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Abstract001

Recommendation agents leverage large lan-002
guage models for user modeling (LLM-UM) to003
construct textual personas, guiding alignment004
with real users. However, existing LLM-UM005
methods struggle with long user-generated con-006
tent (UGC) due to context limitations and per-007
formance degradation. To address this, sam-008
pling strategies prioritize relevance or recency009
are often applied, yet they inevitably neglect010
the diverse user interests embedded within the011
discarded behaviors, resulting in incomplete012
modeling and degraded profiling quality. Fur-013
thermore, relevance-based sampling requires014
real-time retrieval, forcing the user modeling015
process to operate online, which introduces sig-016
nificant latency overhead. In this paper, we017
propose PersonaX, an agent-agnostic LLM-018
UM framework that tackles these challenges019
through sub-behavior sequence (SBS) selection020
and offline multi-persona construction. Per-021
sonaX extracts compact SBS segments offline022
to capture diverse user interests, generating023
fine-grained textual personas that are cached024
for efficient online retrieval. This approach en-025
sures that the user persona used for prompting026
remains highly relevant to the current context,027
while eliminating the need for online user mod-028
eling. For SBS selection, we ensure both effi-029
ciency (length < 5) and high representational030
quality by balancing prototypicality and diver-031
sity within the sampled data. Extensive experi-032
ments validate the effectiveness and versatility033
of PersonaX in high-quality user profiling. Uti-034
lizing only 30–50% of the behavioral data with035
a sequence length of 480, integrating PersonaX036
with AgentCF yields an absolute performance037
improvement of 3–11%, while integration with038
Agent4Rec results in a gain of 10–50%. Per-039
sonaX as an agent-agnostic framework, sets040
a new benchmark for scalable user modeling,041
paving the way for more accurate and efficient042
LLM-driven recommendation agents. The code043
is available at URL 1.044

1https://anonymous.4open.science/r/PersonaX-7DDE

1 Introduction 045

User modeling (UM) (Tan and Jiang, 2023) meth- 046

ods extract implicit user persona traits from User- 047

Generated Content (UGC), such as behavioral se- 048

quences, to construct meaningful representations 049

that support instructional-based agent recommen- 050

dations (Petruzzelli et al., 2024; Zhang et al., 051

2024a,b). Traditional NLP techniques such as 052

Bag-of-Words (BoW), Latent Dirichlet Allocation 053

(LDA) have been foundational in UM area (Har- 054

ris, 1954; Blei et al., 2003; Mikolov et al., 2013; 055

Vaswani, 2017; Sarzynska-Wawer et al., 2021). Re- 056

cent advances in large language models (LLMs) 057

(Brown et al., 2020; Achiam et al., 2023; Du et al., 058

2021; Bai et al., 2023) have opened new frontiers 059

in semantic understanding. As a result, LLM-based 060

user modeling (LLM-UM) approaches are gaining 061

increasing research attention for their ability to cap- 062

ture nuanced and latent user personas from UGC. 063

A fundamental approach, known as Behavior 064

Encoding, leverages a user’s historical behavior 065

sequence (BS) for profiling (Pi et al., 2020). This is 066

achieved by encoding BS as demonstration exam- 067

ples within prompts, enabling LLM-driven agents 068

to generalize from these examples and generate per- 069

sonalized outputs (Dai et al., 2023; Liu et al., 2023). 070

Beyond this straightforward methodology, Richard- 071

son et al. (Richardson et al., 2023) demonstrated 072

that summarizing core preference signals from ex- 073

tensive interactions enhances the personalization 074

performance of LLMs. Techniques such as ONCE 075

(Liu et al., 2024), Agent4Rec (Zhang et al., 2024a), 076

and RecAgent (Wang et al., 2024) utilize LLMs 077

to distill behavioral data into concise textual per- 078

sonas that encapsulate user preferences—a process 079

we refer to as Behavior Summarization. Further 080

extending this paradigm, methods like AgentCF 081

(Zhang et al., 2024b) and RecAgent (Wang et al., 082

2024) adopt a Behavior Reflection approach, em- 083

ploying reflection mechanisms (Cheng et al., 2023; 084
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Figure 1: Visualization of different sampling strategies.
A illustrates the behavior distribution, clustering results,
and selected/unselected samples. B presents the allo-
cation of selection budgets across clusters at a 50%
selection ratio.

Zhao et al., 2024a; Shi et al., 2024a) on the be-085

havior sequence to iteratively refine user personas.086

By evaluating the effectiveness of recommenda-087

tions and dynamically adjusting the persona, these088

methods progressively align user profiles with the089

evolving nature of user behaviors.090

However, modeling user personas from exten-091

sive UGC (e.g., long behavior sequences) presents092

critical challenges for LLM-UM: (1) Input limi-093

tations – LLMs’ inherent input length constraints094

struggle to accommodate real-world recommenda-095

tion systems’ extensive historical behavior data;096

(2) Mid-content oversight – The "lost in the mid-097

dle" phenomenon (Zhao et al., 2024b; Shi et al.,098

2024b,c; Borgeaud et al., 2022; Lewis et al., 2020)099

causes LLMs to frequently overlook the middle100

context information, degrading preference under-101

standing; (3) Online efficiency demands – Cur-102

rent modeling approaches are typically tightly cou-103

pled with online inference. However, the time-104

consuming nature of long sequences leads to sig-105

nificant inefficiencies and high latency.106

Sampling techniques help handle long user be-107

havior sequences by processing Sub-Behavior Se-108

quences (SBS) in LLM-UM approaches. Recent109

sampling methods (Hou et al., 2024; Zhang et al.,110

2024b) truncate sequences temporally, focusing on111

short-term interests while overlooking long-term112

preferences, leading to incomplete user profiling113

and reduced recommendation quality. Relevance114

sampling (Salemi et al., 2024; Zhang et al., 2024a;115

Zhou et al., 2024) performs well but introduces116

online latency, as it selects relevant behaviors and117

models user personas before prompting agent to118

recommend.119

These limitations reveal a fundamental tension:120

existing sampling strategies either sacrifice behav-121

ioral completeness for efficiency or compromise 122

responsiveness for accuracy. How can we develop a 123

novel frameworks that simultaneously makes LLM- 124

UM methods achieve efficient processing of long 125

behavior sequences and robust construction of com- 126

prehensive user personas? This challenge forms 127

the core motivation for our work. 128

To address this challenge, we introduce Per- 129

sonaX, a novel LLM-UM framework for user mod- 130

eling from long behavior sequences. PersonaX 131

extracts representative short sub-sequences (SBS) 132

from the full interaction history, each capturing 133

distinct aspects of user interests. These SBS are 134

processed offline to construct fine-grained, multi- 135

dimensional user personas, which are then inte- 136

grated into downstream recommendation systems 137

during online inference. PersonaX prioritizes sam- 138

pling quality over quantity, using a small fraction 139

of data to generate compact yet informative SBS 140

(length < 5). This approach reduces the model’s 141

focus on irrelevant or noisy samples, overcoming 142

common issues such as input length constraints 143

and mid-content oversight. Unlike relevance-based 144

methods, PersonaX operates entirely offline, elim- 145

inating online inference latency. Furthermore, it 146

offers a persistent user representation, negating the 147

need for frequent updates, unlike recent-based sam- 148

pling methods. 149

In summary, our contributions are threefold. (1) 150

Core Behavior Selection: We propose an innova- 151

tive strategy for selecting SBS that balances pro- 152

totypicality and diversity. This method produces 153

compact, high-quality SBS while only 30–50% of 154

the data utility ratio. (2) PersonaX Framework: 155

PersonaX is a cutting-edge framework designed 156

for long behavior sequences, enhancing the perfor- 157

mance and inference efficiency of existing agent 158

recommendation methods. (3) Extensive Vali- 159

dation: PersonaX is validated on two LLM-UM 160

methods: Reflection and Summarization methods, 161

across four long-sequence datasets. The results 162

show significant improvements in ranking accuracy 163

(3–11% or 10-50%) and online inference efficiency 164

(50% reduction) for recommendation agents like 165

AgentCF and Agent4Rec. 166

2 Preliminary 167

2.1 User Modeling 168

Let S = {(I1, L1), (I2, L2), . . . , (In, Ln)} de- 169

notes a user’s historical behavior sequence of 170

length n, where Ii represents the i-th interacted 171

2



item and Li ∈ {0, 1} indicates the corresponding172

interaction label (0 for dislike and 1 for like). We173

define the task of user modeling is to construct a174

precise and representative user persona P(S) by175

leveraging the historical behavioral data S, where176

P(·) is a user modeling method (e.g., Summariza-177

tion and Reflection). The learned user persona178

should capture the implicit preference patterns un-179

derlying interactions, enabling augmentation for180

downstream instructional agent recommendation.181

2.2 Sub-Behavior Sequence (SBS) Selection.182

To tackle the challenge of LLM-UM struggling183

with analyzing long UGC, sampling methods are184

often employed on the full historical sequence S.185

These methods aim to extract a Sub-Behavior Se-186

quence (SBS) that retains the most essential infor-187

mation necessary for accurate user profiling while188

significantly reducing sequence length. Formally,189

let S∗ = {Î1, Î2, . . . , Îk} ⊆ S denote the SBS of190

length k (k ≪ n), where Îi represents the i-th se-191

lected behavior. The selection ratio, k
n , quantifies192

the compression achieved.193

3 Method194

3.1 Behavior Clustering195

We employ hierarchical clustering to group items196

based on user interest similarity, treating each clus-197

ter as a cohesive analysis unit. A language embed-198

ding model E(·), such as BGE Embedding (Chen199

et al., 2024) or EasyRec (Ren and Huang, 2024),200

encodes each item Ii into a dense vector ei. Let201

E = {e1, e2, . . . , en} represent the item embed-202

dings from the user’s interaction history. Pair-203

wise similarity is measured via Euclidean distance:204

d(ei, ej) = ∥ei − ej∥2, denoted as di,j .205

Clustering is controlled by a distance threshold206

τ , which restricts the maximum intra-cluster dis-207

tance while preventing merges between clusters208

with inter-cluster distances below τ . The result-209

ing clusters C = {c1, c2, . . . , cm} satisfy Intra-210

cluster constraint: ∀c ∈ C,∀Ii, Ij ∈ c, di,j < τ211

and Inter-cluster constraint: ∀cp, cq ∈ C, cp ̸=212

cq, d(cp, cq) ≥ τ .213

3.2 Sampling Budget Allocation214

Given a finite budget k for sampling historical be-215

haviors, we propose a Sampling Budget Allocation216

Strategy to distribute this budget across clusters.217

The algorithm dynamically adjusts allocation based218

on cluster size distribution, ensuring that smaller219

Algorithm 1 Sampling Budget Allocation
1: Input: Set of clusters C = {c1, c2, . . . , cm}, Cluster

size list s = {s1, s2, . . . , sm} where si = |ci|, Total
sampling budget k

2: Output: Allocation list A = {a1, a2, . . . , am}
3: function ALLOCATEBUDGET(C, s, k)
4: Sort s in ascending order and obtain sorted indices I
5: Initialize allocation A← [0, 0, . . . , 0]
6: Remaining budget B ← k
7: for each cluster i in sorted order do
8: r ← number of remaining clusters
9: q ← B // r ▷ Average allocation per remaining

cluster
10: ai ← min(si, q) ▷ Allocate min of cluster size

or q
11: B ← B − ai ▷ Update remaining budget
12: end for
13: while B > 0 do ▷ Distribute any remaining budget
14: for each cluster i in sorted order if ai < si do
15: ai ← ai + 1
16: B ← B − 1
17: if B = 0 then break
18: end if
19: end for
20: end while
21: Restore original order for A using I
22: return A
23: end function

clusters are given sufficient attention while prevent- 220

ing larger clusters from dominating the selection 221

process. This promotes a balanced distribution of 222

selected samples, preserving the diversity of sam- 223

pled behaviors and maintaining a representative 224

coverage of the data (Zheng et al., 2023). 225

The strategy first sorts clusters by size in ascend- 226

ing order. Each cluster is initially assigned an aver- 227

age allocation q. If a cluster’s size is smaller than q, 228

it receives its exact size, and q is recalculated based 229

on the remaining quota. Otherwise, the cluster is 230

allocated q. This process repeats iteratively until 231

the entire budget is assigned. Algorithm 1 details 232

the method, and Figure 1.B illustrates an example, 233

where smaller clusters are fully allocated first, and 234

the remaining budget is evenly distributed among 235

larger clusters. 236

3.3 In-Cluster Selection 237

After partitioning user behaviors into semantically 238

coherent clusters and each cluster is allocated with 239

a sampling quota, we are to select a representa- 240

tive subset from each cluster. Data selection meth- 241

ods that greedily choose items closest to the clus- 242

ter centroid (e.g., (Welling, 2009; Rebuffi et al., 243

2017; Sorscher et al., 2022)) yield overly homo- 244

geneous user profiling, while boundary-focused 245

strategies (e.g., (Paul et al., 2021; Toneva et al., 246

2019)) risk overemphasizing diversity at the ex- 247
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Algorithm 2 In-Cluster Selection
1: Input: Cluster ci = {I1, I2, . . . , Ini}, centroid µi, selec-

tion size ai, weights wp and wd.
2: Output: Sub-Behavior Sequence S∗

i .
3: function DYNAMICSELECT(ci, µi, ai, wp, wd)
4: Initialize c∗i ← ∅
5: Compute item embeddings E(ci) =
{e1, e2, . . . , eni}, where ej is the embedding of
item Ij ∈ ci.

6: Select the initial item:

einit = arg min
ej∈E(ci)

d(ej , µi)

7: Update c∗i ← c∗i ∪{einit} and E(ci)← E(ci)\{einit}.
8: while |c∗i | < ai do
9: Compute Marginal Gains:

10: for all ej ∈ E(ci) do
11: Compute prototypicality gain:

gp(ej) =
wp

1 + d(ej , µi)

12: Compute diversity gain:

gd(ej) =
2wd

ci

∑
eb∈c∗i

d(ej , eb)

13: end for
14: Evaluate Selection Priority:
15: Identify the item maximizing the combined gain:

e∗
j = arg max

ej∈E(ci)
(gp(ej) + gd(ej))

16: Update c∗i ← c∗i ∪ {e∗
j} and E(ci) ← E(ci) \

{e∗
j}.

17: end while
Chronologically sort c∗i to get S∗

i .
18: return S∗

i

19: end function

pense of prototypical patterns. To address these248

issues, we introduce a sampling strategy that bal-249

ances prototypicality and diversity within each clus-250

ter. For a cluster ci, its centroid is computed as251

µi =
1
|ci|

∑
Ij∈ci E(Ij). Let c∗i denote the selected252

subset from ci. Our goal is to maximize both the253

similarity of selected items to the centroid and the254

diversity among them:255

max
c∗i

(
wp ·

∑
Ij∈c∗i

1

1 + d(ej , µi)
+ wd ·

2

ai

∑
Ia,Ib∈c∗i

a̸=b

d(ea, eb)

)

Here, wp = α−10 and wd = 1 − wp, with the256

hyperparameter α tuning the trade-off: values near257

1.001 approximate centroid selection, while values258

around 1.4 approach boundary selection. Empiri-259

cally, α is typically set between 1.06 and 1.08 (see260

Section 5.4). We frame the selection as discrete op-261

timization problem and using a Greedy Selection al- 262

gorithm (Algorithm 2) to solve it, which iteratively 263

selects the element with the highest marginal gain 264

in the objective function. A visual explanation of 265

the selection algorithm is provided in Appendix D. 266

Figure 2: Online time cost analysis.

3.4 Offline Profiling and Online Selection 267

After selecting representative SBS, PersonaX con- 268

tinue to construct persona offline. Given a se- 269

lected behavior subset c∗i , we generate a corre- 270

sponding persona pi = P(c∗i ). To ensure contextu- 271

ally relevant recommendations, PersonaX retrieves 272

the most pertinent persona snippet Pselected online, 273

which is integrated into prompt templates to in- 274

struct agent recommendation. 275

4 Efficiency Analysis 276

Recent sampling operates in constant time O(1). 277

Let O(d) denotes the time required to encode an 278

item into an embedding vector, and O(n log k) rep- 279

resents the complexity of selecting the top k most 280

relevant items from n items. Thus Relevance sam- 281

pling has a time complexity of O(nd + n log k). 282

For SBS sampling applied in PersonaX, we use 283

O(Cluster + Alg.1 + Alg.2) represent the time 284

cost for process we depict from Section 3.1 to 285

3.3. Let O(T ) represent the time complexity 286

of an API request to LLMs, and NI denotes 287

the number of items inferred per user. We per- 288

form an analysis of the time complexity during 289

both offline and online stages associated with two 290

LLM-UM approaches—Reflection and Summariza- 291

tion—combined with Recent and Relevance sam- 292

pling strategies. Additionally, we evaluate our pro- 293

posed PersonaX for comparison. The results are 294

summarized in Table 1. 295

The primary contributors to time consump- 296

tion are T and d, while O(C), O(n log k), 297

O(Cluster+A.1+A.2) in ranking, clustering, and 298

sampling are negligible. The Reflection approach 299

exhibits significant time overhead, especially with 300

relevance sampling, which introduces a quadratic 301
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Table 1: Time complexity analysis. Cluster, A.1 and A.2 refers to clustering method used in Section 3.1, Algorithms 1
and 2, respectively.

LLM-UM Sampling Offline Online

Reflection Recent \ O(NIT + 2kT + 1)
Relevance O(nd) NIO(NIT + 2kT + n log k + d)

Summarization Recent \ O(NIT + T + 1)
Relevance O(nd) NIO(2T + n log k + d)

PersonaX O(CT + nd+ Cluster + A.1 + A.2)) NIO(T + C + d)

dependency of N2
I T . In contrast, other meth-302

ods maintain linear complexity, NIT . Assuming303

n = 500, C = 20, T = 3, d = 1, and k = 10,304

and varying NI over 100, 500, and 1000. Figure 2305

presents a visualized analysis of online time con-306

sumption. We backbone the LLM-UM method as307

summarization, then we compared PersonaX with308

Recent and Relevance sampling strategies. The re-309

sults show that PersonaX halves the computational310

time of Summarization + Relevance and matches311

the efficiency of Summarization + Recent.312

5 Experiments313

In this section, we are to address these research314

questions (RQs):315

• RQ1: How does PersonaX improve down-316

stream agent recommendation, and how the perfor-317

mance compared with baseline approaches?318

• RQ2: How does the sampling size of historical319

behaviors affect the efficacy of user modeling?320

• RQ3: How sensitive is our method to hyper-321

parameter settings, and how can optimal parame-322

ters be chosen?323

5.1 Experimental Setup324

5.1.1 Datasets325

We evaluate on two widely used subsets of the326

Amazon review dataset (Ni et al., 2019): CDs and327

Vinyl and Books. For the CDs dataset, similar to328

the settings in (Zhang et al., 2024b), we consider329

two variants, CDs50 and CDs200, which have average330

user interaction sequence lengths of 50 and 200,331

respectively. For the Books dataset, rather than332

restricting each user’s interactions to 20 items as in333

(Zhang et al., 2024a), we adopt the approach out-334

lined in (Pi et al., 2019, 2020) to construct longer335

sequences, resulting in Books480. A more detailed336

description, statistical analysis, and reproducibility337

are provided in Appendix A.338

5.1.2 Evaluation339

We utilize all the interaction data except the most340

recent one to construct the user’s behavior his-341

tory (Kang and McAuley, 2018). And the most342

recent interaction is reserved for testing. We ran- 343

domly sample 9 negative items and combine them 344

with the positive item, converting these 10 items 345

into textual descriptions to form the candidate set. 346

For evaluation metric, we adopt the typical top- 347

N metrics hit rate (HR@{1, 5}), normalized dis- 348

counted cumulative gain (NDCG@{5}) (Järvelin 349

and Kekäläinen, 2002) and Mean Reciprocal Rank 350

(MRR@{10}) (Sarwar et al., 2001). For all eval- 351

uation metrics in our experiments, higher values 352

indicate better performance. Also, an intuitive case 353

study is provided in Appendix E. 354

5.1.3 Baseline Comparison 355

We integrate the two LLM-UM meth- 356

ods—Reflection and Summarization—with 357

various cutting-edge sampling strategies, expand- 358

ing the range of user modeling approaches to 359

enhance our comparison. The behavior sequence 360

sampling methods considered are as follows: (1) 361

Full (Zhang et al., 2024a): Using complete user 362

behavior sequence. (2) Recent (Zhang et al., 363

2024b): Selecting the most recent behaviors to 364

capture the user’s short-term preferences. (3) 365

Relevance (Zhang et al., 2024b; Pi et al., 2020): 366

Retrieving the subset of behaviors most pertinent 367

to the recommendation scenario from the user’s 368

long-term preferences. (4) Random (Guo et al., 369

2022; Prabhu et al., 2020): Randomly selecting a 370

portion of behaviors, it is a robust and effective 371

sampling method. (5) Centroid Selection (Welling, 372

2009; Rebuffi et al., 2017; Sorscher et al., 2022): 373

As outlined in Section 3.3, we configure α = 1.001 374

in Algorithm 2. This configuration prioritizes 375

the selection of samples that are closest to the 376

cluster centroid, effectively capturing the most 377

prototypical data points within the cluster. (6) 378

Boundary Selection (Paul et al., 2021; Toneva 379

et al., 2019): As detailed in Section 3.3, we set 380

α = 1.4 in Algorithm 2. Under this setting, the 381

algorithm selects samples located at the cluster 382

boundary and emphasizes the diversity coverage. 383

In this setting, to benchmark PersonaX against 384

prior works, including AgentCFB, which combines 385
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Table 2: Performance comparison study. AgentCFB applies the Reflection+Recent, and AgentCFB+R applies the
Reflection+Relevance. Agent4Rec applies the Summarization+Full.

LLM-UM Reflection Summarization
Datasets CDs50 CDs200 Books480
Metrics Hit@1 Hit@5 NDCG@5 MRR@10 Hit@1 Hit@5 NDCG@5 MRR@10 Hit@1 Hit@5 NDCG@5 MRR@10
Full 19.00 66.00 42.56 39.38 36.00 67.00 51.75 50.78 19.00 50.00 34.59 35.76
Random 31.00 67.00 49.18 47.74 36.00 68.00 51.26 50.24 33.00 73.00 53.59 50.50
Recent 34.00 69.00 50.69 49.31 39.00 68.00 53.89 53.34 35.00 74.00 55.23 52.76
Relevance 40.00 69.00 54.97 54.47 51.00 73.00 61.73 61.98 61.00 80.00 71.50 71.86
Centroid 43.00 66.00 55.21 55.91 42.00 70.00 57.07 56.53 60.00 81.00 71.61 70.67
Boundary 42.00 68.00 55.85 55.73 48.00 66.00 57.13 58.71 58.00 80.00 70.38 69.55
Ours 45.00 72.00 57.34 58.38 55.00 75.00 64.56 65.06 65.00 83.00 74.26 73.22

Reflection with Recent sampling, AgentCFB+R,386

which integrates Reflection with Relevance sam-387

pling, and Agent4Rec, which employs Summariza-388

tion with Full sampling.389

5.1.4 Backbone Agent Recommendation390

To assess the effectiveness of PersonaX in im-391

proving downstream agent recommendation per-392

formance, we select two state-of-the-art meth-393

ods. AgentCF (Zhang et al., 2024b) models user394

personas using a Reflection mechanism, while395

Agent4Rec (Zhang et al., 2024a) captures users’396

unique preferences through a Summarization397

method. Further details on the foundational meth-398

ods can be found in Appendix B.399

5.1.5 Implementation Details400

We applied AgentCF to CDs50, and Agent4Rec401

for CDs200 and Books480. For PersonaX, extensive402

experiments were conducted under diverse hyper-403

parameter configurations: the distance threshold404

τ ∈ {0.5, 0.7} and the trade-off parameter405

α ∈ {1.01, 1.04, 1.08, 1.1}. Different selection ra-406

tios ( kn ) were also tested—{50, 60, 70, 80, 90, 100}407

for CDs10 and {10, 30, 50, 70, 90, 100} for the408

other three datasets. We also ensured that409

each cluster sampled at least one behavior by410

enforcing k = min(m,n · ratio). To evalu-411

ate the performance of the baseline methods,412

we varied the hyper-parameter selection ratio413

across different ranges for each dataset. Specif-414

ically, for CDs50, the selection ratio was chosen415

from {0.02, 0.06, 0.08, 0.1, 0.16, 0.2, 0.3}.416

Similarly, for CDs200, it ranged over417

{0.005, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1}, and418

for Books480, the selection ratio spanned419

{0.002, 0.005, 0.008, 0.011, 0.014}. The prompt420

templates are provided in Appendix F.421

5.2 Performance Evaluation (RQ 1)422

Key observations and insights from Tables 3 high-423

light the robustness and effectiveness of our pro-424

posed method across various agent recommenda- 425

tion approaches, datasets, and evaluation metrics. 426

PersonaX consistently outperforms the Full ap- 427

proach under any level of data resource utiliza- 428

tion, even in scenarios where PersonaX achieves 429

its least favorable results. Notably, on the Books480 430

dataset, which features longer behavior sequences, 431

our method achieves significant improvements over 432

the Full methods. This phenomenon highlights the 433

shortcomings of existing agent recommendation 434

methods in handling long behavior sequences, but 435

PersonaX fills this critical research gap. 436

Table 2 reports the best MRR@10, highlighting 437

PersonaX’s performance advantages over baselines. 438

Our approach demonstrates substantial improve- 439

ments over the widely adopted and strong baseline 440

method, Relevance. For example, on the CDs50 441

dataset, our method achieves a Hit@1 score of 442

45.00, significantly exceeding the 40.00 obtained 443

by Relevance. Similarly, we observe the subop- 444

timal performance of the Centroid and Boundary 445

methods, particularly on CDs200. Upon analysis, 446

we attribute the underperformance of the Centroid 447

method to its tendency to sample overly homoge- 448

neous information, which results in overly simplis- 449

tic and narrow user personas. While the Boundary 450

method ensures sample diversity, an excessive fo- 451

cus on diversity can dilute the representation of 452

typical user persona characteristics. In contrast, 453

our method consistently delivers superior and sta- 454

ble performance, highlighting the effectiveness of 455

balancing prototypicality and diversity. This equi- 456

librium enables our approach to capture nuanced 457

user personas with greater precision, establishing it 458

as a robust and versatile solution for user modeling. 459

5.3 Sampling Size Investigation (RQ 2) 460

Understanding the influence of sequence length of 461

SBS on the efficacy of user modeling is a pivotal re- 462

search question. Traditional recommendation sys- 463

tems have largely relied on long-sequence model- 464
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Figure 3: Analysis of the impact of sampling size on user modeling.

Table 3: Performance of PersonaX at different selection
ratios. We highlight best performance, and the worst
performance.

Reflection on CDs50

Ratio #SBS HR@1 HR@5 NDCG@5 MRR
100 5.56 41.00 67.00 54.67 54.67
90 4.69 42.00 69.00 55.66 55.22
70 3.52 39.00 70.00 54.95 53.50
50 2.88 41.00 67.00 54.69 55.08
30 1.83 45.00 72.00 57.34 58.38
10 1.0 42.00 66.00 56.07 55.25

Summarization on CDs200

Ratio #SBS HR@1 HR@5 NDCG@5 MRR
100 8.15 43.00 68.00 56.85 57.07
90 7.19 49.00 70.00 59.66 59.95
70 5.48 47.00 71.00 60.54 60.54
50 3.59 55.00 75.00 64.56 65.06
30 2.3 51.00 73.00 62.45 62.42
10 1.0 47.00 72.00 61.91 60.99

Summarization on Books480

Ratio #SBS HR@1 HR@5 NDCG@5 MRR
100 15.35 61.00 83.00 73.56 72.18
90 11.74 59.00 80.00 71.36 71.70
70 8.41 64.00 81.00 72.55 72.62
50 4.2 65.00 83.00 74.26 73.22
30 1.82 64.00 82.00 73.68 72.14
10 1.0 63.00 83.00 72.90 71.75

ing strategies, such as SIM (Pi et al., 2020), which,465

when applied to datasets like Amazon Books, typi-466

cally sample 10 interactions to approximate short-467

term behavioral patterns and 90 interactions for468

long-term modeling. However, in the context469

of LLM-UM, prior works such as AgentCF and470

Agent4Rec have yet to conduct a systematic inves-471

tigation into the effect of sequence length on user472

modeling performance.473

To address this gap, we first conduct analysis474

on PersonaX. As shown in Tables 3, the results475

indicate that performance generally peaks at in-476

termediate selection ratios or short SBS lengths.477

For instance, 30% selection ratio for CDs50 and478

50% for both CDs200 and Books480. We further479

examined the performance of three sampling strate-480

gies—Random, Recent, and Relevance—under481

varying sampling sizes, as illustrated in Figure 3,482

finding that while initial increases in sampling483

Figure 4: Impact of τ and α on PersonaX.

size improve performance, oversampling eventu- 484

ally leads to performance deterioration. The opti- 485

mal sampling size varies across datasets. Specifi- 486

cally, for the Relevance method, the ideal size is 487

approximately 3, while the Recent method demon- 488

strates heightened sensitivity to dataset character- 489

istics, with the most recent single behavior often 490

yielding strong results. For the Random method, a 491

sampling size of around 5 is most effective. 492

5.4 Hyper-parameter Analysis (RQ3) 493

This section delves into the influence of the hy- 494

perparameters τ and α on the performance of Per- 495

sonaX, as they play pivotal roles in shaping the hier- 496

archical clustering and in-cluster behavior selection 497

processes. Specifically, τ dictates the granularity of 498

the hierarchical clustering. A larger τ value yields 499

coarser clusters, encompassing a broader spectrum 500

of behavioral samples with potentially greater di- 501

vergence from the cluster centroid. In contrast, 502

a smaller τ enforces a more stringent clustering 503

criterion, resulting in finer-grained clusters char- 504

acterized by higher intra-cluster homogeneity. On 505

the other hand, α modulates the balance between 506

prototypicality and diversity during the in-cluster 507

behavior selection stage. A higher α amplifies the 508

preference for diversity. Conversely, a lower α 509

emphasizes prototypicality, favoring samples that 510

close to cluster centroid. Our empirical analysis, 511

as illustrated in Figure 4, uncovers nuanced pat- 512

terns in how these hyperparameters influence the 513

model’s overall performance. 514

Key findings include: (1) At low selection ra- 515
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tios (e.g., 0.1, 0.3), performance is stable across516

configurations due to centroid-focused sampling;517

(2) Higher α values (e.g., 1.06–1.08) significantly518

improve performance at large ratios (0.5–0.9) un-519

derscores the efficacy of incorporating diverse sam-520

ples; (3) Optimal τ depends on cluster scope (e.g.,521

constrained cluster scope with τ = 0.5 pairs with522

α = 1.08, while the broader cluster scope with523

τ = 0.7 favors α = 1.06 avoid overemphasizing524

highly diverse samples). (4) PersonaX exhibits525

robustness, with worst-case performance (71.6)526

nearly matching the best performance of the rele-527

vance baseline (71.86). In Appendix C, we present528

a detailed illustration alongside a visualization anal-529

ysis of the sampling process.530

6 Related Works531

6.1 Large Language Model for User Modeling532

User Modeling (UM) aims to extract valuable in-533

sights and patterns from user-generated content534

(UGC), and Large Language Models (LLMs) excel535

in characterizing user personalities and discern-536

ing preferences. Leveraging LLMs for UM has537

gained increasing attention, and the generated tex-538

tual personas can be applied to downstream per-539

sonalization tasks. For example, ONCE (Liu et al.,540

2024) utilizes ChatGPT to infer users’ preferred541

topics and regions, enhancing click-through rate542

prediction with these generated profiles. Kang et al.543

(Kang et al., 2023) enable LLMs to comprehend544

user preferences from behavior history to predict545

user ratings. LLMRec (Lyu et al., 2024) identifies546

limitations in directly using raw item descriptions,547

which often fail to capture the subtle nuances of548

user preferences. To address this, it employs four549

distinct text enrichment strategies to enhance the550

input and improve recommendation performance.551

LLMRank (Hou et al., 2024) introduces special-552

ized prompting and bootstrapping techniques that553

incorporate user interaction histories, effectively554

aligning with user intent. Moreover, two prominent555

strategies—Summarization and Reflection—have556

been widely adopted in leading agent recommen-557

dation frameworks, such as Agent4Rec (Zhang558

et al., 2024a), RecAgent (Wang et al., 2024), and559

AgentCF (Zhang et al., 2024b). Summarization fo-560

cuses on distilling user behaviors, while reflection561

emphasizes iterative learning from interactions.562

However, no research has focused on the per-563

formance of LLMs when handling extensive UGC,564

nor has any LLM-UM method been proficient at565

efficiently and accurately modeling user personas 566

from long behavior sequences. We are the first to 567

address this gap and introduce PersonaX. 568

6.2 Personalized Agents 569

LLM-driven agents have gained prominence for 570

their autonomous decision-making, tool utilization 571

(Yang et al., 2023; Qin et al., 2023), and adap- 572

tive intelligence. Recent advances enable person- 573

alized agents through encoded personalities (Rao 574

et al., 2023), backgrounds, and behavioral traits in 575

prompts. Such persona-driven frameworks enhance 576

user engagement through human-like interactions 577

(Sun et al., 2024), with applications like Character- 578

Agent (Shao et al., 2023) demonstrating consistent 579

persona emulation of historical figures for immer- 580

sive simulations. The personalization of agent also 581

enable the simulations of social dynamics (Park 582

et al., 2023), competition (Zhao et al.), and collab- 583

oration (Shi et al., 2023). 584

However, recommendation agents face distinct 585

challenges: Unlike predefined personas, user pref- 586

erences in recommendation contexts are implicit 587

and behaviorally embedded rather than verbally 588

expressed. This creates alignment difficulties be- 589

tween agent decisions and users’ latent preferences. 590

The primary objective of PersonaX is to develop a 591

highly accurate and realistic user modeling method, 592

enabling instruction-based agents to consistently 593

simulate and align with the decision-making behav- 594

iors of the users they surrogate. 595

7 Conclusion 596

In this study, we present PersonaX, an innovative 597

LLM-UM framework oriented for agent recom- 598

mendation specially designed for processing long 599

user behavior sequences. PersonaX utilizes only 600

30%-50% of the user’s historical behavior data 601

and strategically select high-quality sub-behavior 602

sequences of short length (often < 5) for gen- 603

erating broad spectrum of persona snippets of- 604

fline. When PersonaX integrated into existing 605

agent recommendation methods, such as AgentCF 606

and Agent4Rec, PersonaX delivers substantial per- 607

formance gains—ranging from 3% to 11% over 608

AgentCF, and an impressive 10% to 50% improve- 609

ment over Agent4Rec. In terms of online efficiency, 610

PersonaX outperforms the best baseline method, 611

Summarization + Relevance Sampling, by halving 612

the computation time. We believe that PersonaX 613

significantly facilitate the agent recommendation 614

in predictive accuracy and inference efficiency. 615
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Limitations616

While PersonaX effectively tackles the challenge617

of modeling user behavior over extended sequences618

in LLM-based user modeling, its performance in619

real-world streaming data scenarios remains unex-620

plored. This presents a promising opportunity for621

future enhancements. A fundamental characteristic622

of PersonaX lies in its offline generation of multiple623

personas, capturing diverse aspects of user prefer-624

ences. This design facilitates long-horizon mod-625

eling, where personas encapsulate user interests626

over extended periods and maintain their effective-627

ness for prolonged use, surpassing approaches (e.g.,628

AgentCF) that depend on recent-sampling strate-629

gies and require frequent profile updates. However,630

an exciting direction for future work involves ex-631

ploring the optimal duration for which these pre-632

computed personas retain their efficacy in online633

deployment. Understanding the dynamics of perfor-634

mance degradation over time can inform strategies635

for adaptive persona updates. Thus, an unresolved636

work is the integration of an incremental learning637

mechanism within PersonaX to continuously refine638

and update user representations, which presents a639

compelling opportunity to enhance its responsive-640

ness and robustness to evolving user interests.641

Ethics642

Our study models user profiles based on histor-643

ical behavioral data. We use publicly available644

datasets collected under standard ethical protocols645

and strictly adhere to their intended research use.646

PersonaX is designed solely for academic purposes,647

ensuring compliance with data access conditions.648

Our datasets are either pre-anonymized. We pre-649

vent re-identification and check for offensive con-650

tent, ensuring responsible and unbiased profiling.651

By following these safeguards, we uphold ethical652

standards in data usage, privacy protection, and653

transparency.654
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Table 4: Summary of preprocessed subset statistics. "Avg.L" represents the average length of user behavior
sequences.

Subsets #Users #Items #Inters Sparsity Avg.L
CDs50 100 4,899 5,000 98.97% 50.00
CDs200 1000 101,902 200,336 99.80% 200.34
Books480 1000 222,539 481,455 99.78% 481.46

A Datasets1005

In this appendix, we provide a detailed description of the dataset construction and statistics.1006

Building on prior studies such as AgentCF (Zhang et al., 2024b), Agent4Rec (Zhang et al., 2024a), and1007

EasyRec (Ren and Huang, 2024), we evaluate our proposed method using two widely adopted subsets of1008

the Amazon review dataset (Ni et al., 2019): CDs and Vinyl and Books. For the CDs dataset, we construct1009

CDs50, and CDs200, with average user interaction sequence lengths of 50 and 200, respectively. These1010

settings are similar as those used in AgentCF (Zhang et al., 2024b).1011

For the Books dataset, departing from the approach of Agent4Rec which limits each user’s interactions1012

to 20 items, we follow the guidelines of (Pi et al., 2019, 2020) to construct longer interaction sequences.1013

Specifically, we create Books480, with average sequence lengths of 480, respectively. Detailed statistics1014

for these datasets are provided in Table 4.1015

Due to the high computational cost and expense associated with API calls for GPT-4o-mini, we conduct1016

each experiment only once per dataset to ensure feasibility within a reasonable budget. This approach is1017

common in agent recommendation studies (Zhang et al., 2024a,b; Wang et al., 2024; Luo et al., 2023) and1018

large-scale recommendation system research. Moreover, the larger number of users (1000) in our study1019

enhances the reliability of the experimental results.1020

B Backbone Methods1021

We provide a detailed description of the backbone methods used for validation.1022

AgentCF (Zhang et al., 2024b) employs a reflective mechanism to model user personas. In the original1023

framework, both the user profile and item profile are dynamically updated. In our implementation, the1024

item profile is textually represented by concatenating the item’s fields, while the user profile is initially set1025

to "Currently Unknown" and is iteratively refined through continuous reflection. Furthermore, for the1026

downstream recommendation ranking task in AgentCF, we replace the original LLM-based ranking with1027

the EasyRec framework (Ren and Huang, 2024). EasyRec is the first large language embedding model1028

specifically designed for recommendation. It aligns textual semantic spaces with collaborative behavioral1029

signals, enabling recommendation tasks to rely solely on textual instructions (e.g., user preference1030

descriptions and item profiles) while achieving performance comparable to traditional state-of-the-art1031

models. Leveraging EasyRec for point-wise ranking is more experimentally efficient, accurate, and robust1032

compared with LLMs.1033

Agent4Rec (Zhang et al., 2024a) maintains an agent profile comprising two key components: social1034

traits and unique tastes. In our implementation, we streamline the process by focusing solely on capturing1035

diverse user interests through the construction of unique tastes, thus simplifying experimentation. To1036

achieve this, we adopt the summarization method from the original work, which distills user preferences1037

from their behavioral sequences. Additionally, we replace the original rating prediction task in the1038

Agent4Rec framework with a ranking task.1039

C Hyper-parameter Analysis and Sampling Process Visualization1040

This section delves into the influence of the hyperparameters τ and α on the performance of PersonaX, as1041

they play pivotal roles in shaping the hierarchical clustering and in-cluster behavior selection processes.1042

Specifically, τ dictates the granularity of the hierarchical clustering. A larger τ value yields coarser1043

clusters, encompassing a broader spectrum of behavioral samples with potentially greater divergence from1044

the cluster centroid. In contrast, a smaller τ enforces a more stringent clustering criterion, resulting in1045
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Figure 5: Sampling process for a user in Books480 with a 50% selection ratio. Points are color-coded and outlined.
Non-transparent points signify data selected, whereas transparent points delineate behaviors not sampled. A offers
a holistic perspective on the user’s comprehensive behavior distribution, capturing the full extent of engagement
patterns. BẼ presents parts of behaviors distributions and sampling process under varying configurations of hyper-
parameters. Triangles denote the centroids of the clusters.

finer-grained clusters characterized by higher intra-cluster homogeneity. On the other hand, α modulates 1046

the balance between prototypicality and diversity during the in-cluster behavior selection stage. A higher 1047

α amplifies the preference for selecting behavior samples further from the cluster centroid, thereby 1048

enhancing diversity within the cluster. Conversely, a lower α emphasizes prototypicality, favoring samples 1049

that closely align with the cluster centroid. Our empirical analysis, as illustrated in Figure 4, uncovers 1050

nuanced patterns in how these hyperparameters influence the model’s overall performance. 1051

1. Performance at Low Ratios: Across τ and α configurations, the performances at lower ratios (e.g., 1052

0.1, 0.3) remain similar. This is because the selected samples at low ratios primarily originate near the 1053

cluster centroid, regardless of the diversity adjustment imposed by α. Slightly superior performance of 1054

τ = 0.5 compared to τ = 0.7 at these ratios is attributed to the finer clustering granularity of τ = 0.5, 1055

which ensures that selected samples exhibit higher prototypicality. 1056

2. Performance at High Ratios (0.5–0.9): At higher ratios, configurations with larger α values 1057

(e.g., α = 1.06, 1.08) outperform their smaller-α counterparts (e.g., α = 1.01, 1.04). This highlights the 1058

efficacy of the in-cluster selection strategy: after a core set of prototypical samples is chosen, incorporating 1059

more diverse samples significantly enhances performance. The inclusion of diversity helps capture broader 1060

behavioral patterns, leading to improved generalization. 1061

3. Trade-offs in Specific Settings: A nuanced behavior is observed in the interaction between τ and 1062

α. For τ = 0.5, α = 1.08 performs better than α = 1.06, suggesting that in scenarios where the cluster 1063

scope is relatively constrained, the diversity of samples becomes pivotal, necessitating a higher α to 1064

effectively prioritize and capture heterogeneous behaviors. For τ = 0.7, α = 1.06 outperforms α = 1.08, 1065

as the broader cluster scope with α = 1.08 potentially overemphasizes highly diverse samples, leading 1066

to a slight degradation in overall performance. This interplay underscores the importance of balancing 1067

cluster granularity and diversity during sample selection. 1068

4. Parameter Robustness: Our framework demonstrates robust performance across a wide range of 1069

hyper-parameter settings. For instance, the worst best performance (71.6) achieved with τ = 0.7, α = 1.04 1070

is only marginally lower than the best performance of the relevance baseline (71.86). This indicates that 1071

our method remains effective without being overly sensitive to hyper-parameter adjustments. 1072

To provide an intuitive analysis of the sampling process, we conducted a visualization study, as 1073

illustrated in Figure 5. From Figure 5.A, it is evident that smaller clusters are preferentially allocated 1074

an adequate sampling quota compared to larger ones. This observation underscores the efficacy of the 1075

proposed Algorithm 1, which strategically prioritizes smaller clusters to ensure sufficient sampling. By 1076

adopting this approach, the algorithm effectively preserves the user’s diverse interests, including long-tail 1077

preferences, even under constrained sampling resources. The comparisons between Figure 5.B and 1078

Figure 5.C, as well as Figure 5.D and Figure 5.E, highlight the impact of α. Specifically, smaller α 1079
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values tend to focus the sample selection closer to the cluster centroids. Furthermore, the comparisons1080

between Figure 5.B and Figure 5.D, and between Figure 5.C and Figure 5.E, demonstrate that a a more1081

granular clustering can constrain Algorithm 2 from selecting samples that deviate excessively from the1082

cluster centroids. This constraint mitigates potential performance degradation caused by overemphasis on1083

unrelated samples.1084

The experimental findings and visualization analysis suggest that both τ and α require empirical tuning1085

to identify optimal configurations. We recommended a balance between prototypicality and diversity, for1086

example a larger α values combined with appropriately tuned small τ .1087

D Details about In-Cluter Selection1088

In this section, we delve into the mechanisms governing sample selection by proposing a principled
scoring system to evaluate the prototypicality and diversity of candidate samples. The scoring mechanism
is derived from two complementary perspectives: prototypicality

1

1 + d(ej , µi)

, which assesses how representative a sample is of its respective cluster, and diversity

2

ai

∑
Ia,Ib∈c∗i

a̸=b

d(ea, eb)

, which quantifies the extent to which the selected samples span a broader spectrum of the data distribution.1089

D.1 Prototypicality and Diversity Scoring1090

From the formulation below,

max
c∗i

(
wp ·

∑
Ij∈c∗i

1

1 + d(ej , µi)
+ wd ·

2

ai

∑
Ia,Ib∈c∗i

a ̸=b

d(ea, eb)

)

it is evident that the prototypicality score exhibits an inverse relationship with the distance between a1091

sample and the center of its cluster. As a sample moves further from the cluster centroid, its prototypicality1092

diminishes proportionally, reflecting its reduced ability to represent the typical characteristics of the cluster.1093

The diversity score considers the pairwise distances between the candidate sample and the samples already1094

selected. This ensures that the inclusion of a new sample enriches the diversity of the chosen subset by1095

discouraging redundancy.1096

To compute the diversity score, we employ the scaling factor 2/ai. We don’t choice of averaging scaling1097

approach 1/[ai(ai − 1)], which tends to normalize diversity growth. By adopting 2/ai, we deliberately1098

amplify the influence of diversity as ai increases, thereby prioritizing the inclusion of diverse samples in1099

scenarios where a cluster is allocated enough sampling budget. This design reflects an underlying intent:1100

as ai grows, the system places greater emphasis on diversity to ensure comprehensive coverage of the data1101

distribution. Conversely, when ai is small, prototypicality takes precedence, directing attention toward1102

selecting samples that are most representative of their respective clusters.1103

D.2 Design Rationale1104

The decision to amplify diversity dynamically aligns with our broader goal of achieving a balanced and1105

adaptive sample selection process. By coupling prototypicality with diversity in this manner, we address1106

two critical challenges in data selection:1107

1. Representative Sampling: When the sample pool is sparse, selecting highly prototypical samples1108

ensures that the chosen subset faithfully captures the core characteristics of the data clusters. This is1109

particularly crucial in tasks where the representativeness of the selected data has a direct impact on model1110

performance, such as user profiling or content recommendation.1111
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Figure 6: Trade off between wp and wd at different settings of α.

Figure 7: Dynamics of In-Cluster sample selection: We set α = 0.7, with the samples distributed within the range
of [−2, 2].

2. Comprehensive Coverage: In cases where the candidate pool is dense, diversity becomes increas- 1112

ingly important to avoid redundancy and to capture the subtle variations within the data distribution. By 1113

amplifying diversity when ai is large, our scoring mechanism ensures that the selected subset spans the 1114

breadth of the distribution, enabling downstream models to generalize better across diverse scenarios. 1115

D.3 Broader Implications 1116

The proposed scoring framework introduces a novel perspective on balancing representativeness and 1117

diversity in data selection. By dynamically modulating the influence of diversity based on the local sample 1118

density, our approach strikes a principled balance between selecting typical and atypical samples. This 1119

adaptability is particularly valuable in data-centric applications, where sample selection directly affects 1120

the quality of downstream tasks, such as dataset pruning, user interest modeling, and few-shot learning. 1121

D.4 Visualization Explanation 1122

Figure 6 shows the trade-off between wp and wd across different settings of α. As observed in the figure, 1123

when α is small, wp dominates the sampling process, leading to the selection of samples near the cluster 1124

center. These samples are prototypical and reflect the representative thematic interests of the cluster. As α 1125

increases, wd becomes more prominent, and wp approaches 0, causing the sampling process to prioritize 1126

diverse samples in order to enhance generalization. 1127

Figure 7 presents a dynamic visualization of the sampling process in Algorithm 2. As illustrated, the 1128

algorithm iteratively selects samples by jointly optimizing for both prototypicality and diversity, thereby 1129
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Table 5: Intuitive comparison of user personas modeled by different methods. Specifically, (A) Relevance sampling
(length 3), (B) Recent sampling (length 10), and (C) PersonaX (selection ratio 30%).

Method User Persona o3-mini’s Reasoning Evaluation
A I prefer Rock and Progressive Rock music, particularly works

by artists like Trey Anastasio. I enjoy albums that feature
new songs and live performances, as they provide a dynamic
listening experience. I appreciate behind-the-scenes content
that adds depth to the music experience. I also enjoy Con-
temporary Folk music, especially works by artists like Steve
Winwood, as they can offer a fresh take on musical composi-
tions. I dislike R&B and Soul music, particularly collections
that focus on remixes of older tracks, as I find them less en-
gaging. I prefer original compositions and fresh takes on
music rather than revisiting past favorites. Additionally, I
am not particularly interested in World Music, especially live
performances that do not align with my preferred genres.

This description is detailed and rich in information,
but it introduces multiple music genres which may
dilute the focus on the user’s core preferences.

B I prefer Classic Rock and Arena Rock music, particularly
albums that showcase strong melodies and engaging perfor-
mances, such as ’Chickenfoot’ by Chickenfoot. I enjoy music
that has a fun, energetic vibe and often features collaborative
efforts from talented musicians. I appreciate emotional bal-
lads and songs that reflect depth and complexity in lyrics and
composition. I dislike Blues Rock that focuses on traditional
guitar work and may lack the innovative sounds I seek, as
exemplified by ’Smokestacks, Broom Dusters & Hoochie
Coochie Men’ by Micky Moody, which I find less appealing
due to its more conventional approach.

This description focuses on a subset of rock mu-
sic—Classic and Arena Rock—which contrasts
with the broader rock and progressive preferences
seen in the other descriptions. It is detailed but less
aligned with the core focus compared to C.

C I prefer rock and progressive music, particularly works by
notable artists like Trey Anastasio. I enjoy albums that of-
fer a collection of new songs, especially those that include
additional content such as live performances and behind-the-
scenes footage. I dislike pop and dance music, particularly
generic albums that lack depth or a compelling narrative. I
appreciate immersive listening experiences that connect me
to the artist’s journey and creative process.

This description is the most concise and focused,
effectively capturing the user’s core interests—new
material, live performances, and behind-the-scenes
insights—without extraneous details, making it the
highest quality among the three.

Table 6: Quantitative Evaluation of User Persona Modeling Methods

Method NDCG@1 NDCG@5 NDCG@10 Hit@1 Hit@5 Hit@10 MRR

A 0.00 0.42 0.54 0.00 0.67 1.00 0.39
B 0.00 0.54 0.54 0.00 1.00 1.00 0.39
C 0.33 0.71 0.71 0.33 1.00 1.00 0.61

maximizing the combined gain. This approach stands in contrast to conventional data selection methods,1130

which often exhibit a unimodal bias—either favoring simple, centrally clustered, and highly representative1131

samples (Welling, 2009; Rebuffi et al., 2017; Sorscher et al., 2022) or prioritizing difficult, outlier samples1132

with strong generalization potential (Paul et al., 2021; Toneva et al., 2019).1133

Empirical analysis of the hyperparameter α, which governs the trade-off between prototypicality and1134

diversity, reveals a practical range of 1.06–1.08. Within this regime, PersonaX often firstly selects a1135

minimal set of prototypical samples and then shifting its focus toward maximizing sample diversity.1136

We believe this is because of the superior few-shot generalization capabilities of LLMs. These models1137

inherently require fewer prototypical instances to capture core user interests, thereby shifting their1138

emphasis toward diverse sample acquisition to further enhance generalization.1139

E Case Study1140

In this section, we present a case study comparing user personas modeled using Relevance, Recent,1141

and PersonaX methods, with the backbone LLM-UM approach fixed as Reflection. The dataset used1142

is CDs50, with the User ID A2NQUGGYM0DBM1. The results are summarized in Table 5. We evaluate their1143

quality by OpenAI’s o3-mini, using its reasoning capabilities in an LLM-As-Judge framework. The1144
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evaluation indicated that Model C had the highest modeling quality 2. The explanation provided was that 1145

C demonstrated superior descriptive quality, capturing the user’s core preferences for rock and progressive 1146

music with concise and precise language. It also emphasized the user’s interest in new releases, live 1147

performances, and behind-the-scenes content, while avoiding extraneous information misaligned with 1148

primary interests. In contrast, Model A, while rich in information, introduced a broader range of music 1149

styles that diluted focus, and Model B predominantly emphasized an alternative style of rock, leading to 1150

inconsistencies with the other descriptions. 1151

We conducted three rounds of quantitative evaluations on the ranking task, each comprising one positive 1152

item alongside nigh negative items. As shown in Table 6, Method C achieved the highest performance, 1153

followed by Method B, while Method A exhibited the poorest performance. 1154

F Prompt Templates 1155

We present the prompt templates used in AgentCF, as shown in Figure 8 and Figure 9, and those employed 1156

in Agent4Rec, depicted in Figure 10. 1157

Prompt Template for Forward Inference Process of AgentCF

Task: We provide a user’s personal profile in [User Profile], which includes the user’s preferences,
dislikes, and other relevant information. You need play the role of the user. And we also provide
two candidate items, A and B, with their features in [Item Feature]. You need to choice between
the two item candidates based on your profile and the features of the items. Furthermore, you must
articulate why you’ve chosen that particular item while rejecting the other.
User Profile: {profile}
Item Feature: Item A: {item a} Item B: {item b}
Steps to Follow:
1. Extract your preferences and dislikes from your self-introduction.
2. Evaluate the two candidate in light of your preferences and dislikes. Make your choice by
considering the correlation between your preferences/dislikes and the features of the candidates.
3. Explain why you made such choices, from the perspective of the relationship between your
preferences/dislikes and the features of these candidate items.
Important Notes:
1. Your output should strictly be in the following format: Chosen Item: Item A or Item B
Explanation: Your detailed rationale behind your choice and reasons for rejecting the other item.
2. When identifying user’s likes and dislikes, do not fabricate them! If your [User Profile] doesn’t
specify any relevant preferences or dislikes, use common knowledge to inform your decision.
3. You **must** choose one of these two candidates, and **cannot** choose both.
4. Your explanation needs to be comprehensive and specific. Your reasoning should delve into the
finer attributes of the items.
5. Base your explanation on facts. For instance, if your self-introduction doesn’t reveal any specific
preferences or dislikes, justify your decision using available or common knowledge.
6. Please ignore the effect of Item position and length, they do not affect your decision.
Response Example: Chosen Item: Item A Explanation: I chose Item A because...

Figure 8: Prompt template for the forward process of AgentCF to predict one user potentially liked item between a
positive one and a negarive one.

2Repeated inquiries occasionally resulted in A being rated higher, with the justification that A offered a more comprehensive
view. However, this comprehensiveness came at the cost of interest modeling that was more diffuse and less precise.
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Prompt Template for Backward Reflection Process of AgentCF

Background: We provide a user’s personal profile in [User Profile], which includes the user’s
preferences, dislikes, and other relevant information. You need play the role of the user. Recently,
you considered choosing one more prefered Item from two candidates. The features of these two
candidate are provided in [Item Feature]. And your choice and explanation is in [Choice and
Explanation], which reveals your previous judgment for these two candidates.
User Profile: {profile}
Item Feature: Item A: {item a} Item B: {item b}
Choice and Explanation: {response}
Task: However, The user in the real world actually prefer to choose Item B, and reject the Item
A that you initially chose. This indicates that you made an incorrect choice, the [Choice and
Explanation] was mistaken. Therefore, you need to reflect and update [User Profile].
Steps to Follow:
1. Analyze the misconceptions in your previous [Choice and Explanation] about your preferences
and dislikes, as recorded in your explanation, and correct these mistakes.
2. Explore your new preferences based on the Item B you really enjoy, and determine your dislikes
based on the Item a you truly don’t enjoy.
3. Summarize your past preferences and dislikes from your previous [User Profile]. Combine
your newfound preferences and dislikes with your past ones. Filter and remove any conflicting or
repetitive parts in your past [User Profile] that contradict your current preferences and dislikes.
4. Generate a update profile use the following format:
My updated profile: {Please write your updated profile here}
Important Notes:
1. Keep your updated profile under 180 words.
2. Any overall assessments or summarization in your profile are forbidden.
3. Your updated profile should only describe the features of items you prefer or dislike, without
mentioning your wrong choice or your thinking process in updating your profile.
4. Your profile should be specific and personalized. Any preferences and dislikes that cannot
distinguish you from others are not worth recording.
Response Example: My updated profile: I ...

Figure 9: Prompt template for the backward process of AgentCF to apply the reflect mechanism for updating user
profile.

20



Prompt Template for Summarization Process of Agent4Rec

Task: We provide a user’s personal profile in [User Profile], which includes the user’s preferences
and other relevant information. Additionally, we provide a sequence of liked items in [Sequence
Item Profile] that the user has interacted with. Your task is to analyze these items in the context
of the user’s existing profile and produce an updated profile that reflects any new preferences, or
insights inferred from the user’s interactions with these items.
User Profile: {profile}
Sequence Item Profile: {sequence item profile}
Steps to Follow:
1. Carefully review the user’s existing profile to understand their stated preferences and dislikes.
2. Analyze the features of the items in the provided sequence, noting any common themes,
attributes, or patterns.
3. Identify any new preferences that can be inferred from the user’s interactions with these items.
4. Summarize and update the user’s profile by incorporating the new insights, adding new pref-
erences or dislikes, and highlighting any changes or developments in the user’s tastes. Important
Notes
5. Your output should strictly be in the following format: Summarization: {Your updated profile.}
6. Do not contradict the user’s existing preferences unless there is clear evidence from the sequence
items that their tastes have changed.
7. Base your summary on facts and logical inferences drawn from the items in the sequence.
8. Be comprehensive and specific in your summarization, focusing on the finer attributes and
features of the items that relate to the user’s preferences.
9. Avoid fabricating any information not supported by the user’s profile or the sequence items.
Response Example: Summarization: You’ve developed interest in ....

Figure 10: Prompt template of Agent4Rec to apply the summarization mechanism for distilling user profile.

21


	Introduction
	Preliminary
	User Modeling
	Sub-Behavior Sequence (SBS) Selection.

	Method
	Behavior Clustering
	Sampling Budget Allocation
	In-Cluster Selection
	Offline Profiling and Online Selection

	Efficiency Analysis
	Experiments
	Experimental Setup
	Datasets
	Evaluation
	Baseline Comparison
	Backbone Agent Recommendation
	Implementation Details

	Performance Evaluation (RQ 1)
	Sampling Size Investigation (RQ 2)
	Hyper-parameter Analysis (RQ3)

	Related Works
	Large Language Model for User Modeling
	Personalized Agents

	Conclusion
	Datasets
	Backbone Methods
	Hyper-parameter Analysis and Sampling Process Visualization
	Details about In-Cluter Selection
	Prototypicality and Diversity Scoring
	Design Rationale
	Broader Implications
	Visualization Explanation

	Case Study
	Prompt Templates

