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Abstract

We approach autonomous drone-based reforestation with a collaborative multi-
agent reinforcement learning (MARL) setup. Agents can communicate as part of
a dynamically changing network. We explore collaboration and communication
on the back of a high-impact problem. Forests are the main resource to control
rising CO2 conditions. Unfortunately, the global forest volume is decreasing at
an unprecedented rate. Many areas are too large and hard to traverse to plant new
trees. To efficiently cover as much area as possible, here we propose a Graph
Neural Network (GNN) based communication mechanism that enables collabora-
tion. Agents can share location information on areas needing reforestation, which
increases viewed area and planted tree count. We compare our proposed communi-
cation mechanism with a multi-agent baseline without the ability to communicate.
Results show how communication enables collaboration and increases collective
performance, planting precision and the risk-taking propensity of individual agents.
Keywords: Multi-Agent Reinforcement Learning; Graph Neural Network; Collab-
oration; Communication; Proximal Policy Optimization; Reforestation;

Figure 1: Environment and heatmap indicating ideal areas for planting trees: green better, red worse.
Web application: https://philippds-pages.github.io/RL-Reforestation_WebApp/.
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1 Introduction

1.1 Motivation

The success of our society is based on the human ability to communicate motives. Once intentions
overlap amongst concerned parties, they may decide to join forces and collaborate to work towards a
common goal that is beneficial to all and might not have been achieved by an individual. A group
of people or individuals with specific interests can be seen as an agent, an entity with an agency.
Most domains in the real world require collaboration to achieve higher goals and can be described
as multi-agent (MA) systems. Human intelligence is the highest observed, but we can draw further
inspiration from nature. Species like bees only survive because of their ability to communicate and
collaborate effectively. If a beehive successfully fends off predators, assigns tasks to collect nectar
from flowers, and building materials, build and repair the hive, their survival is ensured [1].
The last two years have brought climate change to the doorstep of many. Extreme heatwaves,
wildfires and floods make life for animals and humans increasingly difficult. While vivid wildfires
have destroyed large forest areas [2, 3], cattle pasture is the biggest cause of deforestation [4].
Forests absorb more than a quarter of global human-emitted carbon dioxide [5, 6]. Droughts cause
soil erosions and turn pasture and woodland into steppe. The Sahara desert advances irreversibly
southward, causing livestock losses, human migration and mortality [7]. The Maradi and Zinder
Regions have been regreening five million hectares to prevent further decline of the biosphere
and habitability of the Niger [8]. Multiple parameters can make reforestation difficult and must
be considered to regreen successfully and sustainably. Trees need to be planted close to existing
woodland to shield seedlings from harsh winds and provide them with stable soil. Furthermore, a
mixture of native tree species needs to be planted rather than one kind. The additional maintenance,
monitoring and transportation challenges, especially in hard-to-reach areas [9] have motivated this
work. A wide variety of unresembling landscape scenarios makes this especially hard and requires
coordination between multiple actors and information sources.
Core questions we ask: Can agents in a MA system learn the importance of communication and
subsequently extend each other’s partial observability? Furthermore, can agents learn to use the
communicated information to increase individual performance? Can shared information be used to
explore further and take actions with higher risks of depleting the battery for the benefit of finding
locations with a higher need for reforestation and accordingly higher rewards? Finally, can agents
organise themselves and delegate tasks, such that one group of agents become scouts and information
collectors to extend the collectives’ observable space and another group that carries tree seeds and
plants them accordingly in areas they would not have found by themselves? Trying to answer these
questions was the challenge of the experiments conducted and presented in this paper.

1.2 Contribution

In this work, we study communication in the context of a highly distributed, dynamic collective of
autonomous drones and propose an approach to solve reforestation in hard-to-reach areas. Illegal
logging has advanced to untouched areas of the Amazonas [10]. We propose to use autonomous
drones to reach areas without infrastructure and roads, plant tree seeds and help monitor reforestation
effectively. Controlling a single or collective of drones to fly hardcoded manoeuvres [11] and in
formation [12] is a solved problem. However, we are interested in solving the reforestation problem
with a decentralised autonomous system consisting of individual agents capable of making ad-hoc
decisions in various scenarios. In this work, we utilise Proximal Policy Optimisation (PPO) [13], a
state-of-the-art Reinforcement Learning algorithm to train a collective of multiple agents. The task
for the MA collective is to pick up tree seeds, search for spots along the perimeter of an existing
forest that benefit the most from reforestation and plant the carried tree seeds. Furthermore, the
proposed agent collective can communicate to enable collaboration. Agents can capture spots they
found in memory while exploring the environment and share the information with neighbouring
agents when in reach. Each agent controls a drone and has to execute the planting tasks and search
for new spots, but also has to monitor the battery charge status, especially with the additional payload
when carying a tree seed. We have developed a simulation environment to train and test various
learning mechanisms. Our environment is additionally able to cater for open-ended learning [14]
through an infinite procedural generated set of scenarios with possibly increasing difficulty of the
terrain topology and forest sparsity. Our contribution is two-fold; we mainly want to demonstrate
that a communication mechanism for a MARL system in a partially observable environment can
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lead to collaboration and increased collective performance amongst highly dynamic agents with a
proximity-based communication network. Furthermore, as a secondary contribution, we want to
do so by utilising an environment with a minimal gap to a high-impact real-world problem, namely
autonomous drone-based reforestation in hard-to-reach areas [15].
We have designed a task to verify our solution. The task is constrained by a given time frame.
Individual agents of the collective spawn at the drone station spawn point. Their initial state is a
full battery charge and a loaded tree seed. They then have to search for a spot in urgent need of
reforestation to collect a high reward. After agents have dropped their tree seed, they must return
to the drone station before depleting their battery. This end-to-end task can be repeated until the
episode ends. A MA setup with and without the ability to communicate is trained on a single scenario
as well as on multiple scenarios, respectively. The setup without communication ability serves as
the baseline. The benefit of communication can be verified by the count of trees planted, but more
importantly, the quality and precision of the positioning of the planted tree seed regarding the existing
forest volume. Finally, we demonstrate how well agents trained in multiple scenarios perform in an
unseen scenario compared to those trained in a single scenario.

1.3 Future Work

The partial observability hinders the agents from keeping track of the big picture. For future work,
we would be interested in studying how much of the overall forest in a scenario is explored and if we
can observe that agents understand what areas of the forest need reforestation and find a tree seed
distribution balance. Once an overall understanding is achieved, agents should be able to weight
areas rather than planting tree seeds at the next available good spot greedily. This would require to
increase the long-term thinking of agents. There are ideas to have rounds of exploration followed by
regrouping and sharing of gathered information before tree seeds are carried and planted according to
a plan that has been agreed on collaboratively. Furthermore, studying a larger information memory
would be an exciting experiment strand. Questions we might ask are: What if agents can tell each
other where a good planting spot is and where enough trees have been planted already, or if no good
spots are to be found anymore? Finally, incentivise agents to allocate different tasks to each other, i.e.
scout drones that can fly quicker with less energy that gather information, with higher flexibility to
explore, and planter drones that pick up, carry and plant tree seeds accordingly.

2 Related Work

Single-Agent Reinforcement Learning (SARL) is a learning paradigm based on an agent taking
actions in an environment to maximize cumulative reward. In contrast to other machine learning
methods, RL does not require a dataset and learns from collected experiences. Nevertheless, just like
a well-curated dataset is crucial for successful supervised learning, the experiences collected by an RL
agent heavily depend on the environment design [14]. There is broad interest for RL, from industry
[16], but also academia and research. Exemplary, industry applications include optimal control,
autonomous vehicles [17], robots [18–20], cooling management [21], but also social dilemmas [22],
economics and finance [23]. Many, if not all, real-world domains and according applications include
multiple agents or at least some form of an entity with an agency, active or passive parts of the
environment. However, experimenting in the real world can lead to high resource consumption and
time spent. After all, an RL system does not only learn from succeeding in a given environment,
but a failing experience can be crucial for a robust learning update. This constraint brings us to the
need for simulation frameworks, where we can break things and even manipulate time. Furthermore,
single- and multi-player games have been popular test-beds for algorithm and learning mechanism
development. Board games like GO [24, 25], Chess [26], Shogi [27], Hex [28], Poker [29, 30] and
Diplomacy [31, 32], but also computer games i.e. Atari [33], Dota [34], Starcraft [35] and overcooked
[36] have shaped the RL field significantly. The combination of simulation and the game domain
naturally leads us to game engines, including realistic physics [37], which we will be using for our
work.
Collaboration [38–40] in MA systems can be achieved in various ways and has a rich history of
literature [41]. Collaboration does not need active communication [42, 43] and can be achieved
through methods such as gradient-based distributed policy search [44], reward function sharing
[45], memory sharing [46–48] and parameter sharing (PS) [19, 48]. Nevertheless, our work focuses
on active communication as part of the agents’ action space. [49]. The messages each agent
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can communicate consist of a three-dimensional vector and represents a location in euclidean
space [50]. The agent can decide to save a location as a three-dimensional vector that is worth
memorizing and send it to the three nearest neighbouring agents in reach. In contrast, other work
proposes communicating more complex information such as intentions or policy gradients [51]. Our
communication layer is based on Graph Neural Network (GNN) [52] message passing [53], as part of
the agents observation space. This enables the agent to deal with various sized graph-structured data.
Recent work of ours has investigated highly decentralized multi-agent communication, with fixed size
graph-structured data [54], as well as variable size graph-structured data [55], with communicating
as part of the action space. While there has been work on static networks [56], in contrast to our
previous work, here we advance static- and investigate dynamically-changing graph-structured data
with a maximum size [57, 58].
There have been multiple single and multi-drone applications in various fields. Previous work
has investigated the use of drone networks [59] to fight forest fires by monitoring outbreaks and
growth [60]. Furthermore there is work on last-mile delivery based on single autonomous drones
[61–63]. We think it is important to mention two companies, namely Flash Forest [64] and Airseed
[65], using Artificial Intelligence (AI) to solve reforestation with drones. Both companies, but also
academic work [66] heavily use mapping, pre-planning of flight paths and tree seed drop locations.
However, our proposal investigates fully autonomous flight-path planning, drop location scouting
and communication amongst all agents, re-charging and battery-life tracking using a single neural
network for each drone. Furthermore, we are not trying to replace the proportional integral derivative
(PID) controller. The PID is commonly used to make the drone pitch, yaw and roll [67]. While there
is work using a neural network to replace the PID and fully control the drone’s movement [68], this
is out of scope for this work. Instead, we are using a simplified set of commands, actuating the drone
to move.

3 Background

3.1 Proximal Policy Optimisation (PPO-Clip)

Proximity Policy Optimisation (PPO), a state-of-the-art, on-policy RL algorithm, has been utilised for
training the agents in this work. Our environment’s action space consists of discrete and continuous
actions, which PPO supports. Two main concepts define the PPO algorithm: 1. PPO performs the
largest possible but safe gradient ascent learning step by estimating a trust region, and 2. Advantage
estimates how good an action in a specific state is, compared to the average action. Various other RL
algorithms, such as Asynchronous Advantage Actor Critic (A3C), use this concept [69]. Advantage:
Advantage can also be described as the difference of the Q Function and the Value Function: A(s, a) =
Q(s, a) − V (s), where s is the state and a the action [70]. The Q Value (Q Function), denoted as
Q(s, a), measures the overall expected reward given state s, performing action a. Assuming the
agent continues playing until the end of the episode following policy π. The Q is abbreviated from
the word Quality, and denoted as: Q(s, a) = E

[∑N
n=0 γ

nrn

]
. The State Value Function, denoted as

V (s), measures, similar to the Q Function, overall expected reward, with the difference that the State
Value is calculated after the action has been taken and is denoted as: V(s) = E

[∑N
n=0 γ

nrn

]
. The

Q Value V (s), with n = 0, is the expected reward r0 in state s, before action a was taken, while the
Q Value measures the expected reward r0 after a was taken. Trust Region: After some experiences
πθk(at|st) have been collected, the trust region can be calculated as the quotient of the current policy
to be refined πθ(at|st) and the previous policy as follows rt(θ) =

πθ(at|st)
πθk

(at|st) =
current policy

old policy . This
is a simplified gradient ascent objective function with limited deviation between the current and old
policies [71].

LCLIP
θk

(θ) = E
s,a∼θk

[
min

(
rt(θ)A

θk(s, a), g(ϵ, Aθk(s, a))
)]

,

where

g(ϵ, A) =

{
(1 + ϵ)A, if A ≥ 0

(1− ϵ)A, otherwise
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The advantage function will be clipped if the probability ratio between the current and the pre-
vious policy is outside the range of (1 + ϵ) and (1 − ϵ). This also means that the advan-
tage will never exceed the clipped values and prevents the new policy from getting too far
from the old policy. In the original PPO paper by Schulman, et al. (2017) [13] ϵ was set to
0.2. Lastly, the policy that yields the highest sum over all Advantage estimates At in range
of max time step T of a trajectory τ ∈ Dk will be used to override the old policy θold [72]:
θk+1 = argmax

θk

1
|Dk|T

∑
τ∈Dk

∑T
t=0 min

(
πθ(at|st)
πθk

(at|st) , g(ϵ, A
θk(s, a))

)
.

3.2 Graph Neural Network

Scarselli, et al. (2009), developed fundamental work on Graph Neural Networks, leading to many
variations, such as Gated Graph Sequence Neural Networks [73], Graph Attention Networks [74] and
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering [75]. A graph is a
data structure based on nodes or vertices and edges. The node and edge objects can hold an arbitrary
amount of features of any type. An edge represents the relationship between two nodes, but a node
can have unlimited relationship edges with other nodes. Edges can be directed from node A to B 2a,
or undirected, from node A to B and vice versa 2b.

(a) Directed Graph (b) Undirected Graph

Figure 2: Graph G consisting of vertices V (blue dots) and edges E (red lines): G = (V, E)

Fundamental functionalities of GNNs are graph, node and edge classification. Features and the
existence of nodes and edges can be predicted using, i.e. neighbouring nodes and existing edges.
Classification of a graph as a whole can be achieved using node and edge features and the graph’s
topology as input. However, one of the simplest forms of a GNN is the message passing framework
proposed by Gilmer, et al. [53], using the "graph-in, graph-out" network architecture introduced by
Battaglia, et al. [76]. Hence the graph topology is not modified but loaded node and edge feature
embeddings.

Node states can be denoted as v, edges connected to node v as xco[v]. The state of a node hv may
consist of a n-dimensional vector feature. Adjacencies between a node and its neighbours are the
mapped transition of the node, denoted as hne[v], including all neighbouring node features, denoted
as xne[v]. The transition function f is used to embed each node on a n-dimensional space [77]:
hv = f(xv, xco[v], hne[v],xne[v]

)
Breadth-First Search (BFS) [78], Depth-First Search (DFS) [79] and random walk based DeepWalk
[80] are popular algorithms to define neighbourhoods in graph structured data, however we define
neighbourhoods using n nearest neighbours based on shortest euclidean distances. Furthermore,
passing state hv and feature xv of nodes and edges, to the GNN outputs the result of function g:
ov = g(hv, xv). And finally, applying gradient descent to formulate loss using the ground truth tv as
well as the output ov of node v: loss =

∑p
i=1(ti − oi).

4 Method

4.1 Drone Reforestation Environment

We now describe the 3-D Reforestation environment, developed in the game engine unity, used for
simulation and online training of the Multi-Agent (MA) baseline and our Multi-Agent communication
setup (MAC). The environment is considered solved if an agent picks up a tree seed from the drone
station, finds a spot ideal for planting a tree seed, drops the tree seed and returns to the drone station
to recharge the battery and pick up the next tree seed. All variations of environment scenarios
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(a) Terrain (b) Forest (c) O. Reforestation (d) Height Map (e) Com. Network

Figure 3: Static environment features. Zoomed-in version in the appendix: D.

consist of the following elements: 1. Procedural generated terrain, using octaves, persistence and
lacunarity-based noise 3a, 2. The forest trees, placed in a certain height region, combined with a
random noise map, on fertile ground only, here displayed as green grass 3b, 3. The human user
interface allows to display the regions that are best for reforestation and yield the highest amount of
reward; however, this is not visible to the agent’s 3c, 4. A height heat map, also only visible in the
human user interface 3d and 5. A network that defines the nearest neighbours dynamically displayed
in cyan, visible in the human user interface only 3e. Part of the environment, acting as spawn, tree
seed- and battery-charging point, is a drone station marked with (9) on Figure 6. Ten drones controlled
by individual agents are spawning at the drone station spawn point in all experiments. The terrain
in all scenarios spans 1200 meters in both directions and has a maximum mountain altitude of 100
meters, depending on the difficulty level. Various terrain samples of difficulty levels 1-5 are shown
in Figure 4. Furthermore, an additional bowl-shaped height filter adjusts the terrain to be close to a
valley when difficulty levels increase. We can generate open-ended scenarios with a random seed
input - sample terrains of various random seeds are shown in Figure 5.

(a) Difficulty 1 (b) Difficulty 2 (c) Difficulty 3 (d) Difficulty 4 (e) Difficulty 5

Figure 4: Various difficulty terrain samples. Zoomed-in version in the appendix: F.

(a) Seed 25 (b) Seed 26 (c) Seed 27 (d) Seed 28 (e) Seed 31

Figure 5: Various random seed terrain scenarios. Zoomed-in version in the appendix: E.

4.2 Agent Setup

Goal: Each agent must learn to navigate the drone to the drone station spawn point, where it is
automatically serviced, picks up a tree seed and recharges the battery. It then has to fly the drone
and scout an ideal spot for dropping the tree seed held while keeping track of battery life, which also
needs to cover the way back to the drone station.
Reward Function: The agent reward function consists of multiple parts. If the drone does not
hold a tree seed, the agent must navigate back to the drone station. Incremental rewards are yielded
for getting closer to the drone station, accumulating to a total of +20, independent of the distance.
The agent receives the last increment for arriving at the drone station, picking up a tree seed and
recharging the battery. Finally, dropping a tree seed yields a reward of +0 to +30, depending on the
location. The ideal tree seed drop area is defined by the distance to existing trees. The reward of +0 to
+30 is mapped to a distance as close as 75 to 2.5 meters. I.e., if a tree seed is dropped as close as 2.5
meters from an existing tree, the reward yielded is +30, for a tree seed drop distance of 10 meters, the
reward is +26.8, and a tree seed dropped at a distance below 2.5 or above 75 meters yields a reward
of +0. The total reward of +30 includes a distance bonus of +10. If the agent is risking running out
of battery and finds an excellent spot for a tree seed drop, the distance between the tree seed drop
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Figure 6: Drone Reforestation Environment: (1) Forest Noise Toggle, (2) Height Map Toggle,
(3) Terrain Difficulty Slider, (4) Time Scale Slider, (5) Info Tag Toggle, (6) Network Toggle, (7)
Cumulative Performance Bar, (8) Communication Network, (9) Drone Station and Spawn Point, (10)
Optimal Reforestation Area Heat Map, (11) Drone, (12) Forest Volume.

location and the drone station spawn point is factored into the total reward. The battery life ranges
from a full charge of 1 and empty at 0. For each step, while holding a tree seed - a higher payload -
the battery is being depleted at a rate of -0.001, holding no tree seed at a rate of -0.0005, and yields
negative rewards accordingly. This results in 1000 environment steps with a tree seed and 2000 steps
without a tree seed until running out of battery life. The gold standard receives a maximum reward of
+50 for a single task, excluding negative payload rewards.
Observations: The observation space consist of vector and visual observations.
Vector Observations: All vector observations are normalized and consists of the following: The
distance from the drone to the ground as float [0-100], the location of the drone in 3-D space as a
vector(x, y, z) [-600-600], the movement direction vector(x, y, z) [0-1], the vector from the drone to
the drone station spawn point as a vector(x, y, z) [-600-600], if the drone is holding a tree seed as a
bool [true / false] mapped to [0, 1], the battery status as a float [0-1] and lastly three inbox spaces to
receive messages from the neighbouring drone’s memory, which consist of vector(x, y, z) [-600-600]
location information. The final vector observation space size is 30, consisting of 2 stacks of the 15
described observations.
Visual Observations: The visual observation is a grey scale grid of 16x16, cells captured by a
down-ward pointing camera attached to each drone with a field of view of 120 - 256 cells each with a
float value ranging from [0-1]. This results in a total observation space size of 286. We use a residual
neural network (ResNet) architecture consisting of three stacked layers, each with two residual blocks
[81] for our visual observations processing.
Actions: The action space consists of a combination of continuous and discrete actions.
Continuous Actions: Each agent has three continuous actions with values in the range of -1 to 1.
Continuous actions control the movement of the drone. Continuous action 0 controls the forward and
backward movement, action 1 controls the rotation, left and right, and action 2 controls the up and
down movement of the drone. The movement speed of the drone is 1-meter per time-step, and the
rotation speed is 5-degree per time-step.
Discrete Actions: The discrete action space size is two and can be described as a tree with two
branches, each with two possible values [0, 1]. Discrete action 0 drops the tree seed at value 1, and
action 1 saves a location to memory at value 1. The location memory can hold a three-dimensional
vector representing a location in the environment. Both actions do nothing if the value is at 0.

4.3 Multi-Agent Communication

Our learning mechanism allows the agent to receive graph-structured data. Messages can be ex-
changed if a drone is within 200 meters of another drone. A total number of three messages can be
received, corresponding to three nearest neighbours in the Multi-Agent communication setup (MAC).
If there are only two drones close enough, only two messages are received and sent respectively.
Sending or receiving a message has no cost and yields no negative or positive reward.
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Figure 7: GNN Message Passing Diagram: Message Passing across neighbourhood; Inbox of the
individual Drone; Locations for optimal tree seed drop, as part of the RL Agent observation space.

5 Experiments

Table 1: Experiment Setup
Experiment Agent(s) Neighbour(s) Training Seed Test Seed

1 Multi-Agent (MA) 10 0 0 111
2 Multi-Agent (MA) 10 0 0-99 111

3 Multi-Agent Communication (MAC) 10 3 0 111
4 Multi-Agent Communication (MAC) 10 3 0-99 111

We have trained four different setups for our experiments (Figure 8). Multi-Agent Setup without
Communication as Baseline: Experiment 1 and 2 have been trained without the ability to com-
municate: Experiment 1 is trained on the terrain scenario with the random seed 0 and Experiment
2 on the terrain scenarios with random seeds ranging from 0 to 99 in a sequence. Multi-Agent
Setup with Communication: Experiment 3 and 4 have been trained with the ability to communicate:
Experiment 3 is trained on the terrain scenario with the random seed 0 and Experiment 4 on the
terrain scenarios with random seeds ranging from 0 to 99 in a sequence. All experiments are then
tested on an unseen terrain scenario with the random seed 111.

(a) Cumulative Reward (b) Tree Drop Count (c) Cml. Distance Reward (d) Recharge Energy Count

Figure 8: Training Graphs. Zoomed-in version and additional data in the appendix: H.

6 Results and Discussion

Our results (Figure 2) show that Multi-Agent communication outperforms our non-communication
Multi-Agent baseline setup. The MA 0 setup that has been trained on the terrain scenario with a
random seed 0 performs very poorly on the test terrain scenario with the random seed 111. While the
tree drop count is high, the agent drops tree seeds very conservatively without exploring and therefore
receives a low cumulative reward. The Multi-Agent setup with the ability to communicate that has
also been trained on the terrain scenario with the random seed 0, MAC 0, performs similarly bad, but
through communication starts to explore marginally more and therefore receives a higher distance
reward. Nevertheless, the cumulative reward is low as well. In contrast, the MA 0-99 setup, that
has been trained on terrain scenario with a random seed ranging from 0-99, performs marginally the
best in regards to the cumulative reward. Agents trained on multiple scenarios perform better, by a
large margin, in comparison to agents that have been trained on a single terrain scenario. While the
MA 0-99 setup has the highest cumulative reward marginally, we can observe that the MAC 0-99
setup, achieves the highest tree drop count and travels the furthest to explore (Figure 10), through
communication.
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Table 2: Experiment results: Mean Cumulative Reward, Mean Cumulative Tree Drop Count, Cumu-
lative Reward. Testing terrain scenario random seed: 111. Each tested 10 times for 1e6 Steps.

Experiment Distance Reward (↑ better) Tree Drop Count (↑ better) Cml. Reward (↑ better)

1 MA 0 1.29 (±0.40) 7.75 (±0.53) 2.54 (±1.23)
2 MA 0-99 11.45 (±0.95) 7.91 (±0.46) 122.08 (±8.7)
3 MAC 0 2.85 (±0.78) 6.61 (±0.51) 7.82 (±2.66)
4 MAC 0-99 13.18 (±1.14) 8.66 (±0.46) 121.84 (±8.79)

(a) Cumulative Reward (b) Tree Drop Count (c) Cml. Distance Reward (d) Cml. Tree Drop Reward

Figure 9: Test Graphs. Zoomed-in version and additional data in the appendix: I.

(a) MA 0-99 Flight Path (b) MA 0 Flight Path (c) MAC 0-99 Flight Path (d) MAC 0 Flight Path

Figure 10: 2000 Step sample flight path (terrain seed 111). Zoomed-in version in the appendix: I.

7 Conclusion

This work is an approach to solving autonomous drone-based reforestation using Multi-Agent
Reinforcement Learning (MARL) with a Graph Neural Network (GNN) communication layer that
enables agents to collaborate. We have demonstrated that we can solve this task and generalise
well on an unseen terrain scenario. We also show that communication can lead to collaboration
and increase the performance of a multi-agent collective, ultimately outperforming the multi-agent
setup without the ability to communicate. This is verified by increased tree seed drop counts and
the quality and precision of tree seed planting, yielding higher rewards and, subsequently, a more
efficient reforestation. Furthermore, we discovered that communication can lead to a higher risk-
taking propensity and a larger area of forest explored. If an agent made it to a specific forest area,
other agents can. We understand that the simulation to reality gap still exists, but this is a first
step toward approaching this high-impact problem. We can see multiple ways to push this work
forward. Firstly, improving the environment to be more realistic, with photo-realistic textures, trees,
landscape, vegetation and real-world terrain data. The implemented drone control is an abstraction of
a drone controller. Secondly, more realistic physics, including winds, and a control system that is
closely aligned with standard drone controls, i.e. pitch, yaw and roll. And lastly, the camera vision
and sensing can be improved. In this work, we use a 16x16 image as a visual observation input;
this could be increased, and subsequently, the network architecture for processing. Furthermore,
instead of a grey-scale image, we can add a RGB channel and process the observation image to
additionally forward i.e. a depth map. This could lead to higher action precision and improved
generalisability. Nevertheless, we believe we contributed value to the multi-agent reinforcement
learning, collaboration and communication field on the back of a high-impact problem of relevance
and urgency.
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A Appendix

B Pseudocode

PPO-CLIP pseudocode [72, 13]:

Algorithm 1 PPO-Clip

1: Input: initial policy parameters θ0, initial value function parameters ϕ0

2: for k = 0, 1, 2, . . . do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t.
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the
6: current value function Vϕk

7: Update the policy by maximizing the PPO-Clip objective:
8: θk+1 = argmax

θ

1
|Dk|T

∑
τ∈Dk

∑T
t=0 min

(
πθ(at|st)
πθk

(at|st)A
πθk (st, at), g(ϵ, A

πθk (st, at))
)

,

9: typically via stochastic gradient ascent with Adam.
10: Fit value function by regression on mean-squared error:
11: ϕk+1 = argmin

ϕ

1
|Dk|T

∑
τ∈Dk

∑T
t=0

(
(Vϕ(st)− R̂t

)
12: typically via some gradient descent algorithm.
13: end for

Simple Multi-Agent PPO pseudocode:
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Algorithm 2 Multi-Agent PPO

1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T time steps
4: Compute advantage estimates Â1, . . . , ÂT

5: end for
6: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

C Hyperparameters

C.1 Multi Agent Training Hyperparameters

behaviors:
MA_Drone:

trainer_type: ppo
hyperparameters:

batch_size: 1024
buffer_size: 10240
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear

network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: resnet

reward_signals:
extrinsic:

gamma: 0.99
strength: 0.9
network_settings:

vis_encode_type: resnet
curiosity:

gamma: 0.99
strength: 0.1
encoding_size: 256
learning_rate: 0.0003
network_settings:

vis_encode_type: resnet
keep_checkpoints: 5
max_steps: 10000000
time_horizon: 100
summary_freq: 20000
threaded: true
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C.2 Hyperparameter Description

Hyperparameter Typical Range Description

Gamma 0.8− 0.995 discount factor for future re-
wards

Lambda 0.9− 0.95 used when calculating the
Generalized Advantage Esti-
mate (GAE)

Buffer Size 2048− 409600 how many experiences should
be collected before updating
the model

Batch Size 512−5120 (continuous), 32−
512 (discrete)

number of experiences used
for one iteration of a gradient
descent update.

Number of Epochs 3− 10 number of passes through the
experience buffer during gra-
dient descent

Learning Rate 1e− 5− 1e− 3 strength of each gradient de-
scent update step

Time Horizon 32− 2048 number of steps of experi-
ence to collect per-agent be-
fore adding it to the experi-
ence buffer

Max Steps 5e5− 1e7 number of steps of the sim-
ulation (multiplied by frame-
skip) during the training pro-
cess

Beta 1e− 4− 1e− 2 strength of the entropy regular-
ization, which makes the pol-
icy "more random"

Epsilon 0.1− 0.3 acceptable threshold of diver-
gence between the old and
new policies during gradient
descent updating

Normalize true/false weather normalization is ap-
plied to the vector observation
inputs

Number of Layers 1− 3 number of hidden layers
present after the observation
input

Hidden Units 32− 512 number of units in each fully
connected layer of the neural
network

Intrinsic Curiosity Module

Curiosity Encoding Size 64− 256 size of hidden layer used to en-
code the observations within
the intrinsic curiosity module

Curiosity Strength 0.1− 0.001 magnitude of the intrinsic re-
ward generated by the intrinsic
curiosity module
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D Environment Features

(a) Terrain, Seed 23, Difficulty 5 (b) Forest, Seed 23, Difficulty 5

(c) Optimal Reforestation Map, Seed 23, Difficulty 5 (d) Terrain Height Map, Seed 23, Difficulty 5

(e) Dynamic Drone Communication Network, Seed 23,
Difficulty 5
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E Environment Scenarios

(a) Seed 23, Difficulty 5 (b) Seed 25, Difficulty 5

(c) Seed 26, Difficulty 5 (d) Seed 27, Difficulty 5

(e) Seed 28, Difficulty 5 (f) Seed 31, Difficulty 5

(g) Seed 32, Difficulty 5 (h) Seed 33, Difficulty 5
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F Environment Difficulty

(a) Difficulty 1 (b) Difficulty 3

(c) Difficulty 4 (d) Difficulty 6

(e) Difficulty 7 (f) Difficulty 8

(g) Difficulty 9 (h) Difficulty 10
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G Environment Scenario Samples: Difficulty VS. Seed Matrix

Figure 14: Difficulty Seed Matrix
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H Training Data

(a) Environment - Cumulative Reward (b) Tree Drop Count

(c) Cumulative Distance Reward (d) Cumulative Tree Drop Reward

(e) Out of Energy Count (f) Recharge Energy Count

(g) Policy - Curiosity Reward (h) Policy - Entropy
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I Test Data: Terrain Scenario Seed 111

(a) Environment - Cumulative Reward (b) Tree Drop Count

(c) Cumulative Distance Reward (d) Cumulative Tree Drop Reward

(e) Out of Energy Count (f) Recharge Energy Count

(g) Policy - Curiosity Reward (h) Policy - Entropy
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J Flight Path Plot: Flight Height and Path Sequence

(a) Flight Height: MA 0-99 on Terrain Seed 111 (b) Path Sequence: MA 0-99 on Terrain Seed 111

(c) Flight Height: MA 0 on Terrain Seed 111 (d) Path Sequence: MA 0 on Terrain Seed 111

(e) Flight Height: MAC 0-99 on Terrain Seed 111 (f) Path Sequence: MAC 0-99 on Terrain Seed 111
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(a) Flight Height: MAC 0 on Terrain Seed 111 (b) Path Sequence: MAC 0 on Terrain Seed 111

J.1 2000 Time Step Inference on Terrain Scenario Seed 111: Setup Comparison

(a) MA 0-99, MA 0, MAC 0-99, MAC 0 - 2000 Steps Inference
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J.2 1e6 Time Step Inference on Terrain Scenario Seed 111

(a) MA 0-99 - 1e6 Steps Inference (b) MA 0 - 1e6 Steps Inference

(c) MAC 0-99 - 1e6 Steps Inference (d) MAC 0 - 1e6 Steps Inference
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