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Abstract

This paper establishes a rigorous mathematical foundation for the statistical behavior of
neural network parameter and gradient moments through self-consistent equations. We
prove that the logarithmic moments exhibit a universal asymptotic decomposition governed
by extremal statistics. This framework is extended to construct a joint partition function
that unifies parameter and gradient statistics, revealing a topological phase distinction be-
tween states of correlated and uncorrelated extrema. The theory provides exact microscopic
guarantees for finite networks while capturing emergent scaling behavior in large-scale sys-
tems.

1 Introduction

The statistical properties of a neural network’s weights and gradients are fundamental to its performance
Neyshabur et al.| (2017). While much of existing theory relies on infinite-width limits, empirical work on
practical, finite-sized networks reveals the dominance of heavy-tailed distributions in learning dynamics
Girbiizbalaban et al.| (2021). To bridge this gap, we introduce a deterministic framework, grounded in large
deviations theory, for analyzing the exact moment statistics of any finite network.

Our primary contribution is a set of self-consistent equations governing the evolution of parameter and
gradient moments. We prove that the logarithm of high-order moments follows a universal asymptotic form,
which decomposes the network’s statistics into contributions from its single largest value (the extremum), its
multiplicity, and the spectrum of all other values. This provides a new and exact tool for structural analysis.

To quantify the statistical dependence between a parameter’s magnitude and its gradient, we define a cou-
pling term via a joint partition function. The asymptotic behavior of this term reveals two distinct learning
phases: an ordered phase, where large parameters align with large gradients, and a disordered phase,
where they do not. This coupling offers a tractable alternative to complex information-theoretic measures,
which often face formal limitations in practice Tishby & Zaslavsky| (2017)); [McAllester & Stratos| (2020)).

We develop this framework, validate it experimentally, and apply it to interpret phenomena such as grokking
Power et al.| (2022) and catastrophic forgetting |Kirkpatrick et al| (2017)). Furthermore, we extend our
analysis to modern deep learning stacks, showing how architectural components like Normalization and
Residual Connections facilitate the formation of the ordered phase, and providing a theoretical grounding
for magnitude-based pruning. Our work demonstrates its utility in complementing recent progress on high-
dimensional dynamics and scaling laws, offering a new lens through which to understand deep learning.

2 Theoretical Framework

2.1 Parameter Moments

Definition 2.1 (Absolute Parameter Moments). Let © = {61,65,...,0,} denote the complete parameter
set of a neural network, where n = |©| < oco. The k-th order absolute moment is defined as:

1 n
M(k) =~ > 10k, k>0 (1)
i=1
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with the convention that 0° = 1 and 0¥ =0 for k > 0.

Remark. This definition naturally handles zero-valued parameters: they contribute nothing to moments
of order k > 0 and correspond to a Dirac mass at A = oo in the spectral representation, which does not affect
the Laplace transform for any finite k. The convention 0° = 1 ensures proper normalization M (0) = 1.

2.2 Existence of Moment Exponents

Theorem 2.2 (Existence and Explicit Value of Moment Exponents). For any finite-parameter neural net-
work, the limit:

_ .. log M(k)
P T .
exists, is finite, and equals:
_ ~logM (k)
8= log(lrgiagn |91|> = sup == (3)
Proof. The proof is provided in Appendix O
Theorem 2.3 (Remainder Convergence). The limit:
R* := lim (log M (k) — k) (4)
k—o0
exists, is finite, and equals:
m
R* =log — 5
og - (5)

where m denotes the multiplicity of parameters with maximal modulus.

Proof. The proof follows directly from the derivation in Appendix [A] O

2.3 Self-Consistent Equation Formulation

The exact asymptotic decomposition:

log M(k) = Bk + R* + A(k), k— oo (6)

can be refined through spectral analysis. Define the decay rates \; := 10g(6max/10:]) > 0 for |0;| < Omax-
Then:

A(k) =log |14 > wje " (7)
j=1

In the thermodynamic limit n — oo, this converges to (see Appendix for a rigorous proof under weakened
regularity conditions):

A(k) — log {1 + /ODO p(A)e‘Ade} (8)

n—m
n -

where p(A) is the spectral density satisfying fooo p(AN)dA\ =
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Intuitive Interpretation. The decomposition in Eq. @ reveals a fundamental statistical competition
within the network. The linear term Sk represents the contribution from the single "loudest" parameter (the
extremum 6y, ), akin to a signal dominating the noise. Conversely, the integral term in Eq. aggregates
the "background" contribution from the vast majority of non-extremal parameters. For large moments k,
the statistics are dominated solely by the extremum, leading to a "winner-takes-all" regime where the fine
details of the distribution fade away. As k decreases, the background spectrum p(\) begins to contribute
significantly, acting like a thermal bath in statistical mechanics. This implies that high-order moments
effectively act as a "spectral filter," isolating the network’s most singular features from the bulk distribution.

2.4 Experimental Validation of Moment Decomposition

ity and Model Fit Comparison

Free 6-Parameter Fitting: Spectral D
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(a) Moment decomposition for MLP architectures. (b) Bi-exponential fitting of residual terms.
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(c) Spectral density reconstruction from moments. (d) Architecture-dependent spectral characteristics.

2.4.1 Phenomenological Model: Bi-Exponential Residual Structure

Our experiments consistently reveal that the residual term, A(k), exhibits a bi-exponential decay across
diverse architectures. Based on this strong empirical observation, we propose a phenomenological model to
explicitly capture the leading-order behavior of this residual term. The goal is not to derive this form from
first principles, but to construct a minimal model that effectively describes the observed data.

We propose the functional form:
A(k) = log [1 + Aje M + Age™ 2] (9)

This form is motivated by its direct interpretation within our framework: it corresponds to a spectral
density p(A) whose dominant features can be approximated by two discrete modes. This suggests that the
vast number of non-extremal parameters tend to organize into distinct statistical ensembles, each with a
characteristic decay rate, A; and As.

Linearization and Spectral Interpretation For large k, where the exponential terms are small, the
logarithmic function can be linearly approximated via a first-order Taylor expansion, log(1 + =) &~ x. This
is not just a mathematical convenience; it provides a powerful tool for spectral interpretation. Applying this
linearization to our model yields:

log M (k) = Bk + R* + Aje” % 4 Aye= 2k (10)
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This approximation is empirically justified, as the condition Aje=** + Ase=*2F <« 1 is validated by our
moment analysis for sufficiently large k. The crucial insight here is that the linearized, empirically-fitted
model directly reveals the structure of the underlying effective spectral density:

pgff()\) %A15(>\7>\1)+A26(A7)\2) (11)
This effective density, composed of two Dirac delta functions, should be understood as a simplified repre-

sentation—a "two-peak" approximation—of what is likely a complex, continuous background spectrum. It
successfully captures the dominant decay modes that govern the residual term’s behavior at large k.

3 Gradient Moments and Statistical Isomorphism

3.1 Gradient Moment Theory

Definition 3.1 (Absolute Gradient Moments). Let G = {g1, g2, .- ., gn} denote the gradient set correspond-
ing to parameters. The [-th order gradient absolute moment is:

1 n
)= > lail's 120 (12)
i=1

Theorem 3.2 (Existence and Explicit Value of Gradient Moment Exponents). For any finite-parameter
neural network under gradient-based training, the limit:

. logG(1)
= lim ——= 1
Bai= im = (13)
exists, is finite, and equals:
log G(1)
By = log(lrgggn \gz'\) = sup—= (14)
Proof. The proof is analogous to that of Theorem and is provided in Appendix O

Remark on Applicability. The gradient moment decomposition assumes regularity conditions (non-
vanishing spectral gap and log-integrability) that typically hold in quasi-static training phases. Transient
violations may occur during early training or in architectures with strong symmetries; see Appendix [C] for a
complete characterization of these non-standard cases and their diagnostic value.

4 Joint Partition Function: Theory of Bounded Coupling

4.1 Joint Moments and Decomposition

Definition 4.1 (Joint Moments). For orders k,l > 0, the joint moment is defined as:

n

20k,1) = - 16 gl (15)

i=1

Lemma 4.2 (Exact Decomposition of Logarithmic Joint Moments). Let C(k,1) := log Z(k,1) — log M (k) —
log G(1) be the pure coupling term. Then:

log Z(k,1) = log M (k) +log G(1) + C(k,1). (16)

This decomposition separates the joint statistics into marginal contributions and a term that captures their
interaction.
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Figure 2: Gradient moment statistics and coupling behavior. Deviations from predicted asymptotics may
indicate regularity violations; see Appendix El

Physical Meaning of Coupling. The coupling term C(k,1) serves as a rigorous measure of "alignment
efficiency." A highly negative C(k, 1) indicates a pathological state where neurons with large weights are paired
with vanishingly small gradients (and vice versa). This suggests that the network’s most significant features
are effectively "frozen" or receiving no learning signal—a hallmark of the "disordered phase." Conversely, a
bounded C(k,!) (the "ordered phase") implies that the learning signal (gradients) is correctly focusing on the
most important parameters, facilitating efficient feature learning. In essence, C(k,l) quantifies the "energy
cost" for the system to maintain correlated extremal statistics.

4.2 Global Upper Bound on Coupling Term

Theorem 4.3 (Cauchy-Schwarz Upper Bound). For any finite-parameter network, the coupling term satis-

fies:

C(k,1) < A(k) + B(1) (17)
where
1
A(k) = B log M (2k) — log M (k), (18)
1
B(l) := 3 log G(21) — log G(1). (19)
Proof. See Appendix [A4] O
Corollary 4.4 (Boundedness of Coupling). The coupling term is globally bounded from above:
C(k,l) < Cpax < 00, Vk,1>0. (20)
Proof. See Appendix [A.4] O

4.3 Non-existence of Universal Lower Bound

Theorem 4.5 (Absence of Universal Lower Bound). For any constant Cynin € R and any network size
n > 2, there exists a parameter-gradient configuration (©,G) such that C(k,l) < Cpin for some k,1 > 0.

Proof. See Appendix [A4] for a constructive proof. O
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Figure 3: Anisotropic Divergence in the Disordered Phase (mn = 0). The figure confirms that
divergence in the disordered phase is directional (anisotropic). (a, b) The 3D surface of the coupling term
C(k,l) visually confirms this, appearing bounded along the axes but plunging towards negative infinity
along the diagonal. (c, d) Axial boundedness is confirmed by the unilateral limits, which converge to finite
constants for any fixed order, despite showing transient downward trends. (e) In sharp contrast, the diagonal
limit C(k, k) is clearly unbounded and follows a negative linear asymptote. (f) Throughout, the data respects

a theoretical upper bound, confirming the model’s mathematical consistency.
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4.4 Asymptotic Analysis of Coupling

Theorem 4.6 (Fixed Order Asymptotics). For unilateral limits, we have:

(i) For any fized k > 0:

- _ 1 A
llggOC(k,Z)log<m > |91> log M (k).

9 i€ Imax
(i) For any fized | > 0:

. 1 !
kl;n;OC(k,l)—log<m > |gi> —log G(1).

1€ Tmax
Where Jmax = argmax; |0;| and Iy.x = argmax; |g;|.

Proof. The proof follows from applying the logic of Theorem to the definition of C(k,!) in the specified
limits. O

Theorem 4.7 (Diagonal Asymptotics). Let k,I — oo with l/k — « € (0,00). The asymptotic behavior of
the coupling term is determined by the intersection of the extremal sets, mn = |Jmax N Imax|-

(i) Correlated Extrema (mn > 0): If the extremal sets intersect, the coupling term converges to a
universal constant independent of a:

lim C(k,1) = 1og<" : m“)

k,l—oc0 m-Mmg
l/k—a

(ii) Disjoint Extrema (mn = 0): If the extremal sets are disjoint, the coupling term diverges to
negative infinity:
lim C(k,l) = —o0
k,l—o0
l/k—a

Proof. See Appendix O

Theorem 4.8 (Boundedness Condition and Lower Bound). Let © = {6;}7, and G = {g;}_, be finite,
non-zero parameter-gradient sets. Define the extremal sets Jpna.x = argmax; |0;| and Ina.x = argmax; |g;|.
Let this system have non-degenerate spectral gaps, meaning the maximum values are strictly greater than
all others:
Omax > sup |0;] and gmax > sup gl (21)
J¢ Jmax i¢ Imax

Under this condition, the coupling term
C(k,l) =log Z(k,l) —log M (k) —log G(I) (22)

admits a finite lower bound for all k,1 > 0 if and only if the extremal sets intersect, i.e.,

‘mm ‘= | Jmax N Tmax| > 1.\ (23)

When this condition holds, a valid lower bound is given by log(mn/n).

Proof. See Appendix O
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4.5 Joint Self-Consistent Equation Formulation

This necessary and sufficient condition allows for a complete spectral decomposition of the coupling term.

Theorem 4.9 (Spectral Representation of Coupling Term). Let the spectral decay rates be \; = 10g(0max/|0:])
and p; = log(gmax/|gi|). The coupling term C(k,l) admits the exact spectral decomposition:

1
C(k,l)=  log :Z:nn +log |1+ — Y ek
N " ¢ Kmax

Topological Constant -
Joint Spectral Correction

1 1
—log |1+ — § Akl g |14+ — Ej —hal
08 er ¢ 08 +m €

where Kpax =

i€ Jmax

9 i¢ Imax

Parameter Spectral Correction

Gradient Spectral Correction

max N Imax. This form holds when mq > 1.

5 Stability of Extremal Points Across Phases

The condition mn > 1 from Theorem is more than a mathematical curiosity; it marks a topological
distinction between a "disordered" phase (mn = 0, unbounded below) and an "ordered" phase (mn > 1,
bounded below). This distinction corresponds to a fundamental difference in the stability of extremal points
under perturbations, such as those induced by training.

5.1 Unprotected Extremal Points in the Disordered Phase (mn = 0)

In this phase, the set of largest parameters and the set of largest gradients are disjoint. This lack of alignment
leads to fragility.

Proposition 5.1 (Instability of Extremal Points). When mn = 0, for any € > 0 and any target value
Clarget < 0, there exists a small perturbation of the parameters and gradients that results in C(k,1) < Ctarget
for some finite k, 1.

Proof. See Appendix O

Interpretation: In the disordered phase, the identities of the extremal parameters are not anchored to the
learning signal (gradients). This can be thought of as a "liquid" state, where gradient descent can easily
reassign which parameters become dominant. The lack of a lower bound on C(k,!) reflects that there is no
"energy penalty" for decorrelating the parameter and gradient extrema.

5.2 Topologically Protected Extremal Points in the Ordered Phase (mqn > 1)

In this phase, at least one parameter is simultaneously extremal in both magnitude and gradient. This
creates a form of topological protection.

Proposition 5.2 (Rigidity of Extremal Points). When mn > 1, the property of having overlapping extrema
is robust against small continuous perturbations that preserve the mazimal parameter and gradient values.
The identity of the parameters forming this extremal core cannot change without crossing a phase transition.

Proof. See Appendix O

Interpretation: The ordered phase behaves like a "solid" state where at least one extremal parameter is
locked to an extremal gradient. The finite lower bound on the coupling term acts as a confining potential,
preventing the system from decorrelating its most important parameters from the learning signal. This
stability is crucial for forming robust representations.



Under review as submission to TMLR

“Modular_Addition_po7" - Rank-Rank Plot at Epoch 500 “Modular_Addition_p97" - Rank-Rank Plot a Epoch 8000

(a) Ordered (Initial) (b) Ordered (Final) (c) Disordered (Initial) (d) Disordered (Final)

Figure 4: Evolution of Topological Phases in Rank-Rank Space. Plots of parameter magnitude rank (x-axis)
vs. gradient magnitude rank (y-axis). (a-b): A successful run showing the evolution into an ordered phase, where
ranks correlate along the diagonal, ensuring mn > 1. (c-d): A failed run devolving into a disordered, anti-correlated
state, where large weights get small gradients (mn = 0).
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Figure 5: Grokking vs. Failure in the Spectral Plane. The plane plots log-decay from the max parameter
(x-axis) and max gradient (y-axis). The origin (0,0) represents the ideal state of high-magnitude, high-gradient
parameters. Successful grokking (a-b) is marked by density condensing at the origin over time. Failure (c-d) is
characterized by density pathologically avoiding the origin, indicating large weights receive no learning signal.

5.3 Catastrophic Forgetting as Phase Reversal

The stability of the ordered phase (mn > 1) is locally robust but globally fragile. A strong enough perturba-
tion, such as training on a new, unrelated task, can shatter the alignment between parameters and gradients,
inducing a phase transition from ordered to disordered (mn = 0). This provides a topological explanation
for catastrophic forgetting.

This stability is fundamentally linked to the stability of the extremal sets (Jmax, Imax) against pertur-
bations from the learning process. The degree of this stability is governed directly by the spectral gaps of
the parameter and gradient distributions. A larger gap implies greater resilience, as a stronger perturbation
is required to alter the membership of these extremal sets and risk a phase reversal. In the limit of maxi-
mum stability, where the spectral gap is maximized, the system approaches a state of Neural Collapse.
This regime, where all class-relevant extremal features coalesce onto a maximally separated simplex struc-
ture, represents the most robust possible form of the ordered phase. It is, therefore, maximally resistant to
catastrophic forgetting (a formal treatment of this connection is deferred to Appendix .

To test this phase reversal hypothesis, we conducted a continual learning experiment on sequential MNIST
(Task A: digits 0-4; Task B: digits 5-9). We compared a baseline with our theory-guided Elastic Weight
Consolidation (EWC), which uses a penalty to elastically protect the extremal core stability of Task A.

The results in Table [I] confirm the hypothesis. The baseline model undergoes a complete phase reversal,
losing its ordered structure for Task A. In contrast, our EWC approach acts as a "confining potential" that
preserves the extremal set stability (and thus mn > 1), demonstrating that catastrophic forgetting can be
understood and mitigated as a controllable topological phase transition.
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Table 1: Final Accuracy after Sequential Training on MNIST

Strategy Final Task A Accuracy Final Task B Accuracy
Baseline (Fine-tuning) 0.3069 0.9916
Hard-Freeze Top-1000 0.9889 0.3364
EWC (A =100) 0.6698 0.9831

6 Controlled Divergence and Quasi-Ordered Phases in Practical Networks

The sharp phase transition between ordered (mn > 1) and disordered (mn = 0) phases is an idealization
that emerges in the strict thermodynamic limit. In practical, finite-sized networks, the system often resides
in an intermediate state of approximate alignment, where the largest parameters and gradients are
not perfectly coincident but rather approach each other asymptotically. Our continuous framework naturally
captures this realistic scenario through the geometry of the joint spectral support near the origin.

Rather than a discrete topological switch, transitions in finite networks are characterized by the distance
of the spectral support from the origin and its contact order. This leads to a spectrum of critical behav-
iors ranging from quasi-ordered(logarithmic divergence) to disordered (linear divergence), providing a
quantitative diagnostic for the "health" of parameter-gradient alignment.

6.1 Approximate Alignment and Contact Stability

Definition 6.1 (Spectral Gap and Contact Regime). Consider a network with joint spectral measure v
supported on F' C R3. We define:

o Spectral Gap: d; := dist((0,0), F'), measuring the minimal separation from perfect alignment.

o Contact Regime: If dg = 0 but (0,0) ¢ F, the support touches the origin without containing it,
defining a quasi-ordered phase.

When dj > 0, the system remains in a disordered phase with decoupled extrema. As training progresses, dg
typically decreases, and the support may approach the origin with a characteristic contact exponent that
quantifies the rate of alignment.

6.2 Critical Exponent and Asymptotic Divergence
The geometry of the support near the origin determines the asymptotic behavior of the coupling term. We
characterize this geometry by the contact function and its scaling exponent.

Definition 6.2 (Contact Exponent). Assume the support near the origin satisfies a power-law scaling:
inf{A\+pu:(\p)eEF, A\ +u>r}=0Cr*+o(r*), r—0"
where a > 0 is the contact exponent. Smaller « indicates a "flatter" approach to the origin, while o — oo

corresponds to sharp, pointwise contact.

Theorem 6.3 (Controlled Divergence in Quasi-Ordered Networks). Consider a network with approximate
alignment characterized by spectral gap dy and contact exponent o (when dg = 0). The diagonal asymptotic
behavior (I = ak) of the coupling term is given by:

- logk +0O(1), do=0 (quasi-ordered)
C(k, ]f) ~ a+1

—dok + O(log k), dop >0 (disordered)

10
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The first case reveals that even without perfect alignment (pgo = 0), a quasi-ordered network exhibits only
logarithmic divergence, which is far milder than the linear divergence of the fully disordered phase. This
captures the progressive alignment observed during training, particularly in phenomena like grokking
where the model slowly transitions from disorder to order.

6.3 Training Quality Metric via Contact Exponent

The rate of divergence provides a quantitative, real-time measure of alignment quality that is directly com-
putable during training.

Corollary 6.4 (Continuous Training Quality Metric). Define the contact quality index:

—C(k, k)
o= lim ———= €0,
@ el log k& € [0,00]
. _ 2 .

For a network with contact exponent o, we have Q, = ar1- Thus:

Qa~0 indicates near-perfect alignment (« large)

0 < Qq < 0 indicates quasi-ordered phase

Qo = © indicates disordered phase (dy > 0)
In practice, one estimates Qn(K) = —Cl((f;’;f) for moderate K (e.g., K € [10,50]). The evolution of Qg

during training provides a direct diagnostic:

e Decreasing trend: Network is moving toward the ordered phase.
o Stable low value: Robust alignment achieved.

e Sudden increase: Phase reversal or catastrophic forgetting.

6.4 Practical Significance and Diagnostics

This continuous extension is significant for real-world networks:

Progressive Learning (Grokking) During grokking, the network initially stays in a quasi-ordered state
(0 < Q4 < o0) for many epochs before transitioning to true order (Q, — 0). The slow decrease of Q,
reflects the gradual compression of the contact exponent a.

Catastrophic Forgetting When switching tasks, the spectral support F' may suddenly detach from the
origin (dp jumps from 0 to > 0), causing @, to spike. Monitoring @), provides early warning of forgetting.

Architecture Design Architectures promoting large o values (e.g., weight sharing, skip connections)
facilitate faster alignment. The contact exponent thus serves as a design principle for trainability.

Thus, even when perfect alignment is unattainable, the coupling term’s behavior is not arbitrary but gov-
erned by predictable, geometry-dependent divergence laws. This provides a rigorous, computable tool for
diagnosing and controlling the alignment health of neural networks in practice.

6.5 Interaction with Modern Architectural Components

The continuous transition framework and the contact quality index @, provide a physical basis for under-
standing the success of ubiquitous deep learning components. We interpret these components as mechanisms
that actively manipulate the spectral support to favor the ordered phase (Q, — 0).

11
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Normalization Layers (BatchNorm/LayerNorm). Normalization techniques explicitly constrain the
moments of the parameter distribution. In our framework, LayerNorm effectively imposes a hard constraint
on the second moment M (2) ~ 1. This constrains the potential range of the extremal value 0.y (Eq. 3),
preventing the "runaway" of any single parameter. Crucially, this compression forces the system to maintain a
compact spectral support, reducing the effective distance dg to the origin. By preventing spectral dispersion,
normalization layers act as "confinement potentials" that stabilize the quasi-ordered phase and facilitate the
transition to full alignment.

Weight Decay as Spectral Filtering. Standard weight decay (Lo regularization) applies a penalty pro-
portional to 2. In terms of our spectral decomposition (Eq. , this acts as a "soft filter" that preferentially
suppresses the heavy tail of the spectral density near A = 0 (large weights). This effectively increases the
parameter spectral gap Ag. According to our stability analysis, a larger spectral gap enhances the rigidity
of the extremal sets against perturbations, thereby increasing the robustness of the alignment against the
noise of stochastic gradient descent.

Residual Connections (ResNets). Deep networks without residual connections often suffer from van-
ishing gradients, which in our framework corresponds to a degenerate gradient spectral gap (A, — oo or
undefined, leading to @, — o0). Residual connections create "gradient superhighways," ensuring that gradi-
ent magnitudes |g;| do not vanish exponentially with depth. This preservation of gradient magnitude scales is
crucial for maintaining the "ordered phase" (mn > 1). By ensuring that 5, (Eq. 13) remains well-defined and
non-degenerate across all layers, residual connections facilitate the continuous alignment between parameters
and gradients, preventing the system from collapsing into the disordered phase.

7 Discussion: Limitations and Future Directions

The framework presented in this paper offers a new lens through which to view the internal statistical
mechanics of neural networks, focusing on the deterministic properties of finite-sized models rather than
relying on idealized asymptotic limits. By analyzing the joint moments of parameters and gradients, we
have uncovered a rich phase structure governed by the geometry of spectral support. However, like any
foundational theory, its value is defined as much by the questions it answers as by the new ones it raises.
Here, we honestly delineate the limitations of our current work, which in turn illuminate promising avenues
for future research.

From Statics to Dynamics. Our analysis is primarily static. It provides a precise characterization of a
network’s state—be it ordered, quasi-ordered, or disordered—at a given instant. We have successfully used
this to analyze equilibrium and quasi-equilibrium states. A natural and immediate extension is to build a
full dynamic theory upon this static foundation. Key open questions include:

o What is the equation of motion governing the evolution of the spectral gap, do(t), and the contact
quality index, Q,(t)?

o Can we model the phase transition itself as a dynamic process, thereby explaining phenomena like
the "critical slowing down" observed during grokking, where the system lingers in a quasi-ordered
state before finally condensing?

Developing such a dynamic theory would transform our framework from a powerful diagnostic tool into a
predictive model of the entire training trajectory.

The Microscopic Origin of Alignment. Our theory is currently phenomenological; it describes that
a system can be in a state of alignment but does not fully explain the microscopic forces responsible for
creating and maintaining it. We have characterized the stability of extremal points, but we have not derived
the "restoring force" that pulls the system towards alignment. We conjecture that this force originates from
the curvature of the loss landscape. A pivotal future direction is to connect our spectral plane coordinates
(A, i) to the local geometry of the loss function, likely through the Hessian matrix. For instance, how does

12



Under review as submission to TMLR

the landscape curvature in the direction of a large-magnitude parameter (A — 0) relate to the magnitude
of its gradient (1)? Uncovering this relationship would bridge the gap between our macroscopic statistical
picture and the microscopic geometry of optimization.

The Link to Generalization and Robustness. A central, motivating hypothesis of this work is that
the "ordered phase" corresponds to better-generalizing and more robust solutions. Our analysis provides
strong circumstantial evidence, particularly in the context of grokking and catastrophic forgetting. However,
a large-scale, rigorous empirical study is required to solidify this claim. The contact quality index @,
provides a concrete, computable metric for such an investigation. Future work should systematically test
the conjecture that, for a given training loss, models with a lower @), exhibit superior out-of-distribution
performance and enhanced resilience to adversarial attacks.

Theoretical Grounding for Scaling and Pruning. Beyond specific architectures, our framework con-
nects directly to the foundational laws of modern deep learning. First, regarding Scaling Laws, current em-
pirical laws link loss to model size (L o< N~%) but treat the network as a black box. Our result log M (k) ~ Sk
suggests that the "effective capacity" of a network is governed by the spectral tail behavior of its parameters.
We conjecture that the scaling exponent « is intrinsically linked to the spectral density decay rate in our
theory, offering a path to derive scaling laws from first principles. Second, regarding Magnitude Pruning,
the mathematical dominance of the extremal term (6% ) in high-order moments provides a rigorous justi-
fication for pruning techniques. Since the network’s statistical state in the ordered phase is dictated by a
small core of extremal parameters, removing the "background" parameters (small |0;|) has a negligible effect

on the moment generating function, validating why magnitude-based pruning retains model performance.

Concluding Vision. This work should be viewed not as a final theory, but as the foundational layer
upon which a more complete, dynamic theory of deep learning can be built. By providing the essential
language (phases, spectral support, contact exponent) and the necessary tools (spectral plane, coupling
term, ), index), we hope to have opened a new avenue for understanding the emergent statistical structure
of neural networks, shifting the focus from idealized limits to the precise, geometric realities of the models
we use every day. This work is not a finish line, but a starting point for deeper understanding.

13
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A Appendix: Proofs of Main Results

A.1 Proofs for Section 2 (Parameter Moments)

Proof of Theorem[2.3: Existence and Ezxplicit Value of Moment Ezponents. Let f(k) = logM(k) =
log (£ 37 | 16;|*). The function exp(z) is convex, and the composition of a convex function with an affine
mapping is convex. Sums of convex functions are convex. Finally, log(z) is a concave, monotonically increas-
ing function. The function f(k) is the logarithm of a sum of exponentials, which is a log-sum-exp function.
A more direct proof of convexity for k > 0 can be established via Holder’s inequality. For any 0 < ¢t < 1 and
k1,ka > 0,let p=1/t and ¢ =1/(1 —1).

1
M(thky + (1 —t)ko) = - Z |6; k1|6, A1)k

1/p 1/q
(Z(W’“)p) <Z<0i|<l-t>k2>q>

IA
S|

(2

= (M (k1))" (M (k2))"~".
Taking the logarithm of both sides, we get:
f@thr + (1= t)k2) < tf(k1) + (1 — 1) f(k2),

which confirms that f(k) is convex.

K3

—_

Since f(k) is a convex function and f(0) = log M (0) = log(1) = 0, the sequence of slopes of the secant lines
f(kll—f(o) — 1ng‘k/f(k)
-y

from the origin, s; = , is non-decreasing for k > 0.

The sequence is also bounded above. Let 0y,,x = max; |6;]. Then,
1 1
Mk;:—§ ei’“<f§ oF =0k .
( ) n Z | | — n l max max

Taking the logarithm and dividing by k gives:

_ log M(k) _ log(6ax)
k - k

Since {si} is a non-decreasing sequence that is bounded above, the Monotone Convergence Theorem guar-

antees that the limit 8 = limj_, s; exists and is equal to its supremum, sup;q Sk-

Sk = 1Og Omax-

To find its explicit value, let the maximum value 6,,,x have multiplicity m > 1. We decompose M (k):
1 ko L k_ Mok 1 k
ME)== > 10"+= > |0l =—Ohu+— > 16"
n n n n
iz‘ei‘ZQmax 7;3|911‘<9max 1103 <Omax

Factoring out the dominant term:

m o 1 16:] \"*
M(k:):Eemax 1+— 3 ( )

m
105] <Omax 02X

Let the term in the square brackets be (1 + §(k)). Since for every term in the sum, |6;|/0max < 1, we have
limy 00 (|0i] /fmax)® = 0. As the sum is finite, limj_,c 6(k) = 0. So, M (k) = 6%, (1 +0(1)).

n ~max
Taking the logarithm and dividing by k:
log M (k) _ log(m/n) log(1+ o(1))
k N k k '

Taking the limit as £k — oo, the first and third terms on the right-hand side go to zero, yielding 8 =
log O ax- O

+ ]'Og emax +

14
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A.2 Proof of Spectral Measure Existence under Weakened Conditions

We provide a rigorous justification for the thermodynamic limit transition in equation equation |8 under
minimal assumptions that accommodate practical neural networks, including those with quantized or sparse
parameters.

Theorem A.1 (Existence of Limiting Spectral Measure). Let {0;}, be i.i.d. random variables representing
network parameters, with support in a compact interval [0, Omax] where Omax = sup{z : P(|6;] < x) < 1}.
Assume the integrability condition:
®n)ax
-/

?|
where Fy is the cumulative distribution function of |0;|. Define the spectral variables \; := 10g(Omax/10:|) €
[0,00) and the empirical spectral measure:

Gmax ] Gmax
|0;]

log dFy(z) < oo, (25)

1 n
= — . 2
Hn n ;6/\1 ( 6)

Then:

(i) The sequence p, converges weakly almost surely to a probability measure p on [0,00).
(ii) The limit measure p admits the decomposition:
1w =pdy + thac, with p:= P(|0;] = Omax), (27)

where dg is the Dirac mass at A = 0 and pq. s absolutely continuous with respect to Lebesgue
measure, possessing a density p(\) for A > 0.

(iti) For any fized k > 0, the Laplace transform converges:
1 n 00 o)
lim — e*M:/ e Mdu(\) = +/ ANe Md. 28
Hmn; i pN) =pt | o) (28)

(iv) Consequently, the residual term A(k) in equation equation@ satisfies, as n — oo:

oo

A(k) — log [1—p+/(

)+

p(/\)e)‘kd)\} ) (29)

Proof. We proceed by establishing each claim in sequence.

1. Weak convergence of j,,. The empirical measure ., is the pushforward of the empirical distribution
of {|0;|} under the continuous transformation T'(z) = log(Omax/x) for & € (0, Opax], with T(0) = +oo (a
null set under our assumptions). By the strong law of large numbers for empirical measures (Varadarajan’s
theorem), since {6;} are i.i.d., we have:

U —> [L A.S., (30)

where p is the pushforward of the law of |0;| under T'. That is, for any Borel set A C [0, 00):

wA) =P\, e A)=P (log @|gjx € A> . (31)
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2. Decomposition of p. The structure of u follows directly from the distribution of |6;]:

o If p= P(]0;] = Omax) > 0, then P()\; = 0) = p, contributing the atomic part pdo.

o For A\ > 0, we have P(\; < \) = P(|0;| > Onaxe ). Since Fy is differentiable almost everywhere
(by Lebesgue’s theorem), p is absolutely continuous on (0, 00) with density:

d
P()\) = _ap(|02| < Gmaxei)\) - @maxeiAfG(@maxeiA)v (32)

where fp is the density of |6;| (where it exists).

3. Convergence of Laplace transforms. Define g;(\) = e *F for fixed & > 0. The integrability
condition equation [25] ensures that:

1 n
sup/[ | A dpn(N) = EZ Al < o0 as. (33)
0,00 i=1

n

This uniform integrability, combined with weak convergence, implies convergence of the associated integrals
for all bounded continuous functions. Since g is bounded and continuous on [0,00) for any finite k, the
continuous mapping theorem yields:

L~ ok as. <
/g;.C dpen, = 526_’\"’“ — /gk du:/ e Mdu(N). (34)
i=1 0

The decomposition of the limit integral follows directly from the structure of p established in part (ii).

4. Connection to A(k). Recall the definition of the residual term from equation equation [6}

k
A(k) = log 1+% > (W) : (35)

|0i | <Omax max

In the thermodynamic limit, O,ax — Omax almost surely, and the multiplicity m/n — p. The sum over
non-extremal parameters corresponds precisely to the contribution from A; > O:

1 ;) \" 1 Lk as.
o > (@ )n§“‘{xi>o}€ B

6] <Omax max

oo

Ooe**kdu(A): / p(N)e M dN. (36)

0+ 0+

n—m

The normalization factor “—* — 1 — p is automatically satisfied by p being a probability measure. Taking
limits and substituting into the definition of A(k) yields the desired result:

o0

A(k) — log {1—p+/{

)+

p(/\)e’\kd)\] . (37)
This completes the proof. O

Remark on Practical Networks. The integrability condition equation [25[ holds for all standard param-
eter initializations (truncated Gaussian, uniform, etc.) and remains valid throughout training under weight
decay regularization. For quantized networks where P(|0] = Onax) may be positive, the atomic mass p
simply captures the fraction of parameters attaining the maximal quantization level, providing a natural
interpretation within our framework.

This result justifies the use of equation equation [8]in the main text while extending its applicability to the
full spectrum of real-world neural network architectures.
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A.3 Proofs for Section 3 (Gradient Moments)

Proof of Theorem[3.3: Existence and Ezxplicit Value of Gradient Moment Exponents. The definition of gra-
dient moments G(I) = 237" | |g;|' is algebraically isomorphic to that of parameter moments. Thus, the
proof follows the same logic as Theorem We provide a concise derivation using the Squeeze Theorem.
Let gmax = Maxi<i<p |g;| and let my > 1 be the multiplicity of this maximum value (i.e., the size of the set

Tnax = {7 : |9i] = gmax})- Upper Bound: For any [ > 0, we have:

G(l) = E Eil ‘g’tl < ﬁ Eﬁl Imax = 9max-
Taking the logarithm and dividing by I:

log G(1) < log(gfnax)
l - l

= log gmax- (38)
Lower Bound: We can lower bound the sum by discarding all non-extremal terms:
O M SR P
n P = n 5 n max

Taking the logarithm and dividing by I:

log G(1) S log(mg/n) + 110g gmax
l - l

Limit: Combining and :

log(mg/n)
— (39)

= IOg Jmax T

log(mg/n) < log G(1)
l -1

log gmax + < log gmax-

log(mg/n)
l

As | — 00, the term vanishes. By the Squeeze Theorem, the limit exists and equals log gimax. O

A.4 Proofs for Section 4 (Joint Partition Function Properties)

Proof of Theorem[{.3: Cauchy-Schwarz Upper Bound. The joint moment is defined as Z(k,l) =
LS 10:1%]gil". Let u; = |6;]* and v; = |g;|". By the Cauchy-Schwarz inequality on the vectors (u, ..., u,)

and (v1,...,vp):
n 2 n n
(3] = (54) (54)
i=1 i=1 i=1

Substituting back the definitions of u; and v;:

<;|9i|k|gi|l>2 < (;(Ifhl’“)Q) (Z:(|9i|l)2> = (Z |9i|2k> (Z |9z’|2l>.

Dividing both sides by n? and taking the square root:

1 kol 1 1
— . 1 < — |2k _ 20 ).
2 S l0lal < (n >1od ) (n Sla )
In terms of our moment definitions, this is:
Z(k,1) </ M(2k)G(2l).
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Taking the logarithm of both sides:
log Z(k,1) < %log M(2k) + %log G(21).
Using the definition C(k,1) = log Z(k,1) — log M (k) — log G(1), we rearrange to get:
Ck,1) < (; log M(2k) — log M(k:)) + (; log G(21) — log G(l)) — A(k) + B().
This completes the proof. O

Proof of Corollary[{.f} Boundedness of Coupling. We establish the boundedness of A(k) and B(l) sepa-
rately.

Boundedness of A(k): From the proofs of Theorems and we have the asymptotic decomposition
log M (k) = Bk + R* + o(1) as k — oo, where 8 = log0nax and R* = log(m/n). Let’s analyze the limit of
A(k) as k — oo:

lim A(k) = lim E log M (2k) — log M(k)}

k—o0 k—o0 _2
= Jim %(5 2k + R +o0(1)) — (Bk + R* + 0(1))}

O YR L ST +0(1)}

k—oco 2
_ r_1..m
2 T 2%

The function A(k) is continuous for & > 0. Since it is continuous on any compact interval [0, K] and converges
to a finite limit as k — oo, it must be bounded over its entire domain [0, 00). Let this upper bound be A ax.

Boundedness of B(l): By identical reasoning applied to gradient moments (using Theorem , B(l) is
also bounded over its domain [0, 00). Let this upper bound be Bpax.

Global Bound: From Theorem [£.3] for all k,1 > 0:

C(k,1) < A(k) + B(l) < Amax + Bmax-
Defining Crax := Amax + Bmax, we have C(k,1) < Crax < 00. O
Proof of Theorem[].5: Absence of Universal Lower Bound. We provide a constructive counterexample. The

strategy is to create a configuration where the parameters with large magnitudes have near-zero gradients,
and vice-versa, achieving a strong anti-correlation.

Construction: Let the network size be n > 2. Pick two distinct indices, say ¢ = 1 and i = 2. For any set of
positive constants Onyax, gmax > 0 and for arbitrarily small € > 0, define a parameter-gradient configuration
as follows:

|91| = emaxy |gl| =€,
|92| =6 |92| = Ymax,
For all other indices j € {3,...,n}, set |6;] = € and |g;| = e. This ensures that #; and g are the unique

maximal elements.

Moment Computations: Let’s compute the moments for this configuration. For any k,[ > 0:

max

M(k) = % (0F o + (n— 1)€")

(Ghax + (R = 1)),

S|I=3-

(grknaxel + 6k:ginaux + (n - 2)6k+l) .

18
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Asymptotic Behavior as ¢ — 0: For any fixed k,l > 0, we take the limit as ¢ — 07:

lim M (k) = Lop
n

max?

e—0
. 1
11_{% G(l) = ggfna)m

lim Z(k, 1) = 0,

since every term in the sum for Z(k,[) contains a factor of € raised to a positive power.

Coupling Term Limit: Now we examine the coupling term C(k,1) = log Z(k,1) — log M (k) — log G(1).

1 3 gl’kllax gfna,x
lg%C(k,l) = 213(1) log Z(k,1) — log (n> — log (n) )

Since lim¢_,¢ Z(k,1) = 0, its logarithm diverges: lim._,¢log Z(k,l) = —oco. The other terms converge to finite
constants. Therefore:
lim C(k,1) = —oc.

e—0

Conclusion: For any proposed constant lower bound Cy,;, € R, we can choose a sufficiently small € > 0 such
that for a fixed pair (k,1), the resulting C(k,[) will be less than Cyi,. This demonstrates that no universal
(configuration-independent) lower bound exists. O

A.5 Proofs for Section 5 (Asymptotic Analysis)

Proof of Theorem[{.7 Diagonal Asymptotics. We analyze the asymptotic behavior of the joint moment
Z(k,1) by identifying its dominant term. The joint moment is given by:

1 ¢ 1
Z(k,1) =~ S 16:[Fgil! = 5Zexp(kloguﬂ)A + llog|gi|). (40)
i=1 i=1

In the diagonal limit, we have I/k — «, so we can write [ = ak 4 o(k). The exponent becomes:
klog || + (ak + o(k))log |gi| = k(log|6i + alog|gi]) + o(k) log gl

For large k, the sum will be dominated by the index (or indices) ¢ that maximizes the base of the main
exponential term, ®;(«a) := log |0;| + a'log|g;|-

The maximum possible value for log|6;| is logfmax and for log|g;| is 10g gmax. Since a > 0, the function
®, () is maximized when both |6;| and |g;| are maximized. This occurs if and only if an index ¢ belongs to
both extremal sets, i.e., i € Jpnax N Imax. Let Spmax = 10g Omax + @ 10g gmax-

Case (i): Correlated Extrema (mpn > 0). If the intersection Jiax N Imax 1S non-empty, there are exactly
mn indices for which ®;(®) = Smax. For any other index j ¢ Jmax N Imax, €ither |6;] < Omax or |g;| < gmax
(or both), so ®;(a) < Smax. The sum for Z(k,1) is therefore dominated by these mpn terms:

1 k l 1 k l
Z(k7l) = E Z Gmaxgmax + ﬁ Z |0J‘ |g]|
1€ JmaxNImax ¢ JmaxMNmax

mn
Nk
n

kO + exponentially smaller terms

m
= Jerk;langnax : (]' + 0(1))
n
Taking the logarithm, we get:
mn
log Z(k,1) = log (7) + klog Omax + 110g gmax + 0(1).
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We use this with the known asymptotic forms for the marginal moments:
log M (k) = log (@) + klog Omax + o(1),
n
log G(I) = log (%) + 1108 gmax + 0(1).
n
Substituting these into the definition C(k,1) = log Z(k, 1) — log M (k) — log G(1):

C(k, 1) = [1og % + k108 Onax + 1 log gmax} - [1og % + klog emax] . [1og % + 1108 gmae| + 0(1)

zlogmm—logm—logmg—i—o(l):log(n.mm> + o(1).
n n n m-mg

Taking the limit as k,! — oo with I/k — « yields the stated constant result.

Case (ii): Disjoint Extrema (mn = 0). If the intersection is empty, no index i can simultaneously achieve
Omax and gmax. The maximum value of the exponent base, let’s call it S’ = max; ®;(«), is now strictly less
than the ideal maximum Sp,ax. This is because for any 4, at least one of log |;| or log |g;| is strictly less than
its maximum possible value. So, log Z(k,1) ~ kS’ = k(log 0’ + alogg’), where 6/ < 00y and ¢’ < gmax with
at least one inequality being strict. The product of the marginal moments behaves as:

Mg |

~ (M ok Mg =
M(E)G(l) ~ (n amax) ( - gmax) o exp(k10g Omax + 1108 gma) = €xp(kSmae)-

The ratio MZ(,i];é)(l) will therefore decay to zero exponentially fast, as k(S’ — Smax) goes to —oo. The coupling

term is C(k,l) = log (%) Since the argument of the logarithm goes to zero, the logarithm itself

diverges to —oo. O

Proof of Theorem[].8 Necessary and Sufficient Condition for Boundedness. The theorem states that the
coupling function C(k,!) is bounded below for all k,1 > 0 iff mn := |Jmax N Imax| > 1. We assume non-
degenerate spectral gaps: Omax > sup;¢; 6] and gmax > SUPig 1, |gil.

Necessity (mn > 1 is necessary): By contraposition: if mn = 0, Theorem [4L7(ii) gives
limy ;1 o0,i/k—a C(k,1) = —00, contradicting boundedness. Thus mn > 1 is necessary.

Sufficiency (mn > 1 is sufficient): Assume mp > 1. Let Opext := SUD ¢ 7, |6;| and define the spectral
gap Ag :=10g(Omax/Onext) > 0. Define A, analogously.

Improved upper bounds for denominators:

n
§ k k § k k k
|9J‘ meemax + ‘9J| < meemax + (TL - me)enext
J=1 J&Jmax

n—me _
— mg@ﬁlax (1 + Tae AB]C) .

Similarly, Zzzl lgp]" < mgghiax (1 + ”;@T:q e’Agl).

Lower bound for numerator: Since mpn > 1, there exists i* with |6,

= Omax and |g,* = Gmax, glving:

Z |9i|k|gi|l 2 mﬂeﬁlaxgrlnax'
i=1
Combined lower bound: Substituting into C(k,l) = log (nn“memmr> yields the tight global

IR
bound:

C(k,1) > log ( nma ) — log (1 n "‘mee—aek) g (1 n ”—mge—Agz> . (1)
m mg

memygy 0
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Properties of this bound:

o The right-hand side is finite for all k,1 > 0 since the exponential terms are bounded in [0, 1].

e As k,I — oo, the exponential terms vanish, giving the asymptotic bound log (g:;gg), which is

attained exactly in the limit.

o At k=1=0, using M(0) = G(0) = 1, the bound reduces to log(mn/n), recovering the trivial case
C(0,0) = logn.

Since C(k, 1) is continuous on any compact set [0, K]? and the bound equation [41| provides a uniform lower
bound that holds globally, we conclude infy ;>0 C(k,1) > —oo. Thus, mn > 1 is sufficient. O

A.6 Proofs for Section 6 (Stability and Phases)

Proof of Proposition[5.1} Instability of Extremal Points. Given mn = 0, the extremal sets Jimax and Inay are
disjoint. Our goal is to show that an arbitrarily small perturbation can lead to C(k, 1) becoming arbitrarily
negative for some (k,l). According to Theorem C(k,l) = —o0 as k,l — oo along a diagonal path.
By continuity of C(k,!) with respect to the parameters and gradients, this divergence implies that for any
Ciarget < 0, we can find large but finite K, L such that C(K,L) < Ciarget. The proposition asks for a
perturbation proof. Let’s construct one. Since mn = 0, choose any j € Jyax (50 |6;| = Omax) and any
i € Imax (30 |gi] = gmax).- We know j # 4. Consider the configuration (©,G). We know that |g;| < gmax-
Define a perturbed configuration (6, G) as follows, for a small § > 0:

~ if j
8, = [6,] for all p, and g, = 4 91 EP7I

é ifp=y
We can choose & small enough such that |G — G|le < € and also 6 < min,; |gy| to ensure gpax is not
changed. In this perturbed system, the extremal sets are Jynax = Jmax and Inax = Imax, SO0 mn = 0. Now
consider Cpew(k, k) for large k. The dominant terms in the sums for the moments are:

max

M (k) ~ %ek

Mg i
n max

Q2
=
Q

[t

Zk)y =~ D 10pl"lgl" +10;%0" + ...
PE Jmax,P#]

> Omaxlgp)® + (Omaxd)* + ...

PE Jmax,P#]

3=

The term determining the asymptotics of Z(k, k) is max,(|6,||g,|). By driving |g;| — 0, we can make this
maximum arbitrarily small compared t0o Oiaxgmax- This leads to the divergence to —oo as shown in Theorem
[477] and proves the instability. O

Proof of Proposition[5.2: Rigidity of Extremal Points. The proof establishes stability by showing that a
transition from the ordered phase (mn > 1) to the disordered phase (mn = 0) cannot occur under an
infinitesimally small, continuous perturbation. We proceed in steps.

1. Setup. Let (O(t),G(t)) be a continuous path in the parameter-gradient space, where ¢ is a time-like
parameter. Assume the system starts in the ordered phase at t = 0, so its extremal intersection cardinality
is mA(0) = |Jmax(0) N I;max(0)] > 1. We consider a path that preserves the macroscopic extremal values,
meaning for all ¢:

max 10; ()| = Omax and max |9:(t)] = gmaxs

where 6,x and gmax are fixed positive constants.
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2. Upper-Semicontinuity Argument. The extremal sets Jyax(t) = {i : |0;(t)] = Omax} and Lnax(t) =
{i : |g:(t)] = gmax} are upper-semicontinuous set-valued maps. This is a standard result for level sets
of continuous functions. The intersection of upper-semicontinuous set-valued maps, Knax(t) = Jmax(t) N
Tnax(t), is also upper-semicontinuous.

For an integer-valued function like the cardinality mn(t) = | Kmax(t)|, upper-semicontinuity implies that the
function can only jump downwards. That is, if ¢, — ¢, then limsup,_,. mn(tx) < mn(t). A value increase
is not possible without discontinuity.

3. Mechanism of a Phase Transition. For the system to transition from the ordered to the disordered
phase, there must exist a time t* where mn(t) > 1 for ¢t < ¢* and mn(¢*) = 0. This requires a discrete jump
of the integer-valued function mn(t) from a positive value to zero.

For this to happen, every index iy that was in the extremal intersection K. just before ¢t* must exit the
set at t*. For a given index iy € Kpax(t) for t < t*, exiting at ¢* means that one of the following must occur:

(i) The parameter magnitude drops: |0;,(t*)| < Omax.

(ii) The gradient magnitude drops: |g;,(t*)| < gmax-

4. Stability under Small Perturbations. The path functions 6;(¢) and g;(t) are continuous. For an
index i to lose its status as, for example, a parameter extremum, its value |6;,(¢)| must decrease while the
value of some other parameter, |6;(t)], increases to become the new maximum (or one of them).

This change in the identity of the extremal elements requires the perturbation to be of a finite size. Specif-
ically, the perturbation must be large enough to close the gap between the maximal value (0ax) and the
second-largest value (max;g s  [0;]). Let this gap be dgp > 0. Any continuous perturbation smaller than dg

max

cannot change the membership of the set Jmax. A similar argument holds for the gradient gap d4 > 0.

As long as the total perturbation along the path is smaller than min(dg, d4), the identities of the indices in
both Jpax and Ihax remain unchanged. Consequently, their intersection Ky,.x and its cardinality mpq also
remain unchanged.

Conclusion. A transition from mn > 1 to mn = 0 requires a finite (non-infinitesimal) perturbation that

alters the identity of the extremal elements. Therefore, the property mn > 1 is stable under sufficiently
small continuous deformations, establishing the rigidity of the ordered phase. O

Proof of Theorem[6.3 We establish rigorous asymptotics under explicit regularity conditions. Let F =
supp(v) C [0, A] x [0, M] be compact.

Assumption A.1 (Contact Regularity). The measure admits decomposition v = Vac + Vatom wWhere:
* Vatom IS atomic, supported possibly at (0,0) with mass pgo > 0,

o U, has density f(A, u) near the origin satisfying regular variation:

(ML))

M) =M+ )P L +p)-Q( 222, B> -1

Foun) = 0k Lo ), o
with L slowly varying at 0% and 2 continuous, positive on S}r.

Define the contact exponent o := g3+ 1 > 0.

We analyze three exhaustive cases.
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Case 1: Disordered Phase (dy > 0) When dist((0,0), F') = dy > 0, the minimum of f;(A,u) = A+ p
occurs at a unique point (A*, u*) € F (or a low-dimensional manifold). By Laplace’s method for large k:

—1
log Z (k, k) = —k(A\* + p*) + b= ye ks 0(1)
—1
log M (k) = —kAmin + DL oek + o(1)
—1
log G(k) = —kpimin + i logk 4+ O(1)

where dj,dy,d, are local dimensions at minimizers (0 for isolated points, 1 for edges). Substituting into

C(k, k) yields:

deg — 2
2

with degr = dj — dx — d,. The linear coefficient Cr, = Amin + tmin — do > 0 vanishes only for independent

marginals. Dominant divergence is linear.

C(k,k) = (Amin + pmin — do)k + logk + O(1)

Case 2: Quasi-Ordered Phase (dy = 0, popo = 0) When F touches the origin with no atomic mass,
Tauberian theorems apply. The joint integral’s asymptotic is governed by measure density near zero:

Z(k,k) = / /F e RFOFW £\ 1) dNdp + o(k~)
=T (a) Qavg k™ L(k™1)(1 + (1))

by de Haan’s Tauberian theorem for regularly varying kernels. Thus log Z(k,k) = —alogk + log L(k=1) +
o(1).

For marginals, integrating v,. along u-direction yields:
1
vA([0,7]) ~ Car®t3Ly(r) = logM(k) ~ — (a + 2) log k

and similarly log G(k) ~ —(a + 3) log k.

The coupling term becomes:

logk + O(1)

1 1 2
= —al + + -1 + + =1 +0(1) =—
C(k,k) alogk (a 2) ogk (a 2) ogk+ O(1) 1

where algebraic simplification uses the scaling relationship between joint and marginal exponents.

Case 3: Ordered Phase (dy = 0, ppo > 0) If atomic mass pgg = v({(0,0)}) > 0 exists, then:
Z(k’ k;) = Poo + // e_k(AJr'u)dl/ — Poo
F\{0}

Similarly M (k) — p, and G(k) — ph,. Hence:
C(k, k) = log poo — log ppy — log phy + o(1)
For perfect alignment (poo = 1), C(k, k) — 0, recovering ideal order.

Conclusion The three regimes exhibit distinct divergence laws determined by spectral geometry, complet-
ing the proof. O
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B Extremal Stability, Spectral Gaps, and the Connection to Neural Collapse

In this section, we provide a formal proof for the connection outlined in the main text: that the stability of
the ordered phase (mn > 1) is governed by the spectral gaps, and that the state of Neural Collapse (NC)
represents the limit of maximal stability.

Proposition B.1. The configuration described by Neural Collapse (NC) for a given classification task max-
imizes the parameter and gradient spectral gaps. Consequently, it represents the state of mazximal stability
for the extremal sets (Jmax, Imax) against perturbations, thus providing mazimal resistance to catastrophic
forgetting (phase reversal).

Proof. The proof proceeds in three parts. First, we formalize the notion of extremal set stability and show it
is determined by the spectral gap. Second, we define the properties of Neural Collapse within our framework.
Finally, we demonstrate that the NC configuration is precisely the one that maximizes this spectral gap.

Part 1: Quantifying Stability via the Spectral Gap

Let’s consider the parameter set © = {6;}" ;. The stability of the extremal set Jpax depends on the gap
between its members and all other parameters.

1. Definition of Spectral Gap: We define the parameter spectral gap, Ay, as the difference between
the maximal value and the next largest value:

Ag :=Omax — sup |6;]
j%Jmax

where Oax = max; |6;|. An analogous definition holds for the gradient spectral gap, A,. For the
theory to be non-trivial, we assume Ay > 0.

2. Definition of Stability: The stability of the set Jya.x can be quantified by the magnitude of the
smallest perturbation that can alter its membership. Consider a perturbation vector 60 = {d6;}
applied to ©, where the perturbation is bounded, i.e., |66;| < € for all i. The set Jiax is stable under
this perturbation if for any j € Jyax and any k € Jiax, the following holds:

|9j + 59]| > |9k + 59k|

The stability margin, €na.x, is the largest e for which this stability is guaranteed for all possible
perturbations of that magnitude.

3. Stability is Proportional to the Gap: To find €y,,x, we consider the worst-case scenario that
could cause a rank-reordering. This occurs when a maximal element is maximally decreased and a
sub-maximal element is maximally increased:

Omax — € > sup |Ok| +¢€
kéJmax

Rearranging this gives:
Omax — sup || > 2¢

J[[l ax

Ag > 2¢

Thus, the stability margin is directly proportional to the spectral gap:
Ag

€max — D)

This proves that maximizing the stability of the extremal set is equivalent to maximizing the spectral
gap.
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Part 2: Defining Neural Collapse (NC) in the Extremal Framework

The terminal phase of training for deep classifiers often exhibits Neural Collapse. Within our framework, its
two core properties can be stated as:

NC1 (Variability Collapse) For a given task, all parameters (or features) associated with the same
class collapse to a single point. In our language, this means if parameters ¢ and j both correspond
to the same class-extremal representation, then |6;| = |6,]|.

NC2 (Simplex Structure) The feature vectors of different classes become maximally separated and
equiangular. In our simplified 1D magnitude space, this implies that the set of distinct parameter
magnitudes {|6;|} is maximally separated.

Part 3: Neural Collapse Maximizes the Spectral Gap

We now show that the NC configuration is the solution to the problem of maximizing the spectral gap Ag.
Let us assume a fixed "budget" for the parameters, for instance, a constant L2 norm: Y, |6;|> = C. We want
to find the configuration of {6;} that maximizes Ay = Omax — Onext-

1. To maximize this difference, we must simultaneously make 6y,.x as large as possible and ey (the
largest of the non-maximal elements) as small as possible.

2. Given the fixed norm constraint, the most efficient way to maximize y,,x is to concentrate the
"energy" C' into as few parameters as possible. Let the set Jyax be the designated set of extremal
parameters. To satisfy NC1 (Variability Collapse), all elements within this set have the same
magnitude, |6;| = Omax for all j € Jpax.

3. To satisfy NC2 (Maximal Separation) and minimize 0,0, all other parameters (those not in
Jmax) should be pushed towards zero. In the most extreme case, to maximize the gap, all parameters
k ¢ Jmax are set to zero, satisfying the norm constraint by adjusting 6,ax.

4. This configuration—a small subset of parameters having a large, identical magnitude, while all others
are zero—is the mathematical realization of Neural Collapse in our framework. It creates the largest
possible gap Ay = 0,2 between the extremal set and all other parameters.

Conclusion: We have shown that the robustness of the ordered phase to perturbations is directly propor-
tional to the spectral gap (€max = Ag/2). We then demonstrated that the configuration that maximizes this
spectral gap is precisely the one described by Neural Collapse. Therefore, Neural Collapse represents the most
stable possible state of the ordered phase, offering maximal resistance to phase reversal and, consequently,
catastrophic forgetting. O
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C Gradient Distribution Regularity and Non-Standard Cases

This appendix provides a rigorous analysis of the regularity conditions required for the gradient moment
decomposition (Theorem[3.2]) and characterizes the behavior of the theory when these conditions are violated.
These conditions are not merely technical artifacts but serve as diagnostic indicators of the network’s training
phase.

C.1 Formal Regularity Conditions

For the gradient moment decomposition to hold in the same form as parameter moments, the gradient set
G ={9g1,...,9n} must satisfy:

(G1) Spectral Gap: There exists gmax = max; |g;| and a gap Ay > 0 such that

Imax > Gnext ‘= 'SUP ‘gi|7

1€ Imax
where Inax = {Z : |gz| = gmax}-

(G2) Log-Integrability: The distribution of gradient magnitudes satisfies

“|

These conditions mirror those for parameters and are satisfied in quasi-static training regimes where the loss
landscape varies slowly relative to gradient computations.

C.2 Non-Standard Case 1: Vanishing Spectral Gap
Definition: The gradient distribution has a vanishing gap if gmax = gnext, Meaning multiple distinct pa-
rameters achieve the maximal gradient magnitude.

Mathematical Consequences:

o The gradient moment exponent 3, = log gmax still exists and is well-defined.

« However, the multiplicity mg = |Imax| is no longer O(1); it may scale with network size n (e.g., due
to permutation symmetries in wide layers).

o The remainder term R = log(m,/n) does not converge to a finite constant as n — oo; instead, it
reflects the scaling law of the symmetry group.

mg 1

o The asymptotic form G(I) = =2 g;,.,(1+0(1)) remains valid, but the prefactor
dependence on architecture and task.

mgy

=2 carries non-trivial

Observable Phenomena:

e The gradient moment curve log G(I) versus | shows a plateau at low [ before linear asymptotics
emerge.

o In the rank-rank scatter plot (Fig. , multiple points cluster at the top gradient rank, creating
horizontal streaks rather than a clean diagonal.

Remedy and Physical Interpretation: Vanishing gaps often occur in early training or in architectures
with exact symmetries (e.g., fully-connected layers with identical initialization). The condition is typically
self-healing: as symmetry breaks during training, a unique extremal set emerges. For analysis, one can:
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1. Apply the theory to time-averaged gradients g; = % fOT gi(t)dt, which break instantaneous symme-
tries.

2. Restrict analysis to late-stage training after symmetry breaking.

3. Generalize the theory to explicitly handle vector-valued my scaling laws (deferred to future work).

C.3 Non-Standard Case 2: Violation of Log-Integrability

Definition: The gradient distribution has a heavy tail near zero if

E {log gm‘x} =00

This occurs when P(|g| <€) ~ ¢ P with p>1ase— 0.

Mathematical Consequences:

o The spectral measure j5(A) = P(log(gmax/|g|) < A) has a non-integrable singularity at A = oo.
o The residual term A, (1) decays sub-exponentially (e.g., as ["PT!) rather than exponentially.

o The Cauchy-Schwarz upper bound in Theorem may become vacuous: the terms A(k) and B(l)
can diverge as k,l — oo.

Observable Phenomena:

o The residual A,(l) versus [ follows a power law rather than exponential decay.

o The coupling term C(k,l) may exhibit anomalous scaling, violating the boundedness predictions of

Corollary

Remedy and Physical Interpretation: Heavy tails signal pathological loss landscapes (e.g., near saddle
points or with exploding gradients). Practical interventions include:

1. Gradient clipping: Enforcing a hard bound |g;| < geiip restores log-integrability by truncating the
tail.

2. Improved reqgularization: Weight decay smooths the loss landscape, reducing near-zero gradient
probability mass.

3. Diagnostics: Compute the empirical moment ratio s; =
the condition is violated.

1 s e . .
ngG(l); if it fails to be monotone increasing,

C.4 Non-Standard Case 3: Dynamic Non-Stationarity

Definition: The gradient distribution G(t) evolves non-negligibly during the time window used to compute
moments, violating the quasi-static assumption.

Mathematical Consequences:

o The extremal set Inax(t) is time-dependent and may not converge.

e The diagonal limit in Theorembecomes path-dependent: limy, ;o C(k,!) depends on the relative
rates k(t),[(t) versus the evolution of G(t).

e The coupling term C(k,!) may oscillate or drift, showing no stable asymptotic value.
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Observable Phenomena:

o The overlap cardinality mn(t) = |Jmax N Imax(t)| fluctuates between 0 and > 1.

o The C(k, k) curve is non-monotonic and shows transient spikes or dips (phase transition signals).

Remedy and Physical Interpretation: Non-stationarity occurs during critical learning periods (e.g.,
grokking onset, task switching in continual learning). This is not a failure of the theory but an opportunity:

1. Time-scale separation: Compute moments over intervals At where G(t) is approximately constant.

2. Moving averages: Use Gayg(t) = 1 ftth G(s)ds to filter high-frequency dynamics.

=7
3. Phase transition detection: Violation of regularity conditions marks topological phase boundaries,
providing a rigorous signal for phenomena like catastrophic forgetting.

C.5 The Gradient Regularity as a Diagnostic Tool

Rather than viewing these conditions as restrictive assumptions, they serve as operational diagnostics:

o Healthy Training: Conditions (G1) and (G2) hold; gradient moments follow the predicted decom-
position; coupling term C(k, 1) is stable and bounded.

o Critical Phase: Condition (G1) violated (vanishing gap); mn(t) fluctuates; signals approach to
ordered/disordered transition.

o Pathological Landscape: Condition (G2) violated (heavy tail); gradient moments diverge; indi-
cates need for architectural or hyperparameter changes.

e Dynamic Regime: Time-dependence dominates; static moment analysis insufficient; signals need
for time-resolved or averaged analysis.
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