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Abstract
Generative flow networks (GFlowNets) are amor-
tized variational inference algorithms that treat
sampling from a distribution over compositional
objects as a sequential decision-making problem
with a learnable action policy. Unlike other al-
gorithms for hierarchical sampling that optimize
a variational bound, GFlowNet algorithms can
stably run off-policy, which can be advantageous
for discovering modes of the target distribution.
Despite this flexibility in the choice of behaviour
policy, the optimal way of efficiently selecting
trajectories for training has not yet been system-
atically explored. In this paper, we view the
choice of trajectories for training as an active
learning problem and approach it using Bayesian
techniques inspired by methods for multi-armed
bandits. The proposed algorithm, Thompson sam-
pling GFlowNets (TS-GFN), maintains an approx-
imate posterior distribution over policies and sam-
ples trajectories from this posterior for training.
We show in two domains that TS-GFN yields im-
proved exploration and thus faster convergence to
the target distribution than the off-policy explo-
ration strategies used in past work.

1. Introduction
Generative flow networks (GFlowNets; Bengio et al., 2021)
are generative models which sequentially construct objects
from a space X by taking a series of actions sampled from
a learned policy PF . A GFlowNet’s policy PF is trained
such that, at convergence, the probability of obtaining some
object x ∈ X as the result of sampling a sequence of actions
from PF is proportional to a reward R(x) associated to
x. Whereas traditional probabilistic modeling approaches
(e.g., those based on Markov chain Monte Carlo (MCMC))
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rely on local exploration in X for good performance, the
parametric policy learned by GFlowNets allows them to
generalize across states and yield superior performance on
a number of tasks (Bengio et al., 2021; Malkin et al., 2022;
Zhang et al., 2022; Jain et al., 2022a; Deleu et al., 2022;
Jain et al., 2022b; Hu et al., 2023; Zhang et al., 2023).

While GFlowNets solve the variational inference problem
of approximating a target distribution on X with the distri-
bution induced by the sampling policy (Malkin et al., 2023),
they are trained in a manner reminiscent of reinforcement
learning (RL). GFlowNets are typically trained by either
sampling trajectories on-policy from the learned sampling
policy or off-policy from a mix of the learned policy and ran-
dom noise. Each trajectory sampled concludes with some
object x ∈ X for which the GFlowNet receives reward R(x)
and takes a gradient step on the parameters of the sampler
with respect to the reward signal. Despite GFlowNets’ prior
successes, this mode of training leaves them vulnerable to
issues seen in the training of reinforcement learning agents
— namely, slow temporal credit assignment and optimally
striking the balance between exploration and exploitation.

Although multiple works have tackled the credit assignment
issue in GFlowNets (Malkin et al., 2022; Madan et al., 2023;
Deleu et al., 2022; Pan et al., 2023), considerably less atten-
tion has been paid to the exploration problem. Recently Pan
et al. (2022) proposed to augment GFlowNets with interme-
diate rewards so as to allow the addition of intrinsic rewards
(Pathak et al., 2017; Burda et al., 2018) and incorporate an
exploration signal directly into training. However, while
density-based exploration bonuses can provide much better
performance on tasks where the reward R(x) is very sparse,
there is no guarantee that the density-based incentives corre-
late with model uncertainty or task structure. In fact, they
have been shown to yield arbitrarily poor performance in a
number of reinforcement learning settings (Osband et al.,
2019). In this paper, we develop an exploration method for
GFlowNets which provides improved convergence to the
target distribution even when the reward R(x) is not sparse.

Thompson sampling (TS; Thompson, 1933) is a method
which provably manages the exploration/exploitation prob-
lem in settings from multi-armed bandits to reinforcement
learning (Agrawal & Jia, 2017; Agrawal & Goyal, 2017) and
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has been employed to much success across a variety of deep
reinforcement learning tasks (Osband et al., 2016a; 2018;
2019). The classical TS algorithm (Agrawal & Goyal, 2012;
Russo et al., 2018) maintains a posterior over the model of
the environment and acts optimally according to a sample
from this posterior over models. TS has been generalized to
RL problems in the form of Posterior Sampling RL (Osband
et al., 2013). A variant of TS has been adapted in RL, where
the agent maintains a posterior over policies and value func-
tions (Osband et al., 2016b;a) and acts optimally based on a
random sample from this posterior. We consider this variant
of TS in this paper.

Our main contribution in this paper is describing and
evaluating an algorithm based on Thompson sampling
for improved exploration in GFlowNets. Building upon
prior results in Malkin et al. (2022); Madan et al. (2023)
we demonstrate how Thompson sampling with GFlowNets
allows for improved exploration and optimization efficiency
in GFlowNets. We validate our method on a grid-world
and sequence generation task. In our experiments TS-GFN
substantially improves both the sample efficiency and the
task performance. Our algorithm is computationally effi-
cient and highly parallelizable, only taking ∼ 15% more
computation time than prior approaches.

2. Related Work
Exploration in RL There exists a wide literature on uncer-
tainty based RL exploration methods. Some methods rely on
the Thompson sampling heuristic and non-parametric repre-
sentations of the posterior to promote exploration (Osband
et al., 2013; 2016a;b; 2018). Others employ uncertainty to
enable exploration based on the upper confidence bound
heuristic or information gain (Ciosek et al., 2019; Lee et al.,
2021; O’Donoghue et al., 2018; Nikolov et al., 2018). An-
other set of exploration methods attempts to make agents
“intrinsically” motivated to explore. This family of methods
includesrandom network distillation (RND) and Never Give
Up (Burda et al., 2018; Badia et al., 2020). Pan et al. (2022),
proposes to augment GFlowNets with intrinsic RND-based
intrinsic rewards to encourage better exploration.

MaxEnt RL RL has a rich literature on energy-based,
or maximum entropy, methods (Ziebart, 2010; Mnih et al.,
2016; Haarnoja et al., 2017; Nachum et al., 2017; Schul-
man et al., 2017; Haarnoja et al., 2018), which are close or
equivalent to the GFlowNet framework in certain settings
(in particular when the MDP has a tree structure (Bengio
et al., 2021)). Also related are methods that maximize en-
tropy of the state visitation distribution or some proxy of
it (Hazan et al., 2019; Islam et al., 2019; Zhang et al., 2021;
Eysenbach et al., 2018), which achieve a similar objective
to GFlowNets by flattening the state visitation distribution.
We hypothesize that even basic exploration methods for

GFlowNets (e.g., tempering or ϵ-noisy) could be sufficient
exploration strategies on some tasks.

3. Method
3.1. Preliminaries

We begin by summarizing the preliminaries on GFlowNets,
following the conventions of Malkin et al. (2022).

Let G = (S,A) be a directed acyclic graph. The vertices
s ∈ S are called states and the directed edges (u → v) ∈ A
are actions. If (u → v) is an edge, we say v is a child of u
and u is a parent of v. There is a unique initial state s0 ∈ S
with no parents. States with no children are called terminal,
and the set of terminal states is denoted by X .

A trajectory is a sequence of states τ = (sm → sm+1 →
. . . → sn), where each (si → si+1) is an action. The
trajectory is complete if sm = s0 and sn is terminal. The
set of complete trajectories is denoted by T .

A (forward) policy is a collection of distributions PF (−|s)
over the children of every nonterminal state s ∈ S. A
forward policy determines a distribution over T by

PF (τ = (s0 → . . . → sn)) =

n−1∏
i=0

PF (si+1|si). (1)

Similarly, a backward policy is a collection of distributions
PB(−|s) over the parents of every noninitial state.

Any distribution over complete trajectories that arises from
a forward policy satisfies a Markov property: the marginal
choice of action out of a state s is independent of how s
was reached. Conversely, any Markovian distribution over
T arises from a forward policy (Bengio et al., 2023).

A forward policy can thus be used to sample terminal states
x ∈ X by starting at s0 and iteratively sampling actions
from PF , or, equivalently, taking the terminating state of a
complete trajectory τ ∼ PF (τ). The marginal likelihood of
sampling x ∈ X is the sum of likelihoods of all complete
trajectories that terminate at x.

Suppose that a nontrivial (not identically 0) nonnegative
reward function R : X → R≥0 is given. The learning
problem solved by GFlowNets is to estimate a policy PF

such that the likelihood of sampling x ∈ X is proportional
to R(x). That is, there should exist a constant Z such that

R(x) = Z
∑

τinT :τ=(s0→...→sn=x)

PF (τ) ∀x ∈ X . (2)

If (2) is satisfied, then Z =
∑

x∈X R(x). The sum in (2)
may be intractable. Therefore, GFlowNet training algo-
rithms require estimation of auxiliary quantities beyond the
parameters of the policy PF . The training objective we pri-
marily consider, trajectory balance (TB), learns an estimate
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of the constant Z and of a backward policy, PB(s | s′),
representing the posterior over predecessor states of s′ in
trajectories that contain s′. The TB loss for a trajectory τ is:

LTB(τ ; θ) =

(
log

Zθ

∏n−1
t=0 PF (st+1|st; θ)

R(sn)
∏n−1

t=0 PB(st|st+1; θ)

)2

(3)

where θ are the parameters of the learned objects PF , PB ,
and Z. If LTB(τ ; θ) = 0 for all τ , then PF samples objects
x ∈ X with probability proportional to R(x), i.e., (2) is
satisfied. Algorithms minimize this loss for trajectories τ
sampled from some training policy πθ, which may be equal
to PF itself (on-policy training) but is usually taken to be a
more exploratory distribution, as we discuss below.

Notably, any choice of a backwards policy PB yields a
unique corresponding PF and Z which makes the expres-
sion on the right side of (3) equal to zero for all τ ∈ T (see
Malkin et al. (2023) for interpretations of this result in terms
of variational methods).

3.2. GFlowNet exploration strategies

Prior work on GFlowNets uses training policies based on
dithering or intrinsic motivation, including:

On-policy The training policy is the current PF :
πθ(s

′|s) = PF (s
′|s; θ).

Tempering Let αθ(s
′|s) : S × S → R be the logits

of PF , then the training policy is a Boltzmann dis-
tribution with temperature T ∈ R as πθ(s

′|s) ∝
exp (αθ(s

′|s)/T ).

ϵ-noisy For ϵ ∈ [0, 1], the training policy follows PF

with probability 1 − ϵ and takes a random action
with probability ϵ as πθ(s

′|s) = (1− ϵ)PF (s
′|s; θ) +

ϵ
#{s′′:(s→s′′)∈A} .

GAFN (Pan et al., 2022) The training policy is the current
PF , but PF is learned by incorporating a pseudocount-
based intrinsic reward for each state s ∈ τ into the ob-
jective L(τ ;PF , PB) so that πθ(s

′|s) = PF (s
′|s; θ).

3.3. Thompson sampling for GFlowNets

Learning GFlowNets over large spaces X requires judicious
exploration. It makes little sense to explore in regions the
GFlowNet has already learned well – we would much rather
prioritize exploring regions of the state space on which the
GFlowNet has not accurately learned the reward distribu-
tion. Prior methods do not explicitly prioritize this. Both
dithering approaches (tempering and ϵ-noisy) and GAFNs
encourage a form of uniform exploration, be it pure random
noise as in dithering or a pseudocount in GAFNs. While it is
impossible to a priori determine which regions a GFlowNet

has learned poorly, we might expect that it performs poorly
in the regions on which it is uncertain. An agent with an es-
timate of its own uncertainty could bias its action selection
towards regions in which it is more uncertain.

With this intuition in mind, we develop an algorithm in-
spired by Thompson sampling and its applications in RL
and bandits (Osband et al., 2016a; 2018). In particular, fol-
lowing Osband et al. (2016a) we maintain an approximate
posterior over forward policies PF by viewing the last layer
of our policy network itself as an ensemble. To maintain
a size K ∈ Z+ ensemble extend the last layer of the pol-
icy network to have K · ℓ heads where ℓ is the maximum
number of valid actions according to G for any state s ∈ S .
To promote computational efficiency all members of our
ensemble share weights in all layers prior to the final one.

To better our method’s uncertainty estimates, we employ
the statistical bootstrap to determine which trajectories τ
may be used to train ensemble member PF,k and also make
use of randomized prior networks (Osband et al., 2018).
Prior networks are a downsized version of our main policy
network whose weights are fixed at initialization and whose
output is summed with the main network in order to produce
the actual policy logits. Prior networks have been shown
to significantly improve uncertainty estimates and agent
performance in reinforcement learning tasks.

Crucially, while we parameterize an ensemble of K forward
policies we do not maintain an ensemble of backwards poli-
cies, instead sharing one PB across all ensemble members
PF,k. Recall from 3.1 that each PB uniquely determines
a PF which LTB(τ) = 0 ∀τ ∈ T . Specifying a differ-
ent PB,k for each PF,k would result in setting a different
learning target for each PF,k in the ensemble. By sharing
a single PB across all ensemble members we ensure that
all PF,k converge to the same optimal P ∗

F . We show in Sec-
tion 4.1 that sharing PB indeed yields significantly better
performance than maintaining separate PB,k.

With our policy network parameterization in hand, the rest
of our algorithm is simple. First we sample an ensemble
member PF,k with k ∼ Uniform{1, . . . ,K} and then sam-
ple an entire trajectory from it τ ∼ PF,k. This trajectory is
then used to train each ensemble member where we include
the trajectory in the training batch for ensemble member
PF,k based on the statistical bootstrap with bootstrap prob-
ability p (p is a hyperparameter fixed at the beginning of
training). The full algorithm is presented in Appendix A.

4. Experiments
4.1. Grid

We study a modified version of the grid environment from
(Bengio et al., 2021). The set of interior states is a 2-
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Figure 1. Reward on the grid task. Left: true distribution (nor-
malized reward function). Right: empirical distribution over last
2 · 105 states sampled from the GFlowNet at end of training.

dimensional grid of size H ×H . The initial state is (0, 0)
and each action is a step that increments one of the 2 coor-
dinates by 1 without leaving the grid. A special termination
action is also allowed from each state.

Prior versions of this grid environment provide high reward
whenever the agent exits at a corner of the grid. This sort
of reward structure is very easy for an agent to generalize
to and is a trivial exploration task when the reward is not
highly sparse (such reward structures are not the focus of
this paper). To compensate for this, we adopt a reward
function based on a summation of truncated Fourier series,
yielding a reward structure which is highly multimodal and
more difficult to generalize to (see Figure 1). The reward
function is given by

R(x) =

n∑
k=1

cos(2ak,1πg(x1)) + sin(2ak,2πg(x1))+

cos(2bk,1πg(x2)) + sin(2bk,2πg(x2))

where ak,1, ak,2, bk,1, bk,2 ∈ R are preset scaling constants
∀k, n is a hyperparameter determining the number of el-
ements in the summation, g : Z≥0 → [c, d], g(x) =
x(d−c)

H + c, and c, d ∈ R are the first and last integer coor-
dinates in the grid.

We investigate a 64 × 64 grid with this truncated Fourier
series reward (see Appendix B for full reward setup details).
We train the GFlowNets to sample from this target reward
function and plot the evolution of the L1 distance between
the target distribution and the empirical distribution of the
last 2 · 105 states seen in training1.

The results (mean and standard error over five random seeds)
are shown in Figure 2 (left side). Models trained with tra-
jectories sampled by TS-GFN converge faster and with very
little variance over random seeds to the true distribution
than all other exploration strategies.

We also investigate the effect of sharing the backwards pol-
icy PB across ensemble members in Figure 2 (right side).

1This evaluation is possible in this environment because the
exact target distribution can be tractably computed.
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Figure 2. L1 distance between empirical and target distributions
over the course of training on the hypergrid environment (mean
is plotted with standard error bars over 5 random seeds). Left:
Thompson sampling learns the distribution better and faster than
all other methods. Right: sharing a backwards policy PB performs
significantly better than maintaining a separate backward policy
PB,k for each forward policy PF,k in the ensemble.
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Figure 3. Number of modes found as a function of training time
for bit sequence task.

Maintaining a separate PB,k for each PF,k performs sig-
nificantly worse than sharing a single PB over all ensem-
ble members. Maintaining separate PB,k resulted in the
GFlowNet learning much slower than sharing PB and con-
verging to a worse empirical L1 than sharing PB .

4.2. Bit sequences

We consider the synthetic sequence generation setting from
Malkin et al. (2022), where the goal is to generate se-
quences of bits of fixed length n = 120, resulting in a
search space X of size 2120. The reward is specified by a
set of modes M ⊂ X = {0, 1}n that is unknown to the
learning agent. The reward of a generated sequence x is
defined in terms of Hamming distance d from the modes:
R(x) = exp

(
1− n−1 miny∈M d(x, y)

)
. The vocabulary

for the GFlowNets is {0, 1}. Most experiment settings are
taken from Malkin et al. (2022) and Madan et al. (2023).

Models are evaluated by tracking the number of modes ac-
cording to the procedure in Malkin et al. (2022) wherein
we count a mode m as “discovered” if we sample some x
such that d(x,m) ≤ δ. The results are presented in Figure
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3 (mean and standard error are plotted over five random
seeds). We find that models trained with TS-GFN find
60% more modes than on-policy, tempering, and ϵ-noisy.
TS-GFN soundly outperforms GAFN, whose pseudocount
based exploration incentive is misaligned with the task’s
reward structure and seems to perform exploration in un-
helpful regions of the (very large) search space.

5. Conclusion
We have shown in this paper that using a Thompson sam-
pling based exploration strategy for GFlowNets is a simple,
computationally efficient, and performant alternative to prior
GFlowNet exploration strategies. We demonstrated how to
adapt uncertainty estimation methods used for Thompson
sampling in deep reinforcement learning to the GFlowNet
domain and proved their efficacy on a grid and long se-
quence generation task. Finally, we believe that future work
should involve trying TS-GFN on a wider array of exper-
imental settings and building a theoretical framework for
investigating sample complexity of GFlowNets.
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A. Additional algorithm details

Algorithm 1 TS-GFN
Input:
{PF,k}Kk=1: Family of K different forward policies
PB : Shared backwards policy
δ ∈ [0, 1]: Parameter for the bootstrapping distribution (we assume the distribution is Bernoulli)
L: Loss function taking as input a trajectory τ , forward policy PF , and backward policy PB

for each episode do
Initialize s0 from environment
Initialize trajectory τ to empty list
Pick forward policy to act with PF,k using k ∼ Uniform{1, . . . ,K}
for step t = 1, . . . until end of episode do

Pick action at ∼ PF,k(at|st−1)
Receive state st from environment
Append (st, at) to τ

end for
Add reward for trajectory R(x) to τ using last state in τ
Sample bootstrap mask mk ∼ Bernoulli(δ) ∀k
Compute loss ℓ =

∑K
k=1 mk · L(τ, PF,k, PB)

Take gradient step on loss ℓ
end for

B. Experiment details: Grid
For brevity, we recall the definition of the reward function from Section 4.1 as

R(x) =

n∑
k=1

cos(2ak,1πg(x1)) + sin(2ak,2πg(x1)) + cos(2bk,1πg(x2)) + sin(2bk,2πg(x2))

The reward function was computed using the following hyperparameters. The weights were set as ak,1 = ak,2 = bk,1 =
bk,2 = 4k

1000 with n = 1000 (the equivalent of np.linspace(0, 4, 1000)). The grid side boundary constants were
c = −0.5, d = 0.5 and the side length of the overall environment was H = 64 (so that the overall state space was of size
H ×H = 642 = 4096). Finally, we raised the reward by the exponent β = 1.5 so that we trained the GFlowNets using
reward R′(x) = R(x)β .

Besides the reward, architecture details are identical to those in Malkin et al. (2022), Madan et al. (2023), and Bengio et al.
(2021). The architecture of the forward and backward policy models are MLPs of the same architecture as in Bengio et al.
(2021), taking a one-hot representation of the coordinates of s as input and sharing all layers except the last. The only
difference comes from the TS-GFN implementation which has K · d heads for the output of the last layer where d is the
number of heads in the architecture of the non-TS-GFNs.

All models are trained with the Adam optimizer, the trajectory balance loss, and a batch size of 64 for a total of 400, 000
trajectories. Hyperparameters were tuned using the Optuna Bayesian optimization framework from project Ray (Akiba
et al., 2019; Moritz et al., 2018). Each method was allowed 100 hyperparameter samples from the Bayesian optimization
procedure. We reported performance from the best hyperparameter setting found by the Bayesian optimization procedure
averaged over five random seeds (0, 1, 2, 3, 4). We now detail the hyperparameters selected from the Bayesian optimization
procedure for each exploration strategy.

For on-policy we found optimal hyperparameters of 0.00156 for the model learning rate and 0.00121 for the logZ learning
rate. For tempering we found optimal hyperparameters of 0.00236 for the model learning rate, 0.0695 for the logZ learning
rate, and 1.0458 for the sampling policy temperature. For ϵ-noisy we found optimal hyperparameters of 0.00112 for the
model learning rate, 0.0634 for the logZ learning rate, and 0.00534 for ϵ. For GAFN we found optimal hyperparameters
of 0.000166 for the model learning rate, 0.0955 for the logZ learning rate, 0.144 for the intrinsic reward weight, and the
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architecture of the RND networks were a 2 layer MLP with hidden layer dimension of 53 and output embedding dimension
of 96 (the hidden layer dimension and embedding dimension were also tuned by the Bayesian optimization procedure).
Finally, for Thompson sampling we found a model learning rate of 0.00266, logZ learning rate of 0.0976, ensemble size of
100, bootstrap probability δ of 0.274, and prior weight of 12.03.

C. Experiment details: Bit sequences
The modes M as well as the test sequences are selected as described in Malkin et al. (2022). The policy for all methods is
parameterized by a Transformer (Vaswani et al., 2017) with 3 layers, dimension 64, and 8 attention heads. All methods are
trained for 50,000 iterations with minibatch size of 16 using Adam optimizer and the trajectory balance loss.

All hyperparameters were tuned according to a grid search over the parameter values specified below. For on-policy we
used a model learning rate of 0.0001 picked from the set {0.0001, 0.001, 0.01} and a logZ learning rate of 0.001 from
the set {0.001, 0.01}. For tempering we used a model learning rate of 0.0001 picked from the set {0.0001, 0.001, 0.01},
a logZ learning rate of 0.001 from the set {0.001, 0.01}, and sampling distribution temperature of 1.1 from the set
{1.05, 1.1, 1.25, 1.5}. For ϵ-noisy we used a learning rate of 0.001 picked from the set {0.0001, 0.001, 0.01}, a logZ
learning rate of 0.001 from the set {0.001, 0.01}, and ϵ of 0.005 from the set {0.01, 0.005, 0.001, 0.0005}. For GAFN
we used a learning rate of 0.001 picked from the set {0.0001, 0.0005, 0.001}, a logZ learning rate of 0.1 from the set
{0.001, 0.01, 0.1}, an intrinsic reward weight of 0.5 from the set {0.1, 0.5, 1.0, 5.0, 10.0}, the RND network was a 4 layer
MLP with hidden layer dimension of 64 and output dimension of 64. For TS-GFN we used a model learning rate of 0.001
picked from the set {0.0001, 0.001, 0.01}, a logZ learning rate of 0.001 from the set {0.001, 0.01}, an ensemble size of 50
picked from the set {10, 50, 100}, a prior weight of 4.0 picked from the set {0.1, 1.0, 4.0}, and a bootstrap probability δ 0f
0.75.


