6	2.3	2.5	2.3	1.66	99.4	99.2	95.8	2.4	1.6	1.4	2.9	8.66	<u>99.3</u>	99.1	95.5	2.6	2.6	2.1	2.5	8.66	5.66	95.5
the raini		<u>م</u>				_	:=	:=	.z	^	-5	.ii	ΥÜ	×	x	xi	xii	xIII	xiv	xv	ivi	xvii	шлх	xix	xx	xxi	XXII	xxiv
e cla h foi eir ti		_				on v3	-101	let-161	ŗ	on v3	-101	let-161	ŗ	on v3	-101				-101	-			-	let-161	÷.	50 NG	1	
mag bot to th						Inception v3	ResNet-101	DenseNet-161		Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet		ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet		KesNet-101	DenseNet-161 AlexNet
Table 10: Image classification accuracy is near perfect This holds both for 'their' data, 'block' data, and 'ra mplicitly to their training by use of image encoders F						EEG				image				EEG				image				EEG				image		
ıble nis h ıplic														ck								randomized						
Ц. 11 13						their								block								ran						

hottom 960	ton 40	original	hottom 960	ton 40	original		
	1000 classes			40 classes			
	to question.	implicitly to their training by use of image encoders pretrained on ImageNet, supports claim A, and calls claim I into question.	lageNet, supports claim	oders pretrained on Im	g by use of image enco	to their trainir	implicitly
giving class informatic	onstrates that they are g	This holds both for 'their' data, 'block' data, and 'randomized' data. This, together with Tables 11 and 12, demonstrates that they are giving class informati	a. This, together with '	and 'randomized' data	r' data, 'block' data, a	both for 'the	This holds
xi-xxiv) before trainin	ws v-viii, xiii-xvi, and y	Table 10: Image classification accuracy is near perfect with all components with 40 classes (\geq 95.5%; column i, for rows v-viii, xiii-xvi, and xxi-xxiv) before trainir	ients with 40 classes (\geq	erfect with all compon	ation accuracy is near p	mage classific	Table 10: I

mation				after	separate	20																								0.0
hat they are giving class informat			ottom 960	after	joint	no pretraining																								
ing cla			-			pretraining																								0 13.6
re giv			_	r before	ate																									0.0 15.0
they a				after	separ																									0.0
tes that	on.	1000 classes	top 40	after	joint	ning no pretraining	xviii	0.1	0.0	0.1	0.1	4.0	0.3	0.0	0.0	0.2	0.1	0.0	0.3	87.0	52.4	67.2	19.7	0.1	0.1	0.0	0.0	73.3	28.5	11.7
onstra	questi			before		pretraining																								96.4
demo	into (after be	arate													_			_	_	_		_				_	0.0
This, together with Tables 10 and 12, demonstrates t				af	sept	no pretraining																								0.1
les 10 â	supports claim A, and calls claim l		original	after	joint	pretraining no pr	xiv	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	71.1	25.4	0.1	0.1	0.1	0.1	64.0	42.0	30.5
h Tab	A, and			before		pret		0.1	0.0	0.1	0.1	92.8	90.5	89.4	78.4	0.1	0.0	0.1	0.0	93.0	90.5	89.5	<i>0.11</i>	0.1	0.0	0.1	0.2	93.0	90.5	89.5
r witl	aim A			after be	Darate		x	2.3	2.3	2.5								_			_	_	_		_					3.0
cogethe	orts cla				•,	no pretraining	x	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	2.3
	. •		bottom 9	after	joint	pretraining no p	x	3.1	3.1	3.2	2.5	29.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	46.8	14.7	50.9	15.6	2.2	2.7	2.0	2.8	57.1	9.4	36.1
data	ImageNet			before				2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9
uzed	n Imâ		-	after	eparate		viii	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.0
randomized' data. 7	ained or	sses				o pretraining	ΪŅ	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	2.5
a, and '	's pretra	40 cla	top	after	join	pretraining no	N,	2.6	2.4	2.6	2.6	13.5	7.3	4.4	2.6	1.7	4.2	3.8	4.2	94.7	68.5	86.8	50.9	2.9	2.7	2.3	2.4	84.7	53.1	36.0
ć' dat	code			before			~	2.2	2.8	2.4	2.4	99.4	98.3	97.9	85.8	1.8	1.1	1.2	2.5	99.4	98.5	7.79	85.7	2.6	2.8	2.5	2.2	99.4	98.5	7.76
bloch	se en			after	separate		N	55.5	54.7	57.4	57.3	3.4	82.5	23.3	18.7	0.77	76.6	77.0	76.5	9.3	11.0	5.7	3.5	1.6	2.1	1.5	2.2	9.4	11.2	5.1
lata, '	imag					no pretraining	Ξ	2.5	2.6	2.4	2.4	2.7	2.4	2.4	2.7	1.9	2.2	2.0	2.9	3.0	2.4	2.5	2.5	2.5	2.8	2.3	3.0	3.4	2.9	51
their' d	use of		original	after	joint	pretraining no pr	=	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	60.9	2.5	2.4	2.2	2.8	91.1	69.8	65.6 2.6
lor'	ng by			before		pret	_	2.6	2.3	2.5	2.3	7.66	99.4	99.2	95.8	2.4	1.6	1.4	2.9	8.66	99.3	99.1	95.5	2.6	2.6	2.1	2.5	8.66	99.3	99.1 06.6
s both	raini			ă					:=	::::	.≥	>	5	, IIV	ΪŅ	×	х	xi	xii	хш	_	_	xvi	хvіі	xviii	xix	хх		_	тх
raining. This holds both for 'their' data, 'block' data,	implicitly to their training by use of image encoders	_		_		_		Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161
ë. Th	itly to							EEG				image				EEG				image								image		
trainin	implic							their								block								randomized EEG						

			after	separate	ing	xxiii xxiv												0.1 24.2											
		bottom 960	after	joint	ng no pretraining	xxii x												0.0											
			ore		pretraini													0.0 0.0											
			ter before	eparate														70.0											
			af	s	ming	xix	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.2	0.0	0.0	0.4	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
	1000 classes	top 40	after	joint	ining no pretraining	xviii	0.1	0.0	0.1	0.1	4.0	0.3	0.0	0.0	0.2	0.1	0.0	0.3	87.0	52.4	67.2	19.7	0.1	0.1	0.0	0.0	73.3	28.5	11.7
			before		pretraining	xvii	0.1	0.0	0.0	0.0	98.9	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	98.8	96.2	96.4
			_	eparate		ivx	55.5	54.7	57.4	57.3	0.0	82.5	12.1	18.7	77.0	76.6	77.0	76.4	0.5	2.0	0.2	2.6	1.5	1.9	1.5	2.2	0.6	2.0	0.0
		_			retraining	xv	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.1
		origina	after	joint	pretraining no p	xiv	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	71.1	25.4	0.1	0.1	0.1	0.1	64.0	42.0	30.5
			before		Ъ		0.1	0.0	0.1	0.1	92.8	90.5	89.4	78.4	0.1	0.0	0.1	0.0	93.0	90.5	89.5	9.77	0.1	0.0	0.1	0.2	93.0	90.5	89.5
	_		-	eparate	_	лi	2.3	2.3	2.5	2.5	2.5	39.4	2.6	2.4	32.1	28.1	25.9	27.8	2.5	3.7	2.6	2.3	1.6	1.8	1.9	2.4	2.5	2.2	3.0
		0961			o pretraining	x	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	53
		bottom 960	after	joint	pretraining no	×	3.1	3.1	3.2	2.5	29.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	46.8	14.7	50.9	15.6	2.2	2.7	2.0	2.8	57.1	9.4	36.1
			before			ix	2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9
			after	separate		nin	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.0
tion.	0 classes	top 40	after	joint	no pretraining	iiv	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	2.5
to dues	4				pretraining	.1	2.6	2.4	1 2.6	1 2.6	13.5							4.2											
l int			before	te			.5 2.2	54.7 2.8	4.2	3.24	.4 99.4	_		18.7 85.8						2.89 0.11		3.5 85.7				2.2 2.2	6	.2 98.5	
ls clain			after	separate	raining	H		2.6 54					2.4 23			2.2 76					2.5 5					3.0 2			
ImageNet, supports claim A, and calls claim I into q		original	after		pretraining no pretraining	:=	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	6.09	2.5	2.4	2.2	2.8	91.1	69.8	65.6
im A,			before		pre		2.6	2.3	2.5	2.3	7.66	99.4	99.2	95.8	2.4	1.6	1.4	2.9	8.66	99.3	99.1	95.5	2.6	2.6	2.1	2.5	9.66	99.3	1.00
ts cla	_		-					:=	:8	.×	>	i,	vii	Ϋ́Ξ	ix	×	x	xii	xiii	xiv	xv	xvi	xvii	xviii	xix	хх	xxi	xxii	xxiii
support	•						Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161			_	DenseNet-161
Net,							EEG				image				EEG				image				EEG				image		
nage)						their								block								randomized						

— بزيد. ت ا		2		· · ·	<u>_</u>	~	- -	*	5			1	C			~	-	<u>_</u> 1			
nd xx nere is thei	separat	xxiv	22	210	70	39.2	0.0	5.4	28.0	24.0	22:			0.0		1.6					
ix ar us th tly tc	nu no pretraining	xxiii	0.1 0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0
than perfect (\leq 46.0%) before training when discarding the top 40 principal components (columns ix and xxi hor 40 classes and 1000 classes and both for 'their' data, 'block' data, and 'randomized' data. Thus there is all components. This demonstrates that they are giving little more than class information implicitly to their or and further supports claim A and calls claim I into question.	2	xii	0.1 0.1	10	3	17	0.0	0.0	1.2	0.0	1.0		12	6.0		12	E	-	4.	ç 4	00
colu data n imj	pretraining	x	00	00	6	0	0	0		0	00		0	5		0	0		22	0.5	
nts (ized' ation		xxi	0.1	0.1	12.8	9.5	14.2	12.5	0.0	0.0	0.1	13.2	9.8	15.0	0.2	0.1	0.1	0.1	13/2	15.0	12.9
pone domi form	separate	хх	55.5 54.7	57.4	0'0	70.5	0.1	19.1	69.8	70.5	72.2	0.0	0.1	0.2	25	2.3	2.0	1.6	0.0	1.0	2.6
comj 'rano' ss inj	raining	xix	0.1	0.0	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.0	0.0	0.4	0.0	0.2	0.1	0.1	0.0		0.0
, and n classes ^{top 40}																					
orinc data, thar	retraining	xviii	0.0	0.1	4.0	0.3	0.0	0.0	0.2	0.1	0.0	87.0	52.4	67.2	01	0.1	0.0	0.0	73.3	C:07	0.0
6.0%) before training when discarding the top 40 principal components (c and 1000 classes and both for 'their' data, 'block' data, and 'randomized' This demonstrates that they are giving little more than class information upports claim A and calls claim I into question.	đ.	xvii	0.1	0.0	0.0	95.6	95.8	72.5	0.0	0.0	0.0	8.86	96.2	96.4	0.1	0.0	0.0	0.3	8.86	206.4	72.2
arding the top ² eir' data, 'bloc giving little m I into question	cparate	xvi	55.5 54.7	57.4	c'/c	82.5	12.1	18.7	77.0	76.6	74.0	0.5	2.0	0.2	15	1.9	1.5	2.2	0.0	0.0	2.6
ng th data, ng li to qu		хv	0.1	0.1	1.0	0.0	0.0	0.3	0.0	0.1	0.0	10	0.0	0.1	1.0	0.1	0.1	0.2	0.1	0.0	0.0
cardir heir' e givi n I in	om no pretraining																				
disc br 'th are / are !laim	y pretraining	xiv	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	75.1	56.4	71.1	10	0.1	0.1	0.1	040	30.5	0.0
when oth fo ut they calls c	pre	xiii	0.1 0.0	0.1	92.8	90.5	89.4	78.4	0.1	0.0	0.1	93.0	90.5	89.5	0.1	0.0	0.1	0.2	93.0	5.0%	6.77
66.0%) before training when discarding the and 1000 classes and both for 'their' data, This demonstrates that they are giving li supports claim A and calls claim I into qu	arate	xii	23 23	2.5	\perp												_				2.5
traini tes ar rates I A a		xi	2.5 2.5	2.4	2.7	2.1	2.6	2.4	2.5	2.2	1.2	2.4	2.5	2.1	2.7	3.0	1.9	3.1	171	1.0	2.5
oefore 1 00 class 2monst s claim ^{botom 960}	nut no pretraining																				
) befc 000 c demc prts cl	or pretraining 1	x	3.1 3.1	6. c 2. c	29.4	9.5	3.8	2.6	3.6	5.8	9.9 9.9	46.8	14.7	50.9	22	2.7	2.0	2.8	57.1	36.1	2.5
46.0% and 1 . This suppo	-	ix	2.5 2.4	2.5	+'2 2'2	3.0	2.7	7	2.6	4	5.5	200	7	43.9	3.0	2.6	3.1	2.6	2:	- 0	16
ect (≤40 classes a onents. ' further s			55.5		_							+		80 c 80 c 4 6		_				0.4	
t than perfect (≤ oth for 40 classes pal components eNet and further ^{0 classes}	ng separ		2.5 5 2.4 5																		
r than per oth for 40 ipal comp geNet and	t o pretraini				10	(4	(1	(4		(1)	- ((4.6	1 ()		(4	~		4.6	1.64
r than j oth for ipal co geNet a top 40 top 40	ii.	.i	2.6 2.4	2.6	13.5	7.3	4.4	2.6	7.1	412	80 C	94.7	68.5	86.8	2.9	2.7	2.3	2.4	84.7	36.0	3.6
lowe ds b¢ rinc Imag	pretra	^	ci 80	4 -	4 4	3	6	8	8		ci v	4	5			~	5	2	4,4	оr	2
uch ld s hold 40 pr 1 on L		iv	55.5 2.7 54.7 2.1	40	4 99			1.7 85.8	.0	.6	0.4	2.99 2.0		5.7 97.7	+	2.1 2.8	1.5 2.1		4.00	21 20	5 85.
is mu This e top ² ained			5 54 54	4 57	+ C +	4 82.5		7 18.7	CL 6	2 76	0.77.0	6		5.0					4 ر م		, c
racy xiv). le the pretra	nut no pretraining	=	56	ċ,	77	5.4	2.4	5	1.5	21	~i ~	3.0	2.4	ci c	10	2.8	5	3.0	n e	4 6	17
accur xi-xx utside lers p	ing no	:=	3.0 3.0	3.1	3.2	24.2	7.2	2.6	6.8	3.5	1.1	1.1	5.0	95.8 60.0	2.5	2.4	2.2	2.8	1.1	09.8 65.6	3.6
tion nd x on o ncoc	pretraining				4							6	-	64					5,0		,
ifficat vi, a matic lefore		-	2.6	2.5	2.266	99.4	99.2	95.8	2.4	1.6	4.0	90.8	99.3	99.1	2.6	2.6	2.1	2.5	8.66		
class jiii–x nfori f ima			:=	ш. 19	2 >	.i		μŅ	xi ix	×	19 19	XIII		61 xv	+		61 xix	xx	XX	5	
lage iii, x ass i se o			Inception v3 ResNet-101	DenseNet-161	AleXINET Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	cention v3	ResNet-101	DenseNet-161	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	Resivet-101 DenseNet-161	AlexNet
3: Im s v-v ss cl by u			EEG Inc Re	ă₹	image Inc		ŭ	AL A	EEG Inc	Ŗ	ă ₹	image Inc		ď ₹	EEG Inc		Ď		image Inc	žČ	V
Table 13: Image classification accuracy is much lower than perfect (\leq 46.0% for rows v-viii, xiii-xvi, and xxi-xxiv). This holds both for 40 classes and 1 much less class information outside the top 40 principal components. This training by use of image encoders pretrained on ImageNet and further supp $\left \int_{\text{botne}} \frac{\sigma_{\text{training}}}{\sigma_{\text{training}}} \right _{\text{botne}} \frac{\sigma_{\text{training}}}{\sigma_{\text{training}}} = $			ш		ha							¦ª			randomized E			ł	=		
Tat for mu trai			their						block						randoi						

is i	8 -	
wer than perfect (\leq 46.0%) before training when discarding the top 40 principal components (columns ix and xxi, both for 40 classes and 1000 classes and both for their' data, 'block' data, and 'randomized' data. Thus there is a both for an original components of the theorem is the theorem of the theorem is the theorem of the theorem is the theorem in the theorem is the theorem is the theorem in the theorem in theorem in the theorem in	Ē	
t th <mark>an</mark>	3	
ix Suc	, E	090
		hottom 060
lun ata.	d II	2
: q <mark>S</mark>	=	
ts (ed'	01	
ent	Па	-
lon	110	
and		
S ,		
and and	11 C1d2 1000 classes	ton 40
li i i		4
dat th	Ξ	
k, 10	5	
oc p	IOL	_
b b b f f f	est	
the the	an J	
ng da		
ir' ir'	H	arianal
sca	B	
di di	y a Clai	
h fo	ls s	
wh oot	cal	
ng d h	incipal components. This demonstrates that they are giving inter- nageNet and further supports claim A and calls claim I into question.	
ini ar	v al	
tra ses	n A N A	
ore las	air	090
efc 0 c	s cl	ottom
م 00 و	h tr	4
0% d 1	bb	hottom 060
46. T	- ns	
se iv	ner	-
sct las	n II	
erfe 0 c	d fi	
r 46	an "	
fo	upar cu igeNet a	ton 40
ar tl oth	s S *	
s be	nag	
l lo bld	ЧŢ	
p he	₽ <u></u>	_
n id	d ja	
Si V T.	rai	
ac.	ret "	
cur - X	s b	original
ac ac	der	2
on d	2 S	
ati	en	
ific vi,	lge "	
Table 13: Image classification accuracy is much lower than perfect ($\leq 46.0\%$) before training when discarding the top 40 principal components (columns ix and xxi, for rows v-viii, xiii-xvi, and xxi-xxiv). This holds both for 40 classes and 1000 classes and both for 'their' data, 'block' data, and 'randomized' data. Thus there is not how of the intermediate the tot 40 classes and 1000 classes and both for 'their' data, 'block' data, and 'randomized' data. Thus there is not how of the intermediate the tot 40 classes and to the tot 40 classes and both for 'the the tot' data, 'block' data, and 'randomized' data. Thus there is not how of the intermediate the tot 40 classes are also been also be to 40 classes.	trained tess class information outside die top 40 principal components. This definitions date die grying nuce more date class information impricitly to ded training by use of image encoders pretrained on Imagelset and further supports claim A and calls claim I into question.	
XIII XIII	Jf i	
age ii,	se c	
- <mark>vi</mark>	, ng	
3:] s v-	à s	
	ing	
r rc	aini	
Ta Io	tr_{3}	

			a	sep																										
					aining	ххііі	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0
		m 960	after	Ħ	no preti																									
		botto	aft	.io	- gui	xxii	0.1	0.1	0.1	0.1	9.3	0.7	0.0	0.0	0.2	0.0	0.1	0.0	1.7	0.2	17.9	4.2	0.1	0.2	0.1	0.1	20.4	3.5	13.6	0.0
					pretraining														Γ											
			before			xxi	0.1	0.1	0.1	0.1	12.8	9.5	14.2	12.5	0.0	0.0	0.1	0.0	13.2	9.8	15.0	12.9	0.2	0.1	0.1	0.1	13.2	9.8	15.0	12.9
			after h	arate		xx	55.5	54.7	57.4	57.3	0.0	70.5	0.1	19.1	8.69	70.5	72.2	70.0	0.0	0.1	0.2	2.5	2.5	2.3	2.0	1.6	0.0	0.1	0.0	2.6
			3	ser		cix	0.1	1.0	0.0	0.1	0.0	0.0	0.0	.3	1.0	1.0	0.0	0.2	0.0	0.0	.4	0.0	0.0	0.2	1.0	1.0	0.0	0.0	0.0	0.0
	sses	_			no pretraining	Î		Ŭ	Ŭ	Ŭ	Ĩ	Ŭ	Ŭ	Ŭ		Ŭ	Ŭ	Ŭ		Ŭ	Ŭ	Ŭ		Ŭ	Ŭ	Ŭ		Ŭ	Ŭ	Ŭ
	000 cla	top 4(after	joint		.=	1	0	_	_	0	3	0	0	5	_	0	3	0	4	6	2	_	_	0	0	3	5	2	0
					retraining	ivx	0	0	0	0	4	0	0	0	0	0	0	0	87	52	67	19.7	0	0	0	0	73	28	Ξ	0
-			before		ď	xvii	0.1	0.0	0.0	0.0	9.86	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	98.8	96.2	96.4	72.2
		_		ate			5.5	4.7	7.4	57.3		_					_	_			_	2.6		_	_			_	_	_
ļ			after	separa																										
2					training	XV	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.1	0.0
		riginal	after	oint	no pretraining																									
		0	69	·-		xix	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	71.1	25.4	0.1	0.1	0.1	0.1	64.0	42.0	30.5	0.0
5						1																								
3	_		before														_	_			_	9.77		_	_			_	_	_
			after	separate		xii	2.3	2.3	2.5	2.5	2.5	39.4	2.6	2.4	32.1	28.1	25.9	27.8	2.5	3.7	2.6	2.3	1.6	1.8	1.9	2.4	2.5	2.2	3.0	2.5
					aining	x	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	2.3	2.5
I		n 960	after	ŧ	no pretrai																									
3		bottor	afte	joir		×	3.1	3.1	3.2	2.5	29.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	46.8	14.7	50.9	15.6	2.2	2.7	2.0	2.8	57.1	9.4	36.1	2.5
Š					pretraining																.,									
5			before			×.	2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9	34.6
			after	barate		viii	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.0	3.5
				sej		vii	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	2.5	2.5
	ses				trair																									
	40 classer	top 4	after	joint	ng no pre	vi.	9	4	9	9	i.	ci	4	9	-	¢i	œ.	6	r.	5	œ.	50.9	6.	5	ej.	4	<i>L</i> :	-	0.	9
້າຍ					retrainir		5	0	61	61	13	6	4	61	6	4	ŝ	4	94	68	86	50	0	0	0	0	84	53	36	ŝ
			efore		-	>	2.2	2.8	2.4	2.4	99.4	98.3	97.9	85.8	1.8	11	1:2	2.5	99.4	98.5	<i>L.</i> L6	85.7	2.6	2.8	2.5	2.2	99.4	98.5	<i>L'L6</i>	85.7
5		_	er b	rate		N.		54.7		_		82.5					_	76.5			_			2.1	_				5.1	_
			after	separate	50																			~	~					
					no pretraining	=	5	2.6	ċ,	ä	i,	4.2	ċ,	'n	1	2.2	õ	6	3.	ö.	2	2.5	5	6	2	3.0	3.	õ	2.1	''
2		original	after	joint																										
					pretraining	=	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	60.9	2.5	2.4	2.5	2.8	91.1	69.8	65.6	3.6
2			ore		pre		5.6	2.3	5.5	5.3	1.0	99.4	2.0	8.8	4.7	1.6	4.	6.9	8.0	99.3		5.5	2.6	5.6	1.1	2.5	8.0	.3	99.1	5.5
ີ່ຄຸ	_		before				C 4		(4		56	96	90	<u>6</u>	(1	_	_		-		<u> </u>	56						_	_	_
										2	>	-	-	Ϊ	i.		51 xi			xix	-	xvi		-	51 xix	хх	xxi		-	xxiv
5							Inception v3	ResNet-101	DenseNet-161	cNet	Inception v3	ResNet-101	DenseNet-161	(Net	Inception v3	ResNet-101	DenseNet-161	(Net	Inception v3	ResNet-101	DenseNet-161	cNet	Inception v3	ResNet-101	DenseNet-161	(Net	Inception v3	Net-101	DenseNet-161	cNet
a A								Resl	Den	AlexNet			Den	AlexNet	Ince	Resl	Den				Den	AlexNet		Resl	Den	AlexNet			Den	AlexNe
naming of use of muge encourts prenamed of							EEG				image				EEG				image				EEG				image			
															ck								randomized							
1							their								block								ran							

લ છે			after	separate		xxiv	2.3	2.3	2.5	2.5	0.0	39.2	0.0	2.4	28.0	24.0	22.3	24.2	0.0	0.0	0.0	2.3	1.4	1.6	1.7	1.9	0.0	0.0	0.0
паш		096			no pretraining	xxiii	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0
TIIIS suggests uidt Joint		bottom 960	after		pretraining no	ixxii	0.1	0.1	0.1	0.1	9.3	0.7	0.0	0.0	0.2	0.0	0.1	0.0	11.7	0.2	17.9	4.2	0.1	0.2	0.1	0.1	20.4	3.5	13.6
212 U16			before		pret	xxi	0.1	0.1	0.1	0.1	12.8	9.5	14.2	12.5	0.0	0.0	0.1	0.0	13.2	9.8	15.0	12.9	0.2	0.1	0.1	0.1	13.2	9.8	15.0
Dagus			after	separate		xx	55.5	54.7	57.4	57.3	0.0	70.5	0.1	19.1	69.8	70.5	72.2	70.0	0.0	0.1	0.2	2.5	2.5	2.3	2.0	1.6	0:0	0.1	0.0
1115	sses	0			no pretraining	xix	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.2	0.0	0.0	0.4	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
components.	1000 classes	top 40	after	joint	pretraining no	xviii	0.1	0.0	0.1	0.1	4.0	0.3	0.0	0.0	0.2	0.1	0.0	0.3	87.0	52.4	67.2	19.7	0.1	0.1	0.0	0.0	73.3	28.5	11.7
comba			before		ad	xvii	0.1	0.0	0.0	0.0	6'86	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	98.8	96.2	96.4
			after	separate		ivx	55.5	54.7	57.4	57.3	0.0	82.5	12.1	18.7	77.0	76.6	77.0	76.4	0.5	2.0	0.2	2.6	1.5	1.9	1.5	2.2	0.6	2.0	0.0
		lal			no pretraining	xv	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.1
		original	after	joint	pretraining no	xiv	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	1.17	25.4	0.1	0.1	0.1	0.1	64.0	42.0	30.5
sul r			before		Ъ	xiii	0.1	0.0	0.1	0.1	92.8	90.5	89.4	78.4	0.1	0.0	0.1	0.0	93.0	90.5	89.5	6.77	0.1	0.0	0.1	0.2	93.0	90.5	89.5
	_		after	separate		xii	2.3	2.3	2.5	2.5	2.5	39.4	2.6	2.4	32.1	28.1	25.9	27.8	2.5	3.7	2.6	2.3	1.6	1.8	1.9	2.4	2.5	2.2	3.0
nodm		096			pretraining	xi	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	2.3
		bottom 960	after	joint	pretraining no pretraining	x	3.1	3.1	3.2	2.5	29.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	46.8	14.7	50.9	15.6	2.2	2.7	2.0	2.8	57.1	9.4	36.1
II noli			before		ц	.×	2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9
ווברזוב			after	separate		viii	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.0
	40 classes	040	after	ti	no pretraining	ΪŅ	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	2.5
n L	40 c	toj	aft	joj	pretraining	.i	2.6	2.4	2.6	2.6	13.5	7.3	4.4	2.6	7.1	4.2	3.8	4.2	94.7	68.5	86.8	50.9	2.9	2.7	2.3	2.4	84.7	53.1	36.0
			before			>	2.2	2.8	2.4	2.4				82.8	1.8	Ξ		2.5			1.7.6			2.8	2.5	2.2		98.5	67.7
C(2)			after	separate		vi	55.5	54.7	57.4	57.3	3.4	82.5	23.3	18.7	77.0	76.6	77.0	76.5	9.3	11.0	5.7	3.5	1.6	2.1	1.5	2.2	9.4	11.2	5.1
s claim		original	after	int	no pretraining	H	2.5	2.6	2.4	2.4	2.7	2.4	2.4	2.7	1.9	2.2	2.0	2.9	3.0	2.4	2.5	2.5	2.5	2.8	2.3	3.0	3.4	2.9	2.1
both for their take, brock data, and failubilitied hurting, not helping, and supports claim C(2).	1	OL	al	.jc	pretraining	:=	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	6.09	2.5	2.4	2.2	2.8	1.19	69.8	65.6
and si	_		before			-	2.6	2.3	2.5	2.3	66.7	99.4	99.2	95.8	2.4	1.6	1.4	2.9	8.66	99.3	99.1	95.5		_	2.1	2.5	8.66	_	66
ing, :							v3 i	ii I	_	ż	v3 v	01 vi	-161 vii	Ξ	v3 ix		-161 xi	xii		01 xiv	-161 xv	xvi			-161 xix	хх			-161 xxiii
ot help	1							ResNet-101	DenseNet-16	AlexNet	a Inception v.	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet		ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-16	AlexNet		_	DenseNet-161
ng, n							EEG				image				EEG				image				randomized EEG				image		
nurti							their								block								randomiz						

Suppo	rts cl	supports claims C(1) and D.	1 3 m (1) a	and D.	20100	1111			nonino II		111			1	****	mof mm		٥							Ì	
			-						40 classes					-						1000 classes						
					original		_		top 40			bottom 960				original		_		top 40		_	-	ottom 960		
				before	after	al	after be	before	after	after	before	after		-	before	after	at		before	after	afi	ter before	ore	after	afte	ы
							separate		joint	separate	63	joint	•.	separate		joint	sep.	separate		joint	sept	eparate		joint	separate	rate
				pre	pretraining no pretraining			pretr	aining no pretraining			pretraining no pretraining				pretraining no pretraining			pretraining	ing no pretraining	-		pretraining	g no pretraining	-	
					:=	ä	<u>.</u> 2	v					xi	\vdash	xiii	xiv	xv			viii				i xxii		xxiv
their	EEG	Inception v3		2.6	3.0	2.5	55.5	2.2					2.5		0.1	0.1	0.1			0.1						2.3
		ResNet-101	:=	2.3	3.0	2.6	54.7	2.8	2.4	2.4 54.7	7 2.4		2.5	2.3	0.0	0.1	0.1	54.7	0.0	0.0			0.1 0.1			2.3
		DenseNet-161	:::	2.5	3.1	2.4	57.4	2.4					2.4		0.1	0.1	0.1			0.1						2.5
		AlexNet	2	2.3	2.5	2.4	57.3	2.4					2.6		0.1	0.1	0.1			0.1						2.5
	image	I 1	^	7.66	43.2	2.7		99.4					2.7		92.8	16.5	0.1			4.0						0.0
		ResNet-101	ż	99.4	24.2	2.4	82.5	98.3		2.9 70.5			2.1		90.5	2.6	0.0	82.5 9:		0.3		70.5				9.2
		DenseNet-161	l vii	99.2	7.2	2.4		97.9					2.6		89.4	0.1	0.0			0.0						0.0
		AlexNet	ЧШЛ	95.8	2.6	2.7		85.8					2.4	24	78.4	0.0	0.3			0.0						2.4
block	EEG	Inception v3	ix	2.4	6.8	1.9	77.0	1.8		Ĩ			2.5		0.1	0.4				0.2						8.0
		ResNet-101		1.6	3.5	2.2	76.6	1.1		2.5 70.5			2.2	28.1	0.0	0.1		76.6		0.1						4.0
		DenseNet-161	_	1.4	4.1	2.0	77.0	1.2					2.7		0.1	0.1				0.0						2.3
		AlexNet	xii	2.9	4.1	2.9		2.5		6	_		2.5		0.0	0.1				0.3						4.2
	image		х	8.66	96.4	3.0	1	99.4					2.4	2.5	93.0	75.1	0.1			7.0						0:0
		ResNet-101		99.3	75.0	2.4		98.5					2.5		90.5	56.4	0.0			2.4						0.0
		DenseNet-161	xv	99.1	95.8	2.5	5.7	7.70					2.1	2.6	89.5	71.1	0.1	_		57.2						0.0
		AlexNet	xvi	95.5	60.9	2.5		85.7			_		2.5	2.3	9.77	25.4	0.0	_		9.7						2.3
randomized	EEG	Inception v3	хин	2.6	2.5	2.5	1.6	2.6					2.7		0.1	0.1	0.1			0.1						4
		ResNet-101	-	2.6	2.4	2.8	_	2.8			_		3.0	_	0.0	0.1	0.1	_		0.1						1.6
		DenseNet-161	-	2.1	2.2	2.3	1.5	2.5					1.9		0.1	0.1	0.1	_		0.0						1.7
			хх	2.5	2.8	3.0	_	2.2			_		3.1	_	0.2	0.1	0.2	_		0.0						1.9
	image		xxi	8'66	91.1	3.4		99.4					2.1		93.0	64.0	0.1			3.3						0.0
		ResNet-101	-	99.3	69.8	2.9		98.5	53.1	2.6 4.0	34.1	9.4	3.1	52	90.5	42.0	0.0	2:0	96.2	28.5	0.0	0.1	9.8 3.5		0.0	0.0
		DenseNet-161	_	1.66	65.6	2.1	5.1	7.76			_		2.3	_	89.5	30.5	0.1	_		1.7						0.0
		AlexNet	xxiv	95.5	3.6	2.4	_	85.7			_		2.5	_	77.9	0.0	0.0	_		0.0		_				2.5

S 50	_			te		2	6	3	5	2	0	61	0	4	0	•	e	61	0	0	0	ŝ	4	9	2	6	0	0	0.0
r rov ainir			after	separate		xxiv																							2.5
chance after separate training on 'block' data in the bottom 960 components (columns xii and xxiv, for sparate training is able to extract class from confounded data but not nonconfounded data and that joint tra s claims C(1) and D.		60			no pretraining	ххш	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0
at joi		bottom 96(after	. <u> </u>		9	-	-	P	2	e.	0	0.	0.	2	0	P	0.	6	5	6	Ċ.	P	9	-	2	4.	ŝ	13.6 0.0
and d th					pretraining	x	0	0	0	0	6	0	0	0		0	0	0	Π	0	17	4	0	0	0	0	50	ς i	0
is xii ta an			before			ххі	0.1	0.1	0.1	0.1	12.8	9.5	14.2	12.5	0.0	0.0	0.1	0.0	13.2	9.8	15.0	12.9	0.2	0.1	0.1	0.1	13.2	9.8	15.0 12.9
omponents (columns xii and xxiv, i nonconfounded data and that joint			after	separate		хх	55.5	54.7	57.4	57.3	0.0	70.5	0.1	19.1	69.8	70.5	72.2	70.0	0.0	0.1	0.2	2.5	2.5	2.3	2.0	1.6	0.0	0.1	2.6
(<mark>col</mark> unde					aining	XIX	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.2	0.0	0.0	0.4	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
lents	000 classes	top 40	after	. ല	no pretraining																								
nonce	100				pretraining	IIIVX	0.1	0.0	0.1	0.1	4.0	0.3	0.0	0.0	0.2	0.1	0.0	0.3	87.0	52.4	67.2	19.7	0.1	0.1	0.0	0.0	73.3	28.5	0.0
con not n			before		h	IIVX	0.1	0.0	0.0	0.0	6.86	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	98.8	96.2	96.4 72.2
1960 co but not		-	after be	eparate	_	ivx	55.5	54.7	57.4	57.3	0.0	82.5	12.1	18.7	77.0	76.6	77.0	76.4	0.5	2.0	0.2	2.6	1.5	1.9	1.5	2.2	0.6	2.0	2.6
ttom data			a		ing	XV	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.0
e bo ded		inal	-	Ŧ	no pretraining																								
in th foun		orig	after	joir	ining n	XIX	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	71.1	25.4	0.1	0.1	0.1	0.1	64.0	42.0	30.5
lata con			0								I 1																		
ck' d from	_		before	e	_			_	_	_			_	_		_				_	_	_							0 89.5 5 77.9
bloc lass i			after	separate		x	5	2	5	6	5	39.	Ċi	2.4	32.	58 78	25.	27.	5	3.7	6	5	1	1.8	-	à	2	21	3.0
t on tet el		0			etraining	x	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	23
ning extra		bottom 96	after	joint	pretraining no pretraining	x	_	-	5	S	4	5	8	9	9	80	S	4	80	5	6	9	7	2	0.	8		4	36.1 2.5
e to					pretrainir		ŝ	ŝ	e	61	29	6	ŝ	61	3	0	ŝ	ŝ	46	14	50	15	67	0	0	61	57	6	8 0
after separate training on 'block' data in the bottom training is able to extract class from confounded data s C(1) and D.			before			X	2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9 34.6
r sep ing i 1) ar			after	separate		VIII	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.5
after train s C(9,	aining	NII.	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	52
chance eparate ts claim	classes	op 40	after	oint	no pretraining																								
		-		. –		5	2.6	2.4	2.6	2.6	13.5	7.3	4.4	2.6	7.1	4.2	3.8	4.2	94.7	68.5	86.8	50.9	2.9	2.7	2.3	2:4	84.7	53.1	36.0 3.6
bove that	-		before		pretr	^	2.2	2.8	2.4	2.4	9.4	8 .3	97.9	85.8	1.8	1.1	1.2	2.5	9.4	98.5	27.7	85.7	2.6	2.8	2.5	2.2	9.4	98.5	7.7 85.7
lso a ests nd su		_		separate	_	N	55.5	54.7	57.4	57.3	3.4	82.5	_		77.0	76.6	77.0	76.5		11.0		_	1.6	2.1	1.5	2.2	9.4	11.2	3.5
' is a sugg ta, ai			afi		'ng	Ξ		2.6		2.4		2.4					2.0			2.4			2.5	2.8	2.3	3.0	3.4		2.1
racy 15, 3 y da	•	nal	-	+	no pretraining																								
accu àble n an		origi	after	join	pretraining n	=	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	60.9	2.5	2.4	2.2	2.8	1.10	8.69	65.6 3.6
ith T froi			0		pretra	_		~		~		_	~	~				~	~	~	_				_		~	~	
ificat er wi class	_		before				2.6	2.3	2.5	- 23	.66	99.4	99.2	95.8	2.4	1.6	4.1	2.5	8.66	99.3	1.00	95.5	2.6		5.1	2.5			i 99.1
lassi geth ract (_			-	191 iii	_	3		161 vii	viii			161 xi	xü		-	161 xv	xvi				хх	-		161 xxiii xxiv
EG c is, to) exti							Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161 AlexNet
Table 16: EEG classification accuracy is also above ix—xii). This, together with Table 15, suggests that s is not able to extract class from any data, and suppor							EEG In	Υ.	D		image In		Ω	A	EEG In	R	D		image In	×	D	V	EEG In	R	D		image In	~	ΡA
-xii) -xii) ot al							Γ				r-								r-				randomized E				r-		
Tat ix– is n							their								block								rando						

			te	Т	2		j v	, vo	0	61	0	4	0	0	<u></u>		2,0		i m	4	9	1.7	أرد	0,0	0,0	2.5
ii–xv		after	separate		XIXX	2.3	10	i ci							22.3											
i, xii	05			no pretraining	ххш	0.1		0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	1.0	0.0	0.0	0.0	0.2	0.1	0.1	0	0.0	0.0	0.0
e situations (some of columns ii, iv, vi, viii, x, xii, xiv, xvi, xvi	bottom 960	after			ихх	0.1	1.	12	3	0.7	07	0	1.2	0.0	0.1	2		29	2	1	2	0.1		4.	S 4	00
N SMO				pretraining	x	0		, 0	6	0	0	0	0	0	0		= °	2	4		0	0		ខ្ល	m <u>c</u>	10
or rc	_	before		-	XXI	0.1	50	0.1	12.8	9.5	14.2	12.5			0.1		13.2	15.0	12.9	0.2	0.1	0.1	5	13.2	8.6	12.9
kiv, f		after	separate		XX	55.5	1.40	57.3	0.0	70.5	0.1	19.1	69.8	70.5	72.2	/0.0/	8.0	10	2.5	2.5	2.3	2.0	-	0.0	50	2.6
ud x:	s			no pretraining	XIX	0.1	1.0	0.1	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.1	-	0.0	0.0	0.0
cii, an	top 40	after				0.1	2 -	. –	0	0.3	0	0	2	-	0.0			40	1	_	-	0.0		m 1	νir	0.0
x, x	-			pretraining	IVX	00		60	4	ø	Ö	Ö	0	0	00	0	20	5.25 6.1.3	6	0	Ö	0	5	(ř. 1	Xi =	10
iii, x	_	before		:	IIVX	0.1		0.0	98.9	92.6	95.8	72.5	0.0	0.0	0.0	0.0	8.86	70%	72.2	0.1	0:0	0.0	6.0	8.8	296	72.2
i, xv		after	separate	-	IVX	55.5	1.40	57.3	0.0	82.5	12.1	18.7	77.0	76.6	77.0	/0.4	33	0.0	5.6	1.5	1.9	1.5	7.7	0.6	0.0	2.6
v, xv				training	xv	0.1	5	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	10	1.0	0.0	0.0	0.1	0.1	0.1	7.0	0.1	0.0	0.0
ii, xi	original	after	joint	pretraining no pretraining	^	1,			5	9	_	0	4	_				4 -	• 4	_	_					
х, х				pretrainin	x	0.1		60	16.	2.6	Ö	Ö	0	0	0.1	0	e i	Ŕ F	52	°.	Ö	0.1	5	ą:	48	0.0
viii,		before		-	ШΧ	0.1	0.0	10	92.8	90.5	89.4	78.4	0.1	0.0	0.1	0.0	95.0	C.06 2.08	6.77	0.1	0.0	0.1	0.7	93.0	50.5	6.77
, vi,		after	separate	:	их	2.3	0.4	25	2.5	39.4	2.6	2.4	32.1	28.1	25.9	8.12	22	2.0	12	1.6	1.8	1.9	2.4	22	22	25
ii, i Im D	_			ranng	x	2.5	96	5	2.7	2.1	2.6	2.4	2.5	2.2	2.7	22	4 1	9-	2.5	2.7	3.0	1.9	3.1	5.1		25
e situations (some of columns ii, Tables 18 and 19, supports claim	ottom 960	after	joint	pretraining no pretraining	×			0.00	4	8	~	6	9	~	<u>د</u>	+	~ 1	~ 0		2	2				.	
colu	1			pretramn		сi с	n e	2.5	29.	9.5	ŝ	ē.	3	6	3.5	ŝ	9 :	<u>4</u> 9	15.	5	Ċ1	6	7	57.	ې کې	2.5
ne of 9, su		before		-	XI	2.5	4 V 7 C	4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	40.0	34.1 43.0	34.6	3.0	2.6	3.1	97	46.0	34.1	34.6
(son 1		after	separate		VIII	55.5	1.40	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	0.0/	2.9	0.0 0.8	3.2	2.5	2.3	2.0	1.6	2.9	40	3.5
tions 18 a				no pretraining	IIA	2.5	7 t 7 t	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	777	2.1	100	1 7	2.6	2.9	2.5	672	3.0	970	25
situat ables	top 40	after			-	5	+ v			~		ŝ		~	~						2	~	+			
				pretraining	-	2.6	4 c	i	13.	7.3	4	5	7.	4	3.8	4	đ ŝ	C 80 8 98	205	2	61	ci (Ż	Z (22	3.6
in sc er wi	_	before			^	2.2	0.7	24	99.4	98.3	97.9	85.8	1.8	Ξ	1.2		4.00	0.86	85.7	2.6	2.8	2.5	7.7	99.4	5.86	85.7
alize øeth		after	separate		N	55.5	1.40	57.3	3.4	82.5	23.3	18.7	17.0	76.6	77.0	(0)	5.9	5.7	3.5	1.6	2.1	1.5	7.7	9.4	11.2	3.5
ener: iis, tc			-	etraining	Ξ	2.5	0.7	- 6 7	2.7	2.4	2.4	2.7	1.9	2.2	2:0	672	0.5	4 4	25	2.5	2.8	2.3	2:0	9.6 4 0	6.1	2.4
an g). Th	original	after	joint	pretraining no pretraining	=	0	2 -	2	2	6	6	9	8	5			4	e «	6	5	4	610	~		x, v	و به
der c ance				pretrainin		3.0	n u	6	43.	24.2		Ċ,	6	3.5	4.	4.1	ŝ	0.00	6.09	2	6	2.2	7	16.6	3	3.6
enco. Proce		before			-	2.6	2.6	53	6.66	99.4	99.2	95.8	2.4	1.6	1.4	6.7	8.66	. 8 . 1	95.5	2.6	2.6	51	C.2	8.66	5.66	95.5
age (abov			_			:	= :5		>	5		ij	ix			X	IIX .			xvii			xx	xx	IXX	
e im , are						Inception v3	Resivel-101 DancaNat-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v5	Resinet-101 DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	AlexNet
7: Th -xxiv						EEG Inc	Dar Dar	Ale	image Inco		De	Alé	EEG Inc	Re	De		image Inc	Del	Ale	EEG Inc	Re	De	- 1	image Inco	a Re	Ak
Table 17: The image encoder can generalize in som and xxi-xxiv, are above chance). This, together with						Щ			ł							ŀ	9			randomized El				Ξ.		
Tab and						their							block							randor						

21

_		3L	ate		xxiv	2.3	53	2.5	2.5	0.0	9.2	0.0	2.4	8.0	4.0	23	24.2	0.0	0.0	0.0	2.3	4.1	1.6	1.7	1.9	0.0	0.0	0.0
		after		gu		0.1										0.1 2									0.1			
	bottom 960	er	Ħ	no pretraining	iiixx	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	P	Ő	0	0	ſ	0	Ó
	botto.	after	. <u>с</u>	pretraining r	xxii	0.1	0.1	0.1	0.1	9.3	0.7	0.0	0.0	0.2	0.0	0.1	0.0	11.7	0.2	17.9	4.2	0.1	0.2	0.1	0.1	20.4	3.5	13.6
		before		ď	xxi	0.1	0.1	0.1	0.1	12.8	9.5	14.2	12.5	0.0	0.0	0.1	0.0	13.2	9.8	15.0	12.9	0.2	0.1	0.1	0.1	13.2	9.8	15.0
	_	after	separate		XX	55.5	54.7	57.4	57.3	0.0	70.5	0.1	19.1	8.69	70.5	72.2	70.0	0.0	0.1	0.2	2.5	2.5	2.3	2.0	1.6	0.0	0.1	0.0
				ranıng	xix	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.2	0.0	0.0	0.4	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
000 classes	top 40	after	·×	g no pretraining			_	_	_	_	~	_	_	~	_	_	~		-+	~	2		_	_	_	_	6	-
ž				pretraining	xviii	0.1	0.0	0.1	0.1	4.(0	0.0	0.0	0.0	0.1	0.0	0.3	87.(52.4	67.2	19.3	0.	0.1	0.0	0.0	73.	28.5	
	_	before			i xvii	0.1	0.0	0.0	0.0	6'86	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	8.86	96.2	06.4
		after	separate		ivx	55.5	54.7	57.4	57.3	0.0	82.5	12.1	18.7	0.77.0	76.6	77.0	76.4	0.5	2.0	0.2	2.6	1.5	1.9	1.5	2.2	0.0	2:0	0.0
			-	no pretraining	xv	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.1
	original	after			iv	0.1	F	-		5	9	F	0.	4					4	Γ.	4	-	F	F	F	0.	0.	v.
				pretraining	X	o'	Ö	0	0	16.	6	Ö	0	0	Ö	0	0.1	75.	56.	71.	25.	Ö	0	Ö	0	64	42.	30
_		before				0.1					_			0.1				93.0	90.5	89.5	77.9	0.1	0.0	0.1	0.2	93.0	90.5	5 68
		after	separate		xii	2.3	2.3	2.5	2.5	2.5	39.4	2.6	2.4	32.1	28.1	25.9	27.8	2.5	3.7	2.6	2.3	1.6	1.8	1.9	2.4	2.5	2.2	3.0
	0			etraining	xi	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	ć,
	bottom 96	after	joint	pretraining no pretraining	х	3.1	3.1	3.2	2.5	9.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	5.8	4.7	0.0	5.6	2.2	2.7	2.0	2.8	1.7	9.4	2
TT .				pretram						5								4	-	5	2					ŝ		~
-	-	before				2.5				45.5				2.6											2.6			_
		after	separate			55.5				2.2						72.2									1.6			
es	_			no pretraining	μŅ	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	20
40 class	top 40	after	joint		Ņ	2.6	2.4	2.6	2.6	3.5	7.3	4.4	2.6	7.1	4.2	3.8	4.2	4.7	58.5	86.8	50.9	2.9	2.7	2.3	2.4	84.7	53.1	860
				pretram			~							~														-
		before	te		iv i	55.5 2.2	.7 2.8	4.2.4	3.24		.5 98.3			3.1	9.1	77.0 1.2		9.3 99.4	.0 98.5				2.1 2.8			4 99.4	11.2 98.5	1 97.5
		after	separate	50							4 82.5																	
'	nal			no pretraming		2.5	6	¢i	ci	2.7	6	ci	¢i	1	ci	2.0	<i>с</i> і	ю.	ci	ci	ci	6	ci	6	3.0	ri	ci	0
	original	after		pretraining no	ü	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	60.9	2.5	2.4	2.2	2.8	1.16	69.8	65.6
		re		pretra		.6	e S	2.5	i.	11	4	2	8.	4	9	1.4	6	8.	.3	2	5	9	2.6	Γ.	2.5	8.	3	2
-		before				2	_				i 99.4	_			_			iii 99.8	xiv 99.				xviii 2.		xx 2.	-	xxii 99.3	xxiii 90
-							-	et-161 iii	_		101 vi					et-161 xi			-				-		_			-
and $1X - XII$, are above chance). This, together with 1a $\begin{vmatrix} -1 \\ -1 \end{vmatrix}$						Inception v3	ResNet-101	DenseNet-161	AlexNet		ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161		[`	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseN	AlexNet		ResNet-101	DenseNet-161
						EEG				image				EEG				image				randomized EEG				image		
						their								block								domize						

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	e at ch	are at chance). This, together with Tables 17 and 18, $\frac{1}{10}$	his, tí	ogethe	r with T	ables 1	7 an		supports cl	aim I	Ċ.			_					1000 classes						_
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $					original		_		top 40			bottom 960			orig	zinal	_		top 40		_		bottom 960		
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				before	after	afi	_		after	after	before	after	after	-			-	efore	after		-	fore	after		after
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				- M			urate	1	joint	separate			*,	e	<u> </u>	s	parate	riterio	. <u>s</u>	s	parate	matroin	. <u> </u>	2 on inter	parate
Hot Reserved 1 2.5 3.0 2.5 3.7 2.3 3.7 2.3 3.1 2.4 3.7 3.1 2.4 3.7 3.1 2.4 3.7 3.1 2.4 3.7 3.1 2.4 3.7 3.1 2.4 3.7 3.1 2.4 3.7 3.1 3.4 3.7 0.1 <th0.1< th=""> <th1.< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Ņ</th><th></th><th></th><th>viii</th><th></th><th></th><th></th><th></th><th>xiv</th><th>NX XV</th><th>XVI</th><th></th><th></th><th>xix</th><th></th><th>pronat</th><th></th><th>XXIII</th><th>xxiv</th></th1.<></th0.1<>							Ņ			viii					xiv	NX XV	XVI			xix		pronat		XXIII	xxiv
Rescher(1) ii 23 30 24 31/2 24 31/2 24 31/2 24 31/2 <th></th> <th>Г</th> <th>-</th> <th>2.6</th> <th>3.0</th> <th></th> <th>55.5</th> <th>2.2 2.6</th> <th></th> <th>55.5</th> <th>2.5</th> <th>3.1</th> <th></th> <th></th> <th></th> <th>0.1</th> <th>55.5</th> <th>0.1</th> <th>0.1</th> <th>0.1</th> <th></th> <th></th> <th>0.1</th> <th>0.1</th> <th>2.3</th>		Г	-	2.6	3.0		55.5	2.2 2.6		55.5	2.5	3.1				0.1	55.5	0.1	0.1	0.1			0.1	0.1	2.3
DameNet(of) iii 2.5 3.1 2.4 7.4 2.4 2.6 2.6 7.3 2.4 7.4 0.0 0.1 0.1 7.3 0.0 0.1 <th< td=""><th></th><td>ResNet-101</td><td>:=</td><td>2.3</td><td>3.0</td><td></td><td>54.7</td><td>2.8 2.4</td><td></td><td>54.7</td><td>2.4</td><td>3.1</td><td></td><td></td><td></td><td>0.1</td><td>54.7</td><td>0.0</td><td>0.0</td><td>0.1</td><td></td><td></td><td>0.1</td><td>0.1</td><td>2.3</td></th<>		ResNet-101	:=	2.3	3.0		54.7	2.8 2.4		54.7	2.4	3.1				0.1	54.7	0.0	0.0	0.1			0.1	0.1	2.3
MetNet: iv 23 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 24 73 25 73 25 25 25 25 25 25 25 25 25 26 27 20 73 20 73 20 73 20 27 21 23 <t< td=""><th></th><td>DenseNet-1</td><td></td><td>2.5</td><td>3.1</td><td></td><td>57.4</td><td>2.4 2.6</td><td></td><td>57.4</td><td>2.5</td><td>3.2</td><td></td><td></td><td></td><td>0.1</td><td>57.4</td><td>0.0</td><td>0.1</td><td>0.0</td><td></td><td></td><td>0.1</td><td>0.1</td><td>2.5</td></t<>		DenseNet-1		2.5	3.1		57.4	2.4 2.6		57.4	2.5	3.2				0.1	57.4	0.0	0.1	0.0			0.1	0.1	2.5
Timuge Finance Finance <th< td=""><th></th><td></td><td>Ņ</td><td>2.3</td><td>2.5</td><td></td><td>57.3</td><td>2.4 2.6</td><td></td><td>57.3</td><td>2.4</td><td>2.5</td><td></td><td></td><td></td><td>0.1</td><td>57.3</td><td>0.0</td><td>0.1</td><td>0.1</td><td></td><td></td><td>0.1</td><td>0.1</td><td>2.5</td></th<>			Ņ	2.3	2.5		57.3	2.4 2.6		57.3	2.4	2.5				0.1	57.3	0.0	0.1	0.1			0.1	0.1	2.5
	Ē	<u> </u>		7.66	43.2					2.2	45.5	29.4				0.1	0.0	98.9	4.0	0.0			9.3	0.0	0.0
DumeNet(s) vir 95 72 23 37 427 38 33 343 367 368 367 30 30 31 31 31 31 31 31 325 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 <t< td=""><th></th><td>ResNet-101</td><td>-</td><td>99.4</td><td>24.2</td><td></td><td>_</td><td></td><td></td><td>70.5</td><td>33.0</td><td>9.5</td><td></td><td>_</td><td></td><td>0:0</td><td>82.5</td><td>95.6</td><td>0.3</td><td>0.0</td><td></td><td></td><td>0.7</td><td>0.0</td><td>39.2</td></t<>		ResNet-101	-	99.4	24.2		_			70.5	33.0	9.5		_		0:0	82.5	95.6	0.3	0.0			0.7	0.0	39.2
Heiker vii 958 2.6 27 19.1 34.1 2.6 2.7 19.1 34.1 2.6 0.0 0		DenseNet-1	-	99.2	7.2					3.5	42.7	3.8		_		0.0	12.1	95.8	0.0	0.0			0.0	0.1	0.0
EEG Resplorer(1) ix 24 53 21 01 04 00 77.0 0.0<		AlexNet		95.8	2.6					19.1	34.1	2.6				0.3	18.7	72.5	0.0	0.3			0.0	0.0	2.4
				2.4	6.8		0.77	1.8 7.1		69.8	2.6	3.6				0.0	77.0	0.0	0.2	0.1			0.2	0.1	28.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ResNet-101	×	1.6	3.5		76.6	1.1 4.2		70.5	2.4	2.8				0.1	76.6	0.0	0.1	0.1			0.0	0.1	24.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DenseNet-1		1.4	4.1					72.2	2.5	3.5				0.0	77.0	0.0	0.0	0.0			0.1	0.1	22.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2.9	4.1					70.0	2.0	3.4				0.1	76.4	0.0	0.3	0.2			0.0	0.1	24.2
	h <u>e</u>	I .		8.66	96.4					2.9	46.0	46.8			I .	0.1	0.5	98.8	87.0	0.0			1.7	0.0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ResNet-101	-	99.3	75.0					3.5	34.1	14.7		_		0.0	2.0	96.2	52.4	0.0			0.2	0.0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DenseNet-1		99.1	95.8					3.8	43.9	50.9				0.1	0.2	96.4	67.2	0.4			7.9	0.0	0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				95.5	60.9					3.2	34.6	15.6				0.0	2.6	72.2	19.7	0.0			4.2	0.0	2.3
ResNer(61) xii 26 24 28 27 29 27 29 27 20 19 00 01	randomized El			2.6	2.5					2.5	3.0	2.2				0.1	1.5	0.1	0.1	0.0			0.1	0.2	1.4
Demoker (6) ix 2:1 2:3 2:3 2:5 2:3 2:5 2:3 1:5		ResNet-101	-	2.6	2.4					2.3	2.6	2.7		_		0.1	1.9	0.0	0.1	0.2			0.2	0.1	1.6
AreNet xi y 2 xi y 2 <th></th> <td>DenseNet-1</td> <td>-</td> <td>2.1</td> <td>2.2</td> <td></td> <td></td> <td></td> <td></td> <td>2.0</td> <td>3.1</td> <td>2.0</td> <td></td> <td>_</td> <td></td> <td>0.1</td> <td>1.5</td> <td>0.0</td> <td>0.0</td> <td>0.1</td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td>1.7</td>		DenseNet-1	-	2.1	2.2					2.0	3.1	2.0		_		0.1	1.5	0.0	0.0	0.1			0.1	0.1	1.7
Imergenerio 1 xii 993 9/1 24 934 547 547 30 24 94 94 95 541 21 22 23 930 640 01 06 958 733 00 00 132 204 00 Emergenerio 1 xii 993 92 9112 92 92 92 9112 92 92 92 92 92 92 92 92 92 92 92 92 92				2.5	2.8					1.6	2.6	2.8				0.2	2.2	0.3	0.0	0.1			0.1	0.1	1.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	¦≣		-	8.66	91.1					2.9	46.0	57.1				0.1	0.6	98.8	73.3	0.0			0.4	0.0	0.0
Twill 951 560 2.1 3.1 3.4 2.5 3.1 3.4 2.5 3.1 3.5 0.1 0.0 0.0 1.0 1.50 1.50 0.0 0.0 1.50 1.50 0.0 0		ResNet-101		99.3	69.8					4.0	34.1	9.4				0.0	2.0	96.2	28.5	0.0			3.5	0.0	0.0
: xxiv 95.5 3.6 2.4 3.5 85.7 3.6 2.5 3.5 34.6 2.5 2.5 2.5 7.7 0.0 0.0 2.6 72.2 0.0 0.0 2.6 12.9 0.0 0.0		DenseNet-1	_	1.66	65.6		_			3.0	43.9	36.1		_		0.1	0.0	96.4	11.7	0.0	_		3.6	0.0	0.0
		AlexNet	xxiv	95.5	3.6		_			3.5	34.6	2.5		_		0.0	2.6	72.2	0.0	0.0	_		0.0	0.0	2.5

	_		after	separate	uning	xxiii xxiv		0.1 2.3						0.0 2.4				0.1 24.2								0.1 1.9			
		bottom 960	after	. <u>e</u>	sretraining no pretraining	ixxii	0.1	0.1	0.1	0.1	9.3	0.7	0.0	0.0	0.2	0.0	0.1	0.0	11.7	0.2	17.9	4.2	0.1	0.2	0.1	0.1	20.4	3.5	13.6
			before		pret	xxi	0.1	0.1	0.1	0.1	12.8	9.5	14.2	12.5	0.0	0.0	0.1	0.0	13.2	9.8	15.0	12.9	0.2	0.1	0.1	0.1	13.2	9.8	15.0
			-	eparate		xx	55.5	54.7	57.4	57.3	0.0	70.5	0.1	19.1	69.8	70.5	72.2	70.0	0.0	0.1	0.2	2.5	2.5	2.3	2.0	1.6	0.0	0.1	0.0
	ses			9,	no pretraining	xix	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.3	0.1	0.1	0.0	0.2	0.0	0.0	0.4	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
	1000 classes	top 40	after	joint	pretraining no p	xviii	0.1	0.0	0.1	0.1	4.0	0.3	0.0	0.0	0.2	0.1	0.0	0.3	87.0	52.4	67.2	19.7	0.1	0.1	0.0	0.0	73.3	28.5	11.7
			before		pre	xvii	0.1	0.0	0.0	0.0	98.9	95.6	95.8	72.5	0.0	0.0	0.0	0.0	98.8	96.2	96.4	72.2	0.1	0.0	0.0	0.3	98.8	96.2	96.4
		-	-	separate		ivx	55.5	54.7	57.4	57.3	0.0	82.5	12.1	18.7	77.0	76.6	77.0	76.4	0.5	2.0	0.2	2.6	1.5	1.9	1.5	2.2	0.0	2:0	0.0
				•,	no pretraining	xv	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.1
		origina	after	joint	ctraining no p	xiv	0.1	0.1	0.1	0.1	16.5	2.6	0.1	0.0	0.4	0.1	0.1	0.1	75.1	56.4	71.1	25.4	0.1	0.1	0.1	0.1	64.0	42.0	30.5
			before		pre													0.0											
	-	-	-	separate		xii	2.3	2.3	2.5	2.5	2.5	39.4	2.6	2.4	32.1	28.1	25.9	27.8	2.5	3.7	2.6	2.3	1.6	1.8	1.9	2.4	2.5	2.2	3.0
		_		SG	no pretraining	xi	2.5	2.5	2.4	2.6	2.7	2.1	2.6	2.4	2.5	2.2	2.7	2.5	2.4	2.5	2.1	2.5	2.7	3.0	1.9	3.1	2.1	3.1	2.3
		bottom 960	after	joint	pretraining no	x	3.1	3.1	3.2	2.5	29.4	9.5	3.8	2.6	3.6	2.8	3.5	3.4	46.8	14.7	50.9	15.6	2.2	2.7	2.0	2.8	57.1	9.4	36.1
on.			before		đ		2.5	2.4	2.5	2.4	45.5	33.0	42.7	34.1	2.6	2.4	2.5	2.0	46.0	34.1	43.9	34.6	3.0	2.6	3.1	2.6	46.0	34.1	43.9
uesti			after	separate		viii	55.5	54.7	57.4	57.3	2.2	70.5	3.5	19.1	69.8	70.5	72.2	70.0	2.9	3.5	3.8	3.2	2.5	2.3	2.0	1.6	2.9	4.0	3.0
I into q	ISSES	40		1	no pretraining	üv	2.5	2.4	2.3	2.6	2.9	2.9	2.3	2.7	2.0	2.5	1.9	2.2	3.1	2.7	2.9	2.4	2.6	2.9	2.5	2.9	3.0	2.6	2.5
claim	40 classe	top 40	afte	ioj	pretraining n	i.	2.6	2.4	2.6	2.6	13.5	7.3	4.4	2.6	7.1	4.2	3.8	4.2	94.7	68.5	86.8	50.9	2.9	2.7	2.3	2.4	84.7	53.1	36.0
calls			before			>	2.2	2.8	2.4	2.4	99.4	98.3	97.9	85.8	1.8	1.1	1.2	2.5	99.4	98.5	7.79	85.7	2.6	2.8	2.5	2.2	99.4	98.5	27.7
and			after	separate		iv	55.5	54.7	57.4	57.3	3.4	82.5	23.3	18.7	77.0	76.6	77.0	76.5	9.3	11.0	5.7	3.5	1.6	2.1	1.5	2.2	9.4	11.2	5.1
laim A		nal			no pretraining	Ξ	2.5	2.6	2.4	2.4	2.7	2.4	2.4	2.7	1.9	2.2	2.0	2.9	3.0	2.4	2.5	2.5	2.5	2.8	2.3	3.0	3.4	2.9	2.1
ports c		original	after		pretraining no	a	3.0	3.0	3.1	2.5	43.2	24.2	7.2	2.6	6.8	3.5	4.1	4.1	96.4	75.0	95.8	60.9	2.5	2.4	2.2	2.8	91.1	69.8	65.6
r sup			before			-	2.6	2.3	2.5	2.3	7.00	99.4	99.2	95.8	2.4	1.6	1.4	2.9	8.66	99.3	99.1	95.5	2.6	2.6	2.1	2.5	8.66	99.3	99.1
urthe	_							:=	_	.2	>	5		ij	.×	×	_	xii	шx	xiv	_	xvi	хин	-		XX	xxi	-	1 xxiii
pretraining, and further supports claim A and calls cl							Inception v3	ResNet-101	DenseNet-16	AlexNet	I 1	ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet		ResNet-101	DenseNet-161	AlexNet	Inception v3	ResNet-101	DenseNet-161	AlexNet		ResNet-101	DenseNet-161
guinie							EEG				image				EEG				image				ed EEG				image		
etr:							their								block								randomized						

Table 21: With only two exceptions, separate training gets to a lower loss than joint training with pretraining (compare columns vii, viii, and ix to i, ii, and iii, respectively). This suggests that there is a point within the representational-capacity space of their model and loss function that achieves lower loss than achieved by their joint-training procedure. The joint-training procedure could have achieved it, it just didn't. Since that point was achieved with separate training, the resulting EEG encodings do not have any image information and the resulting image encodings do not have any brain-activity information. This supports claim B and calls claims II-IV into question.

				jo	int				separ	ate
			pretrai	ning		no pretra	aining			
		their	block	randomized	their	block	randomized	their	block	randomized
		i	ii	iii	iv	v	vi	vii	viii	ix
Inception v3	i	1.303	1.098	0.932	1.074	0.938	0.919	1.150	1.027	1.104
ResNet-101	ii	1.155	0.925	1.019	0.963	1.006	1.080	0.885	0.936	0.884
DenseNet-161	iii	1.027	1.080	1.047	0.988	0.919	0.929	1.007	0.982	1.029
AlexNet	iv	1.417	1.142	0.981	1.136	1.055	1.034	0.925	0.956	0.935

Table 22: With only three exceptions, joint training without pretraining gets to a lower loss than with pretraining (compare columns iv, v, and vi to i, ii, and iii, respectively). Yet classification accuracy is at chance after joint training without pretraining (columns iii vii, xi, xv, xix, and xxiii of Tables 2 and 3). This suggests that joint training without pretraining can memorize the training set yet fail to generalize at all, and further supports claim A and calls claim I into question.

				jo	int				separ	ate
			pretrai	ning		no pretra	aining			
		their	block	randomized	their	block	randomized	their	block	randomized
		i	ii	111	iv	v	vi	vii	viii	ix
Inception v3	i	1.303	1.098	0.932	1.074	0.938	0.919	1.150	1.027	1.104
ResNet-101	ii	1.155	0.925	1.019	0.963	1.006	1.080	0.885	0.936	0.884
DenseNet-161	iii	1.027	1.080	1.047	0.988	0.919	0.929	1.007	0.982	1.029
AlexNet	iv	1.417	1.142	0.981	1.136	1.055	1.034	0.925	0.956	0.935