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This one

The chair is black 
with wheels. It is to 
the right of the desk.

( a )

( c )

( b )

( d )

This one

The chair with wheels 
is black. It is located to 
the right of the desk.


This one

You see the desk? To the 
right of it, there's a black 
chair with wheels.


This one

The chair's got wheels 
and it's on the right 
side of the desk, mate.


Correct prediction Wrong prediction

Figure 1: Fragility of 3D-VL models in natural language understanding. This figure shows the
failure of 3D-VL models when faced with natural language variations common in human commu-
nication. The variations include: (a) The original sentence in the training set. (b) Shifting the voice
from active voice to passive voice. (c) Saying the same thing in a different accent. (d) Saying in a
new conversation tone. Such variations are common in human language, but the model fails at them.

ABSTRACT

Rapid advancements in 3D vision-language (3D-VL) tasks have opened new av-
enues for human interaction with embodied agents or robots using natural lan-
guage. Despite this progress, we find a notable limitation: existing 3D-VL mod-
els exhibit sensitivity to the styles of language input, struggling to understand
sentences with the same semantic meaning but written in different variants. This
observation raises a critical question: Can 3D vision-language models truly un-
derstand natural language? To test the language understandability of 3D-VL
models, we first propose a language robustness task for systematically assessing
3D-VL models across various tasks, benchmarking their performance when pre-
sented with different language style variants. Importantly, these variants are com-
monly encountered in applications that require direct interaction with humans,
such as embodied robotics, given the diversity and unpredictability of human lan-
guage. We propose a 3D Language Robustness Dataset, designed based on the
characteristics of human language, to facilitate the systematic study of robustness.
Our comprehensive evaluation uncovers a significant drop in the performance of
all existing models across various 3D-VL tasks. Even the state-of-the-art 3D-
LLM fails to understand some variants of the same sentences. Further in-depth
analysis suggests that existing models have a fragile and biased fusion module,
which stems from the low diversity of the existing dataset. Finally, we propose a
training-free module driven by LLM, which improves language robustness.

1 INTRODUCTION
In recent years, the connection of vision and language has attracted considerable interest (Liu et al.,
2023; Li et al., 2023). Significant progress has been made on various tasks, such as Visual Grounding
and Visual Question Answering (VQA), in the context of understanding both 2D Vision Language
(2D-VL) (Tiong et al., 2022; Fukui et al., 2016; Antol et al., 2015; Anderson et al., 2018; Xie et al.,
2023; Zhong et al., 2022; Gao et al., 2017) and 3D Vision Language (3D-VL) (Huang et al., 2022;
Yang et al., 2021b;a; Ding et al., 2023b; Yang et al., 2022; Ding et al., 2022; 2023a; Yang et al.,
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2024b). These tasks represent the foundation skills in real-world applications such as the description
of images (Vinyals et al., 2015), embodied robotics (Gupta et al., 2021), AR/VR, and autonomous
agents (Xi et al., 2023; Yang et al., 2024a) that require human-machine interaction. They necessitate
the model’s ability to comprehend free-form natural language instructions for generating predictions.

2D-VL models can handle various prompts (Lai et al., 2023), benefiting from large-scale and diverse
Internet-sourced image-language datasets as shown in Fig. 2(c). These datasets contain a wide
range of natural language expressions, which enhances the robustness of 2D-VL towards different
language styles. However, we did not observe the same success in the 3D-VL domain. Instead,
we observe a notable limitation: Existing 3D-VL models exhibit bias towards language styles in
their training datasets and struggle to understand minor variations in our daily languages. As
shown in Fig. 1, even minor variations in expression conveying the same meaning can result in
model failure. Understanding different language styles is crucial for real-world applications, such as
embodied robotics, where humans tend to use a variety of expressions instead of adhering to a fixed
language pattern (Holtzman et al., 2019).

Unfortunately, replicating the success of 2D-VL by obtaining large and diverse 3D-VL datasets is
both challenging and resource-intensive, hindering the success of 3D vision-language tasks com-
pared to their 2D counterparts. This disparity in dataset diversity and robustness motivates us to
systematically study the language robustness of 3D-VL models and explore methods to improve
them without relying on extensive datasets. Currently, it lacks a suitable task or dataset designed
to facilitate this line of study. Recent studies have assessed the robustness of 2D-VL models using
negative samples such as semantically altered instructions (Yuksekgonul et al., 2022; Hendricks &
Nematzadeh, 2021; Wang et al., 2023a; Thrush et al., 2022; Zhao et al., 2022) and evaluated the re-
silience of LLMs to typo errors (Liang et al., 2022) (semantic preservation), which diverges from our
research focus. Semantic alterations compromise the objectives of grounding or QA by distorting
meaning, while simple typos fail to capture the systematic diversity of human language. Besides, we
focus on studying model robustness toward natural variations of sentences without altering their
meanings, which is more practical for real-world applications in embodied agents and robotics.

Thus, we introduce the 3D Language Robustness (3D-LR) Benchmark, designed for a comprehen-
sive evaluation of the language robustness in 3D-VL models. Specifically, our benchmark evaluates
various 3D-VL models on different tasks (Achlioptas et al., 2020; Yang et al., 2021b; Chen et al.,
2020; Huang et al., 2022; Azuma et al., 2022), utilizing a specially curated 3D Language Robust-
ness dataset. This dataset challenges models with a variety of language style variants. To accurately
model human natural language, we first identify the five most common key language styles variants
of natural language in human communications: syntax, voice, modifier, accent, and tone, drawing
from established linguistic theories (Barber et al., 2009; Bhagat & Hovy, 2013). Each variant cor-
responds to a specific aspect of language commonly used in human communication. For example,
syntax involves altering sentence structures, while voice entails transitioning between active and
passive forms. (More details will be shown in Sec. 3) Subsequently, we developed a paraphrasing
pipeline leveraging a Large Language Model (Raffel et al., 2020; Brown et al., 2020; Wei et al.,
2021; Sanh et al., 2021; Ouyang et al., 2022) (LLM) to generate the 3D-LR dataset. This process
involves rewriting sentences from existing 3D-VL (Achlioptas et al., 2020; Chen et al., 2020; Azuma
et al., 2022) datasets. We prompt the LLM with strict rules and linguistic theory, instructing it to
rephrase sentences into designated language styles while preserving their original meaning. Further-
more, we employ both statistical analyses and neural-based semantic quality assessments to verify
that the variants preserve the same meaning. The evaluation results reveal that even state-of-the-
art methods struggle with minor sentence style changes, experiencing performance decreases of up
to 32%. Notably, powerful LLM-based methods, such as 3D-LLM (Hong et al., 2023), whether
fine-tuned with task-specific supervision or not, also exhibit performance degradation.

Apart from our 3D-LR benchmark, we further propose a simple LLM-based pre-alignment module
that enhances robustness in 3D-VL models without additional training. Our method successfully
narrows the performance gap by up to 80%. Remarkably, it performs as well as models augmented
with double the training data size (from 40k to 80k). Through our comprehensive analysis, we have
identified that the fusion module in existing models acts as a major point of failure, as it is biased
toward the training dataset. Our proposed method can effectively address this issue.

In summary, our primary contributions are:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

-0.4 -0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

P
C
A
2

PCA1

(a) ScanRefer

-0.4 -0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

P
C
A
2

PCA1

(b) Our 3D-LR Dataset
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(c) Coco Caption
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(d) Open Assistant

Figure 2: Density map of four datasets’ vectorized syntax structure principal features. Darker areas
indicate a higher density of similar sentence patterns, suggesting the dataset contains simple and less
diverse structures. (a) ScanRefer (Chen et al., 2020). (b) Our 3D-LR Dataset. (c) Coco Caption. (d)
Open Assistant (Köpf et al., 2023). More details in Suppl.

1) We study language robustness toward natural variations of sentences without altering their
meanings, which is more practical for real-world applications. We aim to answer an im-
portant question: Can 3D vision-language models truly understand natural language?

2) We conduct a systematically designed 3D language robustness dataset based on linguistic
theories, which properly models real-world natural language to facilitate system bench-
marking. Our benchmarks on various 3D-VL models revealed their vulnerability to lan-
guage patterns. Further in-depth analysis showed that this issue stems from the fusion
module, primarily caused by the limited diversity in the training datasets.

3) We propose a simple yet effective training-free LLM-based pre-alignment module that can
recover a large proportion of performance without training.

2 RELATED WORKS

3D Vision-Language (3D-VL). 3D-VL understanding tasks, such as 3D Visual Question Answering
(3D-VQA) and 3D Visual Grounding (3D-VG), are pivotal for embodied agents and robotics. These
tasks require the simultaneous perception of the 3D world and an understanding of natural language.
In 3D-VQA, models select the correct answer from a set of candidates based on the input 3D scene
and a natural language question (Azuma et al., 2022) while 3D-VG involves selecting the correct
object (Achlioptas et al., 2020; Chen et al., 2020).

The key to both tasks is aligning 3D and text, leading them to have similar model architectures.
The most common architectural design is a dual streams model (Azuma et al., 2022; Zhang et al.,
2023; Ye et al., 2022; Ma et al., 2022; Achlioptas et al., 2020; Abdelreheem et al., 2022; Chen et al.,
2020). This comprises a visual encoder (Qi et al., 2017a), and a text encoder (LSTM (Hochreiter
& Schmidhuber, 1997) or BERT (Devlin et al., 2019)) that converts natural language. Then, a
fusion module aligns features before passing them to the prediction head. Additionally, leveraging
multi-view 2D images has shown promise in enhancing performance (MVT (Huang et al., 2022),
SAT (Yang et al., 2021b)). Inspired by the 2D vision large language model pre-training, there are
some attempts at bringing LLM into 3D-VL (Hong et al., 2023). This line of work adapts 3D features
into language space, enabling the LLM to use visual features as conditions to make predictions.

Existing 3D-VL datasets are either built by programs or human (Achlioptas et al., 2020; Chen et al.,
2020). There is debate about whether these datasets accurately model 3D-VL tasks. SQA3D (Ma
et al., 2022) highlights an embodied agent’s need to know its situation and introduces a dataset with
situation descriptions. Multi3Drefer (Zhang et al., 2023) challenges the assumption in existing 3D-
VG tasks that only one object is referenced in a sentence. Despite these advancements, a noticeable
“domain gap” exists between dataset language and everyday human language. Even human-labeled
datasets lack linguistic diversity, exhibiting a fixed pattern (Fig. 2(a)) distinct from the varied ex-
pressions of natural communication (Fig. 2(d)). We therefore propose a language robustness task
with an evaluation dataset to assess models on varied language styles.

Model Robustness Studies. Several studies have explored visual robustness in 2D (Hendrycks
& Dietterich, 2019) and 3D (Ren et al., 2022). Language robustness research falls into two cat-
egories: semantic alteration and semantic preservation. 1) Semantic alteration modifies textual
elements (e.g., rearranging phrases, swapping attributes) (Yuksekgonul et al., 2022; Hendricks &
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Nematzadeh, 2021; Thrush et al., 2022; Zhao et al., 2022) to test model behavior. However, this
approach is unsuitable for 3D-VL tasks like 3D-VG and 3D-VQA, which require high semantic
accuracy. Altering meaning contradicts these tasks’ goals. We focus on natural human expression
diversity rather than creating unnatural text. 2) Semantic preservation examines how LLMs handle
minor typos (Liang et al., 2022), but this work is confined to unimodal NLP and overlooks complex
linguistic variations. Our work belongs to semantic preservation but moves beyond simple typos to
investigate complex, systematic, and practical natural language variations.

3 3D LANGUAGE ROBUSTNESS (3D-LR) BENCHMARK

To systematically evaluate the fragility of 3D-VL methods to various language styles, we propose the
3D Language Robustness benchmark. The subsequent sections detail our benchmark design, starting
with our proposed 3D Language Robustness Task in Sec. 3.1. Following this, we introduce our
3D Language Robustness dataset (3D-LR) in Sec. 3.2, including its design principles, construction
pipeline, and key statistics.

3.1 3D LANGUAGE ROBUSTNESS TASK

Motivated by the above, we present the 3D Language Robustness task. This task is designed to eval-
uate the generalization capabilities of a pre-trained 3D-VL model across diverse language variants of
a given dataset. Specifically, this evaluates the model’s ability to understand and process sentences
that have the same meaning as the original but are expressed differently.

Formally, a standard 3D-VL task such as 3D-VQA (Azuma et al., 2022), 3D-VG (Chen et al., 2020)
can be viewed as the model takes two modality inputs: a 3D scene represent in a k points point
cloud P = {(pi, fi); i = 1, 2, . . . , k}, where pi ∈ R3 denotes the coordinates and fi represents
extra features and a natural language sentence S = [s0, s1, ..., sn] representing a free-from sentence
with n words. The model treats these tasks as a classification problem over a predefined set of
candidate answers or objects.

To simulate daily natural language variants, we first derived the five most representative language
characteristics humans use in communication from linguistic theory (Barber et al., 2009; Bhagat
& Hovy, 2013). Based on these characteristics, we design five rephrasing operators o ∈ {N =
5 styles} to translate the original 3D-VQA and 3D-VG datasets,D, into various styles while main-
taining the meaning. Resulting in different sets of dataset splits, denoted as Do, containing sentence
variants respectively. These different language variants contain the same semantics as the original
sentences. They include the very same keywords. In other words, all language variants share the
same language clues to complete the task. Given such a set of textual variant splits has the same
meaning. A model, denoted as M trained on the original data D is evaluated on the newly built data
splits Do as described above. We have five language variant splits in our setting. Aiming to evaluate
the performance degradation comprehensively.

3.2 3D LANGUAGE ROBUSTNESS (3D-LR) DATASET

Background of Language Characteristics. Human language conveys meaning through its flexible
syntax, grammar structures, and features like voice and tones. We use five main characteristics to
model human language inspired by linguist theories (Barber et al., 2009; Bhagat & Hovy, 2013).
Firstly, Syntax refers to varying word or phrase orders to create different sentence structures; for
example, inverse sentences are commonly used in daily conversation. Secondly, Voice involves para-
phrasing a sentence from active to passive voice, or vice versa, a fundamental aspect of language.
Thirdly, Modifier, such as adjectives and adverbs, are varied by humans to enhance the details in
a sentence, adding richness and depth to communication. Fourthly, Accent reflects the distinct lin-
guistic habits of English speakers from different regions, characterized by unique vocabulary and
sentence structures. These regional variations, however, do not change the fundamental meaning of
the communication. Finally, Tone encompasses the attitudes and emotions conveyed in a sentence,
which vary across different contexts. An example is the use of questions in daily conversation, which
demonstrates how tone can add layers of meaning beyond the literal interpretation of words. Some
examples are shown in Fig. 3. A detailed explanation is shown in the supplementary file.

LLM Rephrasing for Dataset Construction. We aim to create a dataset including the lan-
guage variants defined earlier to systematically assess the language robustness of existing mod-
els across different linguist styles. Our approach involves rephrasing sentences from existing
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Table 1: Dataset quality assessment and basic statistics of our ScanRefer-R.
(a) Semantic similarity between ScanRefer-R
and the original dataset.

BERT Sim. (↑) Glove Sim. (↑) ED (↓)

Syntax 0.92 0.98 0.42
Voice 0.92 0.98 0.60

Modifier 0.91 0.96 0.51
Accent 0.83 0.89 0.63
Tone 0.86 0.93 0.51

(b) Basic statistics of different data splits in
ScanRefer-R.

Unique words Total words Avg. description length

Original 1254 42928 18.06
Syntax 1212 38322 16.12
Voice 1216 39603 16.66

Modifier 1273 42011 17.67
Accent 1343 50533 21.26
Tone 1175 48726 20.50

datasets: ScanQA (Azuma et al., 2022) for 3D-VQA, NR3D (Achlioptas et al., 2020) and Scan-
Refer (Chen et al., 2020) for 3D-VG. These rephrased sentences adhere to our variant defini-
tions while retaining their original meaning. Formally, let D ∈ {ScanQA,NR3D, ScanRefer} and
o ∈ {Syntax,Voice,Modifier,Accent,Tone}.

Figure 3: The rephrasing process to
build our evaluation dataset.

We utilize the LLM (gpt-3.5-turbo), for this sentence
rephrasing task. Our methodology involves designing
specific prompts, incorporating structured prompting and
Chain of Thought (CoT (Wei et al., 2022)) techniques to
guide paraphrasing. An abstract version of this prompt,
as shown in Fig. 3, begins with a detailed and precise def-
inition of variant derived from linguistic theories, repre-
sented as “style” in Fig. 3. This step aims to familiarize
the LLM with the desired style. Following this, we pro-
vide three pairs of human-written, in-context examples as
seeds to help the LLM understand the source style and
achieve better rephrasing quality. The complete version
of our prompt is available in the suppl.

To manage costs, we only utilize 25% of each dataset’s data. For 3D-VG datasets ScanRefer and
NR3D, we sub-sample from the official test split. And for ScanQA, we sample from the validation
split. We employ uniform sampling for the NR3D subset from Referit3D (Achlioptas et al., 2020),
which categorizes difficulty levels based on the number of object nouns in the natural language
sentences and offers view-dependent and view-independent splits for more refined assessment. This
ensures that our 25% subset maintains the integrity of the original data distribution.

Basic Statistics and Quality Assessments. We build the 3D Language Robustness dataset, namely
3D-LR, for our systematic benchmark. 3D-LR covers 2 tasks: ScanRefer-R, NR3D-R for 3D-VG
and ScanQA-R for 3D-VQA. Within each task split, there are six different subsets, covering five
language variants and one original version without rephrasing for comparison.

• Basic Statistics. Our ScanRefer-R has 2377 sentences, NR3D-R includes 1870 utterances, and
ScanQA-R contains 1168 questions. Table 1(b) presents basic statistics of ScanRefer-R, comparing
original sentences to their rephrased versions across different characteristics. Our primary focus is
on simulating diverse grammatical expression structures rather than lexical richness. To this end, we
implemented strict rules ensuring that paraphrasing does not alter the meaning or core object nouns.
This approach resulted in similar unique words across the different dataset splits. In the accent and
tone split, aiming to emulate a conversational style, we added some verbal phrases to the original
sentences. This modification increased the average length of descriptions.

To further analyze the diversity characteristic of our dataset and its comparators, we visualized
the syntax diversity of our dataset using vectorized syntax trees that represent sentence structures.
(Fig. 2(b)). First, we extract the sentence structures into syntax trees. Then, we vectorize these
trees and perform Principal Component Analysis (Pearson, 1901) (PCA) to project them onto a 2-
dimensional space. Finally, we create a density map based on the features. Before creating the
density map, we combined all five variant splits. For comparison, we analyzed a fully human-
annotated NLP dataset, the Open Assistant (Köpf et al., 2023), which models human conversation
(Fig. 2(d)). The density maps of both datasets exhibit similar spreading patterns and area sizes. This
similarity suggests that our dataset accurately reflects the diversity of human language.

• Dataset Quality Assessment. To ensure the quality of rephrasing the dataset to facilitate a fair
assessment, we further evaluate the rephrased dataset’s quality, centered on preserving original sen-
tence meanings. We employ traditional metrics and language model methods to check this. Specif-
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Table 2: Experimental results on 3D-VG tasks with/without our pre-alignment module. The best
results are in bold. ORACLE refers to the original dataset performance.
(a) Results of 3D-VG models on ScanRefer with predicted proposal. Measured in accuracy@kIoU

Backbone Method Syntax Voice Modifier Accent Tone
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ORACLE: (Acc@0.25 = 42.36 Acc@0.5 = 27.68)

ScanRefer (Chen et al., 2020) baseline 11.32 7.66 19.73 13.50 17.04 11.49 12.79 8.79 9.55 6.86
w. ours 24.95 16.45 22.17 14.35 21.33 14.77 24.48 15.90 26.42 17.29

ORACLE: (Acc@0.25 = 41.27 Acc@0.5 = 33.74)

MVT (Huang et al., 2022) baseline 28.99 23.85 31.09 25.70 33.66 27.89 38.12 31.76 29.70 24.57
w. ours 38.50 31.89 34.58 28.36 37.53 30.96 40.05 33.40 38.66 31.85

ORACLE: (Acc@0.25 = 40.73)

Chat-3D-v2 (Wang et al., 2023b) baseline 38.55 - 33.81 - 36.54 - 40.48 - 35.03 -
w. ours 39.39 - 35.28 - 38.17 - 40.65 - 38.13 -

(b) Results of 3D-VG task with GT box proposal on
NR3D. We measure listening accuracy of Referit3D
and SAT.

Backbone Method Syntax Voice Modifier Accent Tone
ORACLE: (Acc = 35.1)

Referit3D (Achlioptas et al., 2020) baseline 25.7 22.1 24.0 27.9 21.7
w. ours 28.1 28.5 28.1 30.4 33.7

ORACLE: (Acc = 48.8)

SAT (Yang et al., 2021b) baseline 43.9 34.2 38.9 41.2 34.9
w. ours 45.1 44.1 41.6 44.6 46.9

(c) Results of 3D-VG task with GT pro-
posal on ScanRefer. Measuring listening
accuracy of Referit3D and SAT.

Backbone Method Syntax Voice Modifier Accent Tone
ORACLE: (Acc = 34.8)

Referit3D (Achlioptas et al., 2020) baseline 16.8 23.9 24.0 24.0 17.9
w. ours 31.9 23.2 24.5 27.2 34.4

ORACLE: (Acc = 40.7)

SAT-NR3D (Yang et al., 2021b) baseline 37.1 33.2 36.6 34.7 33.1
w. ours 39.7 35.7 36.7 38.2 41.0

ORACLE: (Acc = 53.9)

SAT-ScanRefer (Yang et al., 2021b) baseline 36.7 40.6 43.7 50.3 37.0
w. ours 51.6 44.5 47.6 52.5 50.7

ically, we measure the average edit distance (Ristad & Yianilos, 1998) between each original and
rephrased sentence, with results presented in Table 1(a). A smaller edit distance value signifies a
closer sentence structure, indicating minimal alteration. Additionally, we assess semantic integrity
using cosine similarity between sentence vectors derived from a neural language model BERT (De-
vlin et al., 2019) and Glove (Pennington et al., 2014) of the original and rewritten sentences. Higher
scores suggest a greater preservation of semantic content. More explanations of the quality assess-
ment method are detailed in the Supplementary file. Our findings, underscored by manual review,
reveal that the rephrased dataset largely maintains its semantic essence. Notably, the observed re-
duction in cosine similarity scores below 0.9, particularly in accent-based sentence rephrasing, can
be attributed to adding some spoken expressions and phrases (such as “Hey bro”). After humans
verify, the underlying meaning remains.
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Figure 4: Performance summary of existing models on our 3D Language Robustness benchmark.
Acc@kIoU for ScanRefer(a), ScanRefer-GT(b), Listening accuracy (Acc) for NR3D(c) and EM@1
for ScanQA(d) are measured. Average robustness is computed over all five language variant splits.
It shows performance drops in 3D-QA and 3D-VG models, indicating a lack of robustness.

4 EXPERIMENTS

Evaluation Method. We benchmark different models of both 3D-VG and 3D-VQA. For 3D-VG
with predicted proposals, we assess ScanRefer, MVT and Chat-3D (Wang et al., 2023b) using the
proposed ScanRefer-R. For 3D-VG with Ground Truth (GT) proposals, we evaluate Referit3D and
SAT (Yang et al., 2021b) on our NR3D-R. In 3D-VQA, ScanQA-R serves as the benchmark, includ-
ing evaluations of ScanQA (Azuma et al., 2022), 3D-LLM (Hong et al., 2023) LLaVA-3D (Zhu
et al., 2024) and Video3D-LLM (Zheng et al., 2024). Except for SAT, all models are trained us-
ing their corresponding training sets. We explore both models for SAT from two training settings:
training on original NR3D (Achlioptas et al., 2020) and training on ScanRefer.

Metrics. For the 3D-VG task with predicted proposals, we use Acc@kIoU (k set to 0.25 and 0.5) to
evaluate the accuracy, considering IoU thresholds of the box prediction. In 3D-VG tasks with ground
truth proposals, we employ listening accuracy (Acc), where a model scores 1 for correctly selecting
the target object from a list of candidates and 0, otherwise, as defined in Referit3D (Achlioptas et al.,
2020). For 3D-VQA, following ScanQA (Azuma et al., 2022), we report Exact Match@k (EM@k)
for top-k prediction accuracy. Due to page limitations, other metrics, e.g. BLEU-1 (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015) and their explanations, are provided in the supplementary file.
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4.1 MAIN RESULTS

We systematically evaluate various models for 3D-VG and 3D-VQA. The results are summarized
in Fig. 4. Oracle exhibits its performance on the unaltered test set, and we calculate average ro-
bustness by averaging its performance across all five language variant splits. It measures the overall
performance degradation when the model encounters unfamiliar linguistic patterns (absent from the
training set). We noted a serious performance drop in all models when confronted with language
variants, indicating a lack of robustness in existing 3D-VL models.

3D Visual Grounding. Table 2(a) - Table 2(c) present results for 3D Visual Grounding with
Ground Truth (GT) and predicted bounding boxes on different datasets. Referit3D and SAT mod-
els (trained on different datasets) show significant performance decreases in tone and syntax splits,
with Referit3D dropping by up to 18% in simple syntax splits, (Table 2(c)), indicating brittleness and
overfitting to sentence patterns. This trend is consistent across datasets, including NR3D (Achlioptas
et al., 2020), (Table 2(b)), suggesting a bias towards the implicit pattern in these datasets. Exam-
ining models with integrated point cloud detectors, like ScanRefer, MVT (Huang et al., 2022), we
observe a similar pattern of sensitivity to language style changes, shown in Table 2(a). ScanRefer
shows a substantial performance decrease of 32.81% in Acc@0.25 on tone splits, while MVT, us-
ing the more robust bert text encoder, shows a smaller yet significant drop, particularly in syntax
splits. We also evaluated Chat-3D-v2 at Acc@0.25 following the official setting and observed sim-
ilar performance drop to language variations. These results highlight that existing 3D-VG models,
regardless of whether they use detectors or not, are sensitive to variations in language styles.

3D Visual Question Answering. Table 3 outlines the 3D-VQA task results. Like in the 3D-VG
task, the ScanQA model (Azuma et al., 2022) shows performance degradation across all paraphrased
style splits. The LLM-based 3D models (3D-LLM (Hong et al., 2023), LLaVA-3D, and Video3D-
LLM), despite being pre-trained on large datasets, also experience reductions in performance across
most splits but demonstrate greater robustness than other models. This resilience is attributed to
their language model backbones’ extensive training on large corpora. Notably, in our modifier split,
the un-fine-tuned 3D-LLM* variant surpasses the ORACLE in performance, and similar patterns
are observed with LLaVA-3D. This is likely because LLM-based models more effectively handle
common language expressions, as seen in the modifier of nouns. Among these models, Video3D-
LLM shows the strongest overall performance. Further discussions are shown in the supplementary
file. Interestingly, 3D-LLM’s fine-tuning on ScanQA faces a severe performance drop on the Tone
split, suggesting that fine-tuning may cause catastrophic forgetting and lead to a biased feature space.

5 ANALYSIS AND IMPROVED MODEL
Table 3: Evaluating 3D-VQA models with/without
our pre-alignment module on ScanQA. 3D-LLM*
denotes the model without task-specific fine-tuning.
More metrics are in the Appendix.

Method Syntax Voice Modifier Accent Tone
ORACLE: (EM@1 = 19.69)

ScanQA 14.98 17.12 16.01 14.04 15.92
w. ours 19.26 18.58 18.32 18.41 18.49

ORACLE: (EM@1 = 10.02)
3D-LLM* 8.99 9.50 10.27 8.13 7.45

w. ours 10.19 9.59 9.93 9.25 9.25
ORACLE: (EM@1 = 21.75)

3D-LLM 21.06 19.61 19.86 19.52 16.78
w. ours 21.15 19.52 20.80 19.95 20.80

ORACLE: (EM@1 = 27.40)
LLaVA-3D 27.05 24.91 26.54 23.89 22.26

w. ours 27.48 26.03 26.63 25.94 26.20
ORACLE: (EM@1 = 32.95)

Video3D-LLM 30.46 28.79 29.53 27.31 20.41
w. ours 31.91 29.27 29.10 29.62 29.78

The systematic evaluation results indicate a
lack of robustness in existing 3D-VL mod-
els. We analyze the reason behind this issue
through an in-depth investigation. (Sec. 5.1)
Next, we developed a simple yet effective
plug-and-play method. (Sec. 5.2) This ap-
proach can be applied to any pre-trained
model, enhancing its robustness to diverse
natural language characteristics without the
need for re-training or additional data aug-
mentation. Finally, we discuss data augmen-
tation, a technique commonly used to enhance
model performance and robustness. (Sec. 5.3)

5.1 WHY DO THE 3D-VL MODELS FAIL?
Our systematic evaluation identifies that the lack of robustness is consistently and commonly ob-
served across various models and tasks. Suggesting existing models fail at aligning 3D modality
with text. We further conduct an in-depth analysis to figure out “Why do 3D-VL models fail?”.

The Fragility of Fusion Space. We notice that in Table 2(a), though MVT is equipped with a
pre-trained BERT (Devlin et al., 2019), it still faces performance dropping issues. Therefore, we
hypothesize the real problem is the feature fusion module used to fuse point cloud features generated
by the vision encoder (Qi et al., 2017a;b; 2019) and text features generated by the text encoder.
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To study this, we use the syntax variants from our ScanRefer-R as an example. We measure the sen-
tence vector cosine similarity between the original sentence and the syntax variants before the fusion
module (right after the BERT) and after passing the fusion module. We analyze all failure cases in
this split by calculating the similarity between sentence embedding features or object features of the
syntax variants and their corresponding original sentences. Subsequently, we construct the probabil-
ity density function (PDF), as illustrated in Fig. 5. The PDF for cosine similarity between text pairs
reveals distinct patterns before and after the fusion process. For text features, distribution before
fusion (red distribution in Fig. 5(a)) is notably skewed towards higher similarity values, suggest-
ing that the original sentences and their syntax variations (not seen in the training set) are closely
aligned. This indicates that the text encoder (e.g., BERT) is robust enough to handle variations well.

In contrast, the cosine similarity distribution of text features post-fusion (blue distribution in
Fig. 5(a)) is more widespread, with a significant portion extending towards lower similarity values.
This suggests that the fusion process negatively affects the integrity of text features. The robustness
of the fusion module is weak towards sentence variations. It performs poorly when given syntax-
altered sentences absent from the training data. In other words, the fusion module is biased towards
the training dataset, rather than genuinely understanding the semantics of natural language.

Moreover, Fig. 5(b) depicts the distribution of object features, calculated analogously to the text
similarity previously discussed. Given that the visual scene is identical for both syntax-split and
original sentences, the expected similarity value should be exactly 1. Nonetheless, the green distri-
bution in the figure shifts towards the left, indicating lower similarity values. This shift mirrors the
trend observed in the text feature distribution, implying a negative impact on the object features as
well. MVT uses a Transformer-based fusion module with attention mechanism, each object token
can attend to all text tokens. Thus, the shift in object similarity likely stems from the amplification of
subtle text differences through attention, highlighting the model’s sensitivity to text variations. This
further supports the fragility of the fusion feature space and a bias toward the training set, rather
than true semantic understanding. Also, note that absolute similarity has no physical meaning in
high-dimensional space, therefore we focus on the relative comparison results.

Low Diversity of Existing Datasets. We further identify that the major cause behind the above
phenomenon is rooted in the low diversity of the original dataset and its large domain gap to the hu-
man daily language. It hinders the model from learning more general information. For example, we
study the syntax diversity using the ScanRefer (Chen et al., 2020) dataset. Specifically, we propose
to use a vectorized syntax tree to represent a sentence, then we conduct PCA analysis (Maćkiewicz
& Ratajczak, 1993) and plot the density map. The darker region shows more sentences are being
projected to this place. We can tell from the density map that the origin 3D-VL dataset ScanRefer has
a simpler syntax pattern (the more compact darker region in Fig. 2(a)) while the other dataset shows
more spreading high-density regions. It indicates that the existing dataset lacks enough diversity
to reflect real-world language characteristics properly. Moreover, given such a dataset to facilitate
model training, the model can easily fit the simple implicit pattern without obtaining a generic un-
derstanding of language features. It is worth mentioning that our proposed dataset (Fig. 2(b)) shares
a similar pattern with the open assistant (Köpf et al., 2023) dataset (Fig. 2(d)), which is a dataset that
has a closer domain gap with daily language and enough diversity, indicating the high quality of our
dataset. We further prove that increasing the dataset’s diversity can reduce the robustness problem
to a certain extent, as detailed in the discussion of data augmentation in Sec. 5.3.
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Figure 5: Probability Density Functions (PDFs) of cosine similarity between text pairs of original
Sentences and their corresponding syntax variants.
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5.2 PLUG AND PLAY PRE-ALIGNMENT MODULE

Pre-Alignment Module. We have identified that the fusion module is sensitive to the textual input
and shows overfitting to the language style pattern of the training data. Therefore, we propose a
training-free pre-alignment method to first convert the sentence pattern into the style that the trained
model prefers. More specifically, we design an LLM-based parser, which maps sentences in any
style into the models’ preferred style. Since we have a well-trained model, we naturally assume
that we can assess the training data. We propose to use LLM to conduct the style transfer, mapping
sentences in any style into the format that the model is good at while maintaining the same mean-
ing. We design a structured prompt containing “Generic Rules” and “In-Context Examples”: the
genetic rule contains format instructions for better post-processing, a simple sentence “You should
not change the meaning of the input sentence...” to encourage the model to preserve most informa-
tion. Since we can see what kind of data the model is trained from, we just need to give three to six
in-context examples indicating the pattern we are dealing with and the style the model prefers. Em-
pirical evidence suggests that for modern, powerful large language models, as few as 3 to 6 samples
are sufficient to capture the desired style effectively. The pre-aligned sentence is directly fed into
the same model for prediction. This process is called pre-alignment without the need for retraining.
It also does not need large-scale additional annotation on different variants.

Performance Benefit of Our Pre-Alignment Module. When used in conjunction with existing
models, our pre-alignment module achieves significant performance enhancements across various
datasets, as demonstrated in Table 2 to Table 3. In particular, ScanRefer and MVT models exhibit
substantial improvements across all language variants on ScanRefer-R with our module. For ex-
ample, ScanRefer’s Acc@0.25 increases by over 16% in the tone split. Similar improvements are
observed in NR3D-R and 3D-VQA models. However, 3D-LLM (Hong et al., 2023) without fine-
tuning does not benefit from our module because it effectively handles language expressions since it
is a large-scale pre-trained language model. Table 4 further shows the performance of our proposed
method with SAT (a grounding model). Our pre-alignment module recovered performance on all
five splits compared with this baseline. Notably, our method can recover up to 12% accuracy on tone
split without training. This indicates the effectiveness of our proposed module. More discussion is
provided in the appendix.

5.3 DISCUSSION ON DATA AUGMENTATION

Here, we investigate whether data augmentation can address model robustness. We experimented
with the NR3D (Achlioptas et al., 2020) dataset in two scenarios, with the result shown in Table 4.
The first, “SAT w. aug - 40k”, involved training on a mixed-style dataset, size-matched to the original
NR3D, resulting in 40,000 samples balanced on five variants. The second, “SAT w. aug - 80k”,
doubled the dataset to 80,000 samples by merging training data variants. We discuss more details
in the supplementary. Table 4 shows our method surpasses data-augmented models of equal size
and rivals those trained on double the data. This highlights our method’s effectiveness, especially
considering the impracticality and high cost of obtaining exhaustive annotations for augmentation.
This also demonstrates the significant demand for the augmentation of data.

Table 4: Results of data augmentation.
Backbone Syntax Voice Modifier Accent Tone

SAT 43.9 34.2 38.9 41.2 34.9
SAT w. aug - 40k 43.1 40.8 40.5 41.0 43.5
SAT w. aug - 80k 45.7 42.3 44.5 42.5 45.9

SAT w.ours 45.1 44.1 41.6 44.6 46.9

Both data augmentation and our method hold
potential.(i) We believe augmentation could improve
performance, but it demands large and diverse high-
quality datasets (Table 4). However, as human lan-
guage exhibits over 23 styles, it is difficult to cover all for augmentation. (ii) Our method, requiring
no training, offers immediate plug-and-play benefits to existing models and is ready for future boosts
with more advanced LLMs. (iii) Our approach could offer diverse data for augmentation.

6 CONCLUSION

We present a novel task and benchmark dataset to study language robustness in 3D vision-language
models. Our dataset, designed based on linguistic theories, includes diverse language variants.
Through comprehensive evaluations, we identify significant fragility in existing 3D-VL models
when encountering real-world language variations. We analyze the reasons and propose a simple yet
effective solution without requiring additional training. This work aims to facilitate future research
in improving model robustness, crucial for deploying 3D-VL models in real-world applications.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in this work solely as a general-purpose assistance tool.
Specifically, LLMs were employed to assist with grammar checking and polishing during the writ-
ing process. Additionally, in the construction of the dataset, LLMs were used to generate initial
linguistic variations, which were subsequently reviewed, filtered, and refined by human annotators.
LLMs did not contribute to the research ideation, technical design, or analytical conclusions of this
work.

A.2 MORE EXAMPLES

This section provides additional visual examples to further illustrate the language robustness chal-
lenge discussed in the main paper. Examples are presented in Fig. 11 to Fig. 15. We employ
SAT (Yang et al., 2021b), a 3D Visual Grounding model trained on the ScanRefer dataset (Chen
et al., 2020), to test its effectiveness in handling subtle linguistic variations. Specifically, we ana-
lyze its response to five sentence variants that are semantically identical to the original but phrased
differently, reflecting natural variations in human communication. These examples underscore a
key limitation: the model struggles with minor rephrasings, such as sentence inversions, that do not
change the underlying meaning, highlighting a critical challenge in current natural language pro-
cessing capabilities. Moreover, we visualize the predictions, shown in Fig. 9 to Fig. 10, made by
plain SAT and SAT enhanced with our pre-alignment module to demonstrate the effectiveness of our
approach.

A.3 DATASETS

In this section, we first present basic statistics and semantic similarity analysis for two additional
splits within our 3D Language Robustness (3D-LR) dataset: NR3D-R for 3D Visual Grounding (3D-
VG) and ScanQA-R for 3D Visual Question Answering (3D-VQA). We then delve into a detailed
discussion about the variations in language usage within these datasets. Additionally, we outline
the methodology employed in leveraging large language models (LLMs) to construct the 3D-LR
dataset. Lastly, we discuss the diversity of these datasets.

A.3.1 BASIC STATISTICS

Table 5 detail the basic statistics of ScanQA-R and NR3D-R respectively. They compare original sen-
tences with their rephrased counterparts, focusing on characteristics such as word count, noun usage,
and sentence complexity. These statistics are akin to those observed for ScanRefer-R, as discussed
in Section 3.2 of the main paper. This similarity indicates that our strict rephrasing rules effectively
preserve the original meaning and core object nouns across different dataset splits. The consistent
number of unique words across these splits corroborates this observation. For the modifier, accent,
and tone variation, which aims to mimic conversational style, we incorporated additional verbal
phrases and modifiers into the original sentences. This modification led to an increase in the unique
words, total words, and average sentence length. Besides, we also use both neural semantic metrics
and traditional metrics to ensure our dataset preserves the original meaning. The results are shown in
Table 6. We can observe that all our paraphrased dataset has an edit distance to the original sentence
lower than 1, which means they are only slightly different from the original sentence. Moreover, the
high cosine similarity in BERT and Glove suggests that, from a neural network model’s perspective,
they almost mean the same.

A.3.2 MORE DISCUSSION OF LANGUAGE VARIANTS

We provide several examples of sentence variants representing different aspects of human language
as illustrated in the captions below the corresponding images from Fig. 11. These examples show-
case five distinct groups of sentences derived from the original sentences in the ScanRefer dataset,
highlighting variations in syntax, voice, modifier, accent, and tone.
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Table 5: More basic statistics. We count the unique words, total words, and the average sentence
length on our paraphrased dataset, named ScanQA-R, in (a) and NR3D-R in (b).

(a) Basic statistics of different data splits using
ScanQA-R as an example.

Unique words Total words Avg. description length
Original 565 10257 8.78
Syntax 556 10731 9.19
Voice 566 10665 9.13

Modifier 611 11548 9.89
Accent 679 14085 12.06
Tone 606 14385 12.32

(b) Basic statistics of different data splits using
NR3D-R as an example.

Unique words Total words Avg. description length
Original 909 19475 10.41
Syntax 907 20769 11.11
Voice 928 21785 11.65

Modifier 1047 22616 12.09
Accent 1002 22857 12.22
Tone 873 30702 16.42

Table 6: More semantic similarity statistics. We measure the the cosine similarity between our
ScanQA-R (a) and NR3D-R (b) with the original data using BERT embedding, Glove embedding.
We also compare the Edit Distance (ED). This suggests that our data effectively retains the original’s
meaning.

(a) Semantic similarity analysis of our ScanQA-
R.

BERT Sim. (↑) Glove Sim. (↑) ED (↓)

Syntax 0.94 0.98 0.40
Voice 0.96 0.98 0.72

Modifier 0.94 0.93 0.65
Accent 0.84 0.85 0.53
Tone 0.87 0.92 0.48

(b) Semantic similarity analysis of our NR3D-
R.

BERT Sim. (↑) Glove Sim. (↑) ED (↓)

Syntax 0.90 0.98 0.53
Voice 0.87 0.96 0.48

Modifier 0.86 0.90 0.45
Accent 0.89 0.93 0.64
Tone 0.81 0.85 0.41

Humans employ many language styles to convey their intentions, meanings, and emotions, and em-
phasize certain aspects (Barber et al., 2009). These language styles allow for subjective expressions
and the inclusion of emotions, enriching the communication experience.

Syntax, for instance, plays a crucial role in human language by providing various word or phrase
orders to create different sentence structures. Inverse sentences, such as posing a question before
providing the answer or lifting the part that one wants to highlight to the start of the sentence, are
common in daily conversations to engage the listener and evoke curiosity or anticipation.

Voice, on the other hand, enables individuals to transform sentences from active to passive voice or
vice versa. This intentional use of voice enables slight changes in emphasis, highlighting different
subjects or actions in a sentence, and can evoke various emotional responses from the listener.

Modifiers, such as adjectives and adverbs, are extensively used by humans to enhance the details
and depth of their expressions. By incorporating a wide variety of modifiers, individuals can add
subjective elements, convey emotions, and paint vivid pictures in the minds of their audience.

Accent reflects the distinct linguistic habits of English speakers from different regions, contributing
to the diversity and richness of language. It allows individuals to express their cultural identity
and provides a unique flavor to their communication, introducing subjective nuances and regional
colloquialisms.

Lastly, tone encompasses the attitudes and emotions conveyed in a sentence. For example, by
using questions, employing irony, or other techniques, individuals can add layers of meaning and
emphasize certain aspects, evoking specific emotional responses from their audience.

A.3.3 DETAILED PROMPT FOR DATASET CONSTRUCTIONS

We employ structured prompting and chain of thought (Wei et al., 2022) techniques to create lan-
guage variants. Please note that the “style requirement” slot specifies the desired variant type in
strict rules, and the “sentence” slot should be filled with the original sentence for rewriting. Our
process ensures high-quality rewrites while adhering to these parameters. Fig. 6 shows the overall
structure of our prompt.
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A.3.4 MORE DISCUSSIONS ON DATASET DIVERSITY

Fig. 8 displays the syntax diversity of the original NR3D (Achlioptas et al., 2020), ScanQA (Azuma
et al., 2022), our proposed 3D-LR dataset, and other datasets (Chen et al., 2015; Köpf et al., 2023)
for comparisons, utilizing vectorized syntax trees. Specifically, we employ the NLTK (Bird et al.,
2009) to construct syntax trees, which represent the syntactic structure of sentences. These trees are
then transformed into strings. Subsequently, we apply the Term Frequency-Inverse Document Fre-
quency (TF-IDF) (Salton & Buckley, 1988) technique, using TfidfVectorizer, to convert these syn-
tax strings into quantifiable features. Following this, we implement Principal Component Analysis
(PCA) (Pearson, 1901) to project these features into a lower-dimensional space, enabling us to plot
the density map for each dataset. In these maps, smaller dark areas signify more uniform or similar
sentence patterns, indicating a lack of diversity in sentence structures within the dataset. Comparing
Fig. 8(d) to Fig. 8(f), which represents a large-scale, fully human-annotated dataset, namely Open
Assistant (Köpf et al., 2023), we see a similar pattern. This similarity suggests that our proposed
NR3D-R dataset accurately reflects the characteristics of natural language. On ScanQA (Azuma
et al., 2022), the original dataset shows a strong, compact pattern (Fig. 8(b)), which model is easy to
utilize such shortcut, while our ScanQA-R (Fig. 8(e)) improves the diversity and makes the pattern
close to natural language in real-world communication.

A.3.5 HUMAN EVALUATION AND ANNOTATOR AGREEMENT

To ensure the quality and reliability of our dataset, we conducted systematic human evaluations
following a two-stage process. Initially, two annotators performed manual reviews on uniformly
sampled subsets of the data (200 samples per split) to verify correctness and consistency. Given the
large scale of the dataset (over 10,000 samples) and limited annotator resources, this review process
was supplemented with rule-based and large language model (LLM) based checks applied to the
entire dataset.

We further performed an additional human evaluation to assess inter-annotator agreement specifi-
cally on semantic equivalence and naturalness of the rephrased sentences. Three annotators were
instructed to perform binary evaluations on: (a) whether the semantic meaning remained consistent
between original and rewritten sentences, and (b) the naturalness of the rewritten sentences.

This evaluation was conducted on a uniformly sampled subset of 300 data points (balanced across
all three splits) due to labour constraints. Inter-annotator agreement was measured using Fleiss’
Kappa, yielding the following results:

• Semantic equivalence agreement: 0.561 (moderate agreement)
• Naturalness agreement: 0.708 (substantial agreement)

According to standard interpretation guidelines (where 0.41–0.60 indicates moderate agreement and
0.61–0.80 indicates substantial agreement), these scores demonstrate reasonable reliability for our
benchmark. These results will be incorporated into the final version of the paper.

A.4 DETAILED METHOD EXPLANATIONS

Pipeline of Our Pre-Alignment Module We introduce a method that leverages a large language
model to enhance the performance of existing trained models on various language variants without
necessitating re-training. This model aligns the sentence style with the training data of the original
model. Specifically, it normalizes the input sentence to match the style of the data on which the
models were initially trained. Fig. 7 outlines the overall pipeline.

A.5 MORE METRICS OF SYSTEMATIC EVALUATION

Bilingual Evaluation Understudy (BLEU Score) The BLEU score (Bilingual Evaluation Under-
study) was initially proposed to assess the quality of machine translation systems (Papineni et al.,
2002). It quantifies the similarity between a language model’s translated output and the reference
ground truth sentence. In the context of 3D Visual Question Answering, where models generate
words, phrases, or short sentences as responses, the BLEU score evaluates the closeness of these
model predictions to the correct answers. This metric effectively measures the linguistic accuracy
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[Role and Task]
You are a linguist. Your job is to assist
me in paraphrasing the input query according
to my needs while preserving its meaning
and critical elements. [Style Requirement:
e.g., mimic the accent of an English Speaker
from a different region.]]

[Rules]

1. Convert the given sentence into a more
relaxed, conversational tone.

2. Maintain the original meaning without
altering it.

3. Retain essential elements such as
objects, attributes, relationships,
and keywords.

4. Present the revised sentence in JSON
format, using the key "new sentence"
for the output.

[Example]
#example 1
sentence: the dark blue pillow on the
papasan chair
return answer: {{
"new sentence": "The dark blue pillow
resting upon the Papasan chair."
}}
#example 2 ...
#example 3 ...

[Detail Format Instruction]
You should ONLY return the JSON dictionary.
Python must be able to parse the response
into JSON.

#Begin Task

The sentence: <{sentence}>

Figure 6: Overview of our prompt. To avoid complexity, we provide an example showcasing the
overall structure of our prompt designed for generating sentence variants. All prompts we used, the
dataset generation code, and the pre-generated dataset will be released later.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

the table is square. 
there is a chair to the 
left, and a chair to the 
right of it.

Answer (3D-VQA)
or

Object (3D-VG)

Point Cloud
Encoder

Text
Encoder

Fusion
M

odule

Prompt
[Role and Task]
Help me normalize the sentence into a plain and simple 
format.

[A few In-context Examples] …
# Get from the training set of the original model

Sentences
after

pre-alignment

Figure 7: Overview of inference pipeline with our pre-alignment module. The entire pipeline is
frozen without any training.

of answers in VQA tasks, especially for 3D-LLM (Hong et al., 2023), which generates the answer
token by token rather than selecting from a candidate set.

BLEU-1 is a specific variant of the BLEU score that evaluates the precision of unigrams (individual
words) in machine-generated text. BLEU-1 thus quantifies how many unigrams in the generated
text accurately match those in the reference text, providing a metric for lexical accuracy in tasks
like machine translation or automated content generation. A higher BLEU-1 score means that the
answer is more accurate. For more details, please refer to (Papineni et al., 2002).

CIDEr Score The CIDEr (Vedantam et al., 2015) score originally evaluates the quality of image
captions generated by computers. It calculates this score by comparing a generated sentence to a set
of reference ground truth (GT) sentences. The key aspect of this comparison involves assessing the
overlap of words and phrases between the generated caption and the GTs. This assessment is refined
by weighting the n-grams (a contiguous sequence of n items from a given sample of text) using
TF-IDF, a technique that evaluates how frequently a word appears in the document relative to its
commonness across all documents. The scoring favors captions that match the GTs closely and use
terms specific to the given image context rather than generic words applicable to various images.
Thus, in 3D-VQA, a higher CIDEr score indicates that the answer is accurate and contextually
relevant.

A.6 MORE EXPERIMENTAL RESULTS

We present additional results, including the BLEU-1 score and CIDEr score for the 3D-VQA task, in
Table 7. These metrics further elucidate the performance of 3D-LLM (Hong et al., 2023), LLaVA-
3D, and Video-3D-LLM, generative models that produce answers token by token.

A.6.1 MORE DISCUSSIONS ON LLM-BASED MODELS

3D-LLM (Hong et al., 2023) is a recently proposed large scale 3D pre-training Vision-Language
Model. The key idea is to use various 3D encoders to build unified 3D features. These features are
first mapped into the same feature spaces as 2D images and then further used to train 2D VLMs.
These 2D-VL models contain a powerful language model as a text encoder, e.g., Flan-T5 (Chung
et al., 2022). Therefore, they have good language understanding abilities. Unlike ScanQA (Azuma
et al., 2022) baseline for 3D-VQA, 3D-LLM and other LLM-based models (LLaVA-3D and Video-
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(a) Original NR3D (Chen et al., 2020)
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(b) Original ScanQA (Azuma et al., 2022)
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(c) COCO Caption (Chen et al., 2015)
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(d) NR3D-R

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
PCA1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PC
A2

(e) ScanQA-R
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(f) Open Assistant (Köpf et al., 2023)

Figure 8: Density map of datasets’ vectorized syntax structure principal features. Comparing NR3D-
R and ScanQA-R with other representative datasets.
Table 7: Evaluating ScanQA, 3D-LLM, LLaVA-3D and Video-3D-LLM (pre-trained 3D vision
language models), with/without our pre-alignment module on ScanQA, a 3D-VQA task. 3D-LLM*
indicates the model before fine-tuning (FT) on ScanQA, while 3D-LLM shows post-FT results.

Method Syntax Voice Modifier Accent Tone
BLEU-1 CIDEr BLEU-1 CIDEr BLEU-1 CIDEr BLEU-1 CIDEr BLEU-1 CIDEr

ORACLE: (BLEU-1 = 29.62 CIDEr = 60.42)
ScanQA 21.18 44.16 26.98 53.06 26.55 52.89 22.51 44.16 22.83 48.21
w. ours 29.52 60.13 28.79 56.93 28.32 56.62 26.89 55.53 27.50 57.07

ORACLE: (BLEU-1 = 23.13 CIDEr = 37.37)
3D-LLM* 20.19 33.55 21.97 33.85 22.41 38.03 15.45 32.03 18.52 28.05
w. ours* 23.42 37.48 20.90 33.63 22.57 36.18 21.37 33.44 21.82 34.55

ORACLE: (BLEU-1 = 37.22 CIDEr = 74.00)
3D-LLM 38.20 74.21 36.52 70.79 36.06 70.00 35.05 68.28 22.73 50.85
w. ours 37.30 72.94 36.07 69.94 36.85 72.00 35.71 68.15 36.74 71.65

ORACLE: (BLEU-1 = 44.16 CIDEr = 93.27)
LLaVA-3D 41.43 88.57 42.07 87.19 42.72 90.34 31.88 73.12 27.64 67.43

w. ours 43.18 91.72 42.11 87.41 42.71 91.20 41.92 87.35 43.09 89.45
ORACLE: (BLEU-1 = 47.80 CIDEr = 109.58)

Video-3D-LLM 47.82 102.54 45.85 98.59 46.54 101.69 41.28 90.95 28.00 65.66
w. ours 48.25 105.77 46.22 99.97 45.98 100.18 45.11 98.86 46.79 102.15
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3D-LLM) generate answers token by token. Therefore, we show the generative metrics in Table 7
to better assess their performance.

In experimental results, ScanQA exhibited significant performance degradation across all language
variants, as evidenced by BLEU-1 and CIDEr metrics. Evaluating 3D-LLM in two configurations,
solely pre-trained and fine-tuned on the ScanQA task, revealed distinct outcomes. “3D-LLM*” indi-
cates the model before fine-tuning (FT) on ScanQA, while “3D-LLM” shows post-FT results. “3D-
LLM*”, without task-specific fine-tuning, shows a performance decline in almost all variant splits
except for the modifier variant. In contrast, the fine-tuned “3D-LLM” demonstrates greater robust-
ness compared to the non-VLM-based ScanQA model. Notably, variations in sentence modifiers had
little impact on 3D-LLM across both training settings, suggesting that its extensive pre-training may
equip it to handle such language variations. However, the fine-tuned “3D-LLM” experienced similar
performance declines across most splits. Both pre-trained and fine-tuned models showed degrada-
tion in the tone split, which simulates stylistic diversity in daily communication. The fine-tuned
“3D-LLM” exhibited more pronounced losses in the tone split than its solely pre-trained counter-
part, indicating that while task-specific fine-tuning enhances downstream task performance, it may
lead to catastrophic forgetting, reducing overall model robustness.

We also evaluated LLaVA-3D and Video-3D-LLM, two other LLM-based models for 3D-VQA.
These models show similar patterns of sensitivity to language variations, particularly in tone and
accent splits. The performance degradation observed across all these models highlights the general
challenge of language robustness in 3D vision-language tasks, regardless of the specific architecture
or pre-training approach.

A.6.2 ABLATION RESULTS OF DIFFERENT FUSION MODULES

We conducted additional experiments on Referit3D, a model employing a GNN-based fusion mod-
ule. Moreover, to further study the impact of different fusion architectures, we modified Referit3D’s
fusion module into two versions: a) vision language feature concatenation (no cross-modal inter-
action), and b) vision language feature average pooling. As shown in the Table below, all fusion
variants exhibit performance degradation compared to ORACLE, with marginal differences between
methods. This indicates the fragility persists regardless of architectural choices.

Table 8: Results of different fusion modules

Backbone ORACLE (Acc) Syntax Voice Modifier Accent Tone
Referit3D 34.8 16.8 23.9 24.0 24.0 17.9
Referit3D-avg 34.5 15.8 24.2 23.5 21.5 20.0
Referit3D-cat 34.6 15.8 24.9 24.1 23.2 21.0

A.6.3 EXTENDED LANGUAGE STYLE EVALUATION

To further evaluate the robustness of our proposed method against diverse linguistic variations, we
conducted additional experiments examining three scenarios: (a) repetition style (where speakers
repeat key information when thinking), (b) metaphor style, and (c) mixed-style inputs. All experi-
ments were conducted on a subsampled set of 250 data points to manage computational requirements
while maintaining statistical significance.

The repetition style experiment was conducted on the same three models evaluated in the main
paper, while the metaphor experiment utilized the Video-LLM-3D architecture to demonstrate our
module’s applicability to modern LLM-based solutions. For mixed-style inputs, we created a com-
bined dataset incorporating all five linguistic styles from our main study (accent, tone, syntax, voice,
and modifier), exposing models to randomized stylistic variations.

Table 9: Performance on Repetition Style Variants

Method Referit3D SAT-NR3D SAT-ScanRefer
Baseline 26.6 44.7 50.6
Ours 34.6 45.2 53.8
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Table 10: Performance on Metaphor Style Variants (Video-LLM-3D)

Method Metaphor
Baseline 47.9
w/ ours 48.5

Table 11: Performance on Mixed Styles (Combined Dataset)

Method Referit3D SAT-NR3D SAT-ScanRefer
Baseline 17.0 33.4 39.0
Ours 28.8 39.1 44.1

These results demonstrate our method’s consistent effectiveness across diverse linguistic styles, with
notable improvements over baseline approaches. The performance gains in mixed-style settings
particularly highlight our module’s generalization capabilities.

A.6.4 MULTI-STYLE COMBINATION WITHIN SINGLE SENTENCES

We further investigated model performance when multiple stylistic variations are applied within
individual sentences. This experiment applied 2-3 combined styles per sentence (e.g., metaphor +
passive voice, syntax variation + tone, or modifier adjustments combined with other styles), with
124 sentences containing 2 styles and 126 sentences containing 3 styles.

Table 12: Performance on Multi-Style Sentences

Method Referit3D SAT-NR3D SAT-ScanRefer
Baseline 17.0 41.3 49.8
Ours 31.4 44.6 53.0

The results align with trends observed in our main experiments: (a) baseline models struggle with
complex multi-style inputs; (b) our method maintains robust performance; and (c) the module effec-
tively handles within-sentence style mixtures, validating its generalizability across diverse linguistic
challenges.

A.6.5 MORE DISCUSSIONS ON OUR MODULE

Our pre-alignment module enhances the adaptability of trained models to different language styles
without requiring re-training or data augmentations, as detailed in Table 7. Incorporating this module
into the ScanQA baseline model resulted in a performance increase of approximately 8 BLEU-1
points and 16 CIDEr points. Furthermore, with our pre-alignment, ScanQA achieved performance
on par with the ORACLE across all splits. For “3D-LLM*”, not fine-tuned on the VQA task,
our method provided additional robustness, particularly noticeable in the challenging Tone split.
This trend was also evident in the fine-tuned (FT) “3D-LLM”, where our pre-alignment module
effectively compensated for the loss of diversity handling capabilities after fine-tuning.

A.6.6 DATA AUGMENTATION

Section 5.3 and Tab. 4 of the main paper show that simple data augmentation, achieved by providing
additional data to cover language variants for pre-training the model, still leads to unsatisfactory
results. Despite the fact that a model trained on a more diverse dataset exhibits greater robustness
to different language styles, its performance is worse than our straightforward, non-training-based
method. Remarkably, our approach is comparable to, or even surpasses, the model trained on a
dataset doubled in size, from 40,000 to 80,000 training samples. The underlying reason for this
phenomenon is that while adding various styles into the training set gives the model an opportunity
to learn different language variants, it simultaneously increases the learning difficulty. Consequently,
the model fails to identify and overfit simple patterns within the dataset, as illustrated in Fig. 8. This
also supports our hypothesis that existing models tend to learn shortcuts rather than achieving an
actual understanding of natural language.
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A.7 LIMITATION AND BROADER IMPACT

This study’s limitations arise from the potential incompleteness of the 3D-LR dataset in capturing
the full spectrum of natural language variations. Natural language use by humans in daily com-
munication is complex and varies widely. Despite this challenge, we have managed to summarize
five major language characteristics from linguistic theories. These were used to build a language
robustness dataset, which facilitates the systematic evaluation of existing 3D-VL models and iden-
tifies their vulnerabilities. While we provided an in-depth analysis to understand the reasons behind
these phenomena, further studies need to focus on dataset quality, model training schemes, and the
underlying causes of data augmentation failures.

This research impacts various domains, including embodied agents, autonomous navigation,
robotics, and interaction with environments through language. By systematically studying and en-
hancing language robustness in 3D vision-language models, we offer practical benefits for applica-
tions that require the understanding of human instructions in 3D environments. The introduction of
the 3D Language Robustness dataset (3D-LR) and the pre-alignment module not only demonstrates
the potential for improving language robustness in 3D models but also sets a foundation for further
exploration in this field.

A.8 FUTURE WORKS

Future directions for this research include expanding robustness studies to other vision-language
tasks and domains, such as 2D-VL, in contexts with limited data availability. A key area of investi-
gation is understanding the low data efficiency of current data augmentation methods and discover-
ing more efficient augmentation techniques. Another critical avenue is designing architectures that
do not overfit dataset statistics and truly understand language. This research sets the stage for a more
inclusive and comprehensive understanding of 3D vision-language models.

Original : the toilet is left of the bathtub. 
the toilet is round and pastel white.

Syntax : Left of the bathtub is the 
round and pastel white toilet.

Voice : The bathtub is right of the toilet. 
The toilet is round and pastel white.

Modifier : The bathtub is to the right 
of the toilet. The toilet has a round 
and pastel white color.

Accent : The loo is on the left side 
of the bath. The loo is circular and 
a soft shade of white.

Tone : You know the bathtub? 
Well, the toilet is on the left side of 
it. It's a round, pastel white toilet.

Ground Truth & Pred. on Original Pred. by SAT baseline Pred. by SAT with ours

Figure 9: Predictions by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on ScanRe-
fer’s sentence and five variants, compared with “SAT with Ours” using our pre-alignment module.
Ground truth prediction is green-highlighted, and predictions from plain SAT are pink-highlighted.
The figure shows SAT’s difficulty with language variants, while our plug-and-play module aids in
accurate predictions.
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Original : the chair is facing the 
table to the left. the chair is slightly 
pulled away from the table.

Syntax : To the left, the chair is 
facing the table and slightly pulled 
away from it.

Voice : The table is being faced by 
the chair to the left, and the chair is 
slightly pulled away from the table.

Modifier : The chair is positioned to 
the left, facing the table, and slightly 
pulled away from it.

Accent : The chair is positioned to 
the left of the table, and it's been 
moved a bit away from the table.

Tone : You see the table over there? The 
chair is facing it on the left side, but it's 
slightly pulled away from the table.

Ground Truth & Pred. on Original Pred. by SAT baseline Pred. by SAT with ours

Figure 10: Predictions by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on ScanRe-
fer’s sentence and five variants, compared with “SAT with Ours” using our pre-alignment module.
Ground truth prediction is green-highlighted, and predictions from plain SAT are pink-highlighted.
The figure shows SAT’s difficulty with language variants, while our plug-and-play module aids in
accurate predictions.

Original : this is a brown chair. 
it is near the end of the table.

Syntax : Near the end of the 
table is a brown chair.

Voice : A brown chair is near 
the end of the table.

Modifier : This chair is brown 
and located near the table's end.

Accent : That there's a brown chair, ya know? 
It's sitting right near the end of the table.

Tone : You see that table? Near the 
end of it, there's a brown chair.

Ground Truth &
Pred. on Original Pred. on Syntax Pred. on Voice Pred. on Modifier Pred. on Accent Pred. on Tone

Figure 11: Prediction made by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on Scan-
Refer’s original sentence and five modified variants. The ground truth and the SAT’s prediction for
the original sentence are highlighted in green. Differently colored boxes indicate the SAT’s incorrect
predictions on the sentence variants.
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Original : the table is square. there 
is a chair to the left, and a chair to 
the right of it.

Syntax : To the left of the square 
table, there is a chair, and to the 
right of it, there is another chair.

Voice : A square table is surrounded 
by a chair on its left and a chair on 
its right.

Modifier : The table has a square 
shape. There is a chair on its left side 
and another chair on its right side.

Accent : The table is square, and 
there's a chair on the left and 
another chair on the right of it.

Tone : You see that square table? 
There's a chair on the left side and 
another chair on the right side of it.

Ground Truth &
Pred. on Original Pred. on Syntax Pred. on Voice Pred. on Modifier Pred. on Accent Pred. on Tone

Figure 12: Prediction made by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on Scan-
Refer’s original sentence and five modified variants. The ground truth and the SAT’s prediction for
the original sentence are highlighted in green. Differently colored boxes indicate the SAT’s incorrect
predictions on the sentence variants.

Original : the chair is black with 
wheels. it is to the right of the desk.

Syntax : To the right of the desk is 
the chair, which is black with wheels.

Voice : The chair with wheels is black. 
It is located to the right of the desk.

Modifier : The chair, which has wheels, 
is located on the right side of the desk.

Accent : The chair's got wheels and it's 
on the right side of the desk, mate.

Tone : You see the desk? To the right 
of it, there's a black chair with wheels.

Ground Truth &
Pred. on Original Pred. on Syntax Pred. on Voice Pred. on Modifier Pred. on Accent Pred. on Tone

Figure 13: Prediction made by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on Scan-
Refer’s original sentence and five modified variants. The ground truth and the SAT’s prediction for
the original sentence are highlighted in green. Differently colored boxes indicate the SAT’s incorrect
predictions on the sentence variants.
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Original : the small wall shelf. the 
shelf is in the corner by the desk.

Syntax : In the corner by the 
desk is the small wall shelf.

Voice : The small wall shelf is 
in the corner by the desk

Modifier : The small wall shelf is 
located in the corner next to the desk.

Accent : Ya see that little wall shelf? It's sitting 
right there in the corner next to the desk.

Tone : You see the desk in the corner? 
There's a small wall shelf right by it.

Ground Truth &
Pred. on Original Pred. on Syntax Pred. on Voice Pred. on Modifier Pred. on Accent Pred. on Tone

Figure 14: Prediction made by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on Scan-
Refer’s original sentence and five modified variants. The ground truth and the SAT’s prediction for
the original sentence are highlighted in green. Differently colored boxes indicate the SAT’s incorrect
predictions on the sentence variants.

Original : the toilet is left of the bathtub. 
the toilet is round and pastel white.

Syntax : Left of the bathtub is the 
round and pastel white toilet.

Voice : The bathtub is right of the toilet. 
The toilet is round and pastel white.

Modifier : The bathtub is to the right of 
the toilet. The toilet has a round and 
pastel white color.

Accent : The loo is on the left side 
of the bath. The loo is circular and 
a soft shade of white.

Tone : You know the bathtub? 
Well, the toilet is on the left side of 
it. It's a round, pastel white toilet.

Ground Truth &
Pred. on Original Pred. on Syntax Pred. on Voice Pred. on Modifier Pred. on Accent Pred. on Tone

Figure 15: Prediction made by SAT (Yang et al., 2021b) (a 3D Visual Grounding Model) on Scan-
Refer’s original sentence and five modified variants. The ground truth and the SAT’s prediction for
the original sentence are highlighted in green. Differently colored boxes indicate the SAT’s incorrect
predictions on the sentence variants.
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