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Abstract

This paper establishes a rigorous mathematical foundation for the statistical behavior of
neural network parameter and gradient moments through self-consistent equations. We
prove that the logarithmic moments exhibit a universal asymptotic decomposition governed
by extremal statistics. This framework is extended to construct a joint partition function
that unifies parameter and gradient statistics, revealing a topological phase distinction be-
tween states of correlated and uncorrelated extrema. The theory provides exact microscopic
guarantees for finite networks while capturing emergent scaling behavior in large-scale sys-
tems.

1 Introduction

The statistical properties of a neural network’s weights and gradients are fundamental to its performance
Neyshabur et al. (2017). While much of existing theory relies on infinite-width limits, empirical work on
practical, finite-sized networks reveals the dominance of heavy-tailed distributions in learning dynamics
Gürbüzbalaban et al. (2021). To bridge this gap, we introduce a deterministic framework, grounded in large
deviations theory, for analyzing the exact moment statistics of any finite network.

Our primary contribution is a set of self-consistent equations governing the evolution of parameter and
gradient moments. We prove that the logarithm of high-order moments follows a universal asymptotic form,
which decomposes the network’s statistics into contributions from its single largest value (the extremum), its
multiplicity, and the spectrum of all other values. This provides a new and exact tool for structural analysis.

To quantify the statistical dependence between a parameter’s magnitude and its gradient, we define a cou-
pling term via a joint partition function. The asymptotic behavior of this term reveals two distinct learning
phases: an ordered phase, where large parameters align with large gradients, and a disordered phase,
where they do not. This coupling offers a tractable alternative to complex information-theoretic measures,
which often face formal limitations in practice Tishby & Zaslavsky (2017); McAllester & Stratos (2020).

We develop this framework, validate it experimentally, and apply it to interpret phenomena such as grokking
Power et al. (2022) and catastrophic forgetting Kirkpatrick et al. (2017). Furthermore, we extend our
analysis to modern deep learning stacks, showing how architectural components like Normalization and
Residual Connections facilitate the formation of the ordered phase, and providing a theoretical grounding
for magnitude-based pruning. Our work demonstrates its utility in complementing recent progress on high-
dimensional dynamics and scaling laws, offering a new lens through which to understand deep learning.

2 Theoretical Framework

2.1 Parameter Moments

Definition 2.1 (Absolute Parameter Moments). Let Θ = {θ1, θ2, . . . , θn} denote the complete parameter
set of a neural network, where n = |Θ| < ∞. The k-th order absolute moment is defined as:

M(k) := 1
n

n∑
i=1

|θi|k, k ≥ 0 (1)
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with the convention that 00 = 1 and 0k = 0 for k > 0.

Remark. This definition naturally handles zero-valued parameters: they contribute nothing to moments
of order k > 0 and correspond to a Dirac mass at λ = ∞ in the spectral representation, which does not affect
the Laplace transform for any finite k. The convention 00 = 1 ensures proper normalization M(0) = 1.

2.2 Existence of Moment Exponents

Theorem 2.2 (Existence and Explicit Value of Moment Exponents). For any finite-parameter neural net-
work, the limit:

β := lim
k→∞

log M(k)
k

(2)

exists, is finite, and equals:

β = log
(

max
1≤i≤n

|θi|
)

= sup
k>0

log M(k)
k

(3)

Proof. The proof is provided in Appendix A.1.

Theorem 2.3 (Remainder Convergence). The limit:

R∗ := lim
k→∞

(
log M(k) − βk

)
(4)

exists, is finite, and equals:
R∗ = log m

n
(5)

where m denotes the multiplicity of parameters with maximal modulus.

Proof. The proof follows directly from the derivation in Appendix A.1.

2.3 Self-Consistent Equation Formulation

The exact asymptotic decomposition:

log M(k) = βk + R∗ + ∆(k), k → ∞ (6)

can be refined through spectral analysis. Define the decay rates λi := log(θmax/|θi|) > 0 for |θi| < θmax.
Then:

∆(k) = log

1 +
n−m∑
j=1

wje−λjk

 (7)

In the thermodynamic limit n → ∞, this converges to (see Appendix A.2 for a rigorous proof under weakened
regularity conditions):

∆(k) → log
[
1 +

∫ ∞

0
ρ(λ)e−λkdλ

]
(8)

where ρ(λ) is the spectral density satisfying
∫∞

0 ρ(λ)dλ = n−m
n .
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Intuitive Interpretation. The decomposition in Eq. (6) reveals a fundamental statistical competition
within the network. The linear term βk represents the contribution from the single "loudest" parameter (the
extremum θmax), akin to a signal dominating the noise. Conversely, the integral term in Eq. (8) aggregates
the "background" contribution from the vast majority of non-extremal parameters. For large moments k,
the statistics are dominated solely by the extremum, leading to a "winner-takes-all" regime where the fine
details of the distribution fade away. As k decreases, the background spectrum ρ(λ) begins to contribute
significantly, acting like a thermal bath in statistical mechanics. This implies that high-order moments
effectively act as a "spectral filter," isolating the network’s most singular features from the bulk distribution.

2.4 Experimental Validation of Moment Decomposition

(a) Moment decomposition for MLP architectures. (b) Bi-exponential fitting of residual terms.

(c) Spectral density reconstruction from moments. (d) Architecture-dependent spectral characteristics.

2.4.1 Phenomenological Model: Bi-Exponential Residual Structure

Our experiments consistently reveal that the residual term, ∆(k), exhibits a bi-exponential decay across
diverse architectures. Based on this strong empirical observation, we propose a phenomenological model to
explicitly capture the leading-order behavior of this residual term. The goal is not to derive this form from
first principles, but to construct a minimal model that effectively describes the observed data.

We propose the functional form:

∆(k) ≈ log
[
1 + A1e−λ1k + A2e−λ2k

]
(9)

This form is motivated by its direct interpretation within our framework: it corresponds to a spectral
density ρ(λ) whose dominant features can be approximated by two discrete modes. This suggests that the
vast number of non-extremal parameters tend to organize into distinct statistical ensembles, each with a
characteristic decay rate, λ1 and λ2.

Linearization and Spectral Interpretation For large k, where the exponential terms are small, the
logarithmic function can be linearly approximated via a first-order Taylor expansion, log(1 + x) ≈ x. This
is not just a mathematical convenience; it provides a powerful tool for spectral interpretation. Applying this
linearization to our model yields:

log M(k) ≈ βk + R∗ + A1e−λ1k + A2e−λ2k (10)
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This approximation is empirically justified, as the condition A1e−λ1k + A2e−λ2k ≪ 1 is validated by our
moment analysis for sufficiently large k. The crucial insight here is that the linearized, empirically-fitted
model directly reveals the structure of the underlying effective spectral density:

ρeff (λ) ≈ A1δ(λ − λ1) + A2δ(λ − λ2) (11)

This effective density, composed of two Dirac delta functions, should be understood as a simplified repre-
sentation—a "two-peak" approximation—of what is likely a complex, continuous background spectrum. It
successfully captures the dominant decay modes that govern the residual term’s behavior at large k.

3 Gradient Moments and Statistical Isomorphism

3.1 Gradient Moment Theory

Definition 3.1 (Absolute Gradient Moments). Let G = {g1, g2, . . . , gn} denote the gradient set correspond-
ing to parameters. The l-th order gradient absolute moment is:

G(l) := 1
n

n∑
i=1

|gi|l, l ≥ 0 (12)

Theorem 3.2 (Existence and Explicit Value of Gradient Moment Exponents). For any finite-parameter
neural network under gradient-based training, the limit:

βg := lim
l→∞

log G(l)
l

(13)

exists, is finite, and equals:

βg = log
(

max
1≤i≤n

|gi|
)

= sup
l>0

log G(l)
l

(14)

Proof. The proof is analogous to that of Theorem 2.2 and is provided in Appendix A.3.

Remark on Applicability. The gradient moment decomposition assumes regularity conditions (non-
vanishing spectral gap and log-integrability) that typically hold in quasi-static training phases. Transient
violations may occur during early training or in architectures with strong symmetries; see Appendix C for a
complete characterization of these non-standard cases and their diagnostic value.

4 Joint Partition Function: Theory of Bounded Coupling

4.1 Joint Moments and Decomposition

Definition 4.1 (Joint Moments). For orders k, l ≥ 0, the joint moment is defined as:

Z(k, l) := 1
n

n∑
i=1

|θi|k|gi|l. (15)

Lemma 4.2 (Exact Decomposition of Logarithmic Joint Moments). Let C(k, l) := log Z(k, l) − log M(k) −
log G(l) be the pure coupling term. Then:

log Z(k, l) = log M(k) + log G(l) + C(k, l). (16)

This decomposition separates the joint statistics into marginal contributions and a term that captures their
interaction.
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(a) Gradient moment decomposition (b) Parameter-gradient coupling structure

Figure 2: Gradient moment statistics and coupling behavior. Deviations from predicted asymptotics may
indicate regularity violations; see Appendix C.

Physical Meaning of Coupling. The coupling term C(k, l) serves as a rigorous measure of "alignment
efficiency." A highly negative C(k, l) indicates a pathological state where neurons with large weights are paired
with vanishingly small gradients (and vice versa). This suggests that the network’s most significant features
are effectively "frozen" or receiving no learning signal—a hallmark of the "disordered phase." Conversely, a
bounded C(k, l) (the "ordered phase") implies that the learning signal (gradients) is correctly focusing on the
most important parameters, facilitating efficient feature learning. In essence, C(k, l) quantifies the "energy
cost" for the system to maintain correlated extremal statistics.

4.2 Global Upper Bound on Coupling Term

Theorem 4.3 (Cauchy-Schwarz Upper Bound). For any finite-parameter network, the coupling term satis-
fies:

C(k, l) ≤ A(k) + B(l) (17)
where

A(k) := 1
2 log M(2k) − log M(k), (18)

B(l) := 1
2 log G(2l) − log G(l). (19)

Proof. See Appendix A.4.

Corollary 4.4 (Boundedness of Coupling). The coupling term is globally bounded from above:

C(k, l) ≤ Cmax < ∞, ∀k, l ≥ 0. (20)

Proof. See Appendix A.4.

4.3 Non-existence of Universal Lower Bound

Theorem 4.5 (Absence of Universal Lower Bound). For any constant Cmin ∈ R and any network size
n ≥ 2, there exists a parameter-gradient configuration (Θ, G) such that C(k, l) < Cmin for some k, l ≥ 0.

Proof. See Appendix A.4 for a constructive proof.
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Figure 3: Anisotropic Divergence in the Disordered Phase (m∩ = 0). The figure confirms that
divergence in the disordered phase is directional (anisotropic). (a, b) The 3D surface of the coupling term
C(k, l) visually confirms this, appearing bounded along the axes but plunging towards negative infinity
along the diagonal. (c, d) Axial boundedness is confirmed by the unilateral limits, which converge to finite
constants for any fixed order, despite showing transient downward trends. (e) In sharp contrast, the diagonal
limit C(k, k) is clearly unbounded and follows a negative linear asymptote. (f) Throughout, the data respects
a theoretical upper bound, confirming the model’s mathematical consistency.
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4.4 Asymptotic Analysis of Coupling

Theorem 4.6 (Fixed Order Asymptotics). For unilateral limits, we have:

(i) For any fixed k ≥ 0:

lim
l→∞

C(k, l) = log
(

1
mg

∑
i∈Imax

|θi|k
)

− log M(k).

(ii) For any fixed l ≥ 0:

lim
k→∞

C(k, l) = log
(

1
m

∑
i∈Jmax

|gi|l
)

− log G(l).

Where Jmax = arg maxi |θi| and Imax = arg maxi |gi|.

Proof. The proof follows from applying the logic of Theorem 2.2 to the definition of C(k, l) in the specified
limits.

Theorem 4.7 (Diagonal Asymptotics). Let k, l → ∞ with l/k → α ∈ (0, ∞). The asymptotic behavior of
the coupling term is determined by the intersection of the extremal sets, m∩ = |Jmax ∩ Imax|.

(i) Correlated Extrema (m∩ > 0): If the extremal sets intersect, the coupling term converges to a
universal constant independent of α:

lim
k,l→∞
l/k→α

C(k, l) = log
(

n · m∩

m · mg

)

(ii) Disjoint Extrema (m∩ = 0): If the extremal sets are disjoint, the coupling term diverges to
negative infinity:

lim
k,l→∞
l/k→α

C(k, l) = −∞

Proof. See Appendix A.5.

Theorem 4.8 (Boundedness Condition and Lower Bound). Let Θ = {θi}n
i=1 and G = {gi}n

i=1 be finite,
non-zero parameter-gradient sets. Define the extremal sets Jmax = arg maxi |θi| and Imax = arg maxi |gi|.
Let this system have non-degenerate spectral gaps, meaning the maximum values are strictly greater than
all others:

θmax > sup
j /∈Jmax

|θj | and gmax > sup
i/∈Imax

|gi|. (21)

Under this condition, the coupling term

C(k, l) = log Z(k, l) − log M(k) − log G(l) (22)

admits a finite lower bound for all k, l ≥ 0 if and only if the extremal sets intersect, i.e.,

m∩ := |Jmax ∩ Imax| ≥ 1. (23)

When this condition holds, a valid lower bound is given by log(m∩/n).

Proof. See Appendix A.5.
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4.5 Joint Self-Consistent Equation Formulation

This necessary and sufficient condition allows for a complete spectral decomposition of the coupling term.
Theorem 4.9 (Spectral Representation of Coupling Term). Let the spectral decay rates be λi = log(θmax/|θi|)
and µi = log(gmax/|gi|). The coupling term C(k, l) admits the exact spectral decomposition:

C(k, l) = log m∩n

mmg︸ ︷︷ ︸
Topological Constant

+ log

1 + 1
m∩

∑
i/∈Kmax

e−λik−µil


︸ ︷︷ ︸

Joint Spectral Correction

− log

1 + 1
m

∑
i/∈Jmax

e−λik


︸ ︷︷ ︸
Parameter Spectral Correction

− log

1 + 1
mg

∑
i/∈Imax

e−µil


︸ ︷︷ ︸
Gradient Spectral Correction

.

(24)

where Kmax = Jmax ∩ Imax. This form holds when m∩ ≥ 1.

5 Stability of Extremal Points Across Phases

The condition m∩ ≥ 1 from Theorem 4.8 is more than a mathematical curiosity; it marks a topological
distinction between a "disordered" phase (m∩ = 0, unbounded below) and an "ordered" phase (m∩ ≥ 1,
bounded below). This distinction corresponds to a fundamental difference in the stability of extremal points
under perturbations, such as those induced by training.

5.1 Unprotected Extremal Points in the Disordered Phase (m∩ = 0)

In this phase, the set of largest parameters and the set of largest gradients are disjoint. This lack of alignment
leads to fragility.
Proposition 5.1 (Instability of Extremal Points). When m∩ = 0, for any ϵ > 0 and any target value
Ctarget < 0, there exists a small perturbation of the parameters and gradients that results in C(k, l) < Ctarget
for some finite k, l.

Proof. See Appendix A.6.

Interpretation: In the disordered phase, the identities of the extremal parameters are not anchored to the
learning signal (gradients). This can be thought of as a "liquid" state, where gradient descent can easily
reassign which parameters become dominant. The lack of a lower bound on C(k, l) reflects that there is no
"energy penalty" for decorrelating the parameter and gradient extrema.

5.2 Topologically Protected Extremal Points in the Ordered Phase (m∩ ≥ 1)

In this phase, at least one parameter is simultaneously extremal in both magnitude and gradient. This
creates a form of topological protection.
Proposition 5.2 (Rigidity of Extremal Points). When m∩ ≥ 1, the property of having overlapping extrema
is robust against small continuous perturbations that preserve the maximal parameter and gradient values.
The identity of the parameters forming this extremal core cannot change without crossing a phase transition.

Proof. See Appendix A.6.

Interpretation: The ordered phase behaves like a "solid" state where at least one extremal parameter is
locked to an extremal gradient. The finite lower bound on the coupling term acts as a confining potential,
preventing the system from decorrelating its most important parameters from the learning signal. This
stability is crucial for forming robust representations.
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(a) Ordered (Initial) (b) Ordered (Final) (c) Disordered (Initial) (d) Disordered (Final)

Figure 4: Evolution of Topological Phases in Rank-Rank Space. Plots of parameter magnitude rank (x-axis)
vs. gradient magnitude rank (y-axis). (a-b): A successful run showing the evolution into an ordered phase, where
ranks correlate along the diagonal, ensuring m∩ ≥ 1. (c-d): A failed run devolving into a disordered, anti-correlated
state, where large weights get small gradients (m∩ = 0).

(a) Success (Early) (b) Success (Late) (c) Failure (Early) (d) Failure (Late)

Figure 5: Grokking vs. Failure in the Spectral Plane. The plane plots log-decay from the max parameter
(x-axis) and max gradient (y-axis). The origin (0,0) represents the ideal state of high-magnitude, high-gradient
parameters. Successful grokking (a-b) is marked by density condensing at the origin over time. Failure (c-d) is
characterized by density pathologically avoiding the origin, indicating large weights receive no learning signal.

5.3 Catastrophic Forgetting as Phase Reversal

The stability of the ordered phase (m∩ ≥ 1) is locally robust but globally fragile. A strong enough perturba-
tion, such as training on a new, unrelated task, can shatter the alignment between parameters and gradients,
inducing a phase transition from ordered to disordered (m∩ = 0). This provides a topological explanation
for catastrophic forgetting.

This stability is fundamentally linked to the stability of the extremal sets (Jmax, Imax) against pertur-
bations from the learning process. The degree of this stability is governed directly by the spectral gaps of
the parameter and gradient distributions. A larger gap implies greater resilience, as a stronger perturbation
is required to alter the membership of these extremal sets and risk a phase reversal. In the limit of maxi-
mum stability, where the spectral gap is maximized, the system approaches a state of Neural Collapse.
This regime, where all class-relevant extremal features coalesce onto a maximally separated simplex struc-
ture, represents the most robust possible form of the ordered phase. It is, therefore, maximally resistant to
catastrophic forgetting (a formal treatment of this connection is deferred to Appendix B).

To test this phase reversal hypothesis, we conducted a continual learning experiment on sequential MNIST
(Task A: digits 0-4; Task B: digits 5-9). We compared a baseline with our theory-guided Elastic Weight
Consolidation (EWC), which uses a penalty to elastically protect the extremal core stability of Task A.

The results in Table 1 confirm the hypothesis. The baseline model undergoes a complete phase reversal,
losing its ordered structure for Task A. In contrast, our EWC approach acts as a "confining potential" that
preserves the extremal set stability (and thus m∩ ≥ 1), demonstrating that catastrophic forgetting can be
understood and mitigated as a controllable topological phase transition.
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Table 1: Final Accuracy after Sequential Training on MNIST

Strategy Final Task A Accuracy Final Task B Accuracy
Baseline (Fine-tuning) 0.3069 0.9916
Hard-Freeze Top-1000 0.9889 0.3364
EWC (λ = 100) 0.6698 0.9831

6 Controlled Divergence and Quasi-Ordered Phases in Practical Networks

The sharp phase transition between ordered (m∩ ≥ 1) and disordered (m∩ = 0) phases is an idealization
that emerges in the strict thermodynamic limit. In practical, finite-sized networks, the system often resides
in an intermediate state of approximate alignment, where the largest parameters and gradients are
not perfectly coincident but rather approach each other asymptotically. Our continuous framework naturally
captures this realistic scenario through the geometry of the joint spectral support near the origin.

Rather than a discrete topological switch, transitions in finite networks are characterized by the distance
of the spectral support from the origin and its contact order. This leads to a spectrum of critical behav-
iors ranging from quasi-ordered(logarithmic divergence) to disordered (linear divergence), providing a
quantitative diagnostic for the "health" of parameter-gradient alignment.

6.1 Approximate Alignment and Contact Stability

Definition 6.1 (Spectral Gap and Contact Regime). Consider a network with joint spectral measure ν
supported on F ⊂ R2

+. We define:

• Spectral Gap: d0 := dist((0, 0), F ), measuring the minimal separation from perfect alignment.

• Contact Regime: If d0 = 0 but (0, 0) /∈ F , the support touches the origin without containing it,
defining a quasi-ordered phase.

When d0 > 0, the system remains in a disordered phase with decoupled extrema. As training progresses, d0
typically decreases, and the support may approach the origin with a characteristic contact exponent that
quantifies the rate of alignment.

6.2 Critical Exponent and Asymptotic Divergence

The geometry of the support near the origin determines the asymptotic behavior of the coupling term. We
characterize this geometry by the contact function and its scaling exponent.
Definition 6.2 (Contact Exponent). Assume the support near the origin satisfies a power-law scaling:

inf{λ + µ : (λ, µ) ∈ F, λ + µ ≥ r} = Crα + o(rα), r → 0+

where α > 0 is the contact exponent. Smaller α indicates a "flatter" approach to the origin, while α → ∞
corresponds to sharp, pointwise contact.
Theorem 6.3 (Controlled Divergence in Quasi-Ordered Networks). Consider a network with approximate
alignment characterized by spectral gap d0 and contact exponent α (when d0 = 0). The diagonal asymptotic
behavior (l = αk) of the coupling term is given by:

C(k, k) ∼


− 2

α + 1 log k + O(1), d0 = 0 (quasi-ordered)

−d0k + O(log k), d0 > 0 (disordered)
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The first case reveals that even without perfect alignment (p00 = 0), a quasi-ordered network exhibits only
logarithmic divergence, which is far milder than the linear divergence of the fully disordered phase. This
captures the progressive alignment observed during training, particularly in phenomena like grokking
where the model slowly transitions from disorder to order.

6.3 Training Quality Metric via Contact Exponent

The rate of divergence provides a quantitative, real-time measure of alignment quality that is directly com-
putable during training.
Corollary 6.4 (Continuous Training Quality Metric). Define the contact quality index:

Qα := lim
k→∞

−C(k, k)
log k

∈ [0, ∞]

For a network with contact exponent α, we have Qα = 2
α+1 . Thus:

Qα ≈ 0 indicates near-perfect alignment (α large)
0 < Qα < ∞ indicates quasi-ordered phase
Qα = ∞ indicates disordered phase (d0 > 0)

In practice, one estimates Q̂α(K) = − C(K,K)
log K for moderate K (e.g., K ∈ [10, 50]). The evolution of Q̂α

during training provides a direct diagnostic:

• Decreasing trend: Network is moving toward the ordered phase.

• Stable low value: Robust alignment achieved.

• Sudden increase: Phase reversal or catastrophic forgetting.

6.4 Practical Significance and Diagnostics

This continuous extension is significant for real-world networks:

Progressive Learning (Grokking) During grokking, the network initially stays in a quasi-ordered state
(0 < Qα < ∞) for many epochs before transitioning to true order (Qα → 0). The slow decrease of Qα

reflects the gradual compression of the contact exponent α.

Catastrophic Forgetting When switching tasks, the spectral support F may suddenly detach from the
origin (d0 jumps from 0 to > 0), causing Qα to spike. Monitoring Qα provides early warning of forgetting.

Architecture Design Architectures promoting large α values (e.g., weight sharing, skip connections)
facilitate faster alignment. The contact exponent thus serves as a design principle for trainability.

Thus, even when perfect alignment is unattainable, the coupling term’s behavior is not arbitrary but gov-
erned by predictable, geometry-dependent divergence laws. This provides a rigorous, computable tool for
diagnosing and controlling the alignment health of neural networks in practice.

6.5 Interaction with Modern Architectural Components

The continuous transition framework and the contact quality index Qα provide a physical basis for under-
standing the success of ubiquitous deep learning components. We interpret these components as mechanisms
that actively manipulate the spectral support to favor the ordered phase (Qα → 0).
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Normalization Layers (BatchNorm/LayerNorm). Normalization techniques explicitly constrain the
moments of the parameter distribution. In our framework, LayerNorm effectively imposes a hard constraint
on the second moment M(2) ≈ 1. This constrains the potential range of the extremal value θmax (Eq. 3),
preventing the "runaway" of any single parameter. Crucially, this compression forces the system to maintain a
compact spectral support, reducing the effective distance d0 to the origin. By preventing spectral dispersion,
normalization layers act as "confinement potentials" that stabilize the quasi-ordered phase and facilitate the
transition to full alignment.

Weight Decay as Spectral Filtering. Standard weight decay (L2 regularization) applies a penalty pro-
portional to θ2

i . In terms of our spectral decomposition (Eq. 8), this acts as a "soft filter" that preferentially
suppresses the heavy tail of the spectral density near λ ≈ 0 (large weights). This effectively increases the
parameter spectral gap ∆θ. According to our stability analysis, a larger spectral gap enhances the rigidity
of the extremal sets against perturbations, thereby increasing the robustness of the alignment against the
noise of stochastic gradient descent.

Residual Connections (ResNets). Deep networks without residual connections often suffer from van-
ishing gradients, which in our framework corresponds to a degenerate gradient spectral gap (∆g → ∞ or
undefined, leading to Qα → ∞). Residual connections create "gradient superhighways," ensuring that gradi-
ent magnitudes |gi| do not vanish exponentially with depth. This preservation of gradient magnitude scales is
crucial for maintaining the "ordered phase" (m∩ ≥ 1). By ensuring that βg (Eq. 13) remains well-defined and
non-degenerate across all layers, residual connections facilitate the continuous alignment between parameters
and gradients, preventing the system from collapsing into the disordered phase.

7 Discussion: Limitations and Future Directions

The framework presented in this paper offers a new lens through which to view the internal statistical
mechanics of neural networks, focusing on the deterministic properties of finite-sized models rather than
relying on idealized asymptotic limits. By analyzing the joint moments of parameters and gradients, we
have uncovered a rich phase structure governed by the geometry of spectral support. However, like any
foundational theory, its value is defined as much by the questions it answers as by the new ones it raises.
Here, we honestly delineate the limitations of our current work, which in turn illuminate promising avenues
for future research.

From Statics to Dynamics. Our analysis is primarily static. It provides a precise characterization of a
network’s state—be it ordered, quasi-ordered, or disordered—at a given instant. We have successfully used
this to analyze equilibrium and quasi-equilibrium states. A natural and immediate extension is to build a
full dynamic theory upon this static foundation. Key open questions include:

• What is the equation of motion governing the evolution of the spectral gap, d0(t), and the contact
quality index, Qα(t)?

• Can we model the phase transition itself as a dynamic process, thereby explaining phenomena like
the "critical slowing down" observed during grokking, where the system lingers in a quasi-ordered
state before finally condensing?

Developing such a dynamic theory would transform our framework from a powerful diagnostic tool into a
predictive model of the entire training trajectory.

The Microscopic Origin of Alignment. Our theory is currently phenomenological; it describes that
a system can be in a state of alignment but does not fully explain the microscopic forces responsible for
creating and maintaining it. We have characterized the stability of extremal points, but we have not derived
the "restoring force" that pulls the system towards alignment. We conjecture that this force originates from
the curvature of the loss landscape. A pivotal future direction is to connect our spectral plane coordinates
(λ, µ) to the local geometry of the loss function, likely through the Hessian matrix. For instance, how does
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the landscape curvature in the direction of a large-magnitude parameter (λ → 0) relate to the magnitude
of its gradient (µ)? Uncovering this relationship would bridge the gap between our macroscopic statistical
picture and the microscopic geometry of optimization.

The Link to Generalization and Robustness. A central, motivating hypothesis of this work is that
the "ordered phase" corresponds to better-generalizing and more robust solutions. Our analysis provides
strong circumstantial evidence, particularly in the context of grokking and catastrophic forgetting. However,
a large-scale, rigorous empirical study is required to solidify this claim. The contact quality index Qα

provides a concrete, computable metric for such an investigation. Future work should systematically test
the conjecture that, for a given training loss, models with a lower Qα exhibit superior out-of-distribution
performance and enhanced resilience to adversarial attacks.

Theoretical Grounding for Scaling and Pruning. Beyond specific architectures, our framework con-
nects directly to the foundational laws of modern deep learning. First, regarding Scaling Laws, current em-
pirical laws link loss to model size (L ∝ N−α) but treat the network as a black box. Our result log M(k) ≈ βk
suggests that the "effective capacity" of a network is governed by the spectral tail behavior of its parameters.
We conjecture that the scaling exponent α is intrinsically linked to the spectral density decay rate in our
theory, offering a path to derive scaling laws from first principles. Second, regarding Magnitude Pruning,
the mathematical dominance of the extremal term (θk

max) in high-order moments provides a rigorous justi-
fication for pruning techniques. Since the network’s statistical state in the ordered phase is dictated by a
small core of extremal parameters, removing the "background" parameters (small |θi|) has a negligible effect
on the moment generating function, validating why magnitude-based pruning retains model performance.

Concluding Vision. This work should be viewed not as a final theory, but as the foundational layer
upon which a more complete, dynamic theory of deep learning can be built. By providing the essential
language (phases, spectral support, contact exponent) and the necessary tools (spectral plane, coupling
term, Qα index), we hope to have opened a new avenue for understanding the emergent statistical structure
of neural networks, shifting the focus from idealized limits to the precise, geometric realities of the models
we use every day. This work is not a finish line, but a starting point for deeper understanding.

13
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A Appendix: Proofs of Main Results

A.1 Proofs for Section 2 (Parameter Moments)

Proof of Theorem 2.2: Existence and Explicit Value of Moment Exponents. Let f(k) = log M(k) =
log
( 1

n

∑n
i=1 |θi|k

)
. The function exp(x) is convex, and the composition of a convex function with an affine

mapping is convex. Sums of convex functions are convex. Finally, log(x) is a concave, monotonically increas-
ing function. The function f(k) is the logarithm of a sum of exponentials, which is a log-sum-exp function.
A more direct proof of convexity for k ≥ 0 can be established via Hölder’s inequality. For any 0 < t < 1 and
k1, k2 ≥ 0, let p = 1/t and q = 1/(1 − t).

M(tk1 + (1 − t)k2) = 1
n

∑
i

|θi|tk1 |θi|(1−t)k2

≤ 1
n

(∑
i

(|θi|tk1)p

)1/p(∑
i

(|θi|(1−t)k2)q

)1/q

= 1
n

(∑
i

|θi|k1

)t(∑
i

|θi|k2

)1−t

= (M(k1))t(M(k2))1−t.

Taking the logarithm of both sides, we get:
f(tk1 + (1 − t)k2) ≤ tf(k1) + (1 − t)f(k2),

which confirms that f(k) is convex.

Since f(k) is a convex function and f(0) = log M(0) = log(1) = 0, the sequence of slopes of the secant lines
from the origin, sk = f(k)−f(0)

k−0 = log M(k)
k , is non-decreasing for k > 0.

The sequence is also bounded above. Let θmax = maxi |θi|. Then,

M(k) = 1
n

∑
i

|θi|k ≤ 1
n

∑
i

θk
max = θk

max.

Taking the logarithm and dividing by k gives:

sk = log M(k)
k

≤
log
(
θk

max
)

k
= log θmax.

Since {sk} is a non-decreasing sequence that is bounded above, the Monotone Convergence Theorem guar-
antees that the limit β = limk→∞ sk exists and is equal to its supremum, supk>0 sk.

To find its explicit value, let the maximum value θmax have multiplicity m ≥ 1. We decompose M(k):

M(k) = 1
n

∑
i:|θi|=θmax

|θi|k + 1
n

∑
i:|θi|<θmax

|θi|k = m

n
θk

max + 1
n

∑
i:|θi|<θmax

|θi|k.

Factoring out the dominant term:

M(k) = m

n
θk

max

1 + 1
m

∑
|θi|<θmax

(
|θi|

θmax

)k
 .

Let the term in the square brackets be (1 + δ(k)). Since for every term in the sum, |θi|/θmax < 1, we have
limk→∞(|θi|/θmax)k = 0. As the sum is finite, limk→∞ δ(k) = 0. So, M(k) = m

n θk
max
(
1 + o(1)

)
.

Taking the logarithm and dividing by k:
log M(k)

k
= log(m/n)

k
+ log θmax + log(1 + o(1))

k
.

Taking the limit as k → ∞, the first and third terms on the right-hand side go to zero, yielding β =
log θmax.

14
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A.2 Proof of Spectral Measure Existence under Weakened Conditions

We provide a rigorous justification for the thermodynamic limit transition in equation equation 8 under
minimal assumptions that accommodate practical neural networks, including those with quantized or sparse
parameters.
Theorem A.1 (Existence of Limiting Spectral Measure). Let {θi}n

i=1 be i.i.d. random variables representing
network parameters, with support in a compact interval [0, Θmax] where Θmax = sup{x : P (|θi| ≤ x) < 1}.
Assume the integrability condition:

E
[∣∣∣∣log Θmax

|θi|

∣∣∣∣] =
∫ Θmax

0

∣∣∣∣log Θmax

x

∣∣∣∣ dFθ(x) < ∞, (25)

where Fθ is the cumulative distribution function of |θi|. Define the spectral variables λi := log(Θmax/|θi|) ∈
[0, ∞) and the empirical spectral measure:

µn := 1
n

n∑
i=1

δλi
. (26)

Then:

(i) The sequence µn converges weakly almost surely to a probability measure µ on [0, ∞).

(ii) The limit measure µ admits the decomposition:

µ = pδ0 + µac, with p := P (|θi| = Θmax), (27)

where δ0 is the Dirac mass at λ = 0 and µac is absolutely continuous with respect to Lebesgue
measure, possessing a density ρ(λ) for λ > 0.

(iii) For any fixed k ≥ 0, the Laplace transform converges:

lim
n→∞

1
n

n∑
i=1

e−λik =
∫ ∞

0
e−λkdµ(λ) = p +

∫ ∞

0+
ρ(λ)e−λkdλ. (28)

(iv) Consequently, the residual term ∆(k) in equation equation 6 satisfies, as n → ∞:

∆(k) → log
[
1 − p +

∫ ∞

0+
ρ(λ)e−λkdλ

]
. (29)

Proof. We proceed by establishing each claim in sequence.

1. Weak convergence of µn. The empirical measure µn is the pushforward of the empirical distribution
of {|θi|} under the continuous transformation T (x) = log(Θmax/x) for x ∈ (0, Θmax], with T (0) = +∞ (a
null set under our assumptions). By the strong law of large numbers for empirical measures (Varadarajan’s
theorem), since {θi} are i.i.d., we have:

µn
w−→ µ a.s., (30)

where µ is the pushforward of the law of |θi| under T . That is, for any Borel set A ⊆ [0, ∞):

µ(A) = P (λi ∈ A) = P

(
log Θmax

|θi|
∈ A

)
. (31)
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2. Decomposition of µ. The structure of µ follows directly from the distribution of |θi|:

• If p = P (|θi| = Θmax) > 0, then P (λi = 0) = p, contributing the atomic part pδ0.

• For λ > 0, we have P (λi ≤ λ) = P (|θi| ≥ Θmaxe−λ). Since Fθ is differentiable almost everywhere
(by Lebesgue’s theorem), µ is absolutely continuous on (0, ∞) with density:

ρ(λ) = − d

dλ
P (|θi| < Θmaxe−λ) = Θmaxe−λfθ(Θmaxe−λ), (32)

where fθ is the density of |θi| (where it exists).

3. Convergence of Laplace transforms. Define gk(λ) = e−λk for fixed k ≥ 0. The integrability
condition equation 25 ensures that:

sup
n

∫
[0,∞)

|λ| dµn(λ) = 1
n

n∑
i=1

|λi| < ∞ a.s. (33)

This uniform integrability, combined with weak convergence, implies convergence of the associated integrals
for all bounded continuous functions. Since gk is bounded and continuous on [0, ∞) for any finite k, the
continuous mapping theorem yields:∫

gk dµn = 1
n

n∑
i=1

e−λik a.s.−−→
∫

gk dµ =
∫ ∞

0
e−λkdµ(λ). (34)

The decomposition of the limit integral follows directly from the structure of µ established in part (ii).

4. Connection to ∆(k). Recall the definition of the residual term from equation equation 6:

∆(k) = log

1 + 1
m

∑
|θi|<θmax

(
|θi|

θmax

)k
 . (35)

In the thermodynamic limit, θmax → Θmax almost surely, and the multiplicity m/n → p. The sum over
non-extremal parameters corresponds precisely to the contribution from λi > 0:

1
n

∑
|θi|<Θmax

(
|θi|

Θmax

)k

= 1
n

n∑
i=1

⊮{λi>0}e−λik a.s.−−→
∫ ∞

0+
e−λkdµ(λ) =

∫ ∞

0+
ρ(λ)e−λkdλ. (36)

The normalization factor n−m
n → 1 − p is automatically satisfied by µ being a probability measure. Taking

limits and substituting into the definition of ∆(k) yields the desired result:

∆(k) → log
[
1 − p +

∫ ∞

0+
ρ(λ)e−λkdλ

]
. (37)

This completes the proof.

Remark on Practical Networks. The integrability condition equation 25 holds for all standard param-
eter initializations (truncated Gaussian, uniform, etc.) and remains valid throughout training under weight
decay regularization. For quantized networks where P (|θ| = Θmax) may be positive, the atomic mass p
simply captures the fraction of parameters attaining the maximal quantization level, providing a natural
interpretation within our framework.

This result justifies the use of equation equation 8 in the main text while extending its applicability to the
full spectrum of real-world neural network architectures.
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A.3 Proofs for Section 3 (Gradient Moments)

Proof of Theorem 3.2: Existence and Explicit Value of Gradient Moment Exponents. The definition of gra-
dient moments G(l) = 1

n

∑n
i=1 |gi|l is algebraically isomorphic to that of parameter moments. Thus, the

proof follows the same logic as Theorem 2.2. We provide a concise derivation using the Squeeze Theorem.
Let gmax = max1≤i≤n |gi| and let mg ≥ 1 be the multiplicity of this maximum value (i.e., the size of the set
Imax = {i : |gi| = gmax}). Upper Bound: For any l > 0, we have:

G(l) = 1
n

n∑
i=1

|gi|l ≤ 1
n

n∑
i=1

gl
max = gl

max.

Taking the logarithm and dividing by l:

log G(l)
l

≤
log
(
gl

max
)

l
= log gmax. (38)

Lower Bound: We can lower bound the sum by discarding all non-extremal terms:

G(l) = 1
n

n∑
i=1

|gi|l ≥ 1
n

∑
i∈Imax

|gi|l = mg

n
gl

max.

Taking the logarithm and dividing by l:

log G(l)
l

≥ log(mg/n) + l log gmax

l
= log gmax + log(mg/n)

l
. (39)

Limit: Combining (38) and (39):

log gmax + log(mg/n)
l

≤ log G(l)
l

≤ log gmax.

As l → ∞, the term log(mg/n)
l vanishes. By the Squeeze Theorem, the limit exists and equals log gmax.

A.4 Proofs for Section 4 (Joint Partition Function Properties)

Proof of Theorem 4.3: Cauchy-Schwarz Upper Bound. The joint moment is defined as Z(k, l) =
1
n

∑n
i=1 |θi|k|gi|l. Let ui = |θi|k and vi = |gi|l. By the Cauchy-Schwarz inequality on the vectors (u1, . . . , un)

and (v1, . . . , vn): (
n∑

i=1
uivi

)2

≤

(
n∑

i=1
u2

i

)(
n∑

i=1
v2

i

)
.

Substituting back the definitions of ui and vi:(∑
i

|θi|k|gi|l
)2

≤

(∑
i

(|θi|k)2

)(∑
i

(|gi|l)2

)
=
(∑

i

|θi|2k

)(∑
i

|gi|2l

)
.

Dividing both sides by n2 and taking the square root:

1
n

∑
i

|θi|k|gi|l ≤

√√√√( 1
n

∑
i

|θi|2k

)(
1
n

∑
i

|gi|2l

)
.

In terms of our moment definitions, this is:

Z(k, l) ≤
√

M(2k)G(2l).
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Taking the logarithm of both sides:

log Z(k, l) ≤ 1
2 log M(2k) + 1

2 log G(2l).

Using the definition C(k, l) = log Z(k, l) − log M(k) − log G(l), we rearrange to get:

C(k, l) ≤
(

1
2 log M(2k) − log M(k)

)
+
(

1
2 log G(2l) − log G(l)

)
= A(k) + B(l).

This completes the proof.

Proof of Corollary 4.4: Boundedness of Coupling. We establish the boundedness of A(k) and B(l) sepa-
rately.

Boundedness of A(k): From the proofs of Theorems 2.2 and 2.3, we have the asymptotic decomposition
log M(k) = βk + R∗ + o(1) as k → ∞, where β = log θmax and R∗ = log(m/n). Let’s analyze the limit of
A(k) as k → ∞:

lim
k→∞

A(k) = lim
k→∞

[
1
2 log M(2k) − log M(k)

]
= lim

k→∞

[
1
2(β · 2k + R∗ + o(1)) − (βk + R∗ + o(1))

]
= lim

k→∞

[
βk + R∗

2 − βk − R∗ + o(1)
]

= −R∗

2 = −1
2 log m

n
.

The function A(k) is continuous for k ≥ 0. Since it is continuous on any compact interval [0, K] and converges
to a finite limit as k → ∞, it must be bounded over its entire domain [0, ∞). Let this upper bound be Amax.

Boundedness of B(l): By identical reasoning applied to gradient moments (using Theorem 3.2), B(l) is
also bounded over its domain [0, ∞). Let this upper bound be Bmax.

Global Bound: From Theorem 4.3, for all k, l ≥ 0:

C(k, l) ≤ A(k) + B(l) ≤ Amax + Bmax.

Defining Cmax := Amax + Bmax, we have C(k, l) ≤ Cmax < ∞.

Proof of Theorem 4.5: Absence of Universal Lower Bound. We provide a constructive counterexample. The
strategy is to create a configuration where the parameters with large magnitudes have near-zero gradients,
and vice-versa, achieving a strong anti-correlation.

Construction: Let the network size be n ≥ 2. Pick two distinct indices, say i = 1 and i = 2. For any set of
positive constants θmax, gmax > 0 and for arbitrarily small ϵ > 0, define a parameter-gradient configuration
as follows:

|θ1| = θmax, |g1| = ϵ,

|θ2| = ϵ, |g2| = gmax,

For all other indices j ∈ {3, . . . , n}, set |θj | = ϵ and |gj | = ϵ. This ensures that θ1 and g2 are the unique
maximal elements.

Moment Computations: Let’s compute the moments for this configuration. For any k, l > 0:

M(k) = 1
n

(
θk

max + (n − 1)ϵk
)

,

G(l) = 1
n

(
gl

max + (n − 1)ϵl
)

,

Z(k, l) = 1
n

(
θk

maxϵl + ϵkgl
max + (n − 2)ϵk+l

)
.
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Asymptotic Behavior as ϵ → 0: For any fixed k, l > 0, we take the limit as ϵ → 0+:

lim
ϵ→0

M(k) = 1
n

θk
max,

lim
ϵ→0

G(l) = 1
n

gl
max,

lim
ϵ→0

Z(k, l) = 0,

since every term in the sum for Z(k, l) contains a factor of ϵ raised to a positive power.

Coupling Term Limit: Now we examine the coupling term C(k, l) = log Z(k, l) − log M(k) − log G(l).

lim
ϵ→0

C(k, l) = lim
ϵ→0

log Z(k, l) − log
(

θk
max
n

)
− log

(
gl

max
n

)
.

Since limϵ→0 Z(k, l) = 0, its logarithm diverges: limϵ→0 log Z(k, l) = −∞. The other terms converge to finite
constants. Therefore:

lim
ϵ→0

C(k, l) = −∞.

Conclusion: For any proposed constant lower bound Cmin ∈ R, we can choose a sufficiently small ϵ > 0 such
that for a fixed pair (k, l), the resulting C(k, l) will be less than Cmin. This demonstrates that no universal
(configuration-independent) lower bound exists.

A.5 Proofs for Section 5 (Asymptotic Analysis)

Proof of Theorem 4.7: Diagonal Asymptotics. We analyze the asymptotic behavior of the joint moment
Z(k, l) by identifying its dominant term. The joint moment is given by:

Z(k, l) = 1
n

n∑
i=1

|θi|k|gi|l = 1
n

n∑
i=1

exp
(
k log |θi| + l log |gi|

)
. (40)

In the diagonal limit, we have l/k → α, so we can write l = αk + o(k). The exponent becomes:

k log |θi| + (αk + o(k)) log |gi| = k(log |θi| + α log |gi|) + o(k) log |gi|.

For large k, the sum will be dominated by the index (or indices) i that maximizes the base of the main
exponential term, Φi(α) := log |θi| + α log |gi|.

The maximum possible value for log |θi| is log θmax and for log |gi| is log gmax. Since α > 0, the function
Φi(α) is maximized when both |θi| and |gi| are maximized. This occurs if and only if an index i belongs to
both extremal sets, i.e., i ∈ Jmax ∩ Imax. Let Smax = log θmax + α log gmax.

Case (i): Correlated Extrema (m∩ > 0). If the intersection Jmax ∩ Imax is non-empty, there are exactly
m∩ indices for which Φi(α) = Smax. For any other index j /∈ Jmax ∩ Imax, either |θj | < θmax or |gj | < gmax
(or both), so Φj(α) < Smax. The sum for Z(k, l) is therefore dominated by these m∩ terms:

Z(k, l) = 1
n

∑
i∈Jmax∩Imax

θk
maxgl

max + 1
n

∑
j /∈Jmax∩Imax

|θj |k|gj |l

= m∩

n
θk

maxgl
max + exponentially smaller terms

= m∩

n
θk

maxgl
max · (1 + o(1)).

Taking the logarithm, we get:

log Z(k, l) = log
(m∩

n

)
+ k log θmax + l log gmax + o(1).
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We use this with the known asymptotic forms for the marginal moments:

log M(k) = log
(m

n

)
+ k log θmax + o(1),

log G(l) = log
(mg

n

)
+ l log gmax + o(1).

Substituting these into the definition C(k, l) = log Z(k, l) − log M(k) − log G(l):

C(k, l) =
[
log m∩

n
+ k log θmax + l log gmax

]
−
[
log m

n
+ k log θmax

]
−
[
log mg

n
+ l log gmax

]
+ o(1)

= log m∩

n
− log m

n
− log mg

n
+ o(1) = log

(
n · m∩

m · mg

)
+ o(1).

Taking the limit as k, l → ∞ with l/k → α yields the stated constant result.

Case (ii): Disjoint Extrema (m∩ = 0). If the intersection is empty, no index i can simultaneously achieve
θmax and gmax. The maximum value of the exponent base, let’s call it S′ = maxi Φi(α), is now strictly less
than the ideal maximum Smax. This is because for any i, at least one of log |θi| or log |gi| is strictly less than
its maximum possible value. So, log Z(k, l) ≈ kS′ = k(log θ′ + α log g′), where θ′ ≤ θmax and g′ ≤ gmax with
at least one inequality being strict. The product of the marginal moments behaves as:

M(k)G(l) ≈
(m

n
θk

max

)(mg

n
gl

max

)
∝ exp(k log θmax + l log gmax) = exp(kSmax).

The ratio Z(k,l)
M(k)G(l) will therefore decay to zero exponentially fast, as k(S′ −Smax) goes to −∞. The coupling

term is C(k, l) = log
(

nZ(k,l)
M(k)G(l)

)
. Since the argument of the logarithm goes to zero, the logarithm itself

diverges to −∞.

Proof of Theorem 4.8: Necessary and Sufficient Condition for Boundedness. The theorem states that the
coupling function C(k, l) is bounded below for all k, l ≥ 0 iff m∩ := |Jmax ∩ Imax| ≥ 1. We assume non-
degenerate spectral gaps: θmax > supj /∈Jmax |θj | and gmax > supi/∈Imax |gi|.

Necessity (m∩ ≥ 1 is necessary): By contraposition: if m∩ = 0, Theorem 4.7(ii) gives
limk,l→∞,l/k→α C(k, l) = −∞, contradicting boundedness. Thus m∩ ≥ 1 is necessary.

Sufficiency (m∩ ≥ 1 is sufficient): Assume m∩ ≥ 1. Let θnext := supj /∈Jmax |θj | and define the spectral
gap ∆θ := log(θmax/θnext) > 0. Define ∆g analogously.

Improved upper bounds for denominators:
n∑

j=1
|θj |k = mθθk

max +
∑

j /∈Jmax

|θj |k ≤ mθθk
max + (n − mθ)θk

next

= mθθk
max

(
1 + n − mθ

mθ
e−∆θk

)
.

Similarly,
∑n

p=1 |gp|l ≤ mggl
max

(
1 + n−mg

mg
e−∆gl

)
.

Lower bound for numerator: Since m∩ ≥ 1, there exists i∗ with |θi∗ | = θmax and |gi∗ | = gmax, giving:
n∑

i=1
|θi|k|gi|l ≥ m∩θk

maxgl
max.

Combined lower bound: Substituting into C(k, l) = log
(

n numerator
(
∑

|θ|k)(
∑

|g|l)

)
yields the tight global

bound:
C(k, l) ≥ log

(
nm∩

mθmg

)
− log

(
1 + n − mθ

mθ
e−∆θk

)
− log

(
1 + n − mg

mg
e−∆gl

)
. (41)
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Properties of this bound:

• The right-hand side is finite for all k, l ≥ 0 since the exponential terms are bounded in [0, 1].

• As k, l → ∞, the exponential terms vanish, giving the asymptotic bound log
(

nm∩
mθmg

)
, which is

attained exactly in the limit.

• At k = l = 0, using M(0) = G(0) = 1, the bound reduces to log(m∩/n), recovering the trivial case
C(0, 0) = log n.

Since C(k, l) is continuous on any compact set [0, K]2 and the bound equation 41 provides a uniform lower
bound that holds globally, we conclude infk,l≥0 C(k, l) > −∞. Thus, m∩ ≥ 1 is sufficient.

A.6 Proofs for Section 6 (Stability and Phases)

Proof of Proposition 5.1: Instability of Extremal Points. Given m∩ = 0, the extremal sets Jmax and Imax are
disjoint. Our goal is to show that an arbitrarily small perturbation can lead to C(k, l) becoming arbitrarily
negative for some (k, l). According to Theorem 4.7, C(k, l) → −∞ as k, l → ∞ along a diagonal path.
By continuity of C(k, l) with respect to the parameters and gradients, this divergence implies that for any
Ctarget < 0, we can find large but finite K, L such that C(K, L) < Ctarget. The proposition asks for a
perturbation proof. Let’s construct one. Since m∩ = 0, choose any j ∈ Jmax (so |θj | = θmax) and any
i ∈ Imax (so |gi| = gmax). We know j ̸= i. Consider the configuration (Θ, G). We know that |gj | < gmax.
Define a perturbed configuration (Θ̃, G̃) as follows, for a small δ > 0:

|θ̃p| = |θp| for all p, and |g̃p| =
{

|gp| if p ̸= j

δ if p = j
.

We can choose δ small enough such that ∥G̃ − G∥∞ < ϵ and also δ < minp̸=i |gp| to ensure gmax is not
changed. In this perturbed system, the extremal sets are J̃max = Jmax and Ĩmax = Imax, so m̃∩ = 0. Now
consider Cnew(k, k) for large k. The dominant terms in the sums for the moments are:

M̃(k) ≈ m

n
θk

max

G̃(k) ≈ mg

n
gk

max

Z̃(k, k) = 1
n

 ∑
p∈Jmax,p̸=j

|θp|k|gp|k + |θj |kδk + . . .


= 1

n

 ∑
p∈Jmax,p̸=j

(θmax|gp|)k + (θmaxδ)k + . . .

 .

The term determining the asymptotics of Z̃(k, k) is maxp(|θp||gp|). By driving |gj | → 0, we can make this
maximum arbitrarily small compared to θmaxgmax. This leads to the divergence to −∞ as shown in Theorem
4.7 and proves the instability.

Proof of Proposition 5.2: Rigidity of Extremal Points. The proof establishes stability by showing that a
transition from the ordered phase (m∩ ≥ 1) to the disordered phase (m∩ = 0) cannot occur under an
infinitesimally small, continuous perturbation. We proceed in steps.

1. Setup. Let (Θ(t), G(t)) be a continuous path in the parameter-gradient space, where t is a time-like
parameter. Assume the system starts in the ordered phase at t = 0, so its extremal intersection cardinality
is m∩(0) = |Jmax(0) ∩ Imax(0)| ≥ 1. We consider a path that preserves the macroscopic extremal values,
meaning for all t:

max
i

|θi(t)| = θmax and max
i

|gi(t)| = gmax,

where θmax and gmax are fixed positive constants.
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2. Upper-Semicontinuity Argument. The extremal sets Jmax(t) = {i : |θi(t)| = θmax} and Imax(t) =
{i : |gi(t)| = gmax} are upper-semicontinuous set-valued maps. This is a standard result for level sets
of continuous functions. The intersection of upper-semicontinuous set-valued maps, Kmax(t) = Jmax(t) ∩
Imax(t), is also upper-semicontinuous.

For an integer-valued function like the cardinality m∩(t) = |Kmax(t)|, upper-semicontinuity implies that the
function can only jump downwards. That is, if tk → t, then lim supk→∞ m∩(tk) ≤ m∩(t). A value increase
is not possible without discontinuity.

3. Mechanism of a Phase Transition. For the system to transition from the ordered to the disordered
phase, there must exist a time t∗ where m∩(t) ≥ 1 for t < t∗ and m∩(t∗) = 0. This requires a discrete jump
of the integer-valued function m∩(t) from a positive value to zero.

For this to happen, every index i0 that was in the extremal intersection Kmax just before t∗ must exit the
set at t∗. For a given index i0 ∈ Kmax(t) for t < t∗, exiting at t∗ means that one of the following must occur:

(i) The parameter magnitude drops: |θi0(t∗)| < θmax.

(ii) The gradient magnitude drops: |gi0(t∗)| < gmax.

4. Stability under Small Perturbations. The path functions θi(t) and gi(t) are continuous. For an
index i0 to lose its status as, for example, a parameter extremum, its value |θi0(t)| must decrease while the
value of some other parameter, |θj(t)|, increases to become the new maximum (or one of them).

This change in the identity of the extremal elements requires the perturbation to be of a finite size. Specif-
ically, the perturbation must be large enough to close the gap between the maximal value (θmax) and the
second-largest value (maxj /∈Jmax |θj |). Let this gap be δθ > 0. Any continuous perturbation smaller than δθ

cannot change the membership of the set Jmax. A similar argument holds for the gradient gap δg > 0.

As long as the total perturbation along the path is smaller than min(δθ, δg), the identities of the indices in
both Jmax and Imax remain unchanged. Consequently, their intersection Kmax and its cardinality m∩ also
remain unchanged.

Conclusion. A transition from m∩ ≥ 1 to m∩ = 0 requires a finite (non-infinitesimal) perturbation that
alters the identity of the extremal elements. Therefore, the property m∩ ≥ 1 is stable under sufficiently
small continuous deformations, establishing the rigidity of the ordered phase.

Proof of Theorem 6.3. We establish rigorous asymptotics under explicit regularity conditions. Let F =
supp(ν) ⊆ [0, Λ] × [0, M ] be compact.

Assumption A.1 (Contact Regularity). The measure admits decomposition ν = νac + νatom where:

• νatom is atomic, supported possibly at (0, 0) with mass p00 ≥ 0,

• νac has density f(λ, µ) near the origin satisfying regular variation:

f(λ, µ) = (λ + µ)βL(λ + µ) · Ω
(

(λ, µ)
λ + µ

)
, β > −1

with L slowly varying at 0+ and Ω continuous, positive on S1
+.

Define the contact exponent α := β + 1 > 0.

We analyze three exhaustive cases.
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Case 1: Disordered Phase (d0 > 0) When dist((0, 0), F ) = d0 > 0, the minimum of fJ(λ, µ) = λ + µ
occurs at a unique point (λ∗, µ∗) ∈ F (or a low-dimensional manifold). By Laplace’s method for large k:

log Z(k, k) = −k(λ∗ + µ∗) + dJ − 1
2 log k + O(1)

log M(k) = −kλmin + dλ − 1
2 log k + O(1)

log G(k) = −kµmin + dµ − 1
2 log k + O(1)

where dJ , dλ, dµ are local dimensions at minimizers (0 for isolated points, 1 for edges). Substituting into
C(k, k) yields:

C(k, k) = (λmin + µmin − d0)k + deff − 2
2 log k + O(1)

with deff = dJ − dλ − dµ. The linear coefficient CL = λmin + µmin − d0 ≥ 0 vanishes only for independent
marginals. Dominant divergence is linear.

Case 2: Quasi-Ordered Phase (d0 = 0, p00 = 0) When F touches the origin with no atomic mass,
Tauberian theorems apply. The joint integral’s asymptotic is governed by measure density near zero:

Z(k, k) =
∫∫

F

e−k(λ+µ)f(λ, µ) dλdµ + o(k−α)

= Γ(α) Ωavg k−αL(k−1)(1 + o(1))

by de Haan’s Tauberian theorem for regularly varying kernels. Thus log Z(k, k) = −α log k + log L(k−1) +
O(1).

For marginals, integrating νac along µ-direction yields:

νλ([0, r]) ∼ Cλrα+ 1
2 Lλ(r) ⇒ log M(k) ∼ −

(
α + 1

2

)
log k

and similarly log G(k) ∼ −(α + 1
2 ) log k.

The coupling term becomes:

C(k, k) = −α log k +
(

α + 1
2

)
log k +

(
α + 1

2

)
log k + O(1) = − 2

α + 1 log k + O(1)

where algebraic simplification uses the scaling relationship between joint and marginal exponents.

Case 3: Ordered Phase (d0 = 0, p00 > 0) If atomic mass p00 = ν({(0, 0)}) > 0 exists, then:

Z(k, k) = p00 +
∫∫

F \{0}
e−k(λ+µ)dν → p00

Similarly M(k) → pλ
00 and G(k) → pµ

00. Hence:

C(k, k) = log p00 − log pλ
00 − log pµ

00 + o(1)

For perfect alignment (p00 = 1), C(k, k) → 0, recovering ideal order.

Conclusion The three regimes exhibit distinct divergence laws determined by spectral geometry, complet-
ing the proof.
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B Extremal Stability, Spectral Gaps, and the Connection to Neural Collapse

In this section, we provide a formal proof for the connection outlined in the main text: that the stability of
the ordered phase (m∩ ≥ 1) is governed by the spectral gaps, and that the state of Neural Collapse (NC)
represents the limit of maximal stability.
Proposition B.1. The configuration described by Neural Collapse (NC) for a given classification task max-
imizes the parameter and gradient spectral gaps. Consequently, it represents the state of maximal stability
for the extremal sets (Jmax, Imax) against perturbations, thus providing maximal resistance to catastrophic
forgetting (phase reversal).

Proof. The proof proceeds in three parts. First, we formalize the notion of extremal set stability and show it
is determined by the spectral gap. Second, we define the properties of Neural Collapse within our framework.
Finally, we demonstrate that the NC configuration is precisely the one that maximizes this spectral gap.

Part 1: Quantifying Stability via the Spectral Gap

Let’s consider the parameter set Θ = {θi}n
i=1. The stability of the extremal set Jmax depends on the gap

between its members and all other parameters.

1. Definition of Spectral Gap: We define the parameter spectral gap, ∆θ, as the difference between
the maximal value and the next largest value:

∆θ := θmax − sup
j /∈Jmax

|θj |

where θmax = maxi |θi|. An analogous definition holds for the gradient spectral gap, ∆g. For the
theory to be non-trivial, we assume ∆θ > 0.

2. Definition of Stability: The stability of the set Jmax can be quantified by the magnitude of the
smallest perturbation that can alter its membership. Consider a perturbation vector δΘ = {δθi}
applied to Θ, where the perturbation is bounded, i.e., |δθi| ≤ ϵ for all i. The set Jmax is stable under
this perturbation if for any j ∈ Jmax and any k /∈ Jmax, the following holds:

|θj + δθj | > |θk + δθk|

The stability margin, ϵmax, is the largest ϵ for which this stability is guaranteed for all possible
perturbations of that magnitude.

3. Stability is Proportional to the Gap: To find ϵmax, we consider the worst-case scenario that
could cause a rank-reordering. This occurs when a maximal element is maximally decreased and a
sub-maximal element is maximally increased:

θmax − ϵ > sup
k /∈Jmax

|θk| + ϵ

Rearranging this gives:
θmax − sup

k /∈Jmax

|θk| > 2ϵ

∆θ > 2ϵ

Thus, the stability margin is directly proportional to the spectral gap:

ϵmax = ∆θ

2

This proves that maximizing the stability of the extremal set is equivalent to maximizing the spectral
gap.
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Part 2: Defining Neural Collapse (NC) in the Extremal Framework

The terminal phase of training for deep classifiers often exhibits Neural Collapse. Within our framework, its
two core properties can be stated as:

NC1 (Variability Collapse) For a given task, all parameters (or features) associated with the same
class collapse to a single point. In our language, this means if parameters i and j both correspond
to the same class-extremal representation, then |θi| = |θj |.

NC2 (Simplex Structure) The feature vectors of different classes become maximally separated and
equiangular. In our simplified 1D magnitude space, this implies that the set of distinct parameter
magnitudes {|θi|} is maximally separated.

Part 3: Neural Collapse Maximizes the Spectral Gap

We now show that the NC configuration is the solution to the problem of maximizing the spectral gap ∆θ.
Let us assume a fixed "budget" for the parameters, for instance, a constant L2 norm:

∑
i |θi|2 = C. We want

to find the configuration of {θi} that maximizes ∆θ = θmax − θnext.

1. To maximize this difference, we must simultaneously make θmax as large as possible and θnext (the
largest of the non-maximal elements) as small as possible.

2. Given the fixed norm constraint, the most efficient way to maximize θmax is to concentrate the
"energy" C into as few parameters as possible. Let the set Jmax be the designated set of extremal
parameters. To satisfy NC1 (Variability Collapse), all elements within this set have the same
magnitude, |θj | = θmax for all j ∈ Jmax.

3. To satisfy NC2 (Maximal Separation) and minimize θnext, all other parameters (those not in
Jmax) should be pushed towards zero. In the most extreme case, to maximize the gap, all parameters
k /∈ Jmax are set to zero, satisfying the norm constraint by adjusting θmax.

4. This configuration—a small subset of parameters having a large, identical magnitude, while all others
are zero—is the mathematical realization of Neural Collapse in our framework. It creates the largest
possible gap ∆θ = θmax between the extremal set and all other parameters.

Conclusion: We have shown that the robustness of the ordered phase to perturbations is directly propor-
tional to the spectral gap (ϵmax = ∆θ/2). We then demonstrated that the configuration that maximizes this
spectral gap is precisely the one described by Neural Collapse. Therefore, Neural Collapse represents the most
stable possible state of the ordered phase, offering maximal resistance to phase reversal and, consequently,
catastrophic forgetting.
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C Gradient Distribution Regularity and Non-Standard Cases

This appendix provides a rigorous analysis of the regularity conditions required for the gradient moment
decomposition (Theorem 3.2) and characterizes the behavior of the theory when these conditions are violated.
These conditions are not merely technical artifacts but serve as diagnostic indicators of the network’s training
phase.

C.1 Formal Regularity Conditions

For the gradient moment decomposition to hold in the same form as parameter moments, the gradient set
G = {g1, . . . , gn} must satisfy:

(G1) Spectral Gap: There exists gmax = maxi |gi| and a gap ∆g > 0 such that

gmax > gnext := sup
i/∈Imax

|gi|,

where Imax = {i : |gi| = gmax}.

(G2) Log-Integrability: The distribution of gradient magnitudes satisfies

E
[∣∣∣∣log gmax

|g|

∣∣∣∣] < ∞.

These conditions mirror those for parameters and are satisfied in quasi-static training regimes where the loss
landscape varies slowly relative to gradient computations.

C.2 Non-Standard Case 1: Vanishing Spectral Gap

Definition: The gradient distribution has a vanishing gap if gmax = gnext, meaning multiple distinct pa-
rameters achieve the maximal gradient magnitude.

Mathematical Consequences:

• The gradient moment exponent βg = log gmax still exists and is well-defined.

• However, the multiplicity mg = |Imax| is no longer O(1); it may scale with network size n (e.g., due
to permutation symmetries in wide layers).

• The remainder term R∗
g = log(mg/n) does not converge to a finite constant as n → ∞; instead, it

reflects the scaling law of the symmetry group.

• The asymptotic form G(l) = mg

n gl
max(1+o(1)) remains valid, but the prefactor mg

n carries non-trivial
dependence on architecture and task.

Observable Phenomena:

• The gradient moment curve log G(l) versus l shows a plateau at low l before linear asymptotics
emerge.

• In the rank-rank scatter plot (Fig. 2b), multiple points cluster at the top gradient rank, creating
horizontal streaks rather than a clean diagonal.

Remedy and Physical Interpretation: Vanishing gaps often occur in early training or in architectures
with exact symmetries (e.g., fully-connected layers with identical initialization). The condition is typically
self-healing: as symmetry breaks during training, a unique extremal set emerges. For analysis, one can:
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1. Apply the theory to time-averaged gradients ḡi = 1
T

∫ T

0 gi(t)dt, which break instantaneous symme-
tries.

2. Restrict analysis to late-stage training after symmetry breaking.

3. Generalize the theory to explicitly handle vector-valued mg scaling laws (deferred to future work).

C.3 Non-Standard Case 2: Violation of Log-Integrability

Definition: The gradient distribution has a heavy tail near zero if

E
[
log gmax

|g|

]
= ∞.

This occurs when P (|g| < ϵ) ∼ ϵ−p with p ≥ 1 as ϵ → 0.

Mathematical Consequences:

• The spectral measure µg(λ) = P (log(gmax/|g|) ≤ λ) has a non-integrable singularity at λ = ∞.

• The residual term ∆g(l) decays sub-exponentially (e.g., as l−p+1) rather than exponentially.

• The Cauchy-Schwarz upper bound in Theorem 4.3 may become vacuous: the terms A(k) and B(l)
can diverge as k, l → ∞.

Observable Phenomena:

• The residual ∆g(l) versus l follows a power law rather than exponential decay.

• The coupling term C(k, l) may exhibit anomalous scaling, violating the boundedness predictions of
Corollary 4.4.

Remedy and Physical Interpretation: Heavy tails signal pathological loss landscapes (e.g., near saddle
points or with exploding gradients). Practical interventions include:

1. Gradient clipping: Enforcing a hard bound |gi| ≤ gclip restores log-integrability by truncating the
tail.

2. Improved regularization: Weight decay smooths the loss landscape, reducing near-zero gradient
probability mass.

3. Diagnostics: Compute the empirical moment ratio sl = log G(l)
l ; if it fails to be monotone increasing,

the condition is violated.

C.4 Non-Standard Case 3: Dynamic Non-Stationarity

Definition: The gradient distribution G(t) evolves non-negligibly during the time window used to compute
moments, violating the quasi-static assumption.

Mathematical Consequences:

• The extremal set Imax(t) is time-dependent and may not converge.

• The diagonal limit in Theorem 4.7 becomes path-dependent: limk,l→∞ C(k, l) depends on the relative
rates k(t), l(t) versus the evolution of G(t).

• The coupling term C(k, l) may oscillate or drift, showing no stable asymptotic value.
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Observable Phenomena:

• The overlap cardinality m∩(t) = |Jmax ∩ Imax(t)| fluctuates between 0 and ≥ 1.

• The C(k, k) curve is non-monotonic and shows transient spikes or dips (phase transition signals).

Remedy and Physical Interpretation: Non-stationarity occurs during critical learning periods (e.g.,
grokking onset, task switching in continual learning). This is not a failure of the theory but an opportunity:

1. Time-scale separation: Compute moments over intervals ∆t where G(t) is approximately constant.

2. Moving averages: Use Gavg(t) = 1
τ

∫ t

t−τ
G(s)ds to filter high-frequency dynamics.

3. Phase transition detection: Violation of regularity conditions marks topological phase boundaries,
providing a rigorous signal for phenomena like catastrophic forgetting.

C.5 The Gradient Regularity as a Diagnostic Tool

Rather than viewing these conditions as restrictive assumptions, they serve as operational diagnostics:

• Healthy Training: Conditions (G1) and (G2) hold; gradient moments follow the predicted decom-
position; coupling term C(k, l) is stable and bounded.

• Critical Phase: Condition (G1) violated (vanishing gap); m∩(t) fluctuates; signals approach to
ordered/disordered transition.

• Pathological Landscape: Condition (G2) violated (heavy tail); gradient moments diverge; indi-
cates need for architectural or hyperparameter changes.

• Dynamic Regime: Time-dependence dominates; static moment analysis insufficient; signals need
for time-resolved or averaged analysis.
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