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Abstract

Estimating causal effects is crucial for decision-
makers in many applications, but it is particularly
challenging with observational network data due
to peer interactions. Some algorithms have been
proposed to estimate causal effects involving net-
work data, particularly peer effects, but they often
fail to tell apart diverse peer effects. To address
this issue, we propose a general setting which con-
siders both peer direct effects and peer indirect
effects, and the effect of an individual’s own treat-
ment, and provide the identification conditions
of these causal effects. To differentiate these ef-
fects, we leverage causal mediation analysis and
tailor it specifically for network data. Further-
more, given the inherent challenges of accurately
estimating effects in networked environments, we
propose to incorporate attention mechanisms to
capture the varying influences of different neigh-
bors and to explore high-order neighbor effects
using multi-layer graph neural networks (GNNs).
Additionally, we employ the Hilbert-Schmidt In-
dependence Criterion (HSIC) to further enhance
the model’s robustness and accuracy. Extensive
experiments on two semi-synthetic datasets de-
rived from real-world networks and on a dataset
from a recommendation system confirm the effec-
tiveness of our approach. Our findings have the
potential to improve intervention strategies in net-
worked systems, particularly in social networks
and public health.

1. Introduction

Causal effect estimation is an important area of study, with
the focus on determining cause-and-effect relationships be-
tween variables (Imbens & Rubin, 2010; Pearl, 2009). When
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Figure 1. (a) An example showing the relationship between an indi-
vidual ¢ and their neighbors in a network setting about vaccination.
(b) A causal graph representing PDE, PIE, and STE. In the dia-
gram, T; and Y; indicate the treatment (e.g., vaccination status)
and outcome (e.g., infection condition), respectively. The subscript
i denotes an individual and j # ¢ denotes 4’s neighbors.

data is collected from sources such as social networks, com-
munication networks, or biological networks, accurately
estimating causal effects becomes challenging due to the
interconnected nature of individuals (e.g., units, nodes). In
a network setting, an individual’s outcomes are influenced
not only by their own treatment but also by the treatments
and outcomes of their neighbors (Sinclair et al., 2012). In
network data, as shown in Fig.1, there are different types
of causal effects involved with respect to an outcome of
interest, including individual outcomes influenced by their
own treatment (self-treatment effects, STE), and peer effects
(arising from the treatments and outcomes of their neigh-
bors), which consist of peer direct effects (PDE) and peer
indirect effects (PIE). It is important to distinguish and esti-
mate these different types of causal effects in network data,
particularly the PDE and PIE.

We use an example from epidemiology (VanderWeele et al.,
2012) to show the importance of differentiating between
PDE and PIE. Suppose that an individual ¢ is unvaccinated
against a disease but can benefit from their peers’ vaccina-
tion in two ways. First, vaccination of ¢’s peers reduces
the likelihood of them transmitting the disease to others
(PDE), thereby lowering ¢’s risk of contracting the disease.
Second, vaccinated peers are less likely to become infected,
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which reduces 7’s exposure to the disease (PIE). Thus, in
the context of vaccination, it is essential to understand how
vaccines directly reduce transmission (PDE) and how the
effect of vaccination of peers decreases the contagion risk
of an individual (PIE). To illustrate this point, consider an
extreme case: suppose the vaccination of ¢’s peers does not
reduce the likelihood of spreading a disease (PDE is zero).
However, if the vaccine reduces the potential of infection,
hence reducing ¢’s exposure to the disease, then the PIE
is non-zero. In this case, under limited resources, it is ad-
visable to prioritize vaccinating individuals with a higher
probability of infection to achieve herd immunity.

A similar example can be found in product promotion cam-
paigns. Let’s assume that an individual ¢ has not exposed to
an advertisement for a product, but 7’s peers have. ¢ might
decide to purchase the product because their peers received
the advertisement, even if the peers did not buy it (PDE); or
1 might be influenced by the fact that their peers bought the
product (PIE). Drawing an analogy to the vaccination exam-
ple, if an advertisement is “infectious” (i.e., has high PDE),
it spreads quickly through the network, reaching untargeted
individuals who purchase the product based on their peers’
exposure. If an advertisement is “contagious” (i.e., has
high PIE), individuals’ purchasing behavior is influenced
by their peers’ purchases of the product. This distinction
helps advertisers better understand the effectiveness of their
campaigns and allows for more strategic planning of future
advertisements.

The existing works do not effectively distinguish between
PDE and PIE in network data. A summary of works in peer
effect analysis of network data is shown in Table 1, where
we see that the works by (Jiang & Sun, 2022; Cai et al.,
2023; Chen et al., 2024) do not disentangle PDE and PIE.
However, in many cases, particularly in infectious diseases
and marketing, it is not enough to simply know that overall
peer effects. It is important to distinguish between PDE
and PIE, as each has different practical implications. (Van-
derWeele et al., 2012; Chiba, 2013; Shpitser et al., 2017;
Cai et al., 2021) separately consider PDE and PIE, but they
primarily focus on two-person transmission scenarios (i.e.,
one-to-one interactions), with the first two studies assuming
binary outcomes. The one-to-one interaction restricts their
applicability to real-world networks where multi-to one re-
lationships are prevalent. The details of the limitations of
these methods are discussed in the Related Work section.

To address these limitations, we consider a more general
setting for observational network data, estimating the PDE
and PIE at the group level, and additionally evaluating the
STE within networks, where a group is defined as a set of
individuals connected through social ties, rather than treat-
ing each individual in isolation. We apply the principles
of mediation analysis (Pearl, 2014) and the backdoor crite-

Table 1. A comparison of problem settings across different meth-
ods.

Method PDE PIE STE Relationship Type
(VanderWeele et al., 2012) X One-to-One
(Chiba, 2013) X One-to-One
(Cai et al., 2021) X One-to-One
(Shpitser et al., 2017) X One-to-One
(Jiang & Sun, 2022) X X Many-to-One
(Cai et al., 2023) X X Many-to-One
(Chen et al., 2024) X X Many-to-One
gDIS (Ours) Many-to-One

rion (Pearl, 2009) to distinguish these effects, and provide
their identification conditions to support the soundness of
the estimation. Based on the theoretical analysis, we de-
velop a new algorithm, gDIS, for group-level PDE and PIE,
PE and STE estimation with network data. To accurately
capture the complexity of network effects, gDIS employs a
multi-layer GNN to focus on high-order neighbor interfer-
ence and leverages attention mechanisms (Niu et al., 2021)
to account for the varying influence weights of different
neighbors on each individual. Furthermore, to fully uti-
lize the structural information of graphs, we integrate the
Hilbert-Schmidt Independence Criterion (HSIC) (Ahmad
etal., 2021) into the GNN, enhancing the model’s robustness
and accuracy.

The main contributions of this paper are summarized as
follows:

* We propose a framework to distinguish peer effects
in observational network data into direct and indirect
components at the group level, and provide theoretical
analyses of the identification conditions of the causal
effects.

* We propose a novel algorithm gDIS to estimate effects
in network data by utilizing GNNs and attention mech-
anisms, enabling a more nuanced and robust analysis
of network data.

* We validate the effectiveness and robustness of gDIS
on two semi-synthetic datasets based on real-world
networks, as well as on recommendation system data,
demonstrating the ability of gDIS to accurately esti-
mate different types of causal effects in complex net-
work data.

2. Related Work

In this section, we review methods for estimating causal
effects in network data that are related to our gDIS method.
The methods for peer effect estimation in network data fall
in two broad categories: methods which do not differentiate
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between direct and indirect peer effects, and methods which
do.

Methods Which Do Not Differentiate between Direct and
Indirect Peer Effects. Many methods have been developed
for estimating peer effects without differentiating between
direct and indirect peer effects. For example, Forastiere
et al. (2021) addressed this issue with a covariate adjustment
method using a generalized propensity score (PS) (Feng
et al., 2012) to balance both individual and neighborhood
covariates. Jiang & Sun (2022) introduced NetEst, a frame-
work that employs graph neural networks (GNNs) to capture
feature representations of both individual nodes and their
first-order neighbors. Cai et al. (2023) expanded on this
by deriving generalization bounds and proposing a joint
propensity score approach combined with representation
learning via weighted regression. Chen et al. (2024) inte-
grated the targeted learning (Van der Laan & Rose, 2011)
into neural network training, developing a causal effect esti-
mator. Ma et al. (2022) developed HyperSCI, which lever-
ages hypergraph neural networks (HGNNs) (Feng et al.,
2019) to model interference using a multilayer perceptron
(MLP) (Popescu et al., 2009) and hypergraph convolution.
However, these methods do not differentiate between the
various types of peer effects. It is crucial to differentiate
between PDE and PIE, as these two components carry dis-
tinct practical implications and inform different strategies
for intervention and decision-making.

Methods differentiating between direct and indirect peer
effects. This line of research focuses on estimating direct
and indirect peer effects separately in network data. Van-
derWeele et al. (2012) and Chiba (2013) used logistic re-
gression and inverse probability weighting (IPW) methods,
respectively, to study the effects of vaccination in small fam-
ily units, such as the impact of a child’s vaccination on the
mother. Shpitser et al. (2017) developed a chain graph-based
method to decompose peer effects into unit-specific compo-
nents. Cai et al. (2021) evaluated contagion, susceptibility,
and infectiousness effects in symmetric partnerships under
infectious disease settings. The work presented in (Van-
derWeele et al., 2012; Chiba, 2013; Shpitser et al., 2017;
Cai et al., 2021) primarily focuses on scenarios with only
two individuals in the transmission unit, limiting its practi-
cal applicability. Additionally, the studies in (VanderWeele
et al., 2012) and (Chiba, 2013) focus on binary outcomes
only. In contrast, our work focuses on estimating both direct
and indirect peer effects at the group level, making it more
applicable to real-world scenarios.

3. Preliminaries and Background

This section outlines the notations, definitions, problem
settings, and assumptions used in the paper. More details of
background and notations are provided in Appendix A and

Figure 2. (a) An illustration of the causal relationships considered
in our work. Node 2 has nodes 1 and 3 as neighbours in the network.
The features, treatment, and outcome of node 7 are represented by
X, T3, and Y, respectively. (b) The summary causal graph where
W, Wy, and Wy, represent the aggregated features, treatments,
and outcomes of node ¢’s neighbors.

in Table 3 of Appendix B.

3.1. Notations

Uppercase letters (e.g., Ws,) denote variables, and lower-
case letters (e.g., wy, ) their values. Bold uppercase letters
(e.g., W) represent sets, vectors, or matrices, while bold
lowercase letters (e.g., W) represent their values.

As illustrated in Fig. 2(a), a network consists of a collection
of nodes (or entities) and edges (or connections) that repre-
sent relationships between them. For example, in a social
network, individuals serve as nodes, while their friendships
or interactions form the edges connecting them. Two nodes
are neighbors if they are connected by an edge. For simplic-
ity, node indices (e.g., 7) are used to represent nodes when
the context is clear.

The causal relationships in this study are represented by the
directed edges between the nodes (variables) in a causal
directed acyclic graph (DAG), as shown in Fig. 2(b). The
node set is defined as V = X U T U Y, where X =
{Xy,...,X,,} represents features, T = {T3,...,T},}
denotes binary treatments (e.g., vaccination), and Y =

{Y1,...,Y,,} represents continuous outcomes (e.g., im-
munity levels). Each node i has a feature set X; =
{Xih . 7Xik}’ where ¢ € {]., . ,m}.

3.2. Definitions of Causal Effects

We focus on estimating Peer Direct Effects (PDE), Peer
Indirect Effects (PIE), and Self-Treatment Effects (STE)
from network data, defined within the potential outcomes
framework (Imbens & Rubin, 2010).

In the potential outcomes framework, Y;(¢') is the potential
outcome when treatment T takes the value ¢'; when there
are two treatments, Y; (¢}, t,) denotes the potential outcome
under 77 = ¢} and Ty = t},. The individual treatment effect
(ITE) for unit ¢ is defined as ITE = Y;(¢') — Y;(¢), and the
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Figure 3. A classic causal mediation graph consists of three vari-
ables: T; (treatment), M; (mediator), and Y; (outcome).

average treatment effect (ATE) is ATE = E[Y;(¢') - Y;(¢) ],
where t’ represents the intervention (treatment) state and ¢
represents the no-intervention (control) state.

When there is a mediator, people are interested in knowing
the direct effect of the treatment on the outcome without
passing the mediator and indirect effect via the mediator
only (Xu et al., 2023), as illustrated in Fig. 3 and formally
defined below, following the definitions in Pearl (2014).

Definition 3.1 (Natural Direct Effect (NDE)). NDE =
E[Yi(t', M;(t)) — Yi(t, Mi(t))).

NDE quantifies the expected change in the outcome Y; when
the treatment changes from 7; = t to T; = t/, keeping the
mediator M; fixed at the value it would have taken under
T; = t. In the example in Fig. 3, it is the effect via the
causal pathway T; — Y;.

Definition 3.2 (Natural Indirect Effect (NIE)). NIE =
E[Yi(t, Mi(t")) = Yi(t, M;(1))]-

NIE measures the expected change in Y; when the treatment
is held constant at T; = ¢, while M; changes to the value it
would have taken under T; = ¢'. In the example in Fig. 3, it
is the effect via the causal pathway T; — M; — Y;.

Note that the choice of the baseline treatment level ¢ can
vary depending on the specific context.

Definition 3.3 (Total Effect

(TE)). TE =

TE measures the expected change in Y; when the treatment
changes from T; = ¢ to T; = t/, while allowing the mediator
M;; to vary naturally under each treatment level.

We extend Definitions 3.1 and 3.2 to network data (Vander-
Weele et al., 2012). Specifically, we instantiate these defi-
nitions in two distinct scenarios: vaccination and product
promotion campaigns. As shown in Fig. 2(b), let W, and
W, represent the aggregated treatment and the aggregated
outcome of ¢’s neighbors respectively. We are interested in
how the aggregated treatment directly and indirectly impacts
1’s outcome, i.e. PDE and PIE respectively.

Definition 3.4 (Peer Direct Effects (PDE)).

(la)
PDE(wt) =K [Y;(wén Wyz (wti)) - K(thWyl (th))] .
(1b)

PDE represents the effect of changing the treatment status
of an individual’s neighbors while keeping ’s neighbors’
outcome corresponding to a fixed treatment status. In the
above definition of PDE, W, (w;, ) represents the potential
outcome when W, takes the value w} . Yi(wy,, Wy, (wy,))
represents 4’s potential outcome when W, is set to wy, and
Wy, ’s value corresponds to what it would be if Wy, were set
to w;, . The meanings of the remaining terms in the equation
follow a similar logic.

In the vaccination example, corresponding to Eq. (1a): wj,
means that neighbors of individual ¢ are vaccinated, and wy,
means that the neighbors are not vaccinated. PDE indicates
the reduction in the risk of neighbors’ infectiousness to
individual ¢ due to their vaccination directly.

In product promotion campaigns, corresponding to
Eq. (1b): w;, means neighbors of individual i are exposed
to an advertisement, and w;, means that neighbors are not
exposed to an advertisement. PDE indicates an increase in
the likelihood of individual ¢’s purchasing a product due to
its neighbors’ exposure to an advertisement for the product.

Definition 3.5 (Peer Indirect Effects (PIE)).

(2a)
PIB(u) = B [¥(uf, W (0], )) = i), W (1)
(2b)

PIE represents the effect of changing the aggregated out-
come of individual ¢’s neighbors on individual ¢’s outcome,
while holding the neighbors’ aggregated treatment constant.

In the vaccination example, corresponding to Eq. (2a), PIE
captures the reduction of the risk of infection of individual
1 from their neighbors due to the reduction of the risk of
infection of the neighbors themselves resulting from their
vaccination.

In product promotion campaigns, corresponding to
Eq. (2b), PIE reflects the increase of the chance of pur-
chase of the individual 7 due to their neighbors’ purchases
resulting from their exposure in the promotional campaign.

Proposition 3.6 (Peer Effect Decomposition (Baron &
Kenny, 1986)). The peer effect (PE) can be decomposed
into the sum of the PDE and the PIE. That is,
PE = E[Y(w},, Wy, (w},)) — Yi(ws,, Wy, (wy,))]
= PDE(w;) + PIE(w}) 3)
= PDE(w;) + PIE(w;) .

This proposition shows that the total peer effect integrates
both the direct and indirect pathways of peer influence.

Definition 3.7 (Self-Treatment Effect (STE)).
STE = E[Y;(t') - Y;(t)]. )
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STE represents the effect when the treatment changes from
t to ¢’ of individual i.

In the examples of vaccination, STE indicates the average
difference of potential outcomes of individuals if they had
been vaccinated versus if they had not been vaccinated.

In the examples of product promotion campaigns, STE
represents the average difference in individuals’ potential
outcomes between receiving the advertisement and not re-
ceiving it.

3.3. Problem Setting

The goal of this work is to estimate the causal effects PDE,
PIE, and STE from network data. We provide a formal
problem definition as follows.

Problem Definition. Given observational network data with
node features, treatments, and outcomes, and assuming the
causal structure as in Fig. 2b, our goal is to obtain unbiased
estimation of the following causal effects.

 Peer Direct Effects (PDE): The causal effect of W, on
Y; via the pathway W;, — Y;, as formally defined in
Definition 3.4.

* Peer Indirect Effects (PIE): The causal effect of Wy,
on Y; via the pathway W;, — W,, — Y}, as formally
defined in Definition 3.5.

o Self-Treatment Effects (STE): The causal effect of T}
on Y; via the pathway 7; — Y;, as formally defined in
Definition 3.7.

As PE can be obtained based on PDE and PIE following
proposition 3.6, we do not include the estimation of PE in
our problem definition.

3.4. Assumptions

To estimate PDE, PIE, and STE from observational network
data, some assumptions are required (Jiang & Sun, 2022).

Assumption 3.8 (Network Unconfoundedness). The po-
tential outcome is independent of both individual treat-
ment and neighborhood exposure, given individual and
neighbor features. i.e., Y;(¢;) AL T; | X;, {X,};en; and
lfi(wtwwyi) A Wti | X, {Xj}je./\/z:'

Assumption 3.9 (Network Consistency). The potential out-
come equals the observed outcome when an individual is
exposed to the same treatment and neighborhood exposure.
ie.,Y; =Y,(t;) and Y; = Y;(wy,, wy, ) when the individual
is exposed at ¢; and (wy,, wy, ), respectively.

Assumption 3.10 (Network Overlap). Every treatment

and neighborhood exposure combination (T;, W, Wy,)
must have a positive probability of occurring; i.e., 0 <

]P)(t? | Xz,{X]}jeM) < land 0 < P(wt“ww |
Xi {Xtjen:) < 1.

These assumptions collectively ensure that causal effects
can be estimated from observational network data.

4. The Proposed gDIS Method

In this section, we present the theoretical analysis of the
identifiability of PDE, PIE, and STE, and introduce our
gDIS model for estimating these effects from network data.

4.1. Identifiability of PDE, PIE, and STE

To present our main theoretical results (Lemma 4.1 and
Theorem 4.2), we need the following graphical criterion
for identifying an appropriate adjustment set relevant to the
identifiability of the PDE and PIE.

Criterion 1 (Sequential Ignorability (Pearl, 2014; Imai et al.,
2010)). A set of observed covariates W is said to satisfy
sequential ignorability if it blocks all back-door paths from
M to'Y; that do not pass through T; (T;-avoiding backdoor
paths), and all back-door paths from T; to either M; or Y,
and no element of W is a descendant of T;.

We present our first theoretical finding below.

Lemma 4.1. In the causal DAG represented in Fig. 2(b),
the aggregated set of neighbor features W , satisfies Crite-
rion 1.

Proof. First, W, blocks all backdoor paths from W, to
Y; that do not pass through Wy,. In the causal DAG shown
in Fig. 2(b), all W, -avoiding backdoor paths from W, to
YWy, <~ Wy, =Y, W, < W, =T, «X; =Y,
and W,, < W, — T; — Y;) are blocked by the set
W, . Next, from Fig. 2(b), there are the following backdoor
paths from W;, to W,, Wy, «+ W, — W,., W, +
W, =Y, W, , Wy, < Wy, =T, =Y, « W, and
Wi, +— Wy, = T, <+ X; = Y; + W,,) and from W,
oY, Wy, < Wy, =Y, W, < W, =W, =Y,
Wi, <~ Wy, = T, - Y, and Wy, < W,, = T, <
X; = Y;). We can see that W, blocks all these backdoor
paths. Finally, W, is not a descendant of Wy, in Fig. 2(b).
Therefore, W, satisfies the Criterion 1 and thus can serve
as an adjustment set for unbiased estimation of PDE and
PIE. O

Based on Lemma 4.1 and Eq.13 in (Pearl, 2014), the
PDE (1a), PIE (2a), and STE (4) can be represented using
do-expressions. Furthermore, using Pearl’s back-door ad-
justment formula and do-calculus rules (Pearl, 2009), these
do-expressions can be further transformed into probability
expressions. This result forms the basis of our theoretical
finding in Theorem 4.2.
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Theorem 4.2. If P(T;,Y;, X;, W, W,.,W,.) is gener-
ated from the causal DAG in Fig. 2(b), then the PDE, PIE,
and STE can be identified from the data as follows:

PDE = [E(Y; | Wy, = w),, W,,
_E(Y; ‘ Wti = thWyi

X P(Wyl = w;lgl | Wti

— _
= wy,, Wz, =Wy, )
/
=wy,,, Wy, = wmi)]

— o —
- wtﬂwxi - Wl’l)

PIE = E(ifl | Wti = wthyi = U)y“Wg;i = WJ,1)
X [P(qu = Wy; | Wti = wéi’W-’L‘i = WT7)
_P(Wyi = Wy, | Wi, = wi;, Wy, = Wﬂcz)]

STE = P(X; = x,)P(W,, = W.,)

X [E(Y; ‘ Tl = t;axi = Xiawfbi = Wfﬂi)

Proof. When Lemma 4.1 is satisfied, PDE, PIE and STE are
represented as the following in do-expression (Pearl, 2014).
The analogous representations for PDE (1b) and PIE (2b)
are omitted for brevity.

PDE = E[Y | do(Wy, = wy,, W,, wz,n)’ W, = le]
~E[Y; | do Wt =wy,, Wy, =w,.), Wy, = wg,|

xP(W, v | do(Wy, = wi)), W, = wy,)
xIP’(W,h =w,,), (8)

PIE = E(Y; | do(Wy, = wy,, Wy, = wy,), Wa, = Wy,)
X [P(Wyl = Wy, | dO(Wti = wgb)7wmb = le)
_P(Wyi = Wy, | dO(Wti = wti)vwaii = Wml)]

x P(W,, =w,,), )

STE = E(Y; | do(T; = t}))—E (Y; | do(T; = t;)). (10)

We now prove that Eq. (8) to Eq. (10) are identifiable, i.e.,

the do-operators can be reduced to the do-free expression in

Eq. (5) to Eq. (7), respectively. The causal DAG is shown
in Fig 2(b). Based on rule 2 of do calculus (Pearl, 2009),

we have P(Y; = y; | do(Wy, = wy,, Wy, = w,, ), Wy, =
W’ﬂz) = P(Y =Y | dO(Wti - wgi%vvyi = wg/;ﬂWTz =
Wy, ) since (Y; 1L W, | Wti,Wxi)GWW ~, where Wy,

represents the removing all edges with arrows pointing to
Wy,, and W, represents the removing all edges with arrows
emanating from W, .

Continue the above reduction, we have P(Y;
dO(Wti = w£1)7Wy’L = w W
| Wti = wgi,W’qL =

(Yi 1L Wy, | Wy,
removing all edges with arrows emanating from W;, (rule 2
of do calculus).

)Gw , Where Wf represents the

We apply rule 2 of do calculus again. P(W,, = w,_ |

dO(Wti = wiltl)7W301 = WII) = P(Wyz = wgl;i | Wti
wi,, Wy, = Wy, ) because (W, wi)cwt‘ .

Up to this point, Eq. (8) has been reduced to Eq. (5). The
proof for reducing Eq. (9) to Eq. (6) is similar, and we do
not repeat the derivations here.

We now reduce Eq. (10) to Eq. (7). Based on the back-door
adjustment formula (Pearl, 2009), P(Y; = y; | do(T; = t}))
is identifiable because all backdoor paths from T to Y; are
blocked by X; and W,. Specifically, T; < X; — Y; is
blocked by X;, T; < W,, — W, — Y, is blocked by
W, T; < Wy, = W, = W,, — Y;isblocked by W,
T; <+ W, — W,, — Y is blocked by W, and T; <
W,, — Wy, < W;, — Y, is blocked by W;,. Hence,
B(Y, = y; | do(T; = ) = P(Y, = y; | T, = t,X, =
Xiy Wy, = Wy, )P(X; = %) P(W,, = wy,). O

4.2. The Proposed gDIS Model

In this section, we present the gDIS model for estimating
PDE, PIE and STE from observational network data by fol-
lowing Eq. (5) to Eq. (7). Due to space limit the workflow
of the model is shown in Fig. 6 in Appendix C. Calculating
the posterior probability of W, and Y; is challenging us-
ing traditional methods due to the non-linear relationships
between W, and both Wy, and Y}, the continuous nature
of W,,, and the high-dimensional space of W,,. GNNs
have demonstrated an outstanding capability to capture such
non-linear relationships in network data (Scarselli et al.,
2008; Kipf & Welling, 2017). Thus, we propose a practical
solution combining a GNN with attention mechanisms and
a fully connected layer. The GNN models node interactions
and extracts higher-order structural information, while the
fully connected layer captures non-linear relationships be-
tween W, and W,,. This design enables the gDIS model
to estimate causal effects accurately in complex networks.

To estimate PDE, PIE and STE as identified in Eq. (5) to
Eq. (7), respectively, we need to compute the aggregated

variables: W, = Zje/\f wi; 1y, Wy, = ZJEN wi;Y,
. exp(ei;)

and Wo, = 3 je, wiyXy, where wij = 5=y
X;-X; _

€j = W, and \; represents the set of neighbors

of node ¢ in the network. Correspondingly, as shown in
Fig. 6 in Appendix C and Algorithm 1 in Appendix D, gDIS
consists of three key stages as detailed in the following.

Stage 1: To estimate the conditional probability
P(Wy, |Wy,, Wy, ), we employ a 2-layer GNN with atten-
tion mechanisms and a single fully connected layer as the es-
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timator. The estimator, denoted as f1 : (Wy,, Wy,) — W,,,
is designed to model this mapping by minimizing the mean
squared error (MSE) (Chicco et al., 2021). The loss function
is defined as:

1 m
Ly=—3 (W, — AW, W,)?. (D)

Stage 2: To estimate the conditional probability
P(Y;|Wy,,W,,, W_,), we use a 2-layer GNN with atten-
tion mechanisms and a 3-layer fully connected network as
the estimator to refine predictions. The estimator, denoted
as fo : (Wy,,W,,, W5,) = Y;, models this mapping by
optimizing the total loss function, defined as:

m

1
— 3 Vi fa(Wi Wy W)
i=1

1
+ A mtfﬂCC(KHCKH/C). (12)

The first term represents the MSE for prediction accuracy,
and the second term is the Hilbert-Schmidt Independence
Criterion (HSIC) regularization. The hyperparameter A
balances the HSIC term’s contribution. C =1 — %llT is
the centering matrix that removes the mean from the kernel
matrices, I is the m x m identity matrix, 1 is an m x 1
vector of ones.

The HSIC regularization measures the dependence between
node features X and the learned embeddings in a Reproduc-
ing Kernel Hilbert Space (RKHS), ensuring the embeddings
do not retain spurious correlations from the original features,
thereby enhancing model robustness (Berlinet & Thomas-
Agnan, 2011). HSIC is computed by first defining similarity
matrices for the feature space (H) and the embedding space
(H’) using Gaussian kernels:

H; — H;|]?

(Kn)u = eXP(—”Qﬂ)v (13)
H —H 2

(KH’)il = exp(W). (14)

where v is the Gaussian kernel bandwidth (Kakde et al.,
2017), set to the median of input feature distances.

Stage 3: Kernel density estimation (KDE) is applied to den-
sity estimation in high-dimensional settings (Botev et al.,
2010; Duong & Hazelton, 2003). We employ KDE to
estimate the probability density functions of P(X;) and
P(Wy,).

1 e 1 1X; — X4
= log(— = R
ogm; 5= (=),

(15)

log P(X;

log P (Wacz) =
1 1 W, — W, |2
1 _ _ i k
o8 2 o g
where h is the bandwidth parameter in KDE, which controls
the smoothness of the estimated density.

). (16)

After obtaining the estimation of the conditional probabili-
ties and the marginal probabilities, PDE, PIE and STE can
be estimated via Eq. (5) to Eq. (7) respectively.

5. Experiments

In this section, we first evaluate the performance of gDIS
on real-world social network datasets and compare it with
existing methods. Then, we assess gDIS under different hy-
perparameter configurations and analyze its time complexity.
Finally, we conduct a case study using a recommendation
dataset to evaluate the effectiveness of disentangling peer
effects into direct and indirect components. For each ex-
periment, we repeat it five times and report the average
result and the standard deviation. Detailed experimental
setup, parameters, and model architectures are provided
in Appendix G.

Baselines. We compared our model with six baselines: (1)
CFR+(N) (Shalit et al., 2017), which estimates effects and
incorporates peer exposure using integral probability metrics
(IPM) for distribution balancing. (2) TARNet+(N) (Shalit
et al., 2017), a variant of CFR+(N) that does not use IPM.
(3) NetDeconf (Guo et al., 2020), an adaptation of CFR
for network data that uses GNNs to encode confounders.
(4) 1-GNN (Ma & Tresp, 2021), a GNN-based causal ef-
fect estimator for network interference. (5) NetEst (Jiang
& Sun, 2022), which applies adversarial learning to bridge
graph machine learning and causal effect estimation. (6)
TNet (Chen et al., 2024) integrates target learning to im-
prove the accuracy of effect estimation. (7) gDIS(-HSIC),
our gDIS method without the HSIC module.

Metrics. We evaluate the algorithms using MSE (Chicco
et al, 2021) and PEHE (Grimmer et al, 2017).
MSE (eyse = =30, (Y; — Y;)?) measures the
bias in effect estimation, while PEHE (eppyrp =

2

Lo, [(Fa@) = Yi@) = (i) = Yi(#))] ) quani-
fies the precision of the effect estimation. m is the number
of samples, and )A/Z and Y; denote the predicted and true
outcomes for individual ¢, respectively. Lower values corre-
spond to better performance.
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Table 2. Causal effect estimation results. The epgpr error is reported. The top-performing results are emphasized in bold, and the
second-best results are underlined. Note that “/” indicates the model is not applicable for this effect.

Data Effects CFR(+N) ND(+N) TARNET(+N) 1-GNN NetEst TNet gDIS(-HSIC) gDIS
peer 0.7412+0.0112 0.7545:0.0121 0.699140,014 0.6770s00340  0.6729:00326  0.6591:00362  0.2478:0.0197 0.2093:0.014
BC peer direct / / / / / / 0. 14561()'0129 0-1265t0.0126
(within-sample) peer indirect / / / / / / 0.19440.0018 0.1358..0.0026
self-treatment 06059@_0263 0.4648&_0353 0.428210,0325 0.3600&_0330 0.43531(),0323 04462ﬂ)_0273 0-0673i(),0025 0-0588t0.0015
peer 0.7399:0.0108 0.7549.0.0122 0.6094.0,0122 0.6860+00275  0.6823.0.0260 0.657.0.0248 0.2476.00128  0.2034.0.0124
BC peer direct / / / / / / 0.157640.0101 0.1101.9,014
(out-of-sample) peer indirect / / / / / / 0.197940.002 0.1312.9,0020
self-treatment 0.6062.0.0262 0.4588.40.0340 0.424040.0226 0.367240.0315 0.4425.40.0304 0.4584.0.0253 0.0656.40.0034 0.0545.9.0023
peer 0.973610.0078 0.9820:0.0116 0.975120.0079 0.9890s00130 09650100078  0.9757:00430  0.1312:00007  0.1262.0.0007
Flickr peer direct / / / / / / 0.1 1381()_0013 0.1118i0_0013
(within-sample) peer indirect / / / / / / 0.0933:00008  0.0901.0.0008
self-treatment 0.5249.00115 0.5293.40.0193 0.474040.0129 0.38704+0.0130 0.358840.0125 0.3696-0.0901 0.1599.0.003 0.1578.9.003
peer 0.98450.0068 0.9830:0.0112 0.9848..0.0080 0.9840s00113 09651400078  0.9762:00730  0.1307:00007  0.1206.0.0007
Flickr peer direct / / / / / / 0.1 1091()_001 1 0.1008i0_0012
(out-of-sample) peer indirect / / / / / / 0.0898.0.0008 0.086.0.0008
self-treatment 0524210_0109 0452843&0_01 86 0.55801()‘0] 12 0.3850ﬂ)_0085 0.34091()‘0105 0.3703&_0343 0.1 5431(),0032 01502&0.0033

BC (within-sample) BC (out-of-sample)

= gDIS(-HSIC)
gois

05 5
Flip Rates Flip Rates

Flickr (within-sample) Flickr (out-of-sample)

5
Flip Rates

5
Flip Rates

Figure 4. The results illustrating the relationship between the estimation bias (eassg) and the percentage of units with treatment flip.

5.1. Performance Evaluation on gDIS with Social
Network Data

We applied gDIS to two semi-synthetic real-world datasets,
BlogCatalog (BC) and Flickr (Li et al., 2015), to evaluate
its effectiveness on estimating PDE, PIE and STE. Due
to space limitations, details about the data preprocessing
and generation process are provided in Appendix E. We
evaluate the method using “within-sample” estimates on
training networks and “out-of-sample” estimates on testing
networks.

Causal Effect Estimation Results. Table 2 shows the
eprmE results on the BC and Flickr datasets. The com-
plete gDIS model demonstrates superior performance in
both within-sample and out-of-sample scenarios, outper-
forming existing baselines. This advantage arises from our
explicit modeling of neighbor influences under natural net-
work conditions. By effectively leveraging graph structure
and disentangling peer effects into direct and indirect com-
ponents, gDIS provides a more comprehensive framework
for causal inference in social networks.

The role of HSIC. To validate the effectiveness of HSIC
regularization, we implemented a variant of gDIS without

the HSIC component (denoted as gDIS(-HSIC) in Table 2).
From Table 2, we observe that the full version of gDIS out-
performs the variant without HSIC. This result implies that
HSIC can promote independence between node features and
learned embeddings, thereby enhancing model robustness
and mitigating overfitting.

Bias Analysis with Simulated Treatment Flip. To evaluate
the robustness of gDIS under treatment assignment noise,
we follow (Jiang & Sun, 2022) and simulate outcomes with
varying rates of treatment flips (0.25, 0.5, 0.75, 1). As shown
in Fig. 4, higher flip rates introduce more noise, increasing
MSE. gDIS shows lower MSE on Flickr than that on BC,
likely due to the richer connectively in the Flickr dataset.
Across all flip rates, gDIS consistently outperforms other
methods, demonstrating strong resilience to noisy treatment
assignments.

Hyperparameter Impact. We analyzed the impact of the
HSIC regularization coefficient A, varying from 0 to 0.5, on
the error epgyE, as shown in Fig. 5. We found that A = 0.3
produced the best overall performance. When A > 0.3, it
begins to over-penalize the feature representations, leading
to a decline in performance.
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¥ peer W peerdirect I peerindirect ¥ selftreatment
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Figure 5. Impact of HSIC regularization (\) on epprr for BC
and Flickr datasets across different effect types.

Time Complexity. The time complexity analysis is pro-
vided in Appendix H.

5.2. A Case Study of gDIS for Recommendation Systems

Understanding the impact of PDE and PIE is crucial for de-
signing effective interventions in recommendation systems.
To highlight the importance of separating PDE from PIE,
we conducted experiments using the Coat Dataset!, which
simulates MNAR (missing not at random) data from online
coat purchases. As described in (Schnabel et al., 2016),
the dataset includes user features and 5-point ratings, with
1 being the lowest preference. Each user-item interaction
with one of the top 10 rated products is marked as ad expo-
sure, i.e., treatment = 1, and a rating of 4 or higher implies
a purchase. The user-level treatment is calculated as the
proportion of interactions with promoted items.

User relationships are constructed using pairwise cosine
similarity between feature vectors, which represents the
strength of the relationships. This network structure enables
us to measure how ad exposure spreads through social con-
nections and influences purchasing behavior. The estimated
causal effects in this network are as follows: PDE = 0.0127,
PIE = 0.0212, PE = 0.0339, and STE = 0.0635.

To better understand the relative importance of different
causal mechanisms, we analyzed the proportional contribu-
tions of STE, PDE, and PIE to the total effect, i.e., PE + STE
=0.0974. STE contributes 65.20% of the total effect, while
network effects account for 34.80%, including 21.76% from
PIE, notably larger than the contribution of PDE (13.04%).
This distribution provides key insights for recommendation
system design. The dominance of STE suggests that di-

'https://www.cs.cornell.edu/~schnabts/
mnar/

rect user targeting should receive the majority of marketing
resources, while the substantial network effect proportion
indicates social influence strategies remain important. The
fact that PIE exceeds PDE highlights that users are more
influenced by their peers’ actual purchasing behaviors than
by peer ad exposure alone. Recommendation strategies
should therefore focus not only on expanding ad reach but
also on optimizing early adopters’ satisfaction to maximize
cascading effects through social networks. Leveraging these
patterns can significantly enhance campaign effectiveness
by strategically amplifying indirect peer effects.

6. Conclusion

Summary of Contributions. In this work, we address the
novel problem of differentiating and estimating the three
types of causal effects PDE, PIE and STE in observational
network data. Through theoretical analysis, we establish
the identifiability conditions for estimating these causal ef-
fects from the data and provide corresponding proofs for
the identifiability of these causal effects. Supported by the
identification results, we propose the gDIS algorithm for ac-
curately estimating PDE, PIE, and STE in observational net-
work data. To capture complex network interactions, gDIS
employs a multi-layer GNN with attention mechanisms and
incorporates HSIC to effectively reduce dependencies be-
tween node features. We have validated the effectiveness
and robustness of gDIS on two semi-synthetic social net-
work datasets and a recommendation system dataset. gDIS
has demonstrated strong performance even in complex net-
work environments.

Limitations & Future Work. Although supported by the
theoretical and empirical results, gDIS has a major limita-
tion. It relies on the network unconfoundedness assumption,
which may be violated in practice, despite being commonly
seen in the literature. Future work will focus on relaxing
this assumption to enhance its applicability by exploring
approaches like instrumental variables (IVs) to mitigate hid-
den confounders, network representation learning to capture
latent structures, and causal discovery methods to identify
potential confounders.
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causal effects and provide corresponding proofs, laying a
solid foundation for causal inference in networks. Building
on these results, we propose the gDIS framework, which in-
tegrates graph neural networks, attention mechanisms, and
HSIC regularization to effectively estimate PDE, PIE, and
STE. This contribution is potentially useful for optimizing
intervention strategies in various applications and domains
such as public health, marketing, and social influence analy-
sis.
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Supplement to ‘““Telling Peer Direct Effects from Indirect Effects in
Observational Network Data”

A. Background on Causal Inference

To aid readers’ understanding, in the following, we define the terms causal DAG, path, d-separation, Structural Causal
Model, and Back-door Criterion, which are used throughout this paper.

Causal DAG. Let G = (V, E) be a directed acyclic graph (DAG), where V. = {V,...,V,,} and E C V x V are the set
of nodes and edges of the DAG respectively. G is a causal DAG if each directed edge V; — V; € E encodes a direct causal
relationship of V; on V.

Path. A path 7 between nodes V; and Vj in G is any sequence of distinct nodes or variables (V;, ..., V;) such that each
consecutive pair is adjacent (i.e., there is an edge between the pair of nodes). If every edge on 7 points toward Vj, then 7 is
called a directed (or causal) path; in this case V; is an ancestor of V; and V}; a descendant of V;.

d-Separation. In the DAG G = (V,E), a path 7 between V; and V; is said to be blocked (or d-separated) by a set
M C V if (i) 7 contains a chain V, — V}, — V. ora fork V, + V;, — V, with V;, € M, and (ii) 7 contains a collider
Va — Vi <= V¢ such that neither V}, nor any of its descendants is in M. Otherwise V; and V; are d-connected given M. We
write V; 1L V; | M when in G every path between V; and V; is blocked by M.

Structural Causal Model. A Structural Causal Model is a tuple M = (U, V,F), where U = {Uy,...,U,,} are
exogenous variables, V.= {V1,...,V;,} are endogenous variables, and F = {f;} is a collection of structural functions
fi: Pa(V;) x U; — V;, where Pa(V;) is the set of direct causes of V.

The Back-door Criterion (Pearl, 2009). In a DAG G = (V, E), for an ordered pair (V;,V;),aset M C V\ {V;,V;} is
called a back-door set relative to (V;, V;) if no variable in M is a descendant of V; and M blocks every path from V; to V;
that begins with an arrow into V.

B. Symbols

A summary of the key symbols used in the paper is presented in Table 3.

Table 3. Key symbols used in the paper

Symbol Description

X, Features vector of individual ¢

T; Treatment of individual ¢

Y; Outcome of individual ¢

W, Aggregated neighbor features for individual ¢

W, Aggregated neighbor treatment exposure for individual ¢

Wy, Aggregated neighbor outcome exposure for individual ¢

Wy, (wi,) The potential outcome of W, when the treatment W, takes value wyj,
Yi(we,, Wy, (w},)) The potential outcome of ¥; when W, takes value w,, and W, is fixed

at what it would be when its treatment takes value wy},
k Dimension of the feature vector of a node
N; Neighbors set of individual 7
m Sample number

C. Workflow of the gDIS Framework

Fig. 6 illustrates the complete workflow of the gDIS model for estimating PDE, PIE, and STE in network data. The process
consists of three main stages: the first stage focuses on estimating IW,,, the second stage incorporates HSIC regularization

12
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Figure 6. The workflow of our gDIS model for estimating PDE, PIE, PE and STE within network data.

for response prediction, and the third stage computes the probability density functions P(X;) and P(W,,) using kernel
density estimation.

D. The gDIS Algorithm
The pseudo-code of gDIS for estimating PDE, PIE and STE is presented in Algorithm 1.

E. Datasets

Each unit 7 has only one observed treatment 7; and outcome Y; (the factual outcome), making direct causal effect estimation
challenging due to unobservable counterfactuals. Since evaluating causal inference methods requires ground truth ITE
(Individual Treatment Effect) values (which are impossible to obtain from observational data alone), following previous
works (Jiang & Sun, 2022; Chen et al., 2024), we create semisynthetic datasets where the network structure (features and
topology) is real, but treatments and potential outcomes are simulated.

The semisynthetic datasets are generated from two real-world social networks:

BlogCatalog® (BC): BlogCatalog is a social network where users publish blogs. In this dataset, each unit represents a
blogger, and each edge represents a friendship link between bloggers. The features are represented as keywords extracted
from the bloggers’ posts. This dataset provides a rich network structure, with nodes connected by social relationships that
capture the peer exposure.

Flickr?®: Flickr is a social network for sharing images and videos. Here, each unit is a user, and each edge represents a
social connection between users. Each user’s features are represented by a list of tags that indicate their interests, forming a
high-dimensional feature space. More details on these datasets are summarized in Table 4.

Table 4. Detailed information of datasets. A unit (node) represents a user, and an edge represents a social connection between users.

BlogCatalog Flickr

# of Users 5,196 7,575
# of Features 8,189 12,047
# of Links 171,743 239,738

https://www.blogcatalog.com/
https://www.flickr.com/
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Algorithm 1 gDIS (group-level PDE, PIE, and STE)

1: Input: X, T, W,, W,, W, Y; learning rate [r; HSIC regularization parameter A; adjacency matrix of data A; s:
number of epochs for Stage 1, o: number of epochs for Stage 2; m: number of samples.
Output: Estimated PDE, PIE, and STE.
Initialize: f1 < GNN;-Attn-FCy, fg < GNN;-Attn-FCs.
> f1 is for estimating P(W,, | Wy,, Wa,).
> fo is for estimating P(Y; | W, Wy,, Wa,).
fore=1,...,sdo
> Stage 1: estimate parameters for fi
Wyi, A fl(th WTL)
Compute loss £; via Eq. (11).
Update f; by descending V¢, £;.
end for
fore=1,...,0do
> Stage 2: estimate parameters for fo
1/1' — fQ(Wym thWr,,)
Compute loss Lo via Eq. (12).
Update f, by descending V f, Lo.
: end for
cfori=1,...,mdo
> Stage 3: density estimation
Estimate densities P(X;) and P(W,,,) via Eq. (15)—(16).
: end for
: Compute PDE, PIE and STE via Eq. (5)—(7) respectively.
: Return: PDE, PIE, and STE.

— =
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Given the high-dimensional and sparse nature of the original features, we follow the approach in (Jiang & Sun, 2022;
Chen et al., 2024) and apply Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to reduce the feature dimension
k to 10. To partition the network, we utilize the METIS (Karypis & Kumar, 1998) graph partitioning tool, which
efficiently handles large-scale graphs. Further details and case studies regarding METIS can be found in the official
documentation at https://metis.readthedocs.io/en/latest/index.html#module-metis. To reduce
memory consumption and streamline the analysis, we construct a new graph by removing isolated nodes that do not
contribute to the network structure. The resulting partitioned data distribution is shown in Table 5.

Table 5. Data distribution after graph partitioning. Each tuple (m, k) indicates the number of nodes (m) and the feature dimension (k).

Dataset Train Validation Test

BlogCatalog  (1722,10)  (1733,10) (1731, 10)
Flickr (1557,10)  (2526,10) (1829, 10)

F. Simulation

Treatments and potential outcomes are simulated according to the underlying causal DAG, as shown in Fig. 2(a), allowing
for the ground truths of causal effects in terms of evaluating our causal inference method.

Treatments Simulation. The features act as pre-treatment variables (i.e., features are parent nodes of the treatment) and
influence the treatment. When simulating treatment generation, to account for the varying interference between node
features, we use cosine similarity divergence to measure the similarity between connected units.

We calculate each individual’s probability p(T; | X, {X;} jenr(i)) of receiving treatment. X; and {X};car(;) denote the
feature vector of individual ¢ and the feature vector of their neighbor j, respectively.
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Algorithm 2 Gibbs Sampling Algorithm
1: Input: Initial values Wyy = 0, Y, = 0; number of iterations m.
2: Qutput: Wy™, Y™,

3: forg =1tomdo
4 fori =1tondo

5 Compute Wy?™" = Do jen: wij Yy

6: Compute Y7 = f(Wy?™ ", X;, X, T3, Tj)

7.

8

9

-1

end for
Check for convergence using Y vectors.
. if convergence is achieved then
10: break
11:  endif
12: end for

p(Tz =1 ‘ XZ', {Xj}jGNi) = J(O’(()éoWoXi) + 0(0[1 Z wijwlxj)) (17)
JEN;

where wg and w are feature weight vectors drawn from the uniform distribution /(—1, 1), w;; is the weight indicating
the influence of j on ¢, and o is the sigmoid function. We define oty = 1 as the fixed weight for individual features, and
a1 = 0.5 as the fixed weight for neighbor features.

The treatment data is generated by the Bernoulli distribution (Chen & Liu, 1997):

Ti ~ Bernoulli (p(Tz =1 | Xi; {XJ}JEM)) (18)

Potential Outcomes Simulation. The potential outcome Y; is influenced by individual features X, , treatment status
T;, neighbor exposure {T}} e, neighbor features {X;};car(;). and neighbor outcomes {Y}}jecn;. Following (Tchet-
gen Tchetgen et al., 2021; Zhao et al., 2024), we employ Gibbs sampling to iteratively generate {Y;},cn; and Y; as
follows:

p(Yi | Xi, T AX jenio AT Yien Vi Hiens) = o(BowaXs) + o (B1 Y wawy;X;)
JEN;

+ BoT; + B3 Z wi;Tj + Ba Z wi;Y; + €

JEN; JEN;

19)

where ¢; is the noise term, and 3y, (1, B2, B3, and 34 are values randomly sampled from a uniform distribution within
the interval [0, 1), denoted 5. ~ U(0,1) for ¢ = 0,1,2,3,4. wo and ws are feature weight vectors drawn from the
uniform distribution ¢/(—1,1). The iteration continues until the difference between Y in successive steps is less than
1 x 1072, indicating that the generated data have reached a stable state. The Gibbs sampling algorithm is shown in
Algorithm 2. Specifically, we first simulate the treatment of each node T based on its own features X; and its neighbors’
features {X; };en;, via Eq. (17)-(18). Then, for every possible neighbor treatment configuration w;, and its corresponding
neighbor outcome configuration w,,, we apply Gibbs sampling according to Eq. (19) to generate the potential outcome
Y; (ti, Wy, wyi), thus obtaining Y; under all scenarios (t;, wy,, wy, ). Finally, we plug these values into Definitions 3.4 and
3.5 to obtain the ground-truth PDE and PIE, and into Definition 3.7 to obtain the ground-truth STE.

G. Experimental Setup and Configuration

In this section, we provide additional details about the experimental setup and configurations. Our proposed model
is implemented using the Python libraries TensorFlow (Abadi et al., 2016) and NetworkX (Hagberg et al., 2008). We
performed a grid search on the validation set to select the key parameters (learning rate, hidden dimensions, and regularization
strength) that yielded the best performance, as shown in Table 6. Table 7 summarizes the parameter settings used for peer
effect analysis on BlogCatalog and Flickr. Key parameter descriptions are as follows:
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* Reps: The number of repetitions for each experimental group to ensure reliable results.

* Epoch: An epoch represents one complete forward and backward pass through the neural network.
* GNN Layers: The number of layers in the GNN.

» FC layers: The number of fully connected layers in the model.

* Hidden Dimension: The dimensionality of the hidden layers.

e [r: The learning rate.

e \: The regularization parameter for the HSIC.

h: The bandwidth parameter used in kernel density estimation.

Table 6. The parameter settings for the three stages across datasets.

Stage Parameter BlogCatalog (BC)  Flickr
Reps 5 5
Epoch 200 200
Stage 1 GNN Layers 2 2
FC Layers 1 1
Hidden Dimension 8 8
lr 0.001 0.001
Reps 5 5
Epoch 150 180
Stage 2 GNN Layers 2 2
FC Layers 3 3
Hidden Dimension 32 32
Ir 0.01 0.001
1x0.3 1x0.3
Stage 3 h 0.5 0.5

H. Time Complexity

We analyze the time complexity of gDIS under different GNN structures and attention layers, as shown in Table 8. We
observed that the runtime of the GAT layer (i.e., the graph-attention and GNN components) is significantly higher than that
of the fully connected layer, indicating that the graph attention mechanism incurs substantial computational overhead for
feature aggregation. Sparse graphs like Flickr exhibit lower runtime in the second stage despite their larger size, benefiting
from a reduced average degree. Furthermore, PyTorch Geometric optimizes sparse graph processing, enabling efficient
computation even for large-scale datasets.
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Table 7. Hyperparameter search space for our method (gDIS).

Stage Parameter Search Space
Ir {le-4, 5e-4, 1e-3, 5e-3, le-2}
GNN Layers {1,2,3}
First Stage FC Layers {1,2}
Hidden Dimension {8, 16, 32}
Epochs {100, 150, 180, 200}
Ir {le-4, 5e-4, le-3, 5e-3, le-2}
GNN Layers {1,2}
FC Layers {1,2,3,4}
Second St4g¢  piqden Dimension {8, 16, 32, 64}
Epochs {100, 150, 180, 200}

Third Stage KDE Bandwidth (h) {0.3,0.5,0.7}

Table 8. Layer Runtime on BC and Flickr Datasets: Training vs. Validation (seconds)

Dataset & Stage Layer Runtime (s)
Training Validation

GAT Layer 1 0.00099  0.00100
BC - First Stage GAT Layer 2 0.00100  0.00199
Fully Connected Layer | 0.00007  0.00007
GAT Layer 1 0.00300  0.00700
BC - Second Stage GAT Layer 2 0.00400  0.00701
GAT Layer 1 0.00200  0.00100
Flickr - First Stage GAT Layer 2 0.00400  0.00400
Fully Connected Layer | 0.00007  0.00007
. GAT Layer 1 0.00200  0.00200
Flickr - Second Stage GAT Layer 2 0.00100  0.00200

Note: The timing measurements are taken for individual layers separately rather than for the entire model forward pass.
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