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Abstract

In this work, we study the problem of communicating multiple samples from an
unknown probability distribution using as few bits as possible. This is a general-
ization of the channel simulation problem, which has recently found applications
and achieved state of the art results in realistic image compression, neural network
compression, and communication-efficient federated learning. In this problem,
the transmitter wants the receiver to generate multiple independent and identically
distributed (i.i.d.) samples from a target distribution P , while the transmitter and
the receiver have access to independent samples from a reference distribution Q.
The core idea is to employ channel simulation in multiple rounds while updating
the reference distribution Q after each round in order to reduce the KL-divergence
between P and Q, thereby reducing the communication cost in subsequent rounds.
We derive a lower bound on the expected communication cost and construct a
practical algorithm that achieves the lower bound up to a multiplicative constant.
We then employ this algorithm in communication-efficient federated learning, in
which model updates correspond to samples from a distribution, and achieve a 37%
reduction in the communication load. To further highlight the potential of sample
communication for generative models, we show that the number of bits needed to
communicate samples from a large language model can be reduced by up to 16
times, compared to entropy-based data compression.

1 Introduction

Let P be a probability distribution known to an encoder, and we would like to obtain a sample X ∼ P
at a remote decoder - what is the minimal number of bits required to communicate from the encoder
to the decoder? The obvious procedure is to sample from P at the encoder, compress it, and transmit
over the network. The minimum number of bits necessary for lossless transmission of this sample is
bounded by the entropy of distribution P , H(P ) bits per sample. However, unlike in classical source
coding theory, in our problem, the decoder is interested only in drawing of ‘an arbitrary’ sample from
P , and not the particular sample generated at the encoder. If the encoder and decoder have access to
samples from another reference distribution Q, then it is possible for the encoder to communicate a
sample from P using approximately DKL(P∥Q) bits instead. Thus, if we are able to sample from a
distribution Q that is close to P , the bandwidth required to communicate a sample from P can be
greatly reduced. This is known as ‘channel simulation’ or ‘reverse Shannon coding’ (Bennett et al.,
2002; Cuff, 2008; Harsha et al., 2010).
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This result has recently been used in various neural compression problems, such as compression of
images and neural networks (Havasi et al., 2019; Flamich et al., 2020; Agustsson and Theis, 2020;
Theis et al., 2022), where non-differentiable quantization operation is replaced with reverse channel
coding, which provides a differentiable step by utilizing the reparameterization trick. Another recent
application of channel simulation is in federated learning (FL). Many communication efficient FL
methods require sending a sample from a client-only distribution after local training. Instead of
deterministic weights, the models can be parameterized with a probability distribution and the central
server samples realizations from each client’s updated model to construct the global model update.
Recently, it was shown in Isik et al. (2023, 2024) that the overall communication cost of sending
the model updates from the clients to the parameter server can be greatly reduced using channel
simulation, achieving state-of-the-art results. In each iteration, the client can enable the parameter
server to sample from its locally updated distribution while using the global model distribution as the
common reference distribution. As the client’s local distribution is typically close to the global model,
the communication cost, proportional to the KL-divergence between the two, will will extremely
low compared to deterministic alternatives. Channel simulation can also help in enabling differential
privacy of the communicated models (Triastcyn et al., 2021; Hasircioglu and Gunduz, 2024; Hegazy
et al., 2024; Shahmiri et al., 2024) since it allows for shaping the distribution of the noise.

In all the above works, the single-shot version of channel simulation is utilized; that is, a single
sample is to be generated at the receiver with the desired distribution. In this work, we are interested
in studying the communication cost of sending multiple samples from the same distribution. This
problem can directly find an application in the FL framework, where the global model is estimated
from samples of local models. A procedure to efficiently communicate more samples would allow
the parameter server to approximate the global model more accurately, which would reduce the noise
and variance in its estimation, and speed up training.

Additionally, we would like to point to a strong conceptual connection between generative models and
channel simulation, and propose an avenue of future research. Generative models are one of the most
successful examples among the recent advances in machine learning. They include various modalities
such as text (Touvron et al., 2023), images (Ho et al., 2020), video, and many more. They are trained
to mimic some data distribution P based on samples X ∼ P drawn from it, and allow to generate
novel samples from the learned distribution. With growing popularity and deployment of generative
AI across a wide variety of applications, communicating the outputs of these models (particularly for
image, audio and video modalities) will put an increasing burden on the underlying communication
network infrastructure. However, instead of generating and then compressing a sample at the cloud
server, we can exploit channel simulation to enable the users to locally generate samples at a much
lower communication cost. Drawing multiple samples is a common use case for generative models.
For instance, in text to image models, such as DALL-E or Midjourney, multiple images are often
generated and communicated to the user based on a single prompt to allow the user choose the desired
one. Other instances include translation (Lee et al., 2021; Eikema and Aziz, 2022), code generation
(Chen et al., 2021) and planning (Yao et al., 2023), which can be improved by discriminating among
multiple generated samples.

The contributions of this work are summarized as follows:

• We formulate a novel universal sample coding problem, which defines the problem of
communicating multiple samples from an arbitrary discrete distribution unknown to the
receiver.

• We highlight the relationship between the redundancy in universal source coding and the
communication of samples, and show that the optimal redundancy for universal source
coding is a lower bound on the communication cost of universal sample coding.

• We propose a coding scheme for the universal sample coding problem, providing an upper
bound on its communication cost that is within a multiplicative factor from the lower bound.

• We employ our algorithm in FL achieving a 37% reduction in the communication load
compared to the current state-of-the-art communication-efficient FL algorithm.

• We adapt our algorithm for the remote generation problem, where the goal is to sample at a
remote user from a generative model hosted on a cloud server, while communicating the
least number of bits from the server to the user. We demonstrate the potential benefits of
sample communication in this setting through numerical experiments.
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Table 1: Rate required to communicate a given/any sample from P

matched mismatched

source coding H(P ) H(P ) +DKL(P∥Q)
sample communication 0 DKL(P∥Q)

2 Notation

We use Xn = (X1, X2, . . . , Xn) to denote a sequence of n elements and log(·) denotes logarithms
of base 2. Let P and Q denote discrete probability distributions. The entropy of P is given by
H(P ) ≜ −Ex∼P [logP (x)], while the relative entropy from P to Q, or the KL-divergence, is
defined as DKL(P∥Q) ≜ Ex∼P

[
log P (x)

Q(x)

]
.

3 Background

The problem of communicating samples from a desired distribution is a version of the channel
simulation problem, also known as the reverse Shannon theorem, or reverse channel coding. Given
a sample z from a probability distribution PZ at the encoder, channel simulation entails generating
sample x from the conditional distribution PX|Z=z at the decoder, using the fewest number of
bits. It was posed in Cuff (2008), where the solution was characterized in the asymptotic regime,
where an infinite sequence of samples is considered, while earlier results appeared in the quantum
communication literature (Bennett et al., 2002; Winter, 2002). The non-asymptotic results were shown
in Harsha et al. (2010) using common randomness, and then further refined in Li and Anantharam
(2021), where it was shown that to communicate a sample X from distribution PX|Z=z with joint
distribution PXZ , it is sufficient to transmit

I(X;Z) + log(I(X;Z) + 1) + 4.732 bits (1)

on average, where
I(X;Z) ≜ E

z∼PZ

[
DKL(PX|Z=z∥PX)

]
(2)

is the mutual information between X and Z. This result is close to optimal as it was shown in Li and
El Gamal (2018), i.e., there exist distributions PX,Z where the minimal number of communication
required for reverse channel coding is on average

I(X;Z) + log(I(X;Z) + 1)− 1 bits. (3)

As pointed out and shown in Theis and Yosri (2022), the sample communication bound does not rely
on using the exact marginal distribution PX , and still holds for other reference distributions Q. In
general, to generate a sample at the decoder from distribution P , with reference distribution Q, it is
enough to communicate an average of

DKL(P∥Q) + log(DKL(P∥Q) + 1) + 4.732 bits. (4)

While efficient in terms of communication cost, the sample communication method in Li and El Gamal
(2018) might be prohibitively expensive computationally. There have been increasing efforts in
creating algorithms with reduced complexity by constraining the distributions P and Q (Flamich
et al., 2022; Flamich, 2023). An overview of the methods and trade-off between communication,
computation, and sample accuracy is provided in Theis and Yosri (2022).

4 Communication of samples

4.1 Source coding

Lossless source coding is the problem of describing the realizations of a random variable with the
least number of bits on average. Each outcome x ∈ X is assigned a different sequence of bits, called
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a codeword, with length l(x). The optimal average codeword length is obtained by Huffman coding
(Huffman, 1952), where l(x) ≤ ⌈− logP (x)⌉ and

H(P ) ≤ E
x∼P

[l(x)] ≤ H(P ) + 1. (5)

For n independent and identically distributed random variables Xn = (X1, X2, . . . , Xn), Xi ∼ P ,
it is straightforward to show that using a Huffman code, the expected codeword length per symbol
is H(P ) ≤ 1

n Exn∼P⊗n [l(xn)] ≤ H(P ) + 1
n . As n → ∞ this quantity converges to the entropy,

which provides a fundamental limit for compression.

We call the code mismatched if it is designed for a source distribution of Q while the true source
distribution is P . Then the expected codeword length is given by:

E
x∼P

[lQ(x)] ≤ E
x∼P
⌈− logQ(x)⌉ ≤ E

x∼P

[
− logQ(x) + 1 + log

P (x)

P (x)

]
(6)

=− E
x∼P

[logP (x)] + E
x∼P

[
log

P (x)

Q(x)

]
+ 1 = H(P ) +DKL(P∥Q) + 1. (7)

For the n-ary case, the rate converges to H(P ) +DKL(P∥Q) (Cover and Thomas, 2006), where the
KL-divergence is the penalty for using a mismatched source distribution when designing the code.

However, there exist source coding methods called universal source coding with an average codeword
length that converges to H(P ) for any underlying distribution P not known to the encoder. They
can be thought of as empirically estimating (often implicitly) the underlying distribution of the data.
The classic and widely used example of such an algorithm is LZ78 (Ziv and Lempel, 1978). For
any distribution P the average number of bits needed to compress n samples is H(P ) +O

(
1

logn

)
(Savari, 1997), which converges much slower than Huffman coding for known distributions. This
excess factor for any universal source code Γ is known as per letter redundancy, defined as:

rΓ(n) = sup
P∈Pk

1

n
E

xn∼P
[l(xn)]−H(P ), (8)

where Pk is a k-dimensional probability simplex. It was shown in Davisson et al. (1981) that for a
k-dimensional distribution, the minimal per letter redundancy for any universal source code is:

inf
Γ

rΓ(n) =
(k − 1) log n

2n
+O

(
n−1

)
. (9)

The log n factor is the penalty for universality of the code (Krichevsky and Trofimov, 1981). A more
useful quantity for our analysis will be the total redundancy, defined as n rΓ. In the remainder of the
paper, when we refer to redundancy, we mean the total redundancy.

4.2 Sample communication

As mentioned in Section 3, reverse channel coding involves simulating samples from a joint distribu-
tion. Sample communication is a similar problem where the aim is to draw samples at the decoder
from distribution P , which is only known at the encoder, while both the encoder and the decoder have
access to samples from a common distribution Q. This common randomness – in practice, a seed to
initialize a pseudorandom number generator – allows both to draw the same sequence of samples
from Q. Using any sample communication method with cost specified in Equation (4) a sequence of
n independent and identically distributed (i.i.d.) samples Xn, Xi ∼ P , can be encoded using:

DKL(P
⊗n∥Q⊗n) + log(DKL(P

⊗n∥Q⊗n) + 1) + 4.732

= nDKL(P∥Q) + log(nDKL(P∥Q) + 1) + 4.732 (10)
expected number of bits, and the per sample cost converges to DKL(P∥Q) as n→∞.

Characterizations of the rate of source coding and sample communication in both matched and
mismatched cases are presented in Table 1, where we can see that ‘moving’ to source coding adds
H(P ) to the required rate, while using a mismatched distribution Q contributes DKL(P∥Q). The
natural question to ask is whether the results of universal source coding can be extended to sample
communication. Firstly, does the rate approach 0 when n → ∞, and secondly, what is the total
communication cost of communicating n samples? In the next section, we show that the answer to
the first question is positive, and that the total communication cost is in the same order as the minimal
redundancy, and the two quantities share a common lower bound.
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Algorithm 1 Universal Sample Coding
Input: P, n ≥ 1
Parameter: c > 0

1: Send sample X1 ∼ P .
2: Let i = 2, G(1) = 1.
3: while i ≤ ⌈log1+c(n)⌉+ 1 do
4: Let G(i) = ⌈(1 + c)i−1⌉
5: Let Qi = Q̂i(X

G(i−1)) be probability estimated with all previous samples (estimator Lemma
5.2).

6: Let g(i) = G(i)−G(i− 1).
7: Jointly send g(i) samples XG(i)

G(i−1)+1 ∼ P⊗g(i) using Q
⊗g(i)
i (Eqn. (10)).

8: i = i+ 1
9: end while

5 Universal sample coding

The core idea is that, after observing t samples, the decoder can estimate P , and use this estimate
as the reference distribution Q. As more samples are transmitted, the KL-divergence between
the decoder’s estimate and the true distribution P will diminish, which will translate into a lower
communication cost for later samples. The proposed scheme consists of multiple rounds; in each
round, a batch of samples are sent jointly, then the reference probability Q is updated.

Theorem 5.1 (Universal sample coding). There exists a randomized encoding function f : Pk ×
Z → N, and a randomized decoding function g : N×Z → Xn, such that for any k-dimensional
discrete distribution P ∈ Pk over alphabet X and a random string Z ∈ Z = {0, 1}∞, such that
g(f(P,Z), Z) = Xn ∼ P⊗n and

E
[
H(f(P,Z)|Z)

]
= L(n) ≤ Vk(c) log(n) + o

(
log(n)

)
,

where the expectation is over all random strings Z, and

Vk(c) ≜
c

ln(1 + c)

(
k − 1

2

)
+

ln
(

k−1
2 ln 2 + 1

)
+ 5 ln 2

ln(1 + c)
+ 1 (11)

for any c > 0.

The random string Z is the common randomness shared between the encoder and decoder. The
expected number of bits needed to communicate n samples from the any distribution P is similar
to the redundancy of universal source coding, with some additional factors and per sample cost
O
(

logn
n

)
→ 0 as n→∞.

5.1 Probability estimation

As the samples are drawn independently, their order does not reveal any information about P . Thus,
any estimator, without loss of optimality, can be based only on the count of each symbol in the
observed sequence. One of the canonical estimators is the add-1 or Laplace estimator. As the name
suggests, the estimated probability of any symbol is its count in the sequence plus 1, normalized to
form a probability distribution. Laplace estimator belongs to a family of add-β estimators, which rely
on adding a constant β to each count. Although no add-β estimator achieves the optimal minmax KL-
divergence rate (Krichevskiy, 1998), there exists an estimator (Braess and Sauer, 2004) that combines
add- 12 , add- 34 and add-1 estimators, and achieves the optimal and universal decay of KL-divergence.

Lemma 5.2. (Braess and Sauer, 2004)] Given n i.i.d. samples Xn, Xi ∼ P from any distribution
P ∈ Pk, there exists an estimator Q̂(Xn) such that:

E
Xn∼P⊗

[
DKL(P∥Q̂(Xn))

]
≤ k − 1

2 ln 2 · n
+ o(n−1). (12)
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Figure 2: The optimal universal sample coding
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5.2 Universal sample coding algorithm

If we could communicate a single sample with DKL(P∥Q) average bits, then alternating between
sending a single sample and estimating P would be the best strategy. The algorithm would take n
communication rounds and the total expected communication cost of this hypothetical algorithm
would be:

⌈log k⌉+
n−1∑
i=1

k − 1

2 ln 2 · i
+ o(i−1) ≤ k − 1

2
log(n) + o(log n), (13)

where ⌈log k⌉ is the cost of sending the first sample. However, the real cost of sending a sample,
as shown in (4), includes a constant, which would dominate the total cost as n increases, making
it linear instead of logarithmic. We propose a solution that requires only O(log n) communication
rounds, where in each round, exponentially more samples are sent. Algorithm 1 illustrates the pseudo
code for the proposed solution. The proof of Theorem 5.1 is presented in Appendix B. We first upper
bound the number of bits communicated in each round. Then we show that the total number of bits
communicated over all rounds is Vk(c) log(n) + o(log n), where parameter c controls the size of the
groups communicated at each round. The optimal choice of c depends on k.

We have plotted the infimum of Vk(c) for different values of k in Figure 1. The value of the first term
of Vk(c), that is c

ln(1+c)
k−1
2 , is minimized as c approaches 0 and converges to k−1

2 , which is equal
to the optimal redundancy factor. As we show in the next section, it is also the lower bound for any
universal sample communication algorithm. The ratio between the optimal value of Vk(c) and k−1

2 is
shown in Figure 2, where it starts at around 9 and converges to 1 as k grows; this is the multiplicative
gap between the upper bound on the communication cost of the proposed algorithm and the lower
bound presented in the next section.

5.3 Lower bound

The connection between universal source coding and universal sample coding is highlighted in the
following theorem, where the lower bound of redundancy of universal source coding is the same as
the communication cost of universal sample coding. This is not a coincidence, we can prove this
theorem using exactly the same steps as the proof of optimality for the redundancy of universal source
coding in Davisson et al. (1981).

Theorem 5.3 (Universal sample coding - lower bound). For any universal sample coding algorithm
(Theorem 5.1), there exists k-dimensional distribution P , such that, the expected number of bits L(n)
required to communicate n samples from P satisfies:

L(n) ≥ k − 1

2
log(n) +O(1) . (14)
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Figure 3: KL-divergence between the true and
estimated probabilities for dimension k = 8, for
a range of number of communicated samples n.
Solid line indicates the mean, while the shaded
area shows the 20th to 80th percentiles.

Figure 4: KL-divergence between true and es-
timated probabilities for n = 128 samples, for
different number of dimensions k. Solid line in-
dicates the mean, while shaded area 20th to 80th
percentiles.
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Figure 5: Communication cost of communicating n samples from an 8-dimensional distribution
(k = 8). Solid line indicates the mean, while shaded area shows the 20th to 80th percentiles.

Proof. Theorem 5.3 states that the claim holds for some distribution P , thus it holds for the supremum
over all k-dimensional distributions supP L(n). We will consider P as a random variable distributed
according to Ω. Let Ω be any distribution of k-dimensional distributions, then

sup
P

L(n) ≥ E
P∼Ω

[L(n)], (15)

since the maximum is always greater than or equal to the average. The right hand side in Equation
(15) corresponds to the expected number of bits required to communicate a sample Xn from P⊗n,
where P is sampled from Ω. This is exactly the reverse channel coding problem, where the lower
bound on the communication cost was shown in Harsha et al. (2010) to be the mutual information
between the two random variables

E
P∼Ω

L(n) ≥ I(P,Xn). (16)

This quantity was bounded in Davisson et al. (1981) as

I(P,Xn) ≥ k − 1

2
log(n) +O(1). (17)

To show (17), Davisson et al. (1981) considers a Markov chain P → Xn → Q̂, where Q̂ is a
reconstruction of P based on samples Xn. By data processing inequality, this Markov chain implies
I(P,Xn) ≥ I(P, Q̂). The quantity I(P, Q̂) describes the minimum amount of information needed
to compress P in lossy source coding, and can be bounded using Shannon lower bound Shannon
(1959). The final lower bound is obtained by choosing an appropriate distribution Ω and a distortion
measure between distributions P and Q̂.
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6 Empirical evaluation

To corroborate the claims about universal sample coding made in Theorem 5.1, we compare the
KL-divergence and total communication cost between the theory and numerical evaluations for
different number of samples and dimensions. Each experiment is repeated 1000 times, where a
probability distribution P is sampled from a k-dimensional Dirichlet distribution with concentration
parameters α ∈ Rk, αi = 1. Then, n samples are communicated using universal sample coding
(Algorithm 1). We consider ordered random coding (Theis and Yosri, 2022), shown in Appendix C,
as the underlying sample communication method (line 7, Algorithm 1). In Figure 3, we observe that
the measured KL-divergence DKL(P∥Q̂) between the true probability P and the estimate Q̂ from
the estimator in Lemma 5.2 follows the predicted values across a range of communicated samples.
In Figure 4, we fix the number of samples to n = 128, but vary the dimension k, and show that the
KL-divergence lies below the bound from Lemma 5.2. In Figure 5, we plot the total communication
cost for various number of samples, which is contained between the asymptotic upper and lower
bounds, Vk(c) log(n) (Theorem 5.1) and k−1

2 log(n) (Theorem 5.3), respectively.

7 Federated learning (FL)

To show the efficacy of the universal sample coding in practice, we first apply it to the Federated
Probabilistic Mask Training (FedPM) algorithm proposed in Isik et al. (2024). In FedPM, the weights
of the neural network w ∈ RM are randomly initialized, fixed, and known both to the clients and the
central server. Each weight wi has an associated probability θi of that weight being masked. The
training of the network consists of finding the suitable mask probabilities θ ∈ [0, 1]M for all the
weights using gradient descent. To test the network, a binary mask is sampled, and the effective
weights of the network become wi ∗ Bern(θi). In a single learning round, the server broadcasts
the global mask θ to each client, which then trains an updated version θ′ using its local data and
communicates a sample Bern(θ′) from its updated mask distribution back to the central server. The
new global mask probability θ is then estimated from all the received samples. The sample from
P = θ′ is communicated using the coding probability Q = θ, which is known to both the client and
the server, thereby achieving a communication cost of approximately DKL(θ

′∥θ). To achieve a more
accurate estimate of the global mask probability, we propose communicating multiple mask samples
per client using universal sample coding, along with the addition of the global prior θ.

For the experiments, we follow the same setup as Isik et al. (2024) using their CONV-6 architecture
on classification of CIFAR-10 images, where the data is distributed among 10 clients. A challenging
scenario considered in that work is of congested clients, where only a fraction of clients contribute
in each learning round. The results of our experiments are summarized in Table 2. The FL training
was conducted on two Nvidia RTX 3090 GPUs, each with 25 GB of memory, with each experiment
taking approximately 12 hours. The training, including preliminary experiments, took 30 days of
gpu-time. If all the clients participate in each learning round the final test accuracy is around 80%.
However, when only 1 out of 10 clients participate in the learning round the accuracy decreases
to 75%. By communicating multiple samples in each round, we can achieve test accuracy close
to the fully uncongested case. However, as argued in this work, sending multiple samples from
the same distribution can be made more communication efficient by estimating the true probability
from previous samples. Indeed, we observe a 37% reduction in communication cost by employing
universal sample coding with prior θ, compared to only using the prior θ.

To incorporate the prior θ into the proposed coding scheme, we use a Bayesian estimator. Although
the mask is binary, we describe a general case with k possible outcomes. Let ω ∈ Pk be the
prior probability, and ω′ be a random variable distributed according to the Dirichlet distribution
with parameters α ∈ Rk, for j ∈ {0, . . . , k − 1}: αj = µωj +

∑G
l=1 1 {l-th sample = j} , where

1{·} is the indicator function, G is the number of samples communicated so far, and µ ∈ R+ is a
hyperparameter controlling the reliance on the prior. The optimal coding probability Q = Eω′∼Pω′ ω

′,
i.e., for j ∈ {0, . . . , k − 1}, Qj =

αj∑
αi

, replaces the one in line 5 in Algorithm 1. For the binary
mask case, where k = 2, we have ω = [1− θ, θ], and θ′ is characterized by a 2-dimensional Dirichlet
distribution (or equivalently, a Beta distribution).
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Table 2: Accuracy and communication cost of FedPM for different simulation scenarios. Values are
averaged over 20 runs, with standard deviation bellow 0.003.

FL scheme FedPM FedPM FedPM FedPM
w. USC

# clients per round 10 1 1 1
# samples per client 1 1 7 7
final test accuracy 0.8025 0.7516 0.8028 0.8039
# bits per parameter 0.6058 0.0340 0.3955 0.2482
#bits per parameter
& client & sample 0.0606 0.0340 0.0565 0.0355

Table 3: Per token cost of sending samples from 13B model. Entropy is a lower bound for source
coding, while the KL-divergence serves as a bound for sample communication.

# bits per token

plain text 15.617
Ĥ(P13B) 4.315
D̂KL(P13B∥Q125M) 1.014
D̂KL(P13B∥Q350M) 0.824
D̂KL(P13B∥Q1.3B) 0.420
D̂KL(P13B∥Q2.7B) 0.330
D̂KL(P13B∥Q6.7B) 0.266

8 Limitations and further work

Both the lower and upper bounds of communication rate (Theorems 5.1, 5.3) include a factor k—the
cardinality of the sample space. Consequently, universal sample coding cannot be directly applied to
continuous random variables, as k goes to infinity so does the required communication. Universal
sample coding consists of two main components: sample communication and probability estimation.
While sample communication can be applied to continuous distributions, the estimation component
fails because no finite number of samples can fully specify an unrestricted continuous distribution.

We propose two potential avenues for extending universal sample coding for continuous variables.
Firstly, by imposing additional assumptions on the probability distribution, we could substitute
counting-based estimation with a Bayesian approach. The reference distribution Q would be the
posterior, updated continually with each new sample. Second, we could explore a model-based
approach where a common model describes Q. This model would be incrementally fine-tuned with
the communicated samples to more accurately reflect their underlying distribution. As evidence
for the potential of this idea, we apply sample communication for generating samples from a large
language model on a server, using a smaller reference model at the client. While the space of text is
not continuous, it is too large to estimate using count-based methods. The experimental setup and
further discussion are detailed in Appendix D. As demonstrated in Table 3, the application of sample
communication results in a 4- to 16-fold reduction in communication rate, depending on the auxiliary
model employed. This motivates further exploration into model fine-tuning effects. Although this
research currently focuses on text generation, future work will aim to extend these results to image and
video generation, which represent a substantial portion of network traffic. Furthermore, determining
the optimal use of new samples in the learning process presents a compelling challenge, potentially
linking to advancements in online learning methods.

The universal sample communication problem, introduced in this work, involves communicating
multiple samples drawn from the same probability distribution P , which is unknown to the decoder.
An alternative but related problem would involve generating multiple samples, each from a different
conditional distribution PX|Z=z . In such a case, the optimal coding distribution would be the marginal
distribution Q = PX , and the optimal per-sample communication cost would be I(X;Z). In the
universal setting, the decoder would not know this marginal distribution. Thus, a similar estimation
and sample communication approach, as demonstrated in this work, could be applied to address this
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problem. However, further analysis is required to validate the communication performance of such a
scheme.

9 Conclusion

As AI tools become ever more prevalent, it becomes increasingly important to consider the resources
they consume. This paper analyzes the communication cost of transmitting samples from probability
distributions, which can be seen as sending the outcomes of generative models, and show that by
leveraging the fact that many generative AI applications only seek to communicate generic samples
from a distribution rather than a specific sample, we can reduce the associated communication cost
significantly. In this paper, we proposed universal sample coding for transmitting multiple samples
from a distribution, which achieves the information theoretic lower bound by up to a multiplicative
constant. We also applied it to a FL framework showing a communication cost reduction of 37%,
and to remote text generation problem using large language models, showing an up to 16-fold
communication cost reduction compared to sample-wise entropy coding methods.
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A Universal Estimation

The form of the universal estimator (Braess and Sauer, 2004) is provided in Algorithm 2, where
k denotes the size of the alphabet and c[i] represents the number of occurrences of symbol i in
the observed sequence. Notably, when the sequence is empty, the estimator produces a uniform
distribution over all symbols.

Algorithm 2 Universal Estimator

Require: c // Count of occurrences of symbols in the sequence.

1: Initialize array Q̂ of size k
2: for i ∈ {1, 2, . . . , k} do
3: if c[i] = 0 then
4: Q̂[i]← c[i] + 1

2
5: else if c[i] = 1 then
6: Q̂[i]← c[i] + 1
7: else
8: Q̂[i]← c[i] + 3

4
9: end if

10: end for

11: W ←
∑k

i=1 Q̂[i] // Normalize the distribution.
12: for i ∈ {1, 2, . . . , k} do
13: Q̂[i]← Q̂[i] / W
14: end for
15: return Q̂

B Universal Sample Coding proof

Proof. Theorem 5.1: Universal Sample Coding

Let c > 0, and G(i) be the number of samples communicated up to and including round i ≥ 1:

G(i) = ⌈(1 + c)i−1⌉ ≥ (1 + c)i−1. (18)

Let g(i) be the number of samples communicated at round i, g(1) = G(1) = 1, for i ≥ 2:

g(i) = G(i)−G(i− 1)

≤ (1 + c)i−1 + 1− (1 + c)i−2

= c(1 + c)i−2 + 1. (19)

At round i, g(i) samples will be coded jointly, using an estimate Q̂ based on previous G(i − 1)
samples. The cost of sending the first sample is ⌈log k⌉. For rounds i ≥ 2, using cost from Equation
(10) (with the constant upper bounded by 5) at round i, with the estimator from Lemma 5.2, the
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expected number of communicated bits is upper bounded by:

E
[
g(i)DKL[P∥Q̂(XG(i−1))] + log(g(i)DKL[P∥Q̂(XG(i−1))] + 1) + 5

]
(20)

≤ g(i)

[
k − 1

G(i− 1)2 ln 2
+ o

(
1

G(i− 1)

)]
(21)

+ log

(
g(i)

[
k − 1

G(i− 1)2 ln 2
+ o

(
1

G(i− 1)

)]
+ 1

)
+ 5

≤ (c+ (1 + c)−i+2)

(
k − 1

2 ln 2
+ o(1)

)
(22)

+ log

(
(c+ (1 + c)−i+2)

(
k − 1

2 ln 2
+ o(1)

)
+ 1

)
+ 5

≤ c[
k − 1

2 ln 2
] + (1 + c)−i+2

(
k − 1

2 ln 2

)
+ log

(k − 1

2 ln 2

)
(23)

+ log
(
c+ (1 + c)−i+2 +

2 ln 2

k − 1

)
+ 5 + o(1).

In line (20), we used Lemma 5.2 and Jensen’s inequality. In line (21), the inequality g(i)
G(i−1) ≤

c+ (1 + c)−i−2 for i ≥ 2 is used. In ⌈log1+c(n)⌉+ 1 rounds, there are G(⌈log1+c(n)⌉+ 1) ≥ n
samples communicated, and the total expected number of communicated bits, denoted by L(n, c), is
given by:

L(n, c) =⌈log k⌉+
⌈log1+c(n)⌉+1∑

i=2

[
c

(
k − 1

2 ln 2

)
+ log

(
k − 1

2 ln 2

)
+ 5 + o(1)+ (24)

+ (1 + c)−i+2

(
k − 1

2 ln 2

)
log

(
c+ (1 + c)−i+2 +

2 ln 2

k − 1

)]
= ⌈log k⌉+ ⌈log1+c(n)⌉

[
c

(
k − 1

2 ln 2

)
+ log

(
k − 1

2 ln 2

)
+ 5 + o(1)

]
(25)

+

⌈log1+c(n)⌉−1∑
i=0

[
(1 + c)−i

(
k − 1

2 ln 2

)
+ log

(
c+ (1 + c)−i +

2 ln 2

k − 1

)]
≤ log(n)

log(1 + c)

[
c

(
k − 1

2 ln 2

)
+ log

(
k − 1

2 ln 2

)
+ 5

]
+

(
1 +

1

c

)(
k − 1

2 ln 2

)
(26)

+ log(n)

(
1 +

ln(1 + 2 ln 2
k−1 )

ln(1 + c)

)
+ log

(
1 + c+

2 ln 2

k − 1

)
+ o(log n)

=
log(n)

ln(1 + c)

[
c

(
k − 1

2

)
+ ln

(
k − 1

2 ln 2

)
+ ln(1 +

2 ln 2

k − 1
) + 5 ln 2

]
+ log(n) + o(log n)

(27)

= log(n)

[
c

ln(1 + c)

(
k − 1

2

)
+

ln
(

k−1
2 ln 2 + 1

)
+ 5 ln 2

ln(1 + c)
+ 1

]
+ o(log n) (28)

= Vk(c) log(n) + o(log n) (29)

where the upper bound of terms dependent on round i in line (25) lemmas B.1,B.2. This proves
theorem 5.1.

Lemma B.1. For 0 < c, n ≥ 1:

⌈log1+c(n)⌉−1∑
i=0

(1 + c)−i ≤ 1

1− (1 + c)−1
=

1 + c

c
= c−1 + 1. (30)
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Thus,

⌈log1+c(n)⌉−1∑
i=0

(1 + c)−i

(
k − 1

2 ln 2

)
≤
(
c−1 + 1

)(k − 1

2 ln 2

)
(31)

Lemma B.2. For 0 < c, n ≥ 1, and k ≥ 2:

⌈log1+c(n)⌉−1∑
i=0

log
(
c+ (1 + c)−i +

2 ln 2

k − 1

)
(32)

≤ ⌈log1+c n⌉ log
(
1 + c+

2 ln 2

k − 1

)
(33)

≤
(

log n

log(1 + c)
+ 1

)
log
(
1 + c+

2 ln 2

k − 1

)
(34)

= log(n)
ln
(
1 + c+ 2 ln 2

k−1

)
ln(1 + c)

+ log
(
1 + c+

2 ln 2

k − 1

)
(35)

= log(n)
ln(1 + c) + ln

(
1 + 2 ln 2

(k−1)(1+c)

)
ln(1 + c)

+ log
(
1 + c+

2 ln 2

k − 1

)
(36)

≤ log(n)(1 +
ln
(
1 + 2 ln 2

k−1

)
ln(1 + c)

) + log
(
1 + c+

2 ln 2

k − 1

)
(37)

C Channel simulation

The channel simulation method used throughout this work is ordered random coding from Theis and
Yosri (2022) reproduced in Algorithm 3 for convenience.

Algorithm 3 Ordered Random Coding

Require: P, Q, N
1: t, n, s⋆ ← 0, 1,∞
2: w = minx P (x)/Q(x)
3: repeat
4: z ← sample P
5: v ← N/(N − n+ 1)
6: s← t · P (z)/Q(z)
7: if s < s⋆ then
8: s⋆ ← s
9: n⋆ ← n

10: end if
11: n← n+ 1
12: until s⋆ ≤ t · w or n > N
13: return n⋆

D Generative models

The idea behind the universal sample communication is based on two ingredients: samples can be
efficiently communicated if the decoder has access to a similar distribution, and the distribution can
be estimated based on observed samples. Hence, as the receiver acquires more samples, the marginal
communication cost decreases. In machine learning, many models, such as classifiers or generative
models, describe (conditional) probability distributions. Thus, this recipe straightforwardly translates
to such scenarios, where samples from a model can be communicated in the same way, and the
estimation step can be replaced by an auxiliary model that learns based on communicated samples.
Specifically, let there be a server and a client, where the client wants to use a model located at the
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server - for instance an artificial neural network. The model represents a conditional probability
distribution PX|Z=z , where z is the input to the model. In addition, both the client and the server
have access to an auxiliary model describing QX|Z=z . The client sends z to the server, and then a
sample x ∼ PX|Z=z generated by the server’s model can be communicated back with approximately
DKL(PX|Z=z∥QX|Z=z) bits. Then, the data point (z, x), can be used for updating the common
reference model QX|Z=z . If models P and Q are of the same size, this scheme could be understood
as model compression, where P is communicated by using samples from it, and then reconstructed
at the client as Q. However, if model P is much bigger than Q, then presumably the clients’ model
could not fit the same distribution perfectly, and the distributions may differ significantly. As such,
there is a trade-off between computation/ complexity at the client and the required communication.
Additionally, the model at the server might be capable at the whole range of z ∈ Z , while the client
might only be interested in some smaller subset of values of z ∈ Z ′ ⊆ Z . In this case, even less
powerful model Q could learn good approximation of PX|Z=z for the desired input space.

To demonstrate the validity of the idea, we perform numerical experiments in which we compare
the expected number of bits required to communicate a text sample from a large language model
(LLM). Instead of the estimation/learning step, we use models of different sizes from the family of
Open Pre-train Transformer (OPT) models Zhang et al. (2022) (MIT license). In particular, we use
the 13 billion (13B) parameter model to represent the desired conditional probability P , while Q is
represented by one of the smaller OPT models with {125M, 350M, 1.3B, 2.7B, 6.7B} parameters,
where M denotes million, and B billion. The classical way to communicate such samples is to
generate the distribution at the server, sample from it, and then encode and transmit the result - we
refer to this method as source coding, and, as mentioned before, it has the minimal cost H(P ), while
the sample communication approach would have an approximate cost of DKL(P∥Q) (per sample).

In LLMs, text is represented as a sequence of tokens, where each token is a short string of characters -
for instance a phrase “nocturnal animals” would be parsed into tokens (“no”, “ct”, “urnal”, “ animals”).
A LLM describes the probability of the next token conditioned on the all the previous ones. This is
enough to describe any distribution over a sequence, as it can be factorized in an autoregressive way
P (Xn) =

∏n
i=1 P (Xi|Xi−1). To sample from such distributions, we can sample the first element,

then conditioned on it sample the second one, and so on so forth. The entropy of a sequence of n
random variables can be decomposed as H(Pn) =

∑n
i=1 H(PXi|Xi−1). Conditioned on a specific

xt we can get an exact entropy H(PXt|Xt=xt) as the model outputs probability of each token given
xt. However, the OPT models use 50265 possible tokens, and thus to calculate the entropy of a
sequence of length n, one would have to calculate the entropy of 50265n different sequences which is
infeasible. Instead, we estimate the entropy by sampling M = 50000 different random sequences of
length N = 128 according to the model. To increase variety and simulate user prompts we condition
the answers on questions from OpenbookQA dataset Mihaylov et al. (2018). Then the entropy of a
single token is estimated as

Ĥ(P ) =
1

MN

M∑
j=1

N∑
i=1

H(PXi|Xi−1=xi−1
j

). (38)

We can similarly estimate the KL-divergence as

D̂KL(P∥Q) =
1

MN

M∑
j=1

N∑
i=1

DKL(PXi|Xi−1=xi−1
j
∥QXi|Xi−1=xi−1

j
). (39)

The experiments were performed on 4 Nvidia RTX A6000 GPUs with 48GB of memory and PyTorch
version 2.1, totalling 10 hours of wall-clock-time.

The estimated expected communication cost per token is shown in Table 3. Even the smallest 125M
model allows us to decrease the communication requirement by more than 4 times. As the auxiliary
model gets bigger, the communication cost decreases by up to 16-times. These results are asymptotic,
and do not include the overhead for shorter sequences. Thus, we also present upper bounds for
communication of groups of B ∈ {1, 2, 4, 8, 16, 32, 64, 128} tokens jointly in Figure 6. For sample
communication, the upper bounds are calculated by including the logarithmic and constant terms
from Equation (4). For source coding, we use the upper bound from Equation (5). The sample
communication approach beats source coding even for a group size B ≥ 2 for any of the auxiliary
models. Only for B = 1 source coding is more efficient, as the constant overhead from equation (4)
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Figure 6: Communication cost per token as a function of the group size. The solid lines depict the
mean, while the shaded areas correspond to the 25th to 75th percentiles. The ’code 13B’ indicates the
source coding approach, whereas ’sample Z’ pertains to sample communication with the auxiliary
model Z.

is 5, which is greater than the source coding cost. Even for small group sizes of B = 8, the sample
communication approach achieves 2− 4 times reduction in the communication cost.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate the main claims and contribu-
tions of the paper, including the development of a universal sample coding problem (section
5), the derivation of bounds on communication costs (section 5), and the application of these
methods in federated learning (section 7) and remote generation of samples from generative
models (section 8 and appendix D).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper addresses its limitations in section 8, highlighting constraints on
applying universal sample coding to continuous variables and scalability issues for large
distributions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper includes complete proofs with assumptions for theoretical result.
Proofs and necessary theoretical details are provided in section 5 and detailed further in
the supplemental material under B. Each theorem and lemma is properly numbered and
cross-referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides descriptions for reproducing its experiments. It follows
the setup for federated learning from Isik et al. (2024) and specifies any modifications in
section 7. For the LLM experiments, which involve only inference, all necessary details are
available in appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Code implementing Universal Sample Coding, as well as the large language
model experiments, is released. Code for federated learning is based on a yet-unreleased
codebase shared by the authors of Isik et al. (2024). We are in ongoing discussions with the
authors on the best way to release this code, but it will not be publicly available at the time
of publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setups, including the universal sample coding empirical
evaluation and the large language model simulations, are described in section 5. We adhere
to the federated learning setup outlined in Isik et al. (2024). Any modifications due to
changes in the scenario are documented in section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: For the federated learning experiments, we report maximum standard devi-
ations for all metrics, which are low, indicating consistency across runs. For experiments
involving large language models and the direct evaluation of universal sample coding, we
include data for the top and bottom 20th or 25th percentiles.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides information on the computational resources used for each
experiment in the description of each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study does not involve human subjects or sensitive data, and all computa-
tional methods and experiments comply with ethical standards for responsible AI research
and development.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on improving the efficiency of existing technologies and
does not introduce new applications; thus, it does not directly discuss broader societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We ensure that all external assets used in our research, such as code and
datasets, are properly credited to their original creators.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release any new assets such as datasets,
code, or models; therefore, no documentation related to new assets is provided at this stage.
However, when the code is released, full documentation will be provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve research with human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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