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Abstract

Despite the remarkable success of deep learning systems
over the last decade, a key difference still remains between
neural network and human decision-making: As humans,
we can not only form a decision on the spot, but also ponder,
revisiting an initial guess from different angles, distilling
relevant information, arriving at a better decision. Here,
we propose RecycleNet, a latent feature recycling method,
instilling the pondering capability for neural networks to
refine initial decisions over a number of recycling steps,
where outputs are fed back into earlier network layers in an
iterative fashion. This approach makes minimal assump-
tions about the neural network architecture and thus can
be implemented in a wide variety of contexts. Using medi-
cal image segmentation as the evaluation environment, we
show that latent feature recycling enables the network to it-
eratively refine initial predictions even beyond the iterations
seen during training, converging towards an improved de-
cision. We evaluate this across a variety of segmentation
benchmarks and show consistent improvements even com-
pared with top-performing segmentation methods. This al-
lows trading increased computation time for improved per-
formance, which can be beneficial, especially for safety-
critical applications.

1. Introduction

Over the past decade, the field of computer vision has
witnessed an unprecedented paradigm shift due to the ad-
vent and proliferation of deep learning algorithms. Neural
networks have become the de facto standard for a variety
of tasks, excelling in their ability to solve previously im-
possible tasks across many domains and modalities. One
of the most intriguing distinctions between human cogni-
tion and neural networks, however, is the former’s capac-
ity for iterative decision-making - a skill that is still lack-
ing from most recent artificial systems. Humans exhibit the
innate ability to dynamically revisit and revise their initial
decisions, evaluating their options from multiple perspec-
tives, and continuously improving their decision based on
new information. This process underlies an inherent char-
acteristic of human decision-making – that of iterative re-
finement. It allows humans to evolve their understanding
over time, improving the quality of decisions, especially
in complex, non-deterministic scenarios. By stark contrast,
conventional deep learning architectures have typically op-
erated in a one-shot, feed-forward manner, lacking the prop-
erty of iterative revision.
In this work, we seek to bridge this gap, to bring neural
networks a step closer to the iterative decision-making pro-
cess that characterizes human cognition. We introduce Re-
cycleNet, a simple approach to deep learning that leverages
the concept of latent feature recycling, enabling neural net-
works to refine their initial predictions over a series of itera-
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tive steps. The advantage of RecycleNet lies in its universal
applicability - it makes minimal assumptions about the un-
derlying architecture and is easily adaptable across a wide
array of contexts. Medical image segmentation, with its
critical implications for diagnosis and treatment in health-
care, serves as an excellent testing ground for our approach.
The task’s complexity and the inherent noise in medical
imaging data pose formidable challenges that demand ro-
bust, reliable, and refined predictions.

Figure 1. Schematic overview of the proposed U-Net feature recy-
cling. n depicts the number of recycling cycles where the features
close to the network’s decoder are fed back into early encoder fea-
tures. The letters I, R and O refer to the input projection, recycling
module and output projection, as described in Algorithm 1.

Through our evaluation, we demonstrate that RecycleNet
exhibits the remarkable property of refining its predictions
iteratively, even beyond the iterations witnessed during
training. The results clearly outperform the state-of-the-
art segmentation methods across a range of segmentation
benchmarks, demonstrating the promise of our approach.
At the heart of RecycleNet lies a trade-off - the opportunity
to exchange increased computational time for a significant
improvement in performance. For safety-critical applica-
tions, where the stakes are high, and the margin for error is
virtually non-existent, this trade-off could be an important
step in enhancing the reliability and precision of decision-
making processes in neural networks.

2. Related Work

Neural networks’ inability to refine initial predictions
has been addressed in approaches which introduce varying
degrees of additional complexity.

Refinement modules: One straight-forward way to refine
initial network outputs makes use of additional modules. In
the context of image segmentation, these refinement mod-
ules typically act on segmentation maps [15] or features
close to the segmentation layers [4] and make use of ad-
ditional layers to refine a main network’s outputs. This nat-
urally introduces complexity by introducing additional pa-
rameters to the original network. In contrast, our suggested
technique of latent feature recycling operates without re-
quiring any additional parameters, thereby ensuring a more
seamless integration in situations where the cost of extra
parameters is prohibitive.

Recurrent Learning: Another natural approach to refin-
ing initial network outputs is to cast refinement as a recur-
rent learning problem, with refinement steps as the temporal
axis. To render typical computer vision network architec-
tures as Recurrent Neural Networks, either the whole net-
work [19] or key parts of the network [18] are adapted. Al-
ternatively, the recurrent learning can also be done on just
the segmentation outputs [12]. While closely related to the
proposed latent feature recycling, these approaches inter-
fere strongly with the network architecture and due to their
recurrent network formulation, come with substantial mem-
ory costs during training, which quickly become prohibitive
for example in the context of medical image segmentation,
where large 3D receptive fields are required to capture all
relevant context for the task.

Multi-stage approaches: To alleviate the memory costs
connected to Recurrent Neural Networks, multi-stage ap-
proaches can be employed to refine previous stage segmen-
tations [16] or learn based on the error feedback coming
from the previous iteration [3]. While this does not come at
the cost of substantially increased memory demands dur-
ing training, multi-stage approaches often require multi-
ple complete training cycles. Comparatively, our proposed
method requires less training time since the additional for-
ward passes are performed on a single sample.

Additional loss terms: The ability to refine predictions
has also been explored by repeatedly applying a given state-
ful network architecture and learning a stopping criterion
using an additional loss term together with the task loss [2].
This, however, requires a careful balancing between loss
terms which is not present in the proposed method.

Output recycling: Recently, Jumper et al. [9] have pro-
posed a technique that uses output structures in the context
of protein structure prediction to refine initial guesses with-
out additional modules. They re-use outputs from certain
transformer blocks [17] of the architecture over multiple



iterations to refine the predicted structures. While this is
closely related to our proposed technique, we show that re-
cycling not only a part of the network architecture, but a
whole convolutional segmentation network leads to refined
predictions. Additionally, recycling features instead of out-
puts allows integrating this mechanism in a flexible way
without special requirements w.r.t. the network architec-
ture. Crucially, we also introduce a robust training schedule
for recycling and demonstrate its importance for both reli-
able results across datasets, as well as an emergent conver-
gence property where segmentation performance increases
monotonously when increasing the number of cycles during
inference.

3. RecycleNet
Our proposed method, referred to as RecycleNet, relies

on increasing the number of forward passes through a large
part of the network (referred to as cycles), both during train-
ing and inference. To instill the capability to refine initial
decisions over a number of such cycles, features close to
the output are fed back into early layers of the neural net-
work via a simple addition operation. Figure 1 depicts a
schematic of the proposed latent feature recycling process.
A given neural network architecture (here the U-Net [14]),
can be partitioned into three disjoint parts: The input pro-
jection I, the recycling module R and the output projection
O (see Fig. 1). The recycling module R is not an addi-
tional module, but rather refers to the part of the architec-
ture where features should be recycled. The recycling pro-
cess, where recycled features are summed onto earlier fea-
ture representations, is repeated Nc times during training,
where Nc is sampled uniformly from a predefined range
(see Section 3.1). After the recycling process, the output
projection produces the final output. However, each indi-
vidual cycle can also be projected to a meaningful predic-
tion, allowing for introspection and ensembling. The recy-
cling mechanism is described in Algorithm 1. We note that
while it is, in general, possible to use gradients accumulated
for more than one cycle, we find this to be impractical due
to the memory demands involved. So instead, we only use
gradients for the last iteration.

Reusing the recycling features r can be achieved in var-
ious ways. We propose a simple addition of normalized re-
cycling features to the input projection, similar to the stan-
dard practice of adding position encodings in the context of
Language Models [17]:

R(z, r) = R(z + norm(r)) (1)

This approach requires the feature dimensions after the
input projection to match the dimensions after the recycling
module. This property is typically fulfilled for attention-
based transformer architectures, as well as U-Nets [17]. In

Algorithm 1: Latent Feature Recycling: Training
Input: Maximum number of cycles Nmax, model

input x, input projection I, recycling module
R, output projection O

1 Project input into recycling feature space: z = I(x)
2 Sample number of cycles:

Nc = RandInt(1, Nmax)
3 Initialize recycling features as zeros: r = 0
4 for all cycles i ∈ [1, ..., Nc] do
5 if i < Nc then
6 r = r.detach() # gradients only for last cycle
7 r = R(z, r) # 1 cycle
8 end
9 Project to output: ŷ = O(r)

10 return loss(ŷ, y)

architectures, where this is not the case, other conditioning
mechanisms, e.g. using projection layers, can be applied.
We propose the integration of latent feature recycling in the
context of the U-Net [14], a network architecture which is
ubiquitous in medical image segmentation.
As depicted schematically in Figure 1, we propose U-Net
feature recycling by reusing features close to the output
of the network’s decoder at earlier layers, e.g. after the
encoder’s first convolutional block. This enables the net-
work to revisit features based on which previous predic-
tions would be computed, thus instilling the capability to
iteratively refine early decision hypotheses over a number
of cycles.

3.1. Robust Training Schedule

Feature recycling introduces a single new hyperparame-
ter to an existing neural network training, the number of cy-
cles Nc. This hyperparameter determines how many shots
the network gets to refine initial predictions during train-
ing. At the beginning of the training, the initial predictions
might be unreliable to the extent that there is little value in
refining them step by step. To combat this, we introduce a
robust recycling schedule, where during an initial warm-up
phase, only a single cycle (no recycling) is used, therefore
defaulting to standard network training during this period.
Over time, we incrementally increase the range of possi-
ble cycles to allow for more and more refinement steps. As
the number of cycles during training is not deterministic,
the network is incentivized to distill useful information for
each next recycling step in the recycled features. This helps
learning an iterative refinement, even when only using gra-
dients from the last cycle.



4. Experiments and Results
In the following, we present the experiments and results

based on the proposed U-Net feature recycling in the con-
text of challenging medical image segmentation datasets.
To reliably compare the proposed method with a strong
baseline, we compare to the widely used nnU-Net and im-
plement the proposed method in the same well-tested data
pipeline and training framework [6].

4.1. Datasets and Evaluation

To demonstrate the general effectiveness of the proposed
U-Net latent feature recycling for medical image segmenta-
tion, we test the proposed method on a range of established
segmentation tasks covering various dataset sizes, segmen-
tation targets and task difficulties. These datasets include
the Kidney Tumor Segmentation (KiTS 2019) dataset [5],
the Liver Tumor Segmentation task of the Medical Segmen-
tation Decathlon [1], the Multi-Atlas Labeling Beyond the
Cranial Vault (BTCV) challenge [11] and the large-scale
Abdominal Multi-Organ Benchmark (AMOS) for versatile
medical image segmentation [8]. To also test the proposed
method in the context of MRI tasks, we additionally include
two tasks of the Combined Healthy Abdominal Organ Seg-
mentation (CHAOS) challenge [10].
To assess segmentation performance, we use the average
foreground Dice coefficient (DSC). It measures the overlap
between predicted segmentation and ground truth, popular
in medical image segmentation for its capacity at handling
imbalanced datasets.

4.2. Baseline Models

To ensure a fair comparison, we implement all models in
the nnU-Net framework [6], which is regarded as the state-
of-the-art framework for medical image segmentation and
serves as the basis for numerous successful segmentation
challenge contributions [7]. Naturally, the default nnU-Net
is also included as a baseline. We also test against the best-
performing model proposed in Wang, Yu et al. [18] which
still has a manageable memory demand when applied in the
medical image segmentation domain, referred to as DRU.
As the DRU was not originally tested in the context of 3D
segmentation, we base our implementation on the authors’
code and implement the model within the nnU-Net frame-
work. This allows to make fair comparisons w.r.t. perfor-
mance, memory demands and training time requirements.

4.3. RecycleNet

We implement the proposed RecycleNet as an adapta-
tion of nnU-Net, making use of the same, well-tested, 3D
full resolution U-Net architectures. For each dataset, we
adopt the same feature recycling strategy, recycling the fea-
ture maps before the last convolutional layer and feed them

back into the encoder after the first convolutional stage, see
Section 3. Through this, we can keep the automatic config-
uration property offered by nnU-Net and roll out the same
proposed recycling method for any given segmentation task.
For a fair comparison between the proposed method and
the baselines, we use the preprocessing pipeline of nnU-
Net [6] for all experiments and evaluate on public leader-
boards when possible. Where not possible, we employ an
identical 5-fold cross validation. We evaluate single full
resolution 3D models without ensembling or postprocess-
ing. As the recycling training schedule, we make use of
the schedule proposed in Section 3.1, starting with 1 cycle
for the first 200 epochs, then gradually increasing the range
from which the number of cycles is sampled by 1 every 200
epochs, to a maximum of 3. During inference, we increase
the number of cycles to a maximum of 7 cycles to bene-
fit from the property discussed in Section 4.4 and always
report metrics using the maximum number of cycles.

Table 1 shows the results comparing RecycleNet to the
nnU-Net and DRU baselines on 5-fold cross validation as
well as public leaderboard held-out test sets, where possi-
ble. We show clear performance improvements compared
to both baselines across all evaluation datasets but the liver
tumor segmentation dataset, where the DRU [18] shows the
best cross validation score. We note that although the dif-
ferences between the individual methods seem small, they
can be regarded as substantial improvements in the satu-
rated performance domain that is medical image segmenta-
tion. We use a fixed recycling schedule and a fixed num-
ber of cycles during inference (determined based on the
BTCV cross-validation, employed on all datasets), leaving
all nnU-Net training hyperparameters untouched. We sus-
pect that further improvements are possible by fine-tuning
the training and recycling schedule on a given target dataset.
From these results, we conclude that the proposed latent
feature recycling represents an effective way to instill it-
erative refinement capabilities for even strong image seg-
mentation models. The cost for this performance surplus is
an increased training memory demand, as well as increased
training and inference time (see Section 4.5).

4.4. Prediction Convergence of RecycleNet

To test the iterative refinement capabilities of the pro-
posed method, we investigate predictions over the number
of cycles, both quantitatively and qualitatively. Figure 2
shows the performance in terms of average Dice score in
a 5-fold cross validation on the BTCV dataset.

We observe a monotonous performance increase when
increasing the number of recycling cycles during inference,
asymptotically converging towards a saturation DSC value.
This suggests an interesting property arising from the in-
troduction of feature recycling. We refer to this property
as prediction convergence, where the model naturally con-



Model KiTS BTCV CHAOS AMOS Liver T.
CV Test CV Test CV(T5) T3 T5 CV Test CV

nnU-Net 89.29 89.04 82.96 87.21 94.77 93.49 91.47 88.58 90.68 78,84
DRU [18] 89.58 82.99 91.62 88.62 80.36
RecycleNet 90.26 89.11 83.75 87.80 94.92 93.48 91.85 88.77 90.82 79.88

Table 1. Average DSC scores for 5-fold cross-validation (CV) and public leaderboard held-out test sets (Test). We compare the vanilla
nnU-Net [6] with the proposed method and don’t use post-processing on either model’s predictions for a fair comparison. T3 and T5 refer
to the test sets of two MRI tasks of the CHAOS challenge, selected to test the proposed method on a different modality than CT.

Figure 2. Evaluation of the 5-fold cross validation performance of the proposed method on the BTCV dataset over number cycles in
inference. The dotted red line represents the default nnU-Net performance, the yellow to orange bars represent the Recycling nnU-Net’s
performance for different numbers of cycles during inference.

verges towards a refined prediction. Surprisingly, even a
single cycle can yield improvements compared with the
baseline, as shown in Figure 2. However, this observation
is not consistent across datasets. We also note that the net-
work learns to refine predictions even beyond the number of
cycles seen during training, while still improving on prior
predictions. This property is also reinforced when qualita-
tively inspecting the segmentation predictions the proposed
method creates for single samples, as shown for samples of
two segmentation tasks in Figure 3. We see an increased
prediction quality beyond the 3 cycles seen during training
for both samples.

4.5. Memory and Run Time

In this section, we analyze the memory and training
epoch time surplus of RecycleNet and the Recurrent U-Net
baseline [18]. Since we implemented both in the nnU-Net
framework [6], a fair comparison with an identical base net-
work architecture, epoch definition, and underlying hard-

ware can be ensured.

Training memory: Figure 4 shows the memory con-
sumption during training on the BTCV dataset w.r.t. the
number of iterations. We notice a steep increase in mem-
ory consumption when training a Recurrent U-Net on med-
ical image segmentation tasks. This increase stems from
two sources: the additional recurrent module employed in
the bottleneck of the network architecture and the recurrent
training with backpropagation through time. In the context
of 3D medical image segmentation, where the network ar-
chitectures rely on large 3D inputs which lead to a large
number of feature activations stored in memory for back-
propagation, the latter contributes significantly to the to-
tal memory consumption. This leads to more than doubled
memory requirements compared to a standard nnU-Net on
this task. From this, we conclude that a recurrent U-Net
does not efficiently scale to a larger number of recurrent
time steps during training.



Figure 3. Qualitative showcase of refined segmentations for liver tumor label in the Liver Tumor Segmentation Task [1] (left) and the
gallbladder label in the BTCV dataset [11] (right). The initial prediction (light yellow) is iteratively refined (shades of yellow), converging
towards an improved segmentation (brown). The predictions move closer to the ground truth label (blue) when increasing the number of
cycles. Intermediate cycles omitted for visual clarity.

Figure 4. Memory consumption during training on the BTCV dataset. We show the memory consumption for the proposed RecycleNet,
as well as the Recurrent U-Net implemented in the nnU-Net framework. The memory consumption during training is displayed w.r.t. the
number of iterations (recycling cycles or recurrent timesteps). While the proposed RecycleNet (blue) does come at the cost of a memory
surplus, this surplus stays constant irrespective of the number of recycling cycles. Due to the recurrent nature of the Recurrent U-Net [18]
(light brown), the memory costs quickly become prohibitively large when increasing the number of recurrent timesteps during training.

The proposed RecycleNet also shows a memory surplus
during training, but due to the formulation described in Al-
gorithm 1, the memory demands saturate and don’t grow
with recycling cycles larger than two. In the experiments
on the BTCV dataset, we see an increase in memory con-
sumption of roughly 30%. This surplus varies depending on
the dataset at hand. We notice that future implementations
should in principle be able to further reduce this memory

surplus.

Training epoch time: Considering the average training
epoch times, we again report numbers on the BTCV dataset
as a benchmark. Due to the 3D nature of medical image
segmentation tasks, we note that data loading and augmen-
tation can often become bottlenecks during training. How-
ever, the nnU-Net framework, along with current hardware



enables alleviating this bottleneck, thus allowing for an un-
biased measure of realistic epoch time changes stemming
from the compared methods. While a typical nnU-Net
epoch (defined as 250 mini-batch updates with 2 samples
each) on the BTCV dataset takes 74 seconds, the Recurrent
U-Net trained using 2 recurrent timesteps requires 165 sec-
onds on average for each epoch. This is more than a 100%
increase in training time.

The proposed RecycleNet, however, comes with a much
lower training time increase. While the later stage of the
proposed recycling schedule leads to an epoch time increase
of roughly 30% during training (up to 96 seconds compared
to nnU-Net’s 74 seconds), this epoch time increase is non-
existent during the first 200 epochs, where the recycling
schedule only uses 1 cycle. Between epochs 200 and 400 of
the proposed schedule, we measure an epoch time increase
of roughly 15%. When training for 1000 epochs, this leads
to a total training time increase of about 20% with an aver-
age epoch time of 89.4 seconds.

In terms of memory and training time surplus, we see a
non-negligible increase for the proposed RecycleNet. This
increase, however, is much lower compared to the Recur-
rent U-Net baseline, rendering the RecycleNet much more
accessible in the context of 3D medical image segmenta-
tion. We note that the inference time is also increased, since
for each sample, Nc forward passes have to be computed.
However, in the context of time-consuming preprocessing
and resampling, these additional forward passes only result
in a minor inference time increase (roughly by a factor of 2
when increasing the number of cycles by a factor of 7).

4.6. Ablation of Training Schedules

In this section, we investigate how different recycling
training schedules affect the performance in the case of
multi-organ segmentation on the BTCV dataset. Figure 5
shows differences in DSC score when compared with nnU-
Net [6] in a 5-fold cross-validation. We show that while
even using a fixed number of cycles during training (blue)
can increase segmentation performance w.r.t. the baseline,
this approach does not generalize well to a larger number of
cycles during inference. Incrementally increasing the num-
ber of cycles over the course of the training process (green)
does lead to a similar convergence property as discussed in
Section 4.4 when increasing the number of inference cy-
cles beyond the maximum training cycles. However, due
to the missing stochasticity in the number of cycles seen
during training, the network forgets how to handle lower
recycling numbers and performs poorly in those cases dur-
ing inference. To ensure the observed convergence property
described in Section 4.4, both the sampling and the incre-
mental schedule components are important to achieve a re-
liable and strong prediction accuracy out of the box when
confronted with unseen segmentation tasks. This quality is
crucial for a wide applicability in the context of medical
image segmentation.

Figure 5. Ablation of different recycling training schedules on the BTCV dataset. The difference in DSC (compared with nnU-Net) is
shown w.r.t. the number of cycles used during inference. A static training schedule of 2 cycles is shown in blue, while an increasing
training schedule (without sampling) is shown in green. The proposed schedule (see Section 3.1), is marked and displayed in red.



5. Conclusion
In this work, we propose a novel method for instill-

ing iterative decision refinement capabilities into neural
networks in a process we call latent feature recycling.
This approach relies on minimal assumptions w.r.t. the
network architecture and naturally leads to performance
improvements, showing a convergence towards refined
decisions. We demonstrate these capabilities using medical
image segmentation as a showcase. In this context, latent
feature recycling can improve on even strong models with a
simple and robust recycling schedule. We observe that this
schedule leads to iterative refinement capabilities, allowing
to trade inference time for improved performance. These
refinement capabilities even extend to a larger number of
cycles than seen during training. We leave it for future work
to explore the limits of this phenomenon for applications
where even the smallest improvements in performance are
worthwhile. As this approach is not limited to U-Nets
or medical image segmentation, we expect further work
to leverage latent feature recycling on a variety of neural
network architectures and tasks. We note, however, that the
proposed method comes with an additional computational
cost through increased numbers of forward passes during
training and inference. Compared with other iterative
refinement approaches, we observe a much lower mem-
ory and training time surplus, making the RecycleNet a
promising candidate e.g. in safety-critical applications
where the additional memory and time requirements are
not the limiting factor. However, this increased inference
time potentially limits the application in time-critical
applications. The proposed method also bears a resem-
blance to latent diffusion models [13], in that an iterative
refinement process takes place in latent space, leading to a
convergent refinement property during inference. Contrary
to latent diffusion models, latent feature recycling covers
multiple refinement steps also during training, whereas
latent diffusion models don’t allow multistep feedback
during training. We leave it for future work to explore
whether such multistep feedback is also beneficial in the
denoising diffusion process.
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Gözde Ünal, Oğuz Dicle, and M. Alper Selver. CHAOS
Challenge - combined (CT-MR) healthy abdominal organ
segmentation. Medical Image Analysis, 69:101950, 2021.
4

[11] Bennett Landman, Zhoubing Xu, J Igelsias, Martin Styner,
T Langerak, and Arno Klein. Miccai multi-atlas la-
beling beyond the cranial vault–workshop and challenge.
In Proc. MICCAI Multi-Atlas Labeling Beyond Cranial
Vault—Workshop Challenge, volume 5, page 12, 2015. 4,
6

[12] Jun Li, Xiaozhu Lin, Hui Che, Hao Li, and Xiaohua Qian.
Pancreas segmentation with probabilistic map guided bi-
directional recurrent unet. Physics in Medicine & Biology,
66(11):115010, 2021. 2

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 8

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 3

[15] Hao Tang, Xingwei Liu, Shanlin Sun, Xiangyi Yan, and Xi-
aohui Xie. Recurrent mask refinement for few-shot medical
image segmentation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3918–3928,
2021. 2

[16] Zhuowen Tu and Xiang Bai. Auto-context and its application
to high-level vision tasks and 3d brain image segmentation.
IEEE transactions on pattern analysis and machine intelli-
gence, 32(10):1744–1757, 2009. 2

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2, 3

[18] Wei Wang, Kaicheng Yu, Joachim Hugonot, Pascal Fua, and
Mathieu Salzmann. Recurrent u-net for resource-constrained
segmentation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 2142–2151, 2019. 2,
4, 5, 6

[19] Amir R Zamir, Te-Lin Wu, Lin Sun, William B Shen,
Bertram E Shi, Jitendra Malik, and Silvio Savarese. Feed-
back networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1308–1317,
2017. 2


	. Introduction
	. Related Work
	. RecycleNet
	. Robust Training Schedule

	. Experiments and Results
	. Datasets and Evaluation
	. Baseline Models
	. RecycleNet
	. Prediction Convergence of RecycleNet
	. Memory and Run Time
	. Ablation of Training Schedules

	. Conclusion

