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Abstract

Generalizing policies across different domains with dynamics mismatch poses a
significant challenge in reinforcement learning. For example, a robot learns the
policy in a simulator, but when it is deployed in the real world, the dynamics of the
environment may be different. Given the source and target domain with dynamics
mismatch, we consider the online dynamics adaptation problem, in which case the
agent can access sufficient source domain data while online interactions with the
target domain are limited. Existing research has attempted to solve the problem
from the dynamics discrepancy perspective. In this work, we reveal the limitations
of these methods and explore the problem from the value difference perspective
via a novel insight on the value consistency across domains. Specifically, we
present the Value-Guided Data Filtering (VGDF) algorithm, which selectively
shares transitions from the source domain based on the proximity of paired value
targets across the two domains. Empirical results on various environments with
kinematic and morphology shifts demonstrate that our method achieves superior
performance compared to prior approaches.

1 Introduction

Reinforcement Learning (RL) has demonstrated the ability to train highly effective policies with
complex behaviors through extensive interactions with the environment [62, 59, 2]. However, in
many situations, extensive interactions are infeasible due to the data collection costs and the potential
safety hazards associated with domains such as robotics [33] and medical treatments [54]. To address
the issue, one approach is to interact with a surrogate environment, such as a simulator, and then
transfer the learned policy to the original domain. However, an unbiased simulator may be unavailable
due to the complex system dynamics or unexpected disturbances in the target scenario, leading to a
dynamics mismatch. Such a mismatch is crucial for the sim-to-real problem in robotics [1, 38, 51]
and may cause performance degradation of the learned policy in the target domain. In this work, we
focus on the dynamics adaptation problem, where we aim to train a well-performing policy for the
target domain, given the source domain with the dynamics mismatch.

Recent research has tackled the adaptation over dynamics mismatch through various techniques, such
as domain randomization [56, 53, 45], system identification [77], or simulator calibration [8], that
require domain knowledge or privileged access to the physical system. Other methods have explored
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Figure 1: Semantic illustration of main settings for dynamics adaptation problem. Methods in
the first three categories require different assumptions, such as a wide range of source domains,
demonstrations from the target domain, or a manipulable simulator. We focus on a more general
setting, online dynamics adaptation, only requiring limited online interactions with the target domain.

the adaptation problem in specific scenarios, such as those with expert demonstrations [41, 32] or
offline datasets [42, 49], while the effectiveness of these methods heavily depends on the optimality of
demonstrations or the quality of the datasets. In contrast to these works, we consider a more general
setting called online dynamics adaptation, where the agent can access sufficient source domain data
and a limited number of online interactions with the target domain. We compare the settings for the
dynamics adaptation problem in Figure 1.

To address the online dynamics adaptation problem, prior works mainly focus on the single-step
dynamics discrepancy and practically eliminating the gap via different ways [17, 14]. However, we
empirically demonstrate the limitation of the methods through a motivation example, suggesting
their effectiveness heavily relies on strong assumptions about the transferability of paired domains.
Theoretically, we formulate the performance bound of the learned policy with respect to the dynamics
discrepancy term, which provides an explicit interpretation of the results. To address the problem,
we focus on the value discrepancy between paired transitions across domains, motivated by the key
idea: the transitions with consistent value targets can be seen as equivalent for policy adaptation.
Based on the insight, we proposed a simple yet efficient algorithm called Value-Guided Data Filtering
(VGDF) for online dynamics adaptation via selective data sharing. Specifically, we use a learned
target domain dynamics model to obtain paired transitions based on the source domain state-action
pair. The transitions are shared from the source to the target domain only if the value targets of the
imagined target domain transition and that of the source domain transition are close. Compared to
previous methods that utilize the single-step dynamics gap, our method measures value discrepancies
to capture long-term differences between two domains for better adaptation.

Our contributions can be summarized as follows: 1) We reveal the limitations of prior dynamics-based
methods and propose the value discrepancy perspective with theoretical analysis. 2) To provide a
practical instantiation, we propose VGDF for online dynamics adaptation via selective data sharing.
3) We extend VGDF to a more practical setting with an offline source domain dataset and propose a
variant algorithm motivated by novel theoretical results. 4) We empirically demonstrate the superior
performance of our method given significant dynamics shifts, including kinematics and morphology
mismatch, compared to previous methods.

2 Related Work

Domain adaptation in RL. Different from domain adaptation in supervised learning where dif-
ferent domains correspond to distinct data distributions [34], different domains in RL can differ
in observation space [26], transition dynamics [56, 77, 17], embodiment [79, 43], or reward func-
tions [16, 81, 57]. In this work, we focus on domain adaptation with dynamics discrepancies. Prior
works utilizing meta RL [76, 48, 55], domain randomization [56, 53, 45], and system identifica-
tion [80, 77, 15, 74] all assume the access to the distribution of training environments and rely on
the hypothesis that the source and target domains are drawn from the same distribution. Another
line of work has proposed to handle domain adaptation given expert demonstrations from the target
domain [41, 32, 27]. These approaches align the state visitation distributions of the trained policy
in the source domain to the distribution of the expert demonstrations in the target domain through
state-action correspondences [79] or imitation learning [28, 21, 72]. However, near-optimal demon-
strations can be challenging to acquire in some tasks. More recent works have explored the dynamics
adaptation given an offline dataset collected in the target domain [42, 49], while the performance of
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the trained policy depends on the quality of the dataset [50]. Orthogonal to these settings, we focus
on a general paradigm where a relatively small number of online interactions with the target domain
are accessible.

Online dynamics adaptation. Given limited online interactions with the target domain, several works
calibrate the dynamics of the source domain by adjusting the physical parameters of the simulator [8,
58, 15, 47], while they assume the access of a manipulable simulator. Action transformation methods
correct the transitions collected in the source domain by learning dynamics models of the two
domains [25, 14, 78]. However, the learned model can be inaccurate, which results in model
exploitation and performance degradation [30, 31]. Furthermore, the work that compensates the
dynamics gap by modifying the reward function [17] is practical only if the policy that performs
well in both domains exists. Instead, we do not assume the dynamics-agnostic policy exists and
demonstrate the effectiveness of our method when such an assumption does not hold.

Knowledge transfer in RL. Knowledge transfer has been proposed to reuse the knowledge from
other tasks to boost the training for the current task [69, 37]. The transferred knowledge can be
modules (e.g., policy) [52, 9, 4], representations [5], and experiences [29, 39, 75, 68]. Our method is
related to works transferring experiences. However, prior works focus on transferring between tasks
with different reward functions instead of dynamics. When the dynamics changes, the direct adoption
of commonly used temporal difference error [63] or advantage function [60] in previous works
[29, 39, 68] would be inappropriate due to the shifted transition probabilities across domains. In
contrast, we introduce novel measurements to evaluate the usefulness of the source domain transitions
to tackle the dynamics shift problem specifically.

Theories on learning with dynamics mismatch. The performance guarantee of a policy trained
with imaginary transitions from an inaccurate dynamics model has been analyzed in prior Dyna-
style [64, 65, 67] model-based RL algorithms [44, 30, 61]. The theoretical results inspire us to
formulate performance guarantees in the context of dynamics adaptation.

3 Preliminaries and Problem Statement

We consider two infinite-horizon Markov Decision Processes (MDP)Msrc := (S,A, Psrc, r, γ, ρ0)
andMtar := (S,A, Ptar, r, γ, ρ0) for the source domain and the target domain, respectively. The
two domains share the same state space S, action space A, reward function r : S × A → R with
range [0, rmax], discount factor γ ∈ [0, 1), and the initial state distribution ρ0 : S → [0, 1]. The two
domains differ on the transition probabilities, i.e., Psrc(s′|s, a) and Ptar(s′|s, a).
We define the probability that a policy π encounters state s at the time step t in MDP M as
PπM,t(s). We denote the normalized probability that a policy π encounters state s inM as νπM(s) :=

(1− γ)
∑∞
t=0 γ

tPπM,t(s), and the normalized probability that a policy encounters state-action pair
(s, a) inM is ρπM(s, a) := (1− γ)

∑∞
t=0 γ

tPπM,t(s)π(a|s). The performance of a policy π inM
as is formally defined as ηM(π) := Es,a∼ρπM [r(s, a)].

We focus on the online dynamics adaptation problem where limited online interactions with the target
domain are accessible, which can be defined as follows:
Definition 3.1. (Online Dynamics Adaptation) Given source domainMsrc and target domain
Mtar with different dynamics, we assume sufficient data from the source domain (online or offline)
and a relatively small number of online interactions withMtar (e.g., Γ := # source domain data

# target domain data = 10),
hoping to obtain a near-optimal policy π concerning the target domainMtar.

The prior work [17] also focuses on the online dynamics adaptation problem with online
source domain interactions. The proposed algorithm DARC estimates the dynamics discrepancy
via learned domain classifiers and further introduces a reward correction (i.e., ∆r(s, a, s′) ≈
log (Ptar(s

′|s, a)/Psrc(s′|s, a))) to optimize policy together with the task reward r (i.e., r(s, a) +
∆r(s, a, s′)), discouraging the agent from dynamics-inconsistent behaviors in the source domain.

4 Guaranteeing Policy Performance from a Value Discrepancy Perspective

In this section, we will first present an example demonstrating the limitation of the prior method
considering the dynamics discrepancy. Following that, we provide a theoretical analysis of the
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Figure 2: The illustrations and results of the motivation experiment. (a) Illustration of the source and
target domains in the grid world environment. The red dot and green square represent the agent and
goal, respectively. (b) Visualization of the state visitation in both domains. The darker color suggests
higher visitation probabilities. Our method guides the agent to reach regions with high target domain
values while the agent trained by DARC is stuck in the room. (c) Visualization of the learned Q tables.
Four triangles represent four actions; the darker color suggests a higher value estimation. Our method
learns the optimal Q table whose greedy policy leads the agent to the goal of the target domain, while
DARC fails due to pessimistic values of the crucial state-action pairs with dynamics mismatch.

dynamics-based method to provide an interpretation of the experiment results. Finally, we introduce a
novel perspective on value discrepancies across domains for the online dynamics adaptation problem.

4.1 Motivation Example

We start with a 2D grid world task shown in Figure 2 (a), where the agent represented by the red dot
needs to navigate to the green square representing the goal. We design source and target domains with
different layouts and train a policy to reach the goal successfully in the target domain. We investigate
the performance of DARC [17] that trains the policy with dynamics-guided reward correction and
our proposed method (Section 5), using tabular Q-learning [73] as the backbone for all methods.
Detailed environment settings are shown in Appendix D.

As the empirical state visitations and the learned Q tables show in Figure 2, DARC is stuck in the
room and fails to obtain near-optimal Q-values, leading to poor performance. Specifically, we circle
out four positions where specific actions will lead to the states with a dynamics mismatch concerning
the two domains. Due to the introduced reward correction on the source domain transitions with
dynamics mismatch, DARC learns overly pessimistic value estimations of particular state-action
pairs, which hinders the agent from the optimal trajectory concerning the target domain. However,
the values of the following inconsistent states, induced by the particular state-action pairs, are not
significantly different concerning the target domain. The value difference quantifies the discrepancy
of the long-term behaviors rather than single-step dynamics. Motivated by the value discrepancy
perspective, our proposed method (Section 5.1) demonstrates superior performance.

4.2 Theoretical Interpretations and Value Discrepancy Perspective

To provide rigorous interpretations for the results, we derive a performance guarantee for the dynamics-
guided methods, which mainly build on the theories proposed in prior methods [30, 17].

Theorem 4.1. (Performance bound controlled by dynamics discrepancy.) Denote the source
domain and target domain with different dynamics asMsrc andMtar, respectively. We have the
performance difference of any policy π evaluated underMsrc andMtar be bounded as below,

ηMtar (π) ≥ ηMsrc(π)−
2γrmax

(1− γ)2
· Eρπsrc [DTV (Psrc(·|s, a)∥Ptar(·|s, a))]︸ ︷︷ ︸

(a) dynamics discrepancy

. (1)

The proof of Theorem 4.1 is given in Appendix B. We observe that the derived performance bound in
(1) is controlled by the dynamics discrepancy term (a). Intuitively, the performance difference would
be minor when the dynamics discrepancy between the two domains is negligible. DARC [17] applies
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the Pinsker’s inequality [13] and derives the following form:

ηMtar
(π) ≥ ηMsrc

(π)− γrmax

(1− γ)2
·
√

2Eρπsrc [DKL (Psrc(·|s, a)∥Ptar(·|s, a))]

= ηMsrc(π) +
γrmax

(1− γ)2
·
√

2Eρπsrc,Psrc [log (Ptar(s
′|s, a)/Psrc(s′|s, a))]. (2)

Based on the result in (2), DARC optimizes the policy by converting the second term in RHS to a
reward correction (i.e., ∆r := log(Ptar(s

′|s, a)/Psrc(s′|s, a))), leading to the dynamics discrepancy-
based adaptation. However, given the transition from the source domain (i.e., Psrc(s′|s, a) ≈ 1), the
reward correction will lead to significant penalty (i.e., log(Ptar(s′|s, a)/Psrc(s′|s, a)) ≪ 0) if the
likelihood estimation of the transition concerning the target domain is low (i.e., Ptar(s′|s, a) ≈ 0).
Consequently, the value estimation of the transition with dynamics mismatch tends to be overly
pessimistic as shown in Figure 2 (c), which hinders learning an effective policy concerning the target
domain.

Instead of myopically considering the single-step dynamics mismatch, we claim that the transitions
with significant dynamics mismatch can be equivalent concerning the value estimations that evaluate
the long-term behaviors. Due to the dynamics shift across domains, a state-action pair (i.e., (s, a))
would lead to two different next-states (i.e., s′src, s

′
tar), the paired transitions are nearly equivalent for

temporal different learning if the induced value estimations are close (i.e., |V (s′src)− V (s′tar)| ≤ ϵ).
Motivated by this, we derive a performance guarantee from the value difference perspective.
Theorem 4.2. (Performance bound controlled by value difference.) Denote source domain and
target domain asMsrc andMtar, respectively. We have the performance guarantee of any policy π
over the two MDPs:

ηMtar (π) ≥ ηMsrc(π)−
γ

1− γ
· EρπMsrc

[∣∣∣∣EPsrc

[
V πMtar

(s′)
]
− EPtar

[
V πMtar

(s′)
]∣∣∣∣]︸ ︷︷ ︸

(a): value difference

. (3)

The proof of Theorem 4.2 is given in Appendix B. The value difference term provides a novel
perspective: the performance can be guaranteed if the transitions from the source domain lead to
consistent value targets in the target domain. The result further highlights the value consistency
perspective for the online dynamics adaptation problem.

5 Value-Guided Data Filtering

In this section, we propose Value-Guided Data Filtering (VGDF), a simple yet efficient algorithm
for online domain adaptation via selective data sharing. Then we introduce the setting with offline
source domain data and a variant of VGDF based on novel theoretical results. The pseudocodes are
shown in Appendix A, and the illustration of VGDF is shown in Figure 3.

5.1 Dynamics Adaptation by Selective Data Sharing

Inspired by the performance bound proposed in Theorem 4.2, we can guarantee the policy performance
by controlling the value difference term in (3). As discussed in Section 4.2, the paired transitions
concerning two domains, induced by the same state-action pair, can be regarded as equivalent for
temporal difference learning when the corresponding values are close. Thus, we propose to select
source domain transitions with minor value discrepancies for dynamics adaptation.

To select rational transitions from the source domain, we need to compare the value differences of
paired transitions based on the same source domain state-action pair (ssrc, asrc). Formally, given
a state-action pair (ssrc, asrc) from the source domain, our objective is to estimate whether the
value-difference between s′tar and s′src is sufficiently small, i.e.,

∆(ssrc, asrc) := 1
(∣∣V πMtar

(s′tar)− V πMtar
(s′src)

∣∣ ≤ ϵ) , (4)

where s′tar ∼ Ptar(·|ssrc, asrc), s′src ∼ Psrc(·|ssrc, asrc), 1 denotes the indicator function and ϵ
can be a predefined threshold.

To obtain ∆(ssrc, asrc), we need to perform policy evaluation over the states to obtain the value
estimations given the paired next states (i.e., s′src, s

′
tar), as formulated in Eq. (4). Monte Carlo (MC)
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Figure 3: Semantic illustration of VGDF. We tackle online dynamics adaptation by selectively sharing
the source domain data, and the RL denotes any off-the-shelf off-policy RL algorithm.

evaluation can provide unbiased values by rolling the policy starting from specific states [66].
However, since the environment is not manipulable, we cannot perform MC evaluation from arbitrary
states. Thus, we propose to use an estimated value function for policy evaluation. In this work, we
adopt the Fitted Q Evaluation (FQE) [46] that is widely used in off-policy RL algorithms [40, 23, 24].
Specifically, we utilize a learned Q function Qθ : S ×A→ R for evaluation.

Furthermore, one problem is that the corresponding target domain next state s′tar induced by
(ssrc, asrc) is unavailable in practice. To achieve this, we train a dynamics model with the col-
lected data from the target domain. Following prior works [36, 10], we employ an ensemble of
Gaussian dynamics models {Tϕi(s

′|s, a)}Mi=1, in an attempt to capture the epistemic uncertainty due
to the insufficient target domain samples. Given the source domain state-action pair (ssrc, asrc), we
generate an ensemble of fictitious states and obtain the corresponding values for each state-action
pair, which we call fictitious value ensemble (FVE) Qπtar(ssrc, asrc):

Qπtar(ssrc, asrc) :=
{
Qθ(s

′
i, a

′
i)|s′i∼Tϕi

(·|ssrc,asrc),a′i∼π(·|s′i)

}M
i=1

. (5)

In practice, the choice of ϵ in Eq. (4) is also nontrivial due to task-specific scales of the values and
the non-stationary value function during training. We replace the absolute value difference with
the likelihood estimation to address the problem. Specifically, we construct a Gaussian distribution
with the mean and variance of FVE denoted as N (Mean(Qπtar(ssrc, asrc)),Var(Qπtar(ssrc, asrc))).
Estimating the value of the source domain state as V πtar(s

′
src) := Qθ(s

′
src, a

′
src)|a′src∼π(·|s′src), we

introduce Fictitious Value Proximity (FVP) representing the likelihood of the source domain state
value in the distribution:

Λ(ssrc, asrc, s
′
src) := P(V πtar(s′src) |Mean(Qπtar(ssrc, asrc)),Var(Qπtar(ssrc, asrc))). (6)

Based on the likelihood estimation, we utilize the rejection sampling to select fixed percentage data
(i.e., 25%) with the highest likelihood from a batch of source domain transitions at each training
iteration. Specifically, we train the value function by optimizing the following objective:

θ ← argmin
θ

1

2
E(s,a,r,s′)∼Dtar

[
(Qθ − T Qθ)2

]
+

1

2
E(s,a,r,s′)∼Dsrc

[
ω(s, a, s′) (Qθ − T Qθ)2

]
,

where ω(s, a, s′) := 1
(
Λ(s, a, s′) > Λξ%

)
. (7)

Λξ% is the top ξ-quantile likelihood estimation of the minibatch sampled from source domain data, T
represents the Bellman operator, and Dsrc, Dtar denote replay buffers of two domains.

Consider the case when the agent can perform online interactions with the source domain, the training
data mostly comes from the source domain, while we aim to train a policy for the target domain.
Hence, exploring the source domain is essential to collect transitions that might be high-value concern-
ing the target domain. Thus, we introduce an exploration policy πE that maximizes the approximate
upper confidence bound of the Q-value, i.e., πE ← argmaxπE Es∼Dtar∪Dsrc

[
QUB(s, a)|a∼πE(·|s)

]
,

where QUB(s, a) := max {Qθi(s, a)}
2
i=1 under the implementation with SAC [24] backbone. Im-

portantly, the exploration policy πE is separate from the main policy π learned via vanilla SAC.
πE and π are used for data collection in the source domain and target domain, respectively. The
optimistic data collection technique has been proposed for advanced exploration [11] while we utilize
the technique in online dynamics adaptation setting.

6



5.2 Adaptation with Offline Dataset of Source Domain

So far, we have discussed the setting where the agent can interact with the source domain to collect
data actively. Nonetheless, simultaneous online access to the source and target domain might
sometimes be impractical. In order to address the limitation, we aim to extend our method to the
setting we refer to as Offline Source with Online Target, in which the agent can access a source
domain offline dataset and a relatively small number of online interactions with the target domain.

To adapt VGDF to such a setting, we propose a novel theoretical result of the performance guarantee:
Theorem 5.1. Under the setting with offline source domain dataset D whose empirical estimation of
the data collection policy is πD(a|s) :=

∑
D 1(s,a)∑
D 1(s) , letMsrc andMtar denote the source and target

domain, respectively. We have the performance guarantee of any policy π over the two MDPs:

ηMtar
(π) ≥ ηMsrc

(π)− 4rmax

(1− γ)2
EρπD

Msrc
,Psrc

[DTV (πD||π)]︸ ︷︷ ︸
(a): policy regularization

− 1

1− γ
EρπD

Msrc

[∣∣∣ζ(s, a)∣∣∣]︸ ︷︷ ︸
(b): value difference

, (8)

where ζ(s, a) := EPsrc,π

[
QπMtar

(s′, a′)
]
− EPtar,π

[
QπMtar

(s′, a′)
]
.

The proof of Theorem 5.1 is given in Appendix B. This theorem highlights the importance of policy
regularization and value difference for achieving desirable performance. It is worth noting that the
policy regularization term can shed light on the impact of behavior cloning, which has been proven
effective for offline RL [22]. Additionally, the value difference term has a similar structure to that of
Theorem 3. Thus, we propose a variant called VGDF + BC that combines behavior cloning loss with
the original selective data sharing scheme. The pseudocode is shown in Algorithm 2, Appendix A.

6 Experiments

In this section, we present empirical investigations of our approach. We examine the effectiveness of
our method in scenarios with various dynamics shifts, including kinematic change and morphology
change. Furthermore, we provide ablation studies and qualitative analysis of our method. Details of
environment settings and the implementation are shown in Appendix D and Appendix E, respectively.
Additional results are in Appendix F.

6.1 Adaptation Performance Evaluation

To systematically investigate the adaptation performance of the methods, we construct two types of
dynamics shift scenarios, including kinematic shift and morphology shifts, for four environments
(HalfCheetah, Ant, Walker, Hopper) from Gym Mujoco [71, 7]. We use the original environment as
the source domain across all experiments. To simulate kinematic shifts, we limit the rotation angle
range of specific joints to simulate the broken joint scenario. As for morphology shifts, we modify
the size of specific limbs while the number of limbs keeps unchanged to ensure the state/action space
consistent across domains. Full details of the environment settings are deferred to Appendix D.

We compare our algorithm with four baselines: (i) DARC [17] trains the domain classifiers to com-
pensate the agent with an extra reward for seeking dynamics-consistent behaviors; (ii) GARAT [14]
trains the policy with an adversarial imitation reward in the grounded source domain via action trans-
formation [25]; (iii) IW Clip (Importance Weighting Clip) performs importance-weighted bellman
updates for source domain samples. The importance weights (i.e., Ptar(s′|s, a)/Psrc(s′|s, a)) are
approximated by the domain classifiers proposed in DARC, and we clip the weight to [10−4, 1] to
stabilize training; (iv) Finetune uses the 105 target domain transitions to finetune the policy trained
in the source domain with 1M samples. Furthermore, Zero-shot shows the performance of directly
transferring the learned policy in the source domain to the target domain, and Oracle demonstrates the
performance of the policy trained in the target domain from scratch with 1M transitions. We run all
algorithms with the same five random seeds. The implementation details are given in Appendix E.1.

As the results in Figure 4 show, our method outperforms GARAT and IW Clip in all environments.
DARC demonstrates competitive performance only in the first two environments, while it does not
work in other environments. We believe that the assumption of DARC does not hold in the failure
cases due to the significant dynamics mismatch. GARAT fails in almost all environments, which we
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Figure 4: Adaptation performance in the target domain with kinematic mismatch (Top) or morphology
mismatch (Bottom). Solid curves are average returns over five runs with different random seeds,
and shaded areas indicate one standard deviation. We use data ratio Γ = 10, which indicates all
algorithms perform 106 online interactions with the source domain except Oracle.

believe is caused by the impractical action transformation from inaccurate dynamics models. The
performance of Zero-shot suggests that the policies trained in the source domains barely work in the
target domains due to dynamics mismatch. Finetune achieves promising results and outperforms
our method in two of eight environments. We believe that the temporally-extended behaviors of the
pre-trained policy benefit learning in the downstream tasks with the assistance of efficient exploration.
Nonetheless, our method is the only one that outperforms or matches the asymptotic performance of
Oracle in four out of eight environments.

6.2 Ablation Studies

To investigate the impact of design components in our method, we perform ablation analysis on the
ratio of transitions Γ, data selection ratio ξ%, and the optimistic exploration.
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Figure 5: Effect of transition ratio Γ.

Data ratio Γ. We employ different ratios of transi-
tions from the source domain versus those from the
target domain (Γ = 5, 10, 20) for variants of our al-
gorithm. The results shown in Figure 5 demonstrate
that the performance of our algorithm improves with
more source domain transitions when the number of
target domain transitions is the same. This finding
indicates that VGDF can fully exploit the reusable
source domain transitions to enhance the training efficiency concerning the target domain.

Figure 6: Effect of data selection ratios ξ%.
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Figure 7: Effect of the optimistic exploration tech-
nique (i.e., πE).

Data selection ratio ξ%. We employ different data ratios (10%, 25%, 50%, 75%) for the variants of
our algorithm. Furthermore, we propose a baseline algorithm Mix that learns with all source domain
samples without selection (ω(s, a, s′) ≡ 1 in Eq. (7)). The results, shown in Figure 6, indicate
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Table 1: Results in the offline source online target setting. We evaluate the algorithms via the
performance of the learned policy in the target domain and report the mean and std of the results
across five runs with different random seeds.

Offline only Symmetric sampling H2O VGDF + BC

halfcheetah - broken back thigh 1128 ± 156 2439 ± 390 5761 ±148 4834 ± 250
halfcheetah - no thighs 361 ± 39 2211 ± 77 3023 ± 77 3910 ±160

hopper - broken hips 155 ± 19 2607 ± 181 2435 ± 325 2785 ±75
hopper - short feet 399 ± 5 2144 ± 509 868 ± 73 3060 ±60

walker - broken right thigh 1453 ± 412 709 ± 128 3743 ±50 3000 ± 388
walker - no right thigh 975 ± 131 872 ± 301 2600 ± 355 3293 ±306

that our algorithm performs robustly under various ratios within a specific range (e.g., ξ% ≤ 50%).
Surprisingly, Mix performs exceptionally well in environments with kinematic mismatches but fails
in scenarios with morphology shifts. We attribute this to the less significant dynamics shift induced
by kinematic changes compared to morphology changes.

Optimistic data collection. To validate the effect of the optimistic exploration πE, we introduce
a variant of our method without πE. The results are shown in Figure 7. Removing the optimistic
exploration technique results in performance degradation in three out of four environments concerning
the sample efficiency, validating the effectiveness of the exploration policy.

6.3 Performance under Offline Source with Online Target

In this subsection, we extend our method to the setting with a source domain offline dataset and
limited online interactions with the target domain, investigating the performance of our method
without online access to the source domain. We use the D4RL medium datasets [20] of three
environments (i.e., HalfCheetah, Walker, Hopper) for evaluation. We compare the proposed VGDF +
BC (Section 5.2) with the following baselines: Offline only that directly transfers the offline learned
policy via CQL [35] to the target domain; Symmetric sampling [3] that samples 50% of the data from
the target domain replay buffer and the remaining 50% from the source domain offline dataset for
each training step; H2O [49] that penalizes the Q function learning on source domain transitions with
the estimated dynamics gap via learned classifiers. All algorithms have limited interactions with
the target domain to 105 steps. The experimental details are shown in Appendix E.2. The results
shown in Table 1 demonstrate that our method outperforms the other methods in four out of six
environments, indicating that filtering the source domain data with the value consistency paradigm is
effective in the offline-online setting.

6.4 Quantifying Dynamics Mismatch via Fictitious Value Proximity

Although the empirical results suggest that our method can adapt the policy in the face of various
dynamics shifts, the degree of the dynamics mismatch can only be evaluated via the adaptation
performance rather than be quantified directly. Here, we propose quantifying the dynamics shifts via
the proposed Fictitious Value Proximity (FVP) (Section 5.1).

Kinematic Shift

Morphology Shift

Figure 8: Quantification analysis
of the approximated FVP in Ant
environments.

We approximate the FVP in Eq. (5) by calculating the average
likelihood of a batch of samples from the source domain by
E[Λ(s, a, s′)] ≈ 1

B

∑
(s,a,s′) Λ̂(s, a, s

′). We show the approxi-
mated FVP in Ant environments with kinematic or morphology
shifts in Figure 8. We observe a significant gap between the FVP
values of the paired domains, which suggests the target domain
with the morphology shifts is "closer" to the source domain than
the target domain with the kinematic shifts with respect to the
value difference. FVP measured by value differences quantifies
the long-term effect on the expected return. Such a measurement
can be regarded as a way to quantify the domain discrepancies.
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7 Conclusion

This work addresses the online dynamics adaptation problem by proposing VGDF that selectively
shares the source domain transitions from a value consistency paradigm. Starting from the motivation
example, we reveal the limitation of the prior dynamics-based method. Then we introduce a novel
value discrepancy perspective with theoretical analysis, motivated by the insight that paired transitions
with consistent value targets can be regarded as equivalent for training. Practically, we propose VGDF
and the variant for the offline source domain setting. Empirical studies demonstrate the effectiveness
of our method under significant dynamics gaps, including kinematics shifts and morphology shifts.

Limitation and future directions. One limitation of our method is the reliance on the ensemble
dynamics models. However, the recent work estimating the epistemic uncertainty with a single
model [19] could be applicable. Furthermore, value-aware model learning [18] may improve our
method by training dynamics models with accurate value predictions of the generated samples.
Exploring the effectiveness of value consistency for generalizing across reward functions can be
another direction for future research. Finally, validating the effectiveness of the data sharing method
in the Sim2Real problem would contribute to the robotics community. The online interaction with
the reality system could be risky, recent works [6, 70] can be integrated for safe online interactions.
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A Algorithm Description

The pseudocode of VGDF is presented in Algorithm 1. We utilize SAC [24] as our backbone
algorithm. We employ a fixed entropy temperature coefficient in all experiments, demonstrating
sufficient empirical performance. The training of the dynamics model ensemble follows prior
works [10, 30] with the MLE loss. The calculation of the Fictitious Value Proximity follows Eq. (6)
proposed in Section 5.1. Furthermore, the pseudocode of VGDF + BC is presented in Algorithm 2.
We introduce the value-normalized tradeoff between the behavior cloning loss and the policy gradient
following the prior work [22].

Algorithm 1 Value-Guided Data Filtering (VGDF)
Input: Source domainMsrc, target domainMtar, and transition ratio Γ (= 10) (source vs. target).
Initialization: Policy π, exploration policy πE, value functions {Qθi}i=1,2, replay buffers
{Dsrc, Dtar}, dynamics model ensemble {Tϕi

}Mi=1, data selection ratio ξ, batch size B, entropy
temperature coefficient λ.

1: for t = 1, 2, . . . do
2: # Interact with the source domain
3: Sample transition (ssrc, asrc, rsrc, s

′
src) using πE inMsrc

4: Dsrc ← Dsrc ∪ (ssrc, asrc, rsrc, s
′
src)

5: # Interact with the target domain
6: if t % Γ == 0 then
7: Sample transition (star, atar, rtar, s

′
tar) using π inMtar

8: Dtar ← Dtar ∪ (star, atar, rtar, s
′
tar)

9: end if
10: Optimize dynamics ensemble {Tϕi}Mi=1 with Dtar via Eq. (13)
11: Sample bsrc := {(s, a, r, s′)}Bsrc from Dsrc

12: Sample btar := {(s, a, r, s′)}Btar from Dtar

13: Obtain Fictitious Value Proximity (FVP) {Λ(s, a, s′)}B via Eq. (6) for transitions in bsrc
14: Obtain FVP quantile Λξ% of {Λ(s, a, s′)}B

15: # Optimize value function with data filtering

16: θi=1,2 ←− argmin
θi

1

2B

∑
btar

[
(Qθi − T Qθi)

2
]
+

17:
1

⌊2B · ξ%⌋
∑
bsrc

[
1
(
Λ(s, a, s′) > Λξ%

)
(Qθi − T Qθi)

2
]

18: # Optimize policies

19: πE ← argmax
πE

1

2B

∑
btar∪ bsrc

[
max {Qθ1(s, a), Qθ2(s, a)} |a∼πE(·|s) + λH[πE]

]
20: π ← argmax

π

1

2B

∑
btar∪ bsrc

[
min {Qθ1(s, a), Qθ2(s, a)} |a∼π(·|s) + λH[π]

]
21: end for

B Proofs of the Performance Guarantees

This section presents the proof of our main results. Specifically, we propose that the value discrepancy
can be leveraged for the performance guarantee across different domains Lemma C.3. In Theorem B.1,
we convert the performance bound induced by the value discrepancy into a novel form for the offline
source domain setting.

Theorem B.1. (Performance bound controlled by dynamics discrepancy.) Denote the source
domain and target domain with different dynamics asMsrc andMtar, respectively. We have the
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Algorithm 2 Value-Guided Data Filtering + Behavior Cloning (VGDF + BC)
Input: Source domain offline dataset Dsrc, target domainMtar, max interaction steps with the
target domain Tmax, and transition ratio Γ (:= |Dsrc|

Tmax
= 10) (source vs. target).

Initialization: Policy π, value functions {Qθi}i=1,2, target domain replay buffer Dtar, dynamics
model ensemble {Tϕi}Mi=1, data selection ratio ξ, batch size B, entropy temperature coefficient λ,
train repeat K, behavior cloning constant α.

1: for t = 1, 2, . . . , Tmax do
2: # Interact with the target domain
3: Sample transition (star, atar, rtar, s

′
tar) using π inMtar

4: Dtar ← Dtar ∪ (star, atar, rtar, s
′
tar)

5: # Repeat training for K times per step
6: for k = 1, 2, . . . , K do
7: Optimize dynamics ensemble {Tϕi}Mi=1 with Dtar via Eq. (13)
8: Sample bsrc := {(s, a, r, s′)}Bsrc from Dsrc

9: Sample btar := {(s, a, r, s′)}Btar from Dtar

10: Obtain Fictitious Value Proximity (FVP) {Λ(s, a, s′)}B via Eq. (6) for transitions in bsrc
11: Obtain FVP quantile Λξ% of {Λ(s, a, s′)}B

12: # Optimize value function with data filtering

13: θi=1,2 ←− argmin
θi

1

2B

∑
btar

[
(Qθi − T Qθi)

2
]
+

14:
1

⌊2B · ξ%⌋
∑
bsrc

[
1
(
Λ(s, a, s′) > Λξ%

)
(Qθi − T Qθi)

2
]

15: # Optimize policy with behavior cloning regularization
16: β = α/

{
1
2B

∑
btar∪ bsrc

[∣∣∣min {Qθ1(s, a), Qθ2(s, a)}a∼π(·|s)
∣∣∣]}

17: π ← argmax
π

β

2B

∑
btar∪ bsrc

[
min {Qθ1(s, a), Qθ2(s, a)}a∼π(·|s) + λH[π]

]
−

18:
1

B

∑
(s,a)∼bsrc

[
(π(s)− a)2

]
19: end for
20: end for

performance difference of any policy π evaluated underMsrc andMtar be bounded as below,

ηMtar (π) ≥ ηMsrc(π)−
2γrmax

(1− γ)2
· Eρπsrc [DTV (Psrc(·|s, a)∥Ptar(·|s, a))] .

Proof. We have

ηsrc(π)− ηtar(π) =
γ

1− γ
Eρπsrc(s,a)

[∫
s′
Psrc(s

′|s, a)V πtar(s′)−
∫
s′
Ptar(s

′|s, a)V πtar(s′)ds′
]
(Lemma C.1)

=
γ

1− γ
Eρπsrc(s,a)

[∫
s′
(Psrc(s

′|s, a)− Ptar(s′|s, a))V πtar(s′)ds′
]

≤ γ

1− γ
Eρπsrc(s,a)

[∫
s′
|(Psrc(s′|s, a)− Ptar(s′|s, a))V πtar(s′)| ds′

]
≤ γ

1− γ
· rmax

1− γ
Eρπsrc(s,a)

[∫
s′
|Psrc(s′|s, a)− Ptar(s′|s, a)| ds′

]
=

2γrmax

(1− γ)2
Eρπsrc(s,a) [DTV (Psrc(·|s, a)∥Ptar(·|s, a))] . (9)
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Theorem B.2. (Performance bound controlled by value difference.) Denote the source domain
and target domain asMsrc andMtar, respectively. We have the performance guarantee of any
policy π over the two MDPs:

ηMtar (π) ≥ ηMsrc(π)−
γ

1− γ
· EρπMsrc

[∣∣∣∣EPsrc

[
V πMtar

(s′)
]
− EPtar

[
V πMtar

(s′)
]∣∣∣∣].

Proof. We have

ηsrc(π)− ηtar(π) =
γ

1− γ
Eρπsrc(s,a)

[∫
s′
Psrc(s

′|s, a)V πMtar
(s′)−

∫
s′
Ptar(s

′|s, a)V πMtar
(s′)ds′

]
(Lemma C.1)

=
γ

1− γ
· EρπMsrc

[
EPsrc

[
V πMtar

(s′)
]
− EPtar

[
V πMtar

(s′)
]]

≤ γ

1− γ
· EρπMsrc

[∣∣∣∣EPsrc

[
V πMtar

(s′)
]
− EPtar

[
V πMtar

(s′)
]∣∣∣∣]

Theorem B.3. Under the setting with offline source domain dataset D whose empirical estimation
of the data collection policy is πD(a|s) :=

∑
D 1(s,a)∑
D 1(s) , letMsrc andMtar denote the source and

target domain, respectively. We have the performance guarantee of any policy π over the two MDPs:

ηMtar (π) ≥ ηMsrc(π)−
4rmax

(1− γ)2
EρπD

Msrc
,Psrc

[DTV (πD||π)]−
1

1− γ
EρπD

Msrc

[∣∣∣ζ(s, a)∣∣∣], (10)

where ζ(s, a) := EPsrc,π

[
QπMtar

(s′, a′)
]
− EPtar,π

[
QπMtar

(s′, a′)
]
.

Proof. We have

ηMtar
(π)− ηMsrc

(π) =
(
ηMsrc

(πD)− ηMsrc
(π)

)
︸ ︷︷ ︸

(a)

−
(
ηMsrc

(πD)− ηMtar
(π)

)
︸ ︷︷ ︸

(b)

.

We have

ηMsrc
(πD)− ηMsrc

(π) ≥ − 1

1− γ
E s,a∼ρπD

Msrc

s′∼Psrc(·|s,a)

[ ∣∣Ea′∼πD(·|s′)
[
QπMsrc

(s′, a′)
]
− Ea′∼π(·|s′)

[
QπMsrc

(s′, a′)
]∣∣ ]

= − 1

1− γ
E s,a∼ρπD

Msrc

s′∼Psrc(·|s,a)

[∣∣∣∣∣∑
A

(πD(a
′|s′)− π(a′|s′))QπMsrc

(s′, a′)

∣∣∣∣∣
]

≥ − 1

1− γ
E s,a∼ρπD

Msrc

s′∼Psrc(·|s,a)

[∣∣∣∣∣∑
A

(πD(a
′|s′)− π(a′|s′)) rmax

1− γ

∣∣∣∣∣
]

≥ − rmax

(1− γ)2
E s,a∼ρπD

Msrc

s′∼Psrc(·|s,a)

[∑
A
|πD(a′|s′)− π(a′|s′)|

]

= − 2rmax

(1− γ)2
E s,a∼ρπD

Msrc

s′∼Psrc(·|s,a)

[DTV (πD(·|s′) ∥ π(·|s′))] ,

and

−
(
ηMsrc

(πD)− ηMtar
(π)

)
= − 1

1− γ
Es,a∼ρπD

Msrc

[
Gπ1,π2

M1,M2
(s, a)

]
(Lemma C.2)

≥ − 2rmax
(1− γ)2

E s,a∼ρπD
Msrc

s′∼Psrc(·|s,a)

[DTV (πD(·|s′) ∥ π(·|s′))]

− 1

1− γ
Es,a∼ρπD

Msrc

[∣∣Es′,a′∼Psrc,π

[
QπMtar

(s′, a′)
]
− Es′,a′∼Ptar,π

[
QπMtar

(s′, a′)
]∣∣] . (Lemma C.3)

Combining the two inequalities above completes the proof.
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C Proofs of Lemmas

This section provides proof of several lemmas used for our theoretical results. The first lemma is
adopted from [44], and the proof is essentially the same as the original paper. Lemma C.2 and
Lemma C.3 support the derivation of the performance difference bound in Theorem B.3.

Lemma C.1. (Telescoping Lemma, Lemma 4.3 in [44].) LetM1 := (S,A, P1, r, γ) andM2 :=
(S,A, P2, r, γ) be two MDPs with different dynamics P1 and P2. Given a policy π, let

GπM1,M2
(s, a) := Es′∼P1

[
V πM2

(s′)
]
− Es′∼P2

[
V πM2

(s′)
]
,

we have
ηM1(π)− ηM2(π) =

γ

(1− γ)
Es,a∼ρπM1

[
GπM1,M2

(s, a)
]
.

Proof. Define Wj as the expected return when executing π onM1 for the first j steps, then switching
to π andM2 for the remainder. That is

Wj :=

∞∑
t=0

γtE t<j:st,at∼P1,π
t≥j:st,at∼P2,π2

[r(st, at)] = Et<j:st,at∼P1,π
t≥j:st,at∼P2,π

[ ∞∑
t=0

γtr(st, at)

]
.

Then we have

W0 = Es,a∼ρM2,π
[r(st, at)] = ηM2

(π),

and W∞ = Es,a∼ρM1,π
[r(st, at)] = ηM1

(π).

Thus we can obtain

ηM1(π)− ηM2(π) =

∞∑
j=0

(Wj+1 −Wj). (11)

Convert Wj and Wj+1 as following:

Wj = Rj + Esj ,aj∼P1,π

[
Esj+1∼P2

[
γj+1V πM2

(sj+1)
]]

Wj+1 = Rj + Esj ,aj∼P1,π

[
Esj+1∼P1

[
γj+1V πM2

(sj+1)
]]

Plug back to Eq.11 and we obtain

ηM1(π)− ηM2(π) =

∞∑
j=0

(Wj+1 −Wj)

=

∞∑
j=0

γj+1Es,a∼Pπ
M1,j

[
Es′∼P1

[
V πM2

(s′)
]
− Es′∼P2

[
V πM2

(s′)
] ]

=
γ

(1− γ)
Es,a∼ρπM1

[
Es′∼P1

[
V πM2

(s′)
]
− Es′∼P2

[
V πM2

(s′)
] ]

=
γ

(1− γ)
Es,a∼ρπM1

[
GπM1,M2

(s, a)
]
.

Lemma C.2. (Extension of Telescoping Lemma.) Let M1 := (S,A, P1, r, γ) and M2 :=
(S,A, P2, r, γ) be two MDPs with different dynamics P1 and P2. Given two policies π1, π2, let

Gπ1,π2

M1,M2
(s, a) := Es′,a′∼P1,π1

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]
,

we have

ηM1(π1)− ηM2(π2) =
1

(1− γ)
Es,a∼ρπ1

M1

[
Gπ1,π2

M1,M2
(s, a)

]
.
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Proof. DefineWj as the expected return when executing π1 onM1 for the first j steps, then switching
to π2 andM2 for the remainder. That is

Wj :=

∞∑
t=0

γtEt<j:st,at∼P1,π1
t≥j:st,at∼P2,π2

[r(st, at)] = Et<j:st,at∼P1,π1
t≥j:st,at∼P2,π2

[ ∞∑
t=0

γtr(st, at)

]
.

Then we have

W0 = Es,a∼ρM2,π2
[r(st, at)] = ηM2

(π2),

and W∞ = Es,a∼ρM1,π1
[r(st, at)] = ηM2

(π1).

Thus we can obtain

ηM1
(π1)− ηM2

(π2) =

∞∑
j=0

(Wj+1 −Wj). (12)

Convert Wj and Wj+1 as following:

Wj = Rj + Esj ,aj∼P1,π1

[
Esj+1,aj+1∼P2,π2

[
γj+1Qπ2

M2
(sj+1, aj+1)

]]
Wj+1 = Rj + Esj ,aj∼P1,π1

[
Esj+1,aj+1∼P1,π1

[
γj+1Qπ2

M2
(sj+1, aj+1)

]]
Plug back to Eq.12 and we obtain

ηM1
(π1)− ηM2

(π2) =

∞∑
j=0

(Wj+1 −Wj)

=

∞∑
j=0

γj+1Es,a∼Pπ1
M1,j

[
Es′,a′∼P1,π1

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

] ]
=

γ

(1− γ)
Es,a∼ρπ1

M1

[
Es′,a′∼P1,π1

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

] ]
=

γ

(1− γ)
Es,a∼ρπ1

M1

[
Gπ1,π2

M1,M2
(s, a)

]
.

Lemma C.3. (Bound of Gπ1,π2

M1,M2
(s, a).) Let

Gπ1,π2

M1,M2
(s, a) := Es′,a′∼P1,π1

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]
,

we have

Gπ1,π2

M1,M2
(s, a) ≤ 2rmax

1− γ
Es′∼P1 [DTV (π1(·|s′) ∥ π2(·|s′))]

+
∣∣∣Es′,a′∼P1,π2

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]∣∣∣.
Proof. We have

Gπ1,π2

M1,M2
(s, a) :=Es′,a′∼P1,π1

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]
=Es′,a′∼P1,π1

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P1,π2

[
Qπ2

M2
(s′, a′)

]︸ ︷︷ ︸
(a)

+ Es′,a′∼P1,π2

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]︸ ︷︷ ︸
(b)

.
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For (a), we have

(a) = Es′∼P1

[∑
a′

π1(a
′|s′)Qπ2

M2
(s′, a′)− π2(a′|s′)Qπ2

M2
(s′, a′)

]

≤ Es′∼P1

[∑
a′

|π1(a′|s′)− π2(a′|s′)|
rmax

1− γ

]

=
rmax

1− γ
Es′∼P1

[∑
a′

|π1(a′|s′)− π2(a′|s′)|

]

=
2rmax

1− γ
Es′∼P1

[DTV (π1(·|s′) ∥ π2(·|s′))] .

For (b), we have

(b) = Es′,a′∼P1,π2

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]
≤

∣∣∣Es′,a′∼P1,π2

[
Qπ2

M2
(s′, a′)

]
− Es′,a′∼P2,π2

[
Qπ2

M2
(s′, a′)

]∣∣∣.
Adding these two bounds together yields the desired result.

D Detailed Environment Setting

D.1 Grid World

In the grid world environment, the agent obtains the X-Y coordination as the state and executes one
of the four actions (Up, Down, Left, Right) at each time step. A non-zero reward 1.0 is provided only
if the agent reaches the goal. Each episode terminates when the agent reaches the goal or the episode
length of 256 is reached. The source domain and the target domain of the grid world are shown in
Figure 9. For each algorithm, the agent interacts with the source and target domains for 5e5 and 5e4

steps, respectively.

Figure 9: The source domain (Left) and the target domain (Right) of the grid world environments.

D.2 Mujoco Environments

To investigate the performance of the algorithm thoroughly, we design eight environments based
on four Mujoco [71] benchmarks from Gym [7] including HalfCheetah-v2, Ant-v4, Walker2D-v2,
and Hopper-v2. For each benchmark, we propose two variants with kinematic shift or morphology
shift. We run all experiments with the original environment as the source domain and the variation
environment as the target domain. Detailed modifications of the environments are shown below, and
the illustration of the environments is shown in Figure 10. For algorithms that access interactions
with both domains, the agent interacts with the source and target domains for 106 and 105 steps,
respectively.

Detailed modifications of the environments with kinematic shifts are shown below:

HalfCheetah - broken back thigh: We modify the rotation range of the joint on the thigh of the
back leg from [−0.52, 1.05] to [−0.0052, 0.0105].

20



Source Domains

Target Domains with
Kinematic shifts

Target Domains with
Morphology shifts

Figure 10: Illustration of all environments, including all source domains (Top), all target domains
with kinematic shifts (Middle), and all target domains with morphology shifts (Bottom).

Ant - broken hips: We modify the rotation range of the joints on the hip of leg 1 and leg 2 from
[−30, 30] to [−0.3, 0.3].
Walker - broken right foot: We modify the rotation range of the joint on the foot of the right leg
from [−45, 45] to [−0.45, 0.45].
Hopper - broken joints: We modify the rotation range of the joint on the head from [−150, 0] to
[−0.15, 0] and the joint on foot from [−45, 45] to [−18, 18].
Detailed modifications of the environments with morphology shifts are shown below:

HalfCheetah - no thighs: We modify the size of both thighs. Detailed modifications of the xml file
are:

1 <geom fromto="0 0 0 -0.0001 0 -0.0001" name="bthigh" size="0.046" type
="capsule"/>

2 <body name="bshin" pos=" -0.0001 0 -0.0001">

1 <geom fromto="0 0 0 0.0001 0 0.0001" name="fthigh" size="0.046" type="
capsule"/>

2 <body name="fshin" pos="0.0001 0 0.0001">

Ant - short feet: We modify the size of feet on leg 1 and leg 2. Detailed modifications of the xml file
are:

1 <geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom" size="
0.08" type="capsule"/>

1 <geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

Walker - no right thigh: We modify the size of thigh on the right leg. Detailed modifications of the
xml file are:

1 <body name="thigh" pos="0 0 1.05">
2 <joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range=" -150

0" type="hinge"/>
3 <geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name="thigh_geom"

size="0.05" type="capsule"/>
4 <body name="leg" pos="0 0 0.35">
5 <joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="

-150 0" type="hinge"/>
6 <geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom"

size="0.04" type="capsule"/>
7 <body name="foot" pos="0.2 0 0">
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8 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="
-45 45" type="hinge"/>

9 <geom friction="0.9" fromto=" -0.0 0 0.3 0.2 0 0.3" name="
foot_geom" size="0.06" type="capsule"/>

10 </body>
11 </body>
12 </body>

Hopper - big head: We modify the size of the head. Detailed modifications of the xml file are:

1 <geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size
="0.125" type="capsule"/>

E Algorithms and Implementation Details

E.1 Implementation Details

The details of our algorithm and baseline methods are specified as follows:

SAC: We first specify the implementation of the shared backbone algorithm SAC utilized in all
algorithms. The policy and the value function are two-layer MLP with 256 hidden units using ReLU
activation. The learning rate is 3e−4. Discount γ is set as 0.99 in all environments. The temperature
coefficient is fixed as 0.2. The batch size is 128. The smoothing coefficient of the target networks is
0.005. The training delay of the policy is set as 2. The replay buffer size is 1e6.

VGDF: We use a five-layer MLP with 200 units as the dynamics model using Swish activation
following prior works [10, 30]. The ensemble size is 7. We set the data selection ratio ξ% as 25% in
the experiments shown in Section 6.1. For each probabilistic dynamics model Tϕi

(st+1, rt|st, at) =
N (µϕi

(st, at),Σϕi
(st, at)), i = 1, . . . ,M , we train the model by maximizing the objective:

J(ϕi) := E(st,at,rt,st+1)∼Dtar

[[
µϕi(st, at)−

(st+1, rt)
]⊤

Σ−1
ϕi

(st, at) [µϕi
(st, at)− (st+1, rt)] + log detΣϕi

(st, at)
]
. (13)

The exploration policy is a two-layer MLP with 256 hidden units. We warm-start the algorithm by
utilizing samples from both domains without selection for the first 1e5 steps in the source domain.

DARC: We follow the default configurations of the public implementation (https://github.
com/google-research/google-research/tree/master/darc). The domain classifiers
qψSAS

(st, at, st+1), qψSA
(st, at) are trained by maximizing the cross-entropy losses:

J(ψSAS) := E(st,at,st+1)∼Dtar
[log qψSAS

(tar|st, at, st+1)]

+ E(st,at,st+1)∼Dsrc
[log(1− qψSAS

(tar|st, at, st+1))] ,

J(ψSA) := E(st,at)∼Dtar
[log qψSA

(tar|st, at)] + E(st,at)∼Dsrc
[log(1− qψSA

(tar|st, at))] .

Following the original implementation, we use the standard Gaussian noise for the domain classifier
training. During training, a reward correction ∆r(st, at) is augmented to the original reward r(st, at)
of each source domain transition, i.e. r̃(st, at) := r(st, at) + ∆r(st, at). The reward correction is
calculated by:

∆r(st, at) := log
qψSAS

(tar|s, a, s′)
qψSAS

(src|s, a, s′)
qψSA

(src|s, a)
qψSA

(tar|s, a)
.

We warm-start the algorithm by training with samples from both domains for the first 105 steps
following the original implementation.

GARAT: We use the author implementation with default configura-
tions (Supplemental in https://proceedings.neurips.cc/paper/2020/hash/
28f248e9279ac845995c4e9f8af35c2b-Abstract.html). We add the XML files of our
customized environments to rl_gat/envs/assets/ folder. We limit the extra interactions with the
grounded source environments as 105 for fair comparisons with other algorithms.
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Table 2: Hyperparameters. "-" denotes the hyperparameter is not used in the algorithm. "←" denotes
the same choice as the algorithm in the first column.

Hyperparameters VGDF DARC GARAT IW Clip Finetune

Hidden layers (Policy) 2 ← ← ← ←
Hidden units per layer (Policy) 256 ← ← ← ←
Hidden layers (Value) 2 ← ← ← ←
Hidden units per layer (Value) 256 ← ← ← ←
Hidden layers (Classifier) - 2 - 2 -
Hidden units per layer (Classifier) - 256 - 256 -
Hidden layers (Dynamics model) 5 - - - -
Hidden units per layer (Dynamics model) 200 - - - -
Ensemble size 7 - - - -
Learning rate 3e−4 ← ← ← ←
Batch size 128 ← ← ← ←
Fixed temperature coefficient 0.2 ← ← ← ←
Target smoothing coefficient 0.005 ← ← ← ←
Policy training delay 2 ← ← ← ←
Buffer size 1e6 ← ← ← ←
Data selection ratio ξ% 25% - - - -
Warm-start steps 1e5 1e5 - 1e5 -
Importance weight clipping range - - - [1e−4, 1] -
Interactions with grounded src environment - - 1e5 - -

Importance Weighting Clip (IW Clip): We use the domain classifiers same as DARC to calculate
the importance weight w(s, a, s′). The importance weighting is calculated by:

w(s, a, s′) :=
Ptar(s

′|s, a)
Psrc(s′|s, a)

≈ qψSAS
(tar|s, a, s′)

qψSAS
(src|s, a, s′)

qψSA
(src|s, a)

qψSA
(tar|s, a)

,

where qψSAS
and qψSA

are the domain classifiers proposed in [17]. We use the importance weighing
to reweight the value training with source domain samples. Specifically,

θ ← argmin
θ

1

2
E(s,a,r,s′)∼Dsrc

[
w(s, a, s′)(Qθ − T Qθ)2

]
.

To stabilize training, we clip the importance weight between [1e−4, 1], same as the prior work [49].

Finetune: We first train a policy in the source domain with 106 steps. Then we transfer the policy to
the target domain and further train the policy for 105 steps.

The detailed hyperparameters of all algorithms are listed in Table. 2, and we use the same hyperpa-
rameters across all environments.

E.2 Implementation Details of the Offline-Online Experiments

To evaluate the performance of our algorithm in the offline source online target setting, we use
medium datasets from D4RL [20] for three environments (i.e., HalfCheetah, Hopper, Walker). We
use the same source domain offline dataset for each environment’s two different target domains. For
the algorithms performing online learning using offline data (i.e., Symmetric sampling, H2O, VGDF
+ BC), we perform the online interactions with the target domain for 105 steps and use 106 source
domain transitions, the training is repeated for 10 times per step in the target domain. The details of
the methods are specified as follows:

Offline only: We directly transfer the policy learned through CQL [35] with the source domain
offline dataset. For the CQL implementation, we follow the suggested configurations in a public
CQL implementation (https://github.com/tinkoff-ai/CORL). We perform training for 106
steps with the offline dataset and report the zero-shot performance of the learned policy in the target
domain.

Symmetric sampling [3]: We perform the value function training by combining CQL optimization
(with offline transitions) and SAC optimization (with online transitions). For each training step, we
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sample 50% of the data from the target domain replay buffer and the remaining 50% from the source
domain offline dataset. The CQL and SAC loss is computed with the corresponding transitions.

H2O [49]: We follow the original implementation that learns the classifiers to estimate the dynamics
discrepancy across domains and perform the clipped importance weighting on the CQL loss on the
source domain data. Same as Symmetric sampling, we repeat the training for 10 times per step in the
target domain.

VGDF + BC: We adapt VGDF to the Offline-Online setting by simply integrating the behavior
cloning loss following (10). The training is repeated for 10 times per step with the target domain the
same as the baseline methods. For the trade-off between the policy gradient and behavior cloning, we
use the value-normalized regularization following the TD3 + BC [22] work and set the constant α as
5. Furthermore, we remove the exploration policy proposed in Section 5.1 since the online access to
the source domain is no longer available in the offline-online setting.

F Additional Experiment Results

F.1 Quantifying Dynamics Shifts via FVP

In this section, we investigate whether the estimation of the value differences can quantify the
difference across domains. Specifically, in different target domains of the same source domain,
we demonstrate the estimation of FVP in two target domains. As the results show in Figure 11,
the FVP differs in environments with different dynamics shifts (Kinematic or morphology). We
observe that the FVP values in two target domains gradually approach each other in three out of four
environments (HalfCheetah, Walker, Hopper), while the values in Ant remain relatively stationary.
Furthermore, the FVP values in target domains with kinematic shifts are lower than those with
morphology shifts across all four environments, which could result from the mismatched state space
due to the limited joint ranges of robots in the target domain. Given the differences across different
environments, we believe the FVP estimation could be used to quantify the domain differences.
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Figure 11: Quantification analysis of the approximated FVP in all environments with different
dynamics shifts. The dots are averaged values, and the error bars indicate the standard error across
five runs.

F.2 Sensitivity to Ensemble Size
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Figure 12: Performance of the variants with different ensemble size values M . The results validate
that a smaller ensemble size is sufficient to achieve competitive asymptotic performance compared to
the variant with a large ensemble size in most environments.
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We have introduced the dynamics model ensemble to capture the epistemic uncertainty induced
by the limited samples from the target domain. However, training the ensemble of the dynamics
model takes extra computation resources. Unlike prior works in model-based RL [30, 61] that utilize
the generated samples for training, we measure the value difference with the help of the generated
samples. Therefore, we aim to investigate whether a smaller ensemble size is sufficient to achieve
competitive asymptotic performance. Here we set the ensemble size as different values (M = 7
in the original implementation) and run experiments in four environments. As the results show
in Figure 12, variants with a small ensemble size (e.g., M = 3 or M = 5) can achieve identical
asymptotic performance compared to the variant with a large ensemble size (e.g., M = 7) in three
out of four environments.

F.3 What about Importance Weighting via FVP instead of Rejection Sampling?

Steps in Target Domain (×105)
0

1000
2000
3000
4000
5000

Re
tu

rn

HalfCheetah - broken back thigh
Rejection Sampling
Importance Weighting via FVP

Steps in Target Domain (×105)
500

1000
1500
2000
2500
3000
3500

Re
tu

rn

Ant - broken hips

Steps in Target Domain (×105)
0

500
1000
1500
2000
2500
3000
3500

Re
tu

rn

Walker - broken right foot

Steps in Target Domain (×105)
0

500
1000
1500
2000
2500
3000

Re
tu

rn

Hopper - broken joints

0.0 0.2 0.4 0.6 0.8 1.0
Steps in Target Domain (×105)

0

1000

2000

3000

Re
tu

rn

HalfCheetah - no thighs

0.0 0.2 0.4 0.6 0.8 1.0
Steps in Target Domain (×105)

500
1000
1500
2000
2500
3000

Re
tu

rn

Ant - short feet

0.0 0.2 0.4 0.6 0.8 1.0
Steps in Target Domain (×105)

0

1000

2000

3000

4000
Re

tu
rn

Walker - no right thigh

0.0 0.2 0.4 0.6 0.8 1.0
Steps in Target Domain (×105)

0
500

1000
1500
2000
2500
3000

Re
tu

rn

Hopper - big head

Figure 13: Performance of the variants with rejection sampling or importance weighting technique.
The results demonstrate that the original algorithm using rejection sampling outperforms the variant
using importance weighting via FVP in almost all environments.

In the case of data selection based on the estimated FVP (fictitious value proximity in Eq. (6), one may
wonder about using importance weighting via the FVP rather than rejection sampling, which might
be sample-inefficient due to the discarded partial data. Here we implement a variant of our algorithm
that performs importance weighting with the estimated fictitious value proximity. Specifically, we
train the value functions following:

θi=1,2 ← argmin
θi

1

2B

∑
{(s,a,r,s′)}B

tar

[
(Qθi − T Qθi)

2
]
+

1

2B

∑
{(s,a,r,s′)}B

src

[
Λ(s, a, s′)∑

{s,a,s′}B Λ(s, a, s′)
(Qθi − T Qθi)

2

]
.

We compare the variant with the original algorithm using rejection sampling in all eight environments
and demonstrate the results in Figure 13. The original algorithm using rejection sampling outperforms
the variant with importance weighting in almost all environments. The accuracy of the value proximity
depends on the generated state and the value function. Thus, the estimation of FVP could be biased
due to the inaccurate dynamics models and value functions in the early training stage, in which case
naively utilizing the source domain samples weighted by the FVP can harm the policy performance
concerning the target domain. In contrast, rejection sampling that only utilizes a small portion of
source domain samples alleviates the negative effect of the source domain samples.

F.4 What about Data Filtering via Value instead of FVP?

Prior works have examined sharing data across tasks with different reward functions rather than
dynamics [75]. To investigate whether selectively sharing data with a high Q value can address the
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Figure 14: Performance of the variants that employ data filtering based on Value or FVP. The results
demonstrate that the original algorithm outperforms the variant using data filtering via Value in four
of eight environments.
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Figure 15: Comparison with the variant performing data filtering based on estimated dynamics
discrepancies. The results demonstrate that the original algorithm outperforms the variant using data
filtering via Value in four of eight environments, validating the effect of the value consistency.

online dynamics adaptation problem, we propose a variant of our algorithm that shares partial data
with a relatively high Q value from the source domain. Specifically, we train the value functions
following:

θi=1,2 ← argmin
θi

1

2B

∑
{(s,a,r,s′)}B

tar

[
(Qθi − T Qθi)

2
]
+

1
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{(s,a,r,s′)}B
src

[
1
(
Qθi(s, a) > Qξ%

)
(Qθi − T Qθi)

2
]
,

where Qξ% is the top ξ-quantile Q value of a batch of source domain samples. We set ξ% as 25%,
the same as our implementation. We compare the variant with the original algorithm in all eight
environments and demonstrate the results in Figure 14. The results demonstrate that the original
algorithm outperforms the variant using data filtering via value in four of eight environments. Due to
the dynamics mismatch, a state-action pair from the source domain will lead to inconsistent states
concerning two domains. Therefore, directly utilizing the transitions with high Q value without
considering the consistency of the next state would provide a counterfactual value target for the
state-action pair, which can result in an improper value estimation for learning.

F.5 Comparison with Dynamics-guided Data Filtering

To investigate the effect of value consistency, we perform the ablation study by comparing VGDF
to a variant that shares partial data based on dynamics discrepancies, i.e., Dynamics-guided Data
Filtering (DGDF). Specifically, we estimate the dynamics discrepancy via the learned classifiers
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Table 3: Results in PyBullet environments. We evaluate the algorithms via the performance of the
learned policy in the target domain and report the mean and std of the results across five runs with
different random seeds. (# source,# target) denotes the number of source domain data versus the
numbder of target domain data. HC and HP denote HalfCheetah and Hopper, respectively.

DARC Finetune VGDF DARC Finetune VGDF

(# source, # target) 200k, 20k 1M, 20k 200k, 20k 1M, 100k 1M, 100k 1M, 100k

PyBullet - HC 304 ± 211 653 ± 51 770 ±203 679 ± 131 678 ± 38 808 ±89
PyBullet - HP 73 ± 20 240 ± 189 957 ±39 99 ± 20 869 ± 32 1006 ±2

following the prior works [17, 49]. Same as VGDF, we share the source domain transitions whose
estimated dynamics difference is smaller than the quantile value. We set the selection ratios as 25%,
the same as our implementation. The results demonstrate that the original algorithm outperforms
the variant in three out of four environments, validating the superior effect of the value consistency
compared to the dynamics discrepancy.

F.6 Extended Results in Pybullet Environments

To investigate the generality of VGDF, we perform additional experiments in PyBullet-HalfCheetah
and PyBullet-Hopper from PyBullet environments [12] which utilize Bullet as the physical engine
instead of Mujoco. We first provide the details of the dynamics gap in the environments. In both
environments, we regard the original environments as the source domains. In PyBullet-Hopper, we
devised the target domain by increasing the torso size from 0.05 to 0.15, to simulate the morphology
change. In PyBullet-HalfCheetah, we constrain the joint range of the front thigh from [−1.5, 0.8]
to [−1.5, 0.4], and the joint range of the front shin from [−1.2, 1.1] to [−1.2, 0.1], to simulate the
broken joint scenario that is widely used in related works.

The results are shown in the Table 3, and we report the performance of all algorithms concerning
different numbers of target domain samples. All results are averaged across five runs with different
seeds. The results demonstrate that VGDF consistently outperforms baselines given different number
of target domain data, demonstrating the generality of our method.
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