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ABSTRACT

Caution is necessary with machine-learning methods, and especially computer-
vision methods, to support brain processing claims from neuroimaging data. A
recent paper (Palazzo et al., 2021) proposes (i) a joint-training process that does
not use class information and (ii) a bidirectional transfer of (a) image information
to an EEG classifier and (b) brain-activity information to an image classifier, such
that the joint embedding includes the shared image and brain-activity information.
These claims cannot be maintained: the training process is initialized with class
information, and joint training with EEG degrades rather than improves the perfor-
mance of the image encoder. Moreover, theoretical solutions exist that entail no
transfer beyond class information in the joint embedding space.

1 INTRODUCTION

A recent paper (Palazzo et al., 2021) proposes a method for jointly training two neural networks, one
to map images to encodings and the other to map EEG data from subjects viewing those images to
encodings, so that the encodings for the images are similar to those from the EEG data. Specifically,
they claim that

I) class labels are not used anywhere in the equation. This makes sure that the resulting embedding
does not just associate class discriminative vectors to EEG and images, but tries to extract more
comprehensive patterns that explain the relations between the two data modalities. (Palazzo
etal., 2021,§ 39 5) and

Il) our multimodal approach learns a joint brain-visual embedding and finds similarities between
brain representations and visual features (Palazzo et al., 2021, § 1  2).

They use the resulting encodings for EEG classification, image classification, saliency detection,
and producing activation maps that decode brain representations. Central are the additional implicit
claims

III) that the joint embedding space encodes both information about the images and subjects’ brain
activity from viewing the images and

IV) that the joint-training process bidirectionally transfers information from the image encoders to
the EEG encoders, and information from the EEG encoders to the image encoders.

Other work (Li et al., 2021; Ahmed et al., 2022) questioned these claims due to confounds in the data
(Spampinato et al., 2017), which was collected with a block design with all stimuli of a given class
presented to subjects in close proximity and the training and test sets containing samples from the
same block. Since EEG data contains temporal drift, this drift is classified rather than stimulus-related
brain activity. Li et al. (2021) and Ahmed et al. (2022) note that it is critical to remove the confound
by breaking the correlation between temporal drift and stimulus class by randomizing stimulus
presentation order. Li et al. (2021) and Ahmed et al. (2022) demonstrated that numerous classifiers,
including the one used in Palazzo et al. (2021), lose high classification accuracy seen on the data
from Spampinato et al. (2017) used in Palazzo et al. (2021), dropping to chance with nonconfounded
data properly collected from randomized trials.

Here, we focus on a separate issue. We demonstrate that their method itself does not exhibit claims I-
IV, whether applied to confounded or nonconfounded data. We contribute the novel observations
that independently refute the claims in Palazzo et al. (2021) beyond Li et al. (2021) and Ahmed et al.
(2022):



Under review as a conference paper at ICLR 2024

A) Prior to joint training, the pretrained image encoders contain close to perfect class information,
and likely very little information other than class information. This calls claim I above into
question.

B) The models used as EEG and image encoders, and the loss function used to jointly train those
encoders, have the representational capacity to memorize one-hot EEG and image encodings that
minimize the loss function on the training set. These models can be found with separate training.
Thus it is unlikely that joint training transfers information from the image encoders to the EEG
encoders or vice versa, or includes anything other than class information. This calls claims I[I-IV
above into question.

We demonstrate that their method doesn’t support their claims, even when applied to data that
remedies the confound. Since their claims are contingent upon production of joint embeddings that
include both image and brain-activity information, this calls all claims in Palazzo et al. (2021) into
question.

Beyond this, we further demonstrate

C) that joint training appears to (1) use the class information included in the pretrained image
encoders to train the EEG encoder as a classifier, but (2) otherwise degrades performance of the
image encoder as a classifier and

D) that while the EEG encoders so trained can perform above chance on confounded data, they
critically perform at chance on nonconfounded data.

Thus their joint-training method is ineffective.

Here, we limit our analyses and discussion to claims A-D, in so far as they refute claims I-IV. This
does not hinge on the confound reported in Li et al. (2021) and Ahmed et al. (2022); in fact, we
perform the same analyses both on confounded and nonconfounded data, obtaining the same results.
Our logical arguments all are based on the information content in the encodings at various stages of
various kinds of training, where information content is measured by principal component analysis
(PCA). It is expressly not based on absolute classification accuracy, i.e., how well the classifiers
perform. We are concerned with relative classification accuracy of various reconstructions of the
encodings with limited sets of components derived through PCA as a way of assessing information
content of the encodings.

Palazzo et al. (2021) use the EEG and image encodings produced by jointly trained EEG and image
encoders to produce saliency and activation maps. The validity of these maps hinges on the claim that
these encodings contain both visual and brain-activity information. We demonstrate this to be false,
calling the validity of these maps into question. Li et al. (2021, § 5.4) already questioned this validity
both on methodological grounds and as a result of the confound. Our results here offer additional
independent reason to question the validity of these maps.

We make no claim that it is difficult or impossible to perform the central task attempted by Palazzo et al.
(2021), namely to perform joint training of EEG and image encoders to transfer image information to
the EEG encoder and brain-activity information to the image encoder and yield a joint embedding
that contains both image and brain-activity information, without providing class information. It might
be possible to perform this task with a different method, or even with the same method but with
different data. Our sole claim is that their experiments and analyses do not demonstrate that they
have performed this central task as stated by claims I-IV made in Palazzo et al. (2021).

2 METHOD

We jointly train the EEG encoder (EEGChannelNet, Palazzo et al., 2021) with each of the same
image encoders employed by Palazzo et al. (2021): Inception v3 (Szegedy et al., 2016), ResNet-101
(He et al., 2016), DenseNet-161 (Huang et al., 2017), and AlexNet (Krizhevsky et al., 2012). Our
analyses report results for all four image encoders, each analyzed two ways: without pretraining
(‘no pretraining’) and pretrained on the ILSVRC 2012 training set (‘pretraining’). As we evaluate
just the encodings, we do not postpend classifiers to these encoders. Thus these encoders produce
1000-element output vectors, not 40-element ones.

We train the encoders in two ways: (1) joint training as described in Palazzo et al. (2021), with
triplet loss, and (2) separate training individually with MSE loss against one-hot class encodings.
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After separate training, we run a single epoch of joint training, without updating the weights, just
to compute the triplet loss. We report three kinds of results: ‘before’ is before any joint or separate
training, ‘after joint’ is after joint training, and ‘after separate’ is after separate training.

We repeat this analysis for three different EEG datasets: ‘their’ refers to the data from Spampinato
et al. (2017) used by Palazzo et al. (2021), ‘block’ refers to subject 6 first image block run from Li
et al. (2021), and ‘randomized’ refers to subject 6 image rapid-event run from Li et al. (2021). ‘Their’
and ‘block’ are confounded; ‘randomized’ is not.

We use the encoders, trained just on the training sets, to produce encodings on the validation and test
sets for all splits and pool the results. For ‘block’ and ‘randomized’ data, the validation and test sets
are a disjoint cover of the dataset so each sample has exactly one encoding. Critically, the data from
Spampinato et al. (2017) does not have this property. We perform two analyses on these encodings.
First, we perform principal-component analysis (PCA) and reconstruct the encodings two ways: one
with just the ‘top 40’ components and one with just the ‘bottom 960’ components and report the
fraction of variance in the encodings explained by the top 40 components. Second, for both the raw
encodings (‘original’) and the reconstructed encodings (‘top 40 and ‘bottom 960°), we compute the
accuracy when using the encodings for classification, without postpending any classifier (a 1000—40
FC layer followed by a softmax as done by Palazzo et al. 2021). Since the 40 classes employed by
Palazzo et al. (2021) are a subset of the 1000 classes in ILSVRC 2012, and the image stimuli used
by Spampinato et al. (2017) to elicit EEG response are a subset of the training images in ILSVRC
2012, one can read off the class label directly from the 1000-element encoding produced by either the
EEG or image encoders by choosing the index of the maximal element. We do this two ways. The
first (‘1000 classes’) considers maximal elements outside of the 40 classes to be misclassification.
The second (‘40 classes’) ignores elements outside of the 40 classes and only computes the maximal
element among the 40 classes.

We also analyze the value of the loss function: for the triplet loss after both ‘joint’ and ‘separate’
training, on all four image encoders, both with and without ‘pretraining,’” and all three datasets,
and also the MSE loss when separately training the ‘EEG’ and ‘image’ encoders. These losses are
computed per sample and per element of the 1000-element encoding, averaged over samples and
splits.

The appendix contains more details of our method.

3 RESULTS

Table 1 shows the fraction of variance explained by the top 40 principal components of the encodings
produced for both modalities (‘EEG’ and ‘image’) for all image encoders and datasets, ‘before’ joint
or separate training, ‘after joint’ training, both with and without ‘pretraining,” and ‘after separate’
training.!

* The top 40 principal components explain a large portion of the image-encoding variance
(>63.9%) before training (column v; Table 6%). This together with Tables 2 and 3 implies that
the pretrained image encoders produce encodings that contain (primarily) class information
on all data. This supports claim A and calls claim I into question.

* After joint training with pretraining on their data, the top 40 principal components explain
almost all (>94.9%) of the variance in the image encodings (column vi, for rows i-iv;
Table 7). This implies that the image encoders jointly trained on their data produce encodings
with little more than class information.

 After separate training, the top 40 principal components explain almost all of the variance
(>96.8%) in the image encodings (column viii; Table 8). This implies that the separately
trained image encoders produce encodings with little more than class information on all
data.

"Note that while the entries in Table 1 are percentages, they are not classification accuracies. Explained
variance measures how close a reconstruction of the encodings using just the top 40 components is to the original
encodings. High values indicate that the reconstruction is close to the original encodings because the bulk of the
information in the encodings resides in the top 40 components.

Here and throughout, tables numbered six and higher refer to those in the appendix. These contain variants
of the five main tables with the indicated columns and rows highlighted in color.
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Table 1: Explained variance (%) in the top 40 principal components of the encodings, ‘before’ joint
or separate training, ‘after joint’ training, both with and without ‘pretraining,” and ‘after separate’
training. Rows i—iv ‘their,” rows v—viii ‘block,” and rows ix-xii ‘randomized’. Rows i, v, and ix
Inception v3. Rows ii, vi, and x ResNet-101. Rows iii, vii, and xi DenseNet-161. Rows iv, viii,
and xii AlexNet.

EEG image
before after after before after after
joint separate joint separate
pretraining  no pretraining pretraining  no pretraining

i ii il v v vi vii viii

i 447 372 153 99.5 64.1 94.9 98.9 100.0
ii 46.5 36.2 17.7 99.5 82.0 98.9 98.2 96.8
iii 48.2 25.6 22.7 100.0 75.4 97.4 90.2 100.0
v 46.3 21.7 18.5 99.5 82.3 nan 100.0 99.7
v 83.3 75.9 69.4 423 63.9 574 98.3 99.9
vi 854 79.8 72.8 41.9 81.9 99.5 99.0 99.7
vii 84.0 79.3 76.3 42.9 75.3 69.4 94.3 99.5
viii 84.4 78.9 73.2 40.0 82.2 78.9 99.9 98.9
X 62.1 40.5 38.3 19.3 63.9 60.2 98.1 99.9
X 61.9 52.2 43.6 19.7 81.9 99.1 98.8 99.8
Xi 63.5 48.5 46.5 19.6 75.3 70.8 93.9 99.7
Xii 63.6 49.5 41.3 19.2 82.2 86.9 99.9 98.8

* After separate training, the top 40 principal components explain almost all of the variance
(>96.8%) in both the EEG and image encodings on their data (columns iv and viii, for
rows i—iv; Table 9). This implies that the separately trained EEG and image encoders
produce encodings with little more than class information on their data.

Collectively this suggests that after either joint or separate training the image encodings contain class
information and mostly class information. Likewise, after separate training on their data, the EEG
encodings contain primarily class information. This is not surprising, as has been noted, their data is
confounded. This supports claim B and calls claims II-IV into question.

Tables 2 and 3 show the accuracy of classifying the encodings of both modalities (‘EEG’ and ‘image’)
for all image encoders and datasets, ‘before’ joint or separate training, ‘after joint’ training, both
with and without ‘pretraining,” and ‘after separate’ training, using the raw encodings (‘original’) or
the encodings reconstructed from the ‘top 40’ or ‘bottom 960’ principal components, both when
considering all ILSVRC 2012 classes (‘1000 classes’) and when only considering the ‘40 classes’
used by Palazzo et al. (2021).

* Image classification accuracy is near perfect with all components with 40 classes (>95.5%;
column i, for rows v—viii, xiii—xvi, and xxi—xxiv; Table 10) and very high with 1000 classes
(>77.9%; column xiii, for rows v—viii, xiii—xvi, and xxi—xxiv; Table 11) before training.
Likewise with just the top 40 principal components (> 85.7% and >72.2%; columns v
and xvii, for rows v-viii, xiii—xvi, and xxi—xxiv; Table 12). This holds both for ‘their’
data and the ‘block’ and ‘randomized’ data. This demonstrates that they are giving class
information implicitly to their training by use of image encoders pretrained on ImageNet,
supporting claim A, and calling claim I into question.

* Image classification accuracy is much lower (<46.0%) before training when discarding the
top 40 principal components (columns ix and xxi, for rows v—viii, xiii—xvi, and xxi—xxiv;
Table 13). This holds both for 40 classes and 1000 classes and both for ‘their’ data and
the ‘block’ and ‘randomized’ data. Thus there is much less class information outside the
top 40 principal components. This demonstrates that they are giving little more than class
information implicitly to their training by use of image encoders pretrained on ImageNet,
further supporting claim A and calling claim I into question.

* With only five exceptions, all in the bottom 960 principal components, image classification
accuracy decreases after joint training with pretraining (compare columns ii, vi, X, Xiv, XVviii,
and xxii to i, v, ix, xiii, Xvii, and xxi, respectively, for rows v—viii, Xiii—xvi, and XXi—xxiv;
Table 14). This holds both for 40 classes and 1000 classes, both for ‘their’ data and the
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‘block’ and ‘randomized’ data, and whether using all components or just the 40 principal
components. This suggests that joint training is hurting, not helping, supporting claim C(2).

* With the exception of a small number of cases that are marginally above chance, EEG
classification accuracy is at chance except after separate training on confounded data either
on all components or the top 40 components (columns iv, viii, xvi, and xx, for rows i-iv
and ix—xii; Table 15). It is also above chance after separate training on block data in the
bottom 960 components (columns xii and xxiv, for rows ix—=xii; Table 16). This suggests
that separate training is able to extract class from confounded data but not nonconfounded
data and that joint training is not able to extract class from any data, supporting claims C(1)
and D.

* While the image encoder can sometimes generalize (some of columns ii, iv, vi, viii, X, Xii,
X1V, XVi, XViii, XX, XXii, and xxiv, for rows v—viii, Xiii—xvi, and Xxi—xxiv, are above chance;
Table 17) and the EEG encoder can sometimes generalize on confounded data with separate
training (some of columns iv, viii, Xii, Xvi, XX, and xxiv, for rows i—-iv and ix—xii, are above
chance; Table 18), the EEG encoder cannot generalize on nonconfounded data with joint
training with pretraining (all of columns ii, vi, X, xiv, xviii, and xxi, for rows xvii-xx, are at
chance; Table 19). This supports claim D.

* Classification accuracy is at chance after joint training without pretraining (columns iii
vii, xi, Xv, xiX, and xxiii; Table 20). This holds both for EEG classification and image
classification, both for 40 classes and 1000 classes, both for ‘their’ data and the ‘block’ and
‘randomized’ data, and whether using all components, just the 40 principal components, or
the bottom 960 components. This suggests that their method completely breaks down when
not provided with class information through pretraining, and further supports claim A and
calls claim I into question.

The results in Tables 2 and 3 exhibit some differences between different image encoders for each
analysis (‘EEG’ vs. ‘image,” ‘40 classes’ vs. ‘1000 classes,” ‘original’ vs. ‘top 40’ vs. ‘bottom 960,
and ‘before’ vs. ‘after joint® vs. ‘after separate’). This is not surprising. Different image classifiers
exhibit different classification accuracy, especially when pretrained with different training regimens.
It is further not surprising that this difference manifests with different PCA reconstructions with
different components and also manifests when subjected to joint fine tuning with noisy EEG data or
separate fine tuning on the tiny subset of ImageNet used here, because fine tuning can break different
models in different ways. None of these differences impact our claims A-D or the refutation of
claims I-IV from Palazzo et al. (2021).

Table 4 reports the per-sample triplet loss on the training set, after ‘joint’ training, both with and
without ‘pretraining,’” and ‘separate’ training, for all image encoders and datasets.

* With only two exceptions, separate training gets to a lower loss than joint training with
pretraining (compare columns vii, viii, and ix to i, ii, and iii, respectively; Table 21).
This critically suggests that there is a point within the representational-capacity space of
their model and loss function that achieves lower loss than achieved by their joint-training
procedure. The joint-training procedure could have achieved it, it just didn’t. The fact that
point was achieved with separate training, indicates that the resulting EEG encodings do not
have any image information and the resulting image encodings do not have any brain-activity
information. This supports claim B and calls claims II-IV into question.

» With only three exceptions, joint training without pretraining gets to a lower loss than with
pretraining (compare columns iv, v, and vi to i, ii, and iii, respectively; Table 22). Yet
classification accuracy is at chance after joint training without pretraining (columns iii vii,
xi, XV, Xix, and xxiii of Tables 2 and 3; Table 20). This suggests that joint training without
pretraining can memorize the training set yet fail to generalize at all, and further supports
claim A and calls claim I into question.

Table 5 reports the per-sample MSE loss of the individual encoders of both modalities (‘EEG’ and
‘image’) on the training set, after separate training, for all image encoders and datasets.

 Separate training against one-hot labels can get to very low MSE (all columns and rows),
indicating that the model has the representational capacity to memorize both the EEG and
image training data. Achieving this point in the representational-capacity space with separate
training and the encodings being one-hot implies that at this point, the EEG and image
encodings have nothing but class information. Since this point could have been achieved
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Table 4: Per-sample triplet loss on the training set, after joint training, both with and without
‘pretraining,” and after separate training, averaged over samples and splits.

joint separate

pretraining no pretraining

their  block randomized | their block randomized | their block randomized

i i i v v vi vii viil X

Inception v3 i 1.303  1.098 0.932 | 1.074 0.938 0.919 | 1.150 1.027 1.104
ResNet-101 ii | 1.155 0.925 1.019 | 0.963 1.006 1.080 | 0.885 0.936 0.884
DenseNet-161 | iii | 1.027 1.080 1.047 | 0.988 0.919 0.929 | 1.007 0.982 1.029
AlexNet iv | 1.417  1.142 0.981 | 1.136  1.055 1.034 | 0.925 0.956 0.935

Table 5: Per-sample MSE loss of the individual encoders on the training set, after separate training,
averaged over samples and splits.

EEG image
their block randomized | their block randomized
1 i1 11l v % vi
Inception v3 1 0.001 0.001 0.001 | 0.002 0.010 0.010
ResNet-101 ii | 0.001 0.001 0.001 | 0.001 0.002 0.002
DenseNet-161 | iii | 0.001 0.001 0.001 | 0.001 0.002 0.002
AlexNet iv | 0.001 0.001 0.001 | 0.001 0.001 0.001

with joint training, joint training could have produced a set of encodings that have nothing
but class information. This supports claim B and calls claims II-IV into question.

Collectively our results® suggest that:

* Their statement (claim I) about not incorporating any class information in joint training is
false (our claim A).

* Their encoder models combined with their triplet loss function allow a point in the space
where the encodings on the training set are one-hot and thus cannot possibly contain anything
other than class information. This point has zero triplet loss and thus is the minimum. It is
achievable. Thus their framework can produce encodings with nothing but class information.

* This point can be reached by an alternate separate-training regimen that clearly does not
transfer any information between the EEG and image encoders.

It is highly unlikely that the suboptimal EEG model that they produce by joint training has any image
information, the suboptimal image model that they produce by joint training has any brain-activity
information, and neither suboptimal model produced by joint training has anything other than class
information, even when run on nonconfounded data. This supports claim B and calls claims II-IV
into question.

4 CONCLUSION

Several independent lines of research have completely refuted a large body of completely flawed work
(Spampinato et al., 2017; Palazzo et al., 2017; Kavasidis et al., 2017; Tirupattur et al., 2018; Palazzo
et al., 2020; 2021) along completely different axes. Li et al. (2021) demonstrated that the dataset
used, and the methods used to collect that dataset, suffer from a temporal confound, correlating
stimulus class with experiment timing. Accuracy drops to chance when the confound is removed.
Ahmed et al. (2021) demonstrated that this holds even with a much larger dataset. Ahmed et al.
(2022) demonstrated that this holds for the additional classifiers used in Palazzo et al. (2020; 2021).
Bharadwaj et al. (2023) demonstrated that this holds even when using supertrials. This is important
because this invalidates a huge body of work that uses that dataset and other datasets collected with
the same methods. See Ahmed et al. (2021).

3The raw data that produced these results is available at http://dx.doi.org/10.21227/
x2gf-5324. Our code, included in the supplementary material, is built on top of the code in http:
//dx.doi.org/10.21227/x2gf-5324.
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Here we show that not only are the dataset and data collection methods fundamentally flawed, the joint
training regimen is also fundamentally flawed. This is important not only because the confounded
dataset and flawed collection methods continue to be used, but also because the same joint training
regimen continues to be used (Bai et al., 2023; Zeng et al., 2023; Ahmadieh et al., 2023; Lan et al.,
2023; Du et al., 2023; Liu et al., 2023; Song et al., 2023; Ye et al., 2024). None of the work that
jointly trains EEG and image classifiers even attempts to assess whether joint training is effective
in information transfer. In most cases, we can’t perform the analysis because the published work
does not contain sufficient information to do so, including but not limited to stimulus timing and
presentation order. Without this, one cannot even be sure that the data is free from confounds.

We implore all future EEG image classification effort to release raw data that includes stimulus
timing and presentation order, not preprocessed data. We further implore all future effort to jointly
train EEG and image classifiers to employ the methods presented here to assess the effectiveness of
purported information transfer attributed to joint training, and not to assume such effectiveness due to
classification accuracy and image reconstruction.

Recent progress in computer vision and machine learning has been gauged largely by improvement
in performance metrics of methods on datasets and results that ‘look good.” Palazzo et al. (2021)
largely base their claims on similar criteria. While synthetic engineering methods can be evaluated
by the utility of artifacts, analytic scientific claims about the underlying physical world can only be
evaluated by finding hypotheses that resist falsification. We have falsified all of the claims of Palazzo
etal. (2021).
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A METHOD

We report all results for three sets of EEG data: the data reported by Spampinato et al. (2017) as
used by Palazzo et al. (2021) (‘their’), the data reported by Li et al. (2021) for subject 6 first image
block run (‘block’), and the data reported by Li et al. (2021) for subject 6 image rapid-event run
(‘randomized’). We report all results for four off-the-shelf image classifiers taken as image encoders:
Inception v3 (Szegedy et al., 2016), ResNet-101 (He et al., 2016), DenseNet-161 (Huang et al., 2017),
and AlexNet (Krizhevsky et al., 2012). We report all results both before joint training (‘before’),
where the EEG encoder is randomly initialized, after joint training (‘after joint’), and after separate
training (‘after separate’). For ‘before’ and ‘after separate’ the image encoder is initialized with
off-the-shelf weights trained on the ILSVRC 2012 training set (Russakovsky et al., 2014). For ‘joint’,
we report results both where the image encoder is initialized with off-the-shelf weights trained on the
ILSVRC 2012 training set (Russakovsky et al., 2014) (‘pretraining’) and where the image encoder is
randomly initialized (‘no pretraining’). The EEG and image encoders both output a 1000 element
encoding. During joint training, a triplet loss is used to drive the EEG and image encodings to
have a high dot product when the EEG signal is associated with the stimulus image that elicited the
associated EEG signal and a low dot product when the EEG signal is associated with a different
image, irrespective of class. We do not postpend a classifier (ReLU, 1000—40 FC, softmax) to the
encoders, either during training or after training. All analyses are done directly on the unmodified
encodings produced by the encoders. For both the EEG encodings (‘EEG’) and the image encodings
(‘image’), we analyze the unmodified encodings (‘original’) and encodings reconstructed by principal
component analysis (‘PCA’). For PCA, we analyze two reconstructions: one with only the top 40
principal components (‘top 40’) and one with only the bottom 960 principal components (‘bottom
960’). We classify original and reconstructed EEG and image encodings, before and after joint and
separate training, in two ways. In the first, we simply select the label of the maximal element among
all 1000 elements (‘1000 classes’). In the second, we select the label of the maximal element among
only the 40 classes used as stimuli (‘40 classes’). In both cases, correct labels are considered positives.
In the former, negatives can result from incorrect labels, both within and outside the subset of 40
ILSVRC classes used as stimuli. In the latter, negatives can result only from incorrect labels within
the subset of 40 ILSVRC classes used as stimuli.

11
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Table 6: The top 40 principal components explain a large portion of the image-encoding variance
(>63.9%) before training (column v). This together with Tables 2 and 3 implies that the pretrained
image encoders produce encodings that contain (primarily) class information on all data. This

supports claim A and calls claim I into question.

EEG image
before after after before after after
joint separate joint separate
pretraining  no pretraining pretraining  no pretraining
i i iii iv v vi vii viii
their Inception v3 i 447 372 153 99.5 64.1 94.9 98.9 100.0
ResNet-101 ii 46.5 36.2 17.7 99.5 82.0 98.9 98.2 96.8
DenseNet-161 | iii 48.2 25.6 22.7 100.0 75.4 97.4 90.2 100.0
AlexNet iv 46.3 21.7 18.5 99.5 82.3 nan 100.0 99.7
block Inception v3 v 833 75.9 69.4 423 63.9 57.4 98.3 99.9
ResNet-101 vi 85.4 79.8 72.8 419 81.9 99.5 99.0 99.7
DenseNet-161 | vii 84.0 79.3 76.3 429 753 69.4 94.3 99.5
AlexNet viii 84.4 78.9 73.2 40.0 82.2 78.9 99.9 98.9
randomized Inception v3 ix 62.1 40.5 38.3 19.3 63.9 60.2 98.1 99.9
ResNet-101 X 61.9 522 43.6 19.7 81.9 99.1 98.8 99.8
DenseNet-161 | xi 63.5 48.5 46.5 19.6 75.3 70.8 93.9 99.7
AlexNet Xii 63.6 49.5 41.3 19.2 82.2 86.9 99.9 98.8

Table 7: After joint training with pretraining on their data, the top 40 principal components explain
almost all (>94.9%) of the variance in the image encodings (column vi, for rows i—iv). This implies
that the image encoders jointly trained on their data produce encodings with little more than class
information.

EEG image
before after after before after after
joint separate joint separate
pretraining  no pretraining pretraining  no pretraining
i ii iii iv v vi vii viii
their Inception v3 i 44.7 372 153 99.5 64.1 94.9 98.9 100.0
ResNet-101 ii 46.5 36.2 17.7 99.5 82.0 98.9 98.2 96.8
DenseNet-161 | iii 48.2 25.6 22.7 100.0 75.4 97.4 90.2 100.0
AlexNet iv 46.3 21.7 18.5 99.5 82.3 nan 100.0 99.7
block Inception v3 v 83.3 75.9 69.4 423 63.9 574 98.3 99.9
ResNet-101 vi 85.4 79.8 72.8 419 81.9 99.5 99.0 99.7
DenseNet-161 | vii 84.0 79.3 76.3 429 753 69.4 94.3 99.5
AlexNet viii 84.4 78.9 73.2 40.0 82.2 78.9 99.9 98.9
randomized Inception v3 iX 62.1 40.5 383 19.3 63.9 60.2 98.1 99.9
ResNet-101 X 61.9 522 43.6 19.7 81.9 99.1 98.8 99.8
DenseNet-161 | xi 63.5 48.5 46.5 19.6 75.3 70.8 93.9 99.7
AlexNet xii 63.6 49.5 41.3 19.2 82.2 86.9 99.9 98.8

Table 8: After separate training, the top 40 principal components explain almost all of the variance
(>96.8%) in the image encodings (column viii). This implies that the separately trained image
encoders produce encodings with little more than class information on all data.

EEG image
before after after before after after
joint separate joint separate
pretraining  no pretraining pretraining  no pretraining
i i iii iv v vi vii viii
their Inception v3 i 447 372 153 99.5 64.1 94.9 98.9 100.0
ResNet-101 ii 46.5 36.2 17.7 99.5 82.0 98.9 98.2 96.8
DenseNet-161 | iii 48.2 25.6 22.7 100.0 75.4 97.4 90.2 100.0
AlexNet iv 46.3 21.7 18.5 99.5 82.3 nan 100.0 99.7
block Inception v3 v 83.3 75.9 69.4 423 63.9 574 98.3 99.9
ResNet-101 vi 85.4 79.8 72.8 419 81.9 99.5 99.0 99.7
DenseNet-161 | vii 84.0 79.3 76.3 429 753 69.4 94.3 99.5
AlexNet viii 84.4 78.9 73.2 40.0 82.2 78.9 99.9 98.9
randomized Inception v3 ix 62.1 40.5 38.3 19.3 63.9 60.2 98.1 99.9
ResNet-101 X 61.9 522 43.6 19.7 81.9 99.1 98.8 99.8
DenseNet-161 | xi 63.5 48.5 46.5 19.6 75.3 70.8 93.9 99.7
AlexNet Xii 63.6 49.5 41.3 19.2 822 86.9 99.9 98.8
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Table 9: After separate training, the top 40 principal components explain almost all of the variance
(>96.8%) in both the EEG and image encodings on their data (columns iv and viii, for rows i-iv).
This implies that the separately trained EEG and image encoders produce encodings with little more

than class information on their data.
EEG image
before after after before after after
joint separate joint separate
pretraining  no pretraining pretraining  no pretraining

i i iii iv v vi vii viii
their Inception v3 i 447 37.2 153 99.5 64.1 94.9 98.9 100.0
ResNet-101 ii 46.5 36.2 17.7 99.5 82.0 98.9 98.2 96.8
DenseNet-161 | iii 48.2 25.6 227 100.0 75.4 97.4 90.2 100.0
AlexNet iv 46.3 21.7 18.5 99.5 82.3 nan 100.0 99.7
block Inception v3 v 83.3 759 69.4 423 63.9 574 98.3 99.9
ResNet-101 vi 85.4 79.8 72.8 41.9 81.9 99.5 99.0 99.7
DenseNet-161 | vii 84.0 79.3 76.3 429 75.3 69.4 94.3 99.5
AlexNet viii 84.4 78.9 73.2 40.0 82.2 78.9 99.9 98.9
randomized Inception v3 ix 62.1 40.5 383 19.3 63.9 60.2 98.1 99.9
ResNet-101 X 61.9 522 43.6 19.7 81.9 99.1 98.8 99.8
DenseNet-161 | xi 63.5 48.5 46.5 19.6 75.3 70.8 93.9 99.7
AlexNet xii 63.6 49.5 41.3 19.2 82.2 86.9 99.9 98.8
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Table 21: With only two exceptions, separate training gets to a lower loss than joint training with
pretraining (compare columns vii, viii, and ix to i, ii, and iii, respectively). This suggests that there
is a point within the representational-capacity space of their model and loss function that achieves
lower loss than achieved by their joint-training procedure. The joint-training procedure could have
achieved it, it just didn’t. Since that point was achieved with separate training, the resulting EEG
encodings do not have any image information and the resulting image encodings do not have any
brain-activity information. This supports claim B and calls claims II-IV into question.

joint separate
pretraining no pretraining

their  block randomized | their block randomized | their block randomized

i il il v v vi vii viil X

Inception v3 i 1.303  1.098 0.932 | 1.074 0.938 0919 | 1.150 1.027 1.104
ResNet-101 ii | 1.155 0.925 1.019 | 0.963 1.006 1.080 | 0.885 0.936 0.884
DenseNet-161 | iii | 1.027 1.080 1.047 | 0.988 0.919 0.929 | 1.007 0.982 1.029
AlexNet iv | 1417 1.142 0.981 | 1.136  1.055 1.034 | 0.925 0.956 0.935

Table 22: With only three exceptions, joint training without pretraining gets to a lower loss than with
pretraining (compare columns iv, v, and vi to i, ii, and iii, respectively). Yet classification accuracy is
at chance after joint training without pretraining (columns iii vii, Xi, Xv, Xix, and xxiii of Tables 2
and 3). This suggests that joint training without pretraining can memorize the training set yet fail to
generalize at all, and further supports claim A and calls claim I into question.

joint separate
pretraining no pretraining

their  block randomized | their block randomized | their block randomized

i i1 i1 v v vi vil viil X

Inception v3 i 1.303 1.098 0.932 | 1.074 0.938 0.919 | 1.150 1.027 1.104
ResNet-101 ii | 1.155 0.925 1.019 | 0.963 1.006 1.080 | 0.885 0.936 0.884
DenseNet-161 | iii | 1.027  1.080 1.047 | 0.988 0.919 0.929 | 1.007 0.982 1.029
AlexNet iv | 1.417 1.142 0.981 | 1.136  1.055 1.034 | 0.925 0.956 0.935
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