

000 001 002 003 004 005 RFMEDSAM 2: AUTOMATIC PROMPT REFINEMENT 006 FOR MEDICAL IMAGE SEGMENTATION WITH SAM 2 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
19

054 et al. (2015), achieving a Dice score of 82.77% compared to SAM’s 81.89%, highlighting its potential
 055 for further exploration in medical image segmentation tasks.
 056

057 However, like SAM, SAM 2 has inherent limitations, including its binary mask outputs, the absence
 058 of semantic label inference, and dependence on precise prompts for target object identification.
 059 Additionally, without modifications, the performance of SAM and SAM 2 on medical segmentation
 060 tasks remains suboptimal compared to state-of-the-art models.
 061

062 To address these challenges and maximize SAM 2’s potential for medical segmentation, we contribute:
 063

- 064 • We introduce RFMedSAM 2, a novel framework for automatic prompt refinement in medical image
 065 segmentation, leveraging the multi-stage refinement capabilities of SAM 2.
- 066 • We develop new adapter modules: a depth-wise convolutional adapter (DWConvAdapter) for
 067 attention blocks and a CNN-Adapter for convolutional layers, enhancing spatial information
 068 capture and enabling efficient fine-tuning.
- 069 • We establish the upper performance bound of SAM 2 with optimal prompts, achieving a DSC of
 070 92.30%, surpassing the state-of-the-art nnUNet by 12% on BTCV Landman et al. (2015) dataset.
- 071 • We propose an independent UNet to generate masks and bounding boxes for SAM 2, enabling
 072 automatic prompt generation and dual-stage refinement, eliminating reliance on manual prompts.
- 073 • We conduct extensive experiments on challenging medical image datasets (AMOS Ji et al. (2022)
 074 and BTCV Landman et al. (2015)), demonstrating that RFMedSAM 2 achieves state-of-the-art
 075 results, surpassing nnUNet by 1.4% on the AMOS2022 dataset and 6.4% on the BTCV dataset.
 076

077 2 RELATED WORK

078 2.1 MEDICAL IMAGE SEGMENTATION

079 The field of medical image segmentation has evolved significantly, with deep learning-based ap-
 080 proaches replacing traditional machine learning methods. U-Net Ronneberger et al. (2015) remains a
 081 foundational model due to its encoder-decoder structure and skip connections, which help preserve
 082 spatial context. Building on this, nnUNet Isensee et al. (2019) introduced an automated pipeline
 083 that adapts U-Net’s architecture to different medical datasets. Other convolution-based methods,
 084 including 3D-UXNET Lee et al. (2022), MedNeXt Roy et al. (2023), and STU-Net Huang et al.
 085 (2023), have further advanced segmentation capabilities. More recently, transformer-based models,
 086 such as UNETR Hatamizadeh et al. (2022), SwinUNETR Hatamizadeh et al. (2021), and nnFormer
 087 Zhou et al. (2021), have been explored to capture global context and improve accuracy by leveraging
 088 self-attention mechanisms, which facilitate long-range dependency modeling. While these models
 089 have been explicitly designed for medical image segmentation and trained from scratch, they exhibit
 090 high inductive bias, which can limit adaptability.

091 2.2 SAM AND SAM 2 FOR MEDICAL IMAGE SEGMENTATION

092 Segment Anything Model (SAM) Kirillov et al. (2023), pre-trained on over 1 billion masks from
 093 11 million natural images, has emerged as a powerful prompt-based foundation model for image
 094 segmentation, demonstrating strong zero-shot capabilities across diverse applications. Following the
 095 “pre-training then fine-tuning” paradigm, SAM has been extended and fine-tuned for medical image
 096 segmentation in several studies, including MedSAM Ma et al. (2024), MaskSAM Xie et al. (2024),
 097 and Self-Prompt SAM Xie et al. (2025), among others Zhang et al. (2024); Deng et al. (2023); Ma
 098 & Wang (2023); Wu et al. (2023); Li et al. (2023); Gong et al. (2023). These adaptations highlight
 099 SAM’s flexibility and the research community’s ongoing efforts to tailor it for medical applications.
 100 However, SAM’s original design limitations, including binary mask outputs and prompt dependency,
 101 restrict its effectiveness for fully automated medical segmentation tasks, which are inherited to SAM
 102 2 and make it less suitable for fully automated medical segmentation tasks. SAM2-Adapter Chen
 103 et al. (2024) integrates adapters into the image encoder and fine-tunes the mask decoder, yet it still
 104 struggles with semantic labels and requires additional prompts, limiting its effectiveness. Similarly,
 105 Polyp SAM 2 Mansoori et al. (2024) and other studies Yu et al. (2024); Liu et al. (2024) have explored
 106 SAM 2 for medical applications but face the same fundamental challenges.

107 The dependency on accurate prompts in SAM 2 and other prompt-driven models remains a key
 108 limitation, particularly in medical imaging, where obtaining precise annotations can be difficult.

108	Prompt	Bounding boxes as prompts								Central points as prompts								
		Method	SAM		SAM 2				SAM	SAM 2		SAM 2				SAM 2		
			All	All	All	Unprompted	Two	One		All	All	Two	One	All	Unprompted	All	Unprompted	
109	DSC (%)	Step 2	—	81.89	81.17	82.77	68.75	68.03	45.00	44.07	—	8.86	3.81	4.90	2.11	3.43	2.53	4.59

Table 1: Performance evaluation of SAM and SAM 2 with different prompt settings on BTCV dataset.

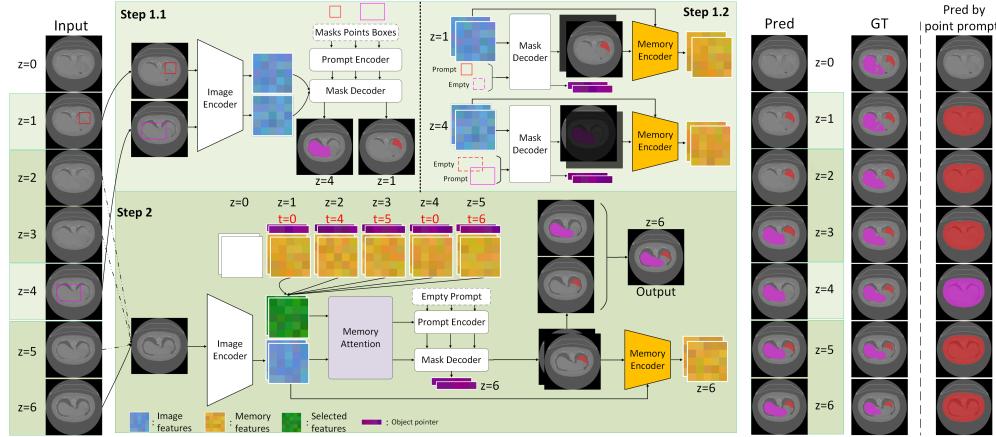


Figure 2: Overview of SAM 2. The pipeline includes steps for prompted and unprompted frames.

Ongoing research seeks to mitigate this issue through auxiliary models that generate reliable prompts and learning mechanisms that dynamically refine prompts during training. While SAM 2’s memory attention improves temporal consistency in video segmentation, it also introduces additional complexity in training and memory requirements. Addressing these challenges could enable SAM 2 and similar models to reach their full potential in medical image segmentation, bridging the gap between state-of-the-art performance and practical usability.

3 THE PROPOSED APPROACH

This section details the structure and functionality of our proposed method. We begin by an overview and analysis of SAM 2, and introduce RFMedSAM 2, describing its architectural innovations and strategies for prompt refinement, which enables RFMedSAM 2 to achieve state-of-the-art performance in medical image segmentation while reducing its reliance on precise manual prompts. Fig. 2 illustrates the architecture and pipeline of SAM 2.

3.1 OVERVIEW OF SAM AND SAM 2

Model Architecture. Both SAM and SAM 2 share a core structure consisting of an image encoder, a prompt encoder, and a mask decoder. The image encoder processes input images to generate embeddings, while the prompt encoder handles input prompts in the form of points, bounding boxes, or masks. The mask decoder then combines image and prompt embeddings to produce binary segmentation masks. SAM employs a Vision Transformer as the backbone of its image encoder, whereas SAM 2 utilizes Hiera Ryali et al. (2023) to enhance feature representation. Additionally, SAM 2 introduces a memory attention module that conditions current frame features on past frames and object pointers, along with a memory encoder that fuses current frame features with output masks to generate memory features.

SAM 2’s Pipeline. The pipeline of SAM 2 operates in two stages: i) Prompted Frame Processing (Step 1.1 and Step 1.2 in Fig. 2), where segmentation is guided by explicit prompts. In this stage, SAM 2 segments objects in frames that contain explicit user-defined or ground-truth prompts. Each frame is processed independently, using the given prompt to generate an object mask. To ensure comprehensive segmentation, the number of processed instances is dynamically adjusted based on the number of expected objects. The resulting predicted masks and object pointers are then stored in the memory encoder to generate memory features for subsequent frames. ii) Unprompted Frame Processing, where memory attention propagates cues from prior frames as implicit prompts (Step 2 in Fig. 2). This stage handles frames without explicit prompts by leveraging temporal information from previously segmented frames. The memory attention module aggregates features from past prompted and unprompted frames to provide contextual cues for segmenting the current frame. Prompted frames are assigned a temporal position of 0, while unprompted frames receive increasing temporal

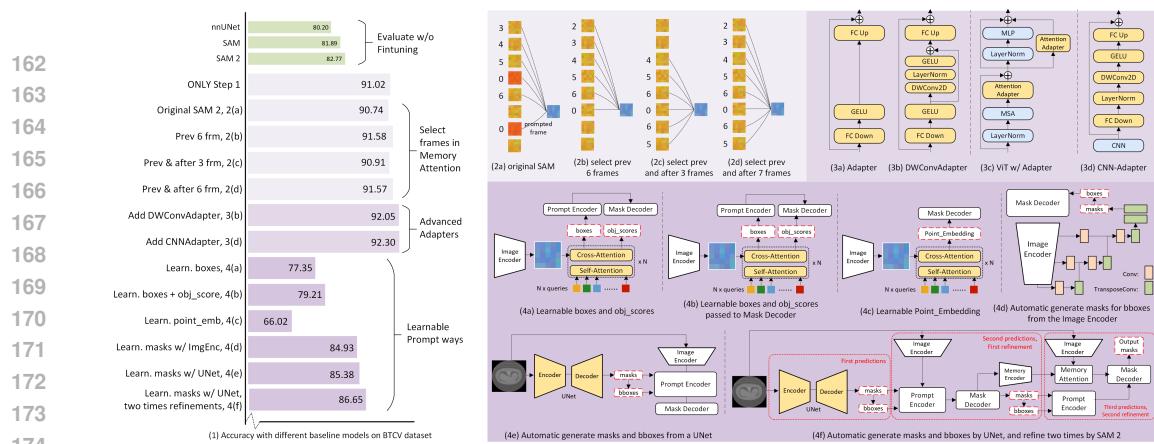


Figure 4: (1) Performance comparisons based on proposed methods. (2) Ablation studies on frame selection strategies. (3) Proposed Adapters. (4) Ablation studies on prompt generators.

positions (up to 6), with more recent frames being weighted more heavily. This approach enables continuity in segmentation but may introduce errors if temporal positioning is not accurately aligned.

3.2 ANALYSIS AND INSIGHTS

Tab. 1 summarizes experiments on BTCV with various settings for SAM and SAM 2 using ground-truth prompts and no structural changes. For each frame where an object (class) appears, we only use one prompt. As the official SAM 2 allows up to two prompted frames per object during training, we report results with one and two prompts per class, and also include the “all prompted frames” setting for fair comparison with SAM, which requires prompts for every frame. For step 2 in SAM 2, we test two strategies: i) the official protocol (step 2 only for unprompted frames), and ii) forcibly applying it to all frames (including prompted ones) to assess refinement potential.

- i) Bounding box prompts vs. central points:** As shown in Tab. 1, using central point prompts results in a Dice score below 10% for both SAM and SAM 2, indicating their ineffectiveness for segmentation. In contrast, bounding box prompts significantly improve performance. Due to this, all subsequent experiments utilize bounding boxes as prompts.
- ii) Per-frame prompts:** The results indicate that SAM 2 achieves its highest performance (82.77% Dice) when each frame contains a bounding box for every object, highlighting the critical role of per-frame prompts in ensuring optimal accuracy.
- iii) Comparison between SAM and SAM 2:** With per-frame prompts, SAM achieves a Dice score of 81.89%, whereas SAM 2 improves upon this, reaching 82.77%. This demonstrates the performance enhancement offered by SAM 2 over its predecessor.
- iv) Step 2 for refinement:** Step 2 in SAM 2, which leverages memory attention for unprompted frames, can also be applied to all frames for refinement. Enforcing Step 2 across all frames results in a slight drop in Dice score from 82.77% to 81.17%, yet it demonstrates potential for refining segmentation results, as illustrated in Fig. 3. Fig. 3(a) highlights an example where the green area is refined for better accuracy. However, Fig. 3(b) shows a limitation: assigning all prompted frames a temporal position of 0 can lead to incorrect temporal positioning, causing false positives in unrelated frames. Correcting temporal position can prevent such errors.
- v) Streaming operation:** Most SAM 2 modules operate on 2D image frames independently to reduce memory cost, while the memory attention module aggregates features from previous and prompted frames to establish temporal context. This streaming design balances efficiency and effectiveness, so we retain it in our method (Fig. 4).

3.3 RFMEDSAM 2 ARCHITECTURE

RFMedSAM 2 is a refined adaptation of SAM 2 designed to enhance segmentation performance for medical imaging tasks. Fig. 1 illustrates the overall architecture, which consists of three sequential stages: an initial prediction stage, a preliminary segmentation stage, and a refinement stage.

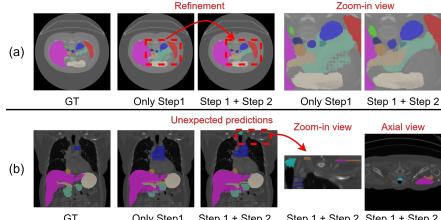


Figure 3: Benefits of refinement in Step 2.

216 In the initial prediction stage, a U-Net processes medical images to generate multi-class masks.
 217 These masks are converted into bounding boxes that serve as prompts for subsequent stages. The
 218 preliminary segmentation stage integrates the modified SAM 2 framework, where the image encoder
 219 extracts embeddings from input images, and the prompt encoder transforms bounding boxes into
 220 point embeddings. The mask decoder then utilizes these embeddings to generate initial masks and
 221 object pointers, which are refined into updated bounding box prompts. The modified memory encoder
 222 further processes these masks and frame features to generate memory features.

223 The final refinement stage enhances segmentation accuracy by leveraging a modified memory attention
 224 module, which establishes spatial and temporal relationships by combining the current frame’s image
 225 features with memory features from previous frames. The mask decoder processes these integrated
 226 features along with new point embeddings from the prompt encoder, producing refined segmentation
 227 predictions as the final output.

230 3.3.1 ARCHITECTURAL ADAPTATIONS TO SAM 2

232 To optimize SAM 2 for medical image segmentation, RFMedSAM 2 incorporates targeted modifications
 233 to address modality differences, spatial complexity, and the need for temporal consistency.

234 The image encoder is adapted to accommodate multi-channel medical images while maintaining
 235 compatibility with SAM’s RGB-based input expectations. Two stacked convolutional layers are
 236 introduced to transform medical images into the expected input format while preserving spatial
 237 details. The Hiera Ryalı et al. (2023) backbone is enhanced with Depth-wise Convolutional Adapters
 238 (DWConvAdapters) in attention blocks and CNN-Adapters in the FPN module. DWConvAdapters
 239 apply depth-wise convolutions separately to each input channel, reducing computational load while
 240 improving spatial feature extraction, which is crucial for anatomical segmentation. CNN-Adapters
 241 further refine feature fusion in convolutional layers, enhancing segmentation accuracy.

242 The mask decoder is modified to improve spatial learning. Adapters are positioned after self-
 243 attention and cross-attention blocks and in parallel with MLP layers to improve feature representation.
 244 DWConvAdapters strengthen the decoder’s ability to capture fine-grained spatial details, while
 245 CNN-Adapters optimize feature adaptation across different anatomical structures.

246 Further modifications enhance temporal consistency by refining the U-Net, memory encoder, and
 247 memory attention mechanisms. The U-Net maintains a symmetric encoder-decoder structure with
 248 skip connections to retain spatial information. CNN-Adapters in the memory encoder refine feature
 249 processing, ensuring that previously segmented frames contribute effectively to future predictions.
 250 DWConvAdapters are integrated into the memory attention module to enhance spatial-temporal
 251 feature aggregation.

252 3.3.2 FRAME SELECTION AND MEMORY ATTENTION STRATEGY

253 SAM 2’s memory attention mechanism plays a crucial role in propagating segmentation information
 254 across frames. However, its original temporal positioning strategy assigns a temporal position of zero
 255 to all prompted frames, leading to ambiguity and reduced segmentation accuracy. To address this, we
 256 explored alternative temporal positioning strategies, as summarized in Fig. 4(2).

257 The baseline SAM 2 strategy (Fig. 4(2a)) achieved a Dice Similarity Coefficient (DSC) of 90.74%,
 258 but was outperformed by a more structured approach. Our improved strategy (Fig. 4(2b)) assigns a
 259 temporal position of zero to only the current frame, incorporating up to six preceding frames with
 260 progressively higher temporal positions. This refined strategy enhances segmentation consistency
 261 by distinguishing current from previous frames, achieving a DSC of 91.58%. Alternative strategies
 262 incorporating forward and backward frame selection (Figures 4(2c)-(2d)) either reduced performance
 263 or increased memory overhead, confirming the effectiveness of our approach.

264 Additionally, RFMedSAM 2 maintains the streaming operation proposed in SAM 2, where most
 265 modules process images independently, reducing memory usage. The memory attention module
 266 remains the only component that integrates contextual information from previous frames, making it
 267 both efficient and effective for sequential medical image segmentation.

270 3.3.3 NOVEL ADAPTERS FOR ENHANCED FINE-TUNING
 271
 272 To support parameter-efficient fine-tuning while preserving SAM 2’s zero-shot capabilities, RFMed-
 273 SAM 2 introduces novel adaptation mechanisms that enhance spatial and convolutional processing.
 274
 275 DWConvAdapters (Depth-Wise Convolutional Adapters) are incorporated into the image encoder,
 276 memory attention, and mask decoder to improve spatial feature extraction. By applying depth-
 277 wise convolutions separately to each channel, these adapters reduce computational complexity
 278 while maintaining fine-grained spatial detail, a critical factor in segmenting anatomical structures.
 279 Experimental results demonstrate that integrating DWConvAdapters led to a 0.47% improvement in
 DSC, validating their effectiveness in spatial learning (Fig. 4(3b)).

280 CNN-Adapters further refine feature adaptation in convolutional layers, particularly in the FPN
 281 module and memory encoder. These adapters optimize multi-scale feature representation, ensuring
 282 robust segmentation performance across diverse medical imaging datasets. Their inclusion resulted
 283 in a 0.25% increase in DSC, confirming their impact on segmentation accuracy (Fig. 4(3b)).

284 The final RFMedSAM 2 model integrates DWConvAdapters for image embedding attention blocks,
 285 CNN-Adapters for convolutional layers, and original adapters for point embedding attention blocks.
 286 These enhancements collectively yield a 4% improvement in segmentation performance over state-
 287 of-the-art methods, as shown in Tab. 2. This demonstrates that our fine-tuning strategy effectively
 288 enhances SAM 2’s adaptability for complex medical imaging tasks.
 289

290 3.4 ENHANCING PROMPT GENERATION
 291

292 Accurate ground truth (GT) prompts enable SAM 2 to achieve state-of-the-art segmentation per-
 293 formance, yet their reliance on precise, manually annotated prompts limits practical deployment in
 294 real-world medical imaging. Manually generating high-quality prompts for every frame is labor-
 295 intensive and inconsistent, making an automated, self-sufficient prompt generation mechanism
 296 essential. To bridge this gap, we designed a prompt generation framework that progressively refines
 297 both the generated prompts and the final segmentation outputs during training.

298 Our objective is to replace explicit GT prompts with automatically generated ones while maintaining
 299 high segmentation accuracy. As illustrated in Fig. 4(4a)-(4f), we explored six distinct prompt
 300 generation strategies, categorized into two main types: learnable point coordinate representations
 301 (Figures 4(4a)-(4c)) and learnable masks (Figures 4(4d)-(4f)). Their effectiveness is summarized in
 302 the last six bars of Fig. 4(1). Below, we analyze both approaches and explain the rationale for our
 303 final design choice.
 304

305 3.4.1 LEARNABLE POINT COORDINATE REPRESENTATIONS
 306

307 One intuitive approach is to learn point coordinates directly. The block depicted in Fig. 4(4a)
 308 initializes object queries for each class, processing them through self-attention and cross-attention
 309 mechanisms that interact with current image features. Multiple MLP layers adjust embedding
 310 dimensions to generate box coordinates and object scores. Unlike its predecessor, SAM 2 applies
 311 stricter labeling criteria for point prompts, classifying them as no object (-1), negative/positive points
 312 (0,1), or box prompts (2,3). Previous experiments using GT prompts included labels indicating the
 313 absence of objects in certain frames. In our approach, object scores are trained to determine whether
 a frame should contain a prompt.

314 Despite these efforts, directly learning point coordinates proved challenging. The model in Fig. 4(4a)
 315 achieved only a DSC of 77.35%, revealing a substantial performance gap. To improve accuracy,
 316 we incorporated object scores from the mask decoder (Fig. 4(4b)), leading to a 1.9% improvement.
 317 However, performance remained suboptimal. An alternative strategy involved using a learnable point
 318 embedding block (Fig. 4(4c)), where coordinate and label representations were directly learned, re-
 319 sulting in an 11% drop, indicating that learning precise prompt coordinates from scratch is unreliable.

320 The core issue lies in the difficulty of predicting coordinates without inherent spatial context. Image
 321 embeddings lack coordinate encoding, and their initialization is random, making it difficult for the
 322 model to align spatially meaningful prompts. Furthermore, bounding boxes alone fail to capture
 323 the semantic richness required for robust multi-class segmentation. These limitations led us to shift
 toward learnable mask-based prompting strategies.

Semantic labels	Prompts	Method	Spl.	R.Kd	L.Kd	GB	Eso.	Liver	Stom.	Aorta	IVC	Panc.	RAG	LAG	Duo.	Blad.	Pros.	Average
324 ✓	–	UNETR Hatamizadeh et al. (2022)	0.928	0.913	0.903	0.719	0.763	0.955	0.849	0.922	0.838	0.766	0.663	0.662	0.815	0.744	0.807	
		nnFormer Zhou et al. (2021)	0.950	0.948	0.944	0.789	0.784	0.967	0.914	0.931	0.868	0.828	0.654	0.695	0.759	0.865	0.773	0.845
		SwinUNETR Hatamizadeh et al. (2021)	0.954	0.954	0.950	0.819	0.852	0.972	0.919	0.955	0.911	0.875	0.775	0.801	0.818	0.895	0.812	0.884
		SwinUNETRv2	0.959	0.962	0.958	0.842	0.867	0.976	0.933	0.957	0.920	0.889	0.783	0.812	0.843	0.913	0.836	0.897
		3D UX-Net Lee et al. (2022)	0.955	0.956	0.953	0.826	0.858	0.972	0.922	0.955	0.915	0.881	0.781	0.809	0.820	0.902	0.823	0.889
326	✗	nn-Net Isensee et al. (2019)	0.951	0.961	0.956	0.826	0.869	0.973	0.931	0.957	0.923	0.880	0.784	0.809	0.846	0.898	0.827	0.893
		nnUNet SAM Kirillov et al. (2023) bbox	0.679	0.741	0.640	0.168	0.443	0.773	0.671	0.651	0.554	0.434	0.232	0.324	0.444	0.694	0.602	0.538
		nnUNet SAM 2 Ravi et al. (2024) bbox	0.784	0.817	0.819	0.664	0.734	0.780	0.697	0.793	0.739	0.536	0.457	0.601	0.563	0.744	0.691	0.695
		nnUNet MedSAM Ma et al. (2024) bbox	0.714	0.811	0.702	0.193	0.469	0.759	0.725	0.701	0.681	0.434	0.365	0.412	0.462	0.783	0.758	0.600
		No needs SAMED Zhang & Liu (2023)	0.849	0.857	0.830	0.573	0.733	0.894	0.816	0.855	0.684	0.727	0.622	0.683	0.701	0.844	0.819	0.772
		No needs SAM3D Bui et al. (2024)	0.796	0.863	0.871	0.428	0.711	0.908	0.833	0.878	0.749	0.699	0.564	0.607	0.635	0.884	0.840	0.751
330	✓	No needs RFMedSAM 2	0.972	0.971	0.966	0.887	0.878	0.980	0.943	0.958	0.925	0.896	0.781	0.811	0.853	0.921	0.859	0.907

Table 2: Comparison of RFMedSAM 2 with SOTA methods on AMOS testing dataset by Dice Score.

3.4.2 LEARNABLE MASKS

Rather than learning point coordinates, we explored a more structured approach: generating segmentation masks first and deriving bounding boxes from them. The architecture shown in Fig. 4(4d) follows a hierarchical design that integrates convolutional layers with multi-scale features from the image encoder. It starts from lower-resolution feature maps and progressively refines them through convolutional layers, incorporating higher-resolution details at each stage. The generated masks are supervised by auxiliary loss functions that compare them against ground truth labels, achieving a DSC of 84.93% - a noticeable improvement over the learnable point coordinate approaches.

However, this method introduced training challenges. The auxiliary losses from generated masks sometimes conflicted with the final segmentation losses from SAM 2, making it difficult to optimize both components simultaneously. Additionally, the architectural disparity between the prompt generator and SAM 2 led to synchronization issues, hindering the convergence during training.

To mitigate these conflicts, we introduced an independent U-Net architecture for mask generation alongside SAM 2 (Fig. 4(4e)). This ensured that SAM 2’s parameter updates remained unaffected by the prompt generation process. The U-Net-generated masks were converted into bounding boxes and used as input prompts for SAM 2, increasing DSC to 85.38%.

To further refine interactions between U-Net and SAM 2, we incorporated a multi-stage refinement process: generated masks and bounding boxes were first passed to Step 1 of SAM 2, producing an initial set of refined segmentations. These refined outputs were then fed into Step 2, enabling further enhancement. This achieved a final DSC of 86.48%, validating the pipeline’s effectiveness.

4 EXPERIMENTAL EVALUATION

4.1 DATASETS AND EVALUATION METRICS

We conducted experiments using two publicly available datasets: the AMOS22 Abdominal CT Organ Segmentation dataset Ji et al. (2022) and the Beyond the Cranial Vault (BTCV) challenge dataset Landman et al. (2015). **(i)** The AMOS22 dataset consists of 300 abdominal CT scans with manual annotations for 16 anatomical structures, serving as the basis for multi-organ segmentation tasks. The test set includes 200 images, and our model is evaluated using the AMOS22 leaderboard. **(ii)** The BTCV dataset comprises 30 cases of abdominal CT scans. Following established split strategies Hatamizadeh et al. (2021), we use 24 cases for training and 4 cases for validation. Performance is assessed using the average Dice Similarity Coefficient (DSC) across 13 abdominal organs.

In Tables 2 and 3, “Semantic labels” indicate a model’s ability to infer and predict labels, while “Prompt” specifies the source of prompts. Since SAM and MedSAM do not predict semantic labels and require additional prompts, we use GT or predictions inferred by a pre-trained nnUNet to generate prompts, with the corresponding labels used as semantic labels.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

4.2.1 RESULTS ON THE AMOS22 DATASET

Tab. 2 presents the quantitative results on the AMOS22 dataset, comparing our proposed RFMedSAM 2 with widely recognized segmentation methods, including CNN-based approaches (nnUNet Isensee et al. (2019)), transformer-based models (UNETR Hatamizadeh et al. (2022), SwinUNETR Hatamizadeh et al. (2021), nnFormer Zhou et al. (2021)), and SAM-based methods (SAM Kirillov et al. (2023), SAM 2 Ravi et al. (2024), MedSAM Ma et al. (2024), SAMed Zhang &

Semantic labels	Prompts	Method	Spl.	R.Kd	L.Kd	GB	Eso.	Liv.	Stom.	Aorta	IVC	Veins	Panc.	AG	DSC
378	✓	TransUNet Chen et al. (2021)	0.952	0.927	0.929	0.662	0.757	0.969	0.889	0.920	0.833	0.791	0.775	0.637	0.838
379	✓	3D UX-Net Lee et al. (2022)	0.946	0.942	0.943	0.593	0.722	0.964	0.734	0.872	0.849	0.722	0.809	0.671	0.814
380	✓	UNETR Hatamizadeh et al. (2022)	0.968	0.924	0.941	0.750	0.766	0.971	0.913	0.890	0.847	0.788	0.767	0.741	0.856
381	✗	-	0.971	0.936	0.943	0.794	0.773	0.975	0.921	0.892	0.853	0.812	0.794	0.765	0.869
382	✗	Swin-UNETR Hatamizadeh et al. (2021)	0.942	0.894	0.910	0.704	0.723	0.948	0.824	0.877	0.782	0.720	0.680	0.616	0.802
383	✗	nnUNet Isensee et al. (2019)	0.935	0.949	0.950	0.641	0.795	0.968	0.901	0.897	0.859	0.778	0.856	0.739	0.856
384	✗	nnFormer Zhou et al. (2021)	0.935	0.949	0.950	0.641	0.795	0.968	0.901	0.897	0.859	0.778	0.856	0.739	0.856
385	✗	GT	0.933	0.922	0.927	0.805	0.831	0.899	0.803	0.890	0.894	0.499	0.728	0.708	0.819
386	✗	GT	0.946	0.923	0.924	0.859	0.888	0.928	0.893	0.852	0.884	0.434	0.694	0.705	0.828
387	✗	GT	0.751	0.814	0.885	0.766	0.721	0.901	0.855	0.872	0.746	0.771	0.760	0.705	0.803
388	✗	GT	0.868	0.776	0.834	0.690	0.710	0.922	0.805	0.863	0.844	0.782	0.611	0.780	0.790
389	✗	GT	0.873	0.884	0.932	0.795	0.790	0.943	0.889	0.872	0.796	0.813	0.779	0.797	0.847
390	✗	GT	0.961	0.943	0.945	0.909	0.918	0.965	0.945	0.954	0.942	0.968	0.883	0.843	0.923
391	✓	No Needs	0.862	0.710	0.798	0.677	0.735	0.944	0.766	0.874	0.798	0.775	0.579	0.790	0.776
392	✓	No Needs	0.933	0.901	0.909	0.601	0.733	0.944	0.882	0.856	0.778	0.722	0.759	0.590	0.801
393	✓	No Needs	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
394	✓	RFMedSAM 2	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
395	✓	RFMedSAM 2	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
396	✓	GT	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
397	✓	Ours	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
398	✓	Ours-prompt	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
399	✓	SAM3D	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
400	✓	MedSAM	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
401	✓	SAM 2	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
402	✓	SAM	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
403	✓	nnFormer	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
404	✓	nnUNet	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867
405	✓	UNETR	0.969	0.947	0.953	0.611	0.817	0.974	0.909	0.917	0.887	0.803	0.865	0.747	0.867

Table 3: Comparison of RFMedSAM 2 with state-of-the-art methods on the BTCV dataset. ‘‘Semantic labels’’ indicate the model’s ability to infer labels, while ‘‘Prompts’’ specify the source of the prompt.

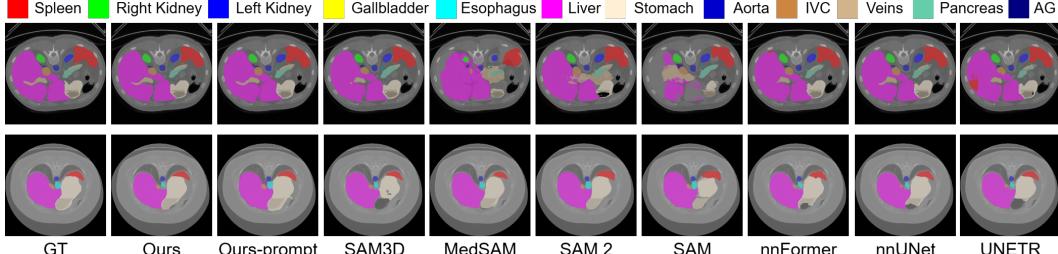


Figure 5: Qualitative comparison on the BTCV dataset. RFMedSAM 2 provides the most precise segmentation for each class and exhibits fewer segmentation outliers.

Liu (2023), and SAM3D Bui et al. (2024)). To ensure a fair comparison, all methods are evaluated using 5-fold cross-validation without ensemble.

We observe that RFMedSAM 2 outperforms all existing methods on most organs, achieving a new state-of-the-art performance in DSC. When using nnUNet-generated bounding box prompts, SAM, SAM 2, and MedSAM exhibit DSC decreases of 34%, 18%, and 27%, respectively, compared to nnUNet’s accuracy of 89.3%. These reductions highlight the limitations of relying on external prompt sources. Among SAM-based models, SAM 2 achieves the best performance, demonstrating its strong zero-shot capabilities.

Notably, RFMedSAM 2 surpasses nnUNet by 1.4% in DSC and outperforms SAM and SAM3D by 23% and 25%, respectively. This significant improvement confirms that our proposed prompt-free RFMedSAM 2 outperforms other prompt-free SAM models. On the highly challenging AMOS22 dataset, RFMedSAM 2 achieves state-of-the-art performance, validating our method’s effectiveness.

4.2.2 RESULTS ON THE BTCV DATASET

Tab. 3 presents the quantitative performance on the BTCV dataset, comparing RFMedSAM 2 with leading SAM-based methods using proper prompts (*i.e.*, SAM Kirillov et al. (2023), SAM 2 Ravi et al. (2024), MedSAM Ma et al. (2024), SAM-U Deng et al. (2023), and SAM-Med2D Cheng et al. (2023)), SAM-based methods without prompts (*i.e.*, SAMed Zhang & Liu (2023) and SAM3D Bui et al. (2023)), convolution-based methods (VNet Ronneberger et al. (2015) and nnUNet Isensee et al. (2019)), and transformer-based methods (TransUNet Chen et al. (2021), SwinUNet Cao et al. (2021), and nnFormer Zhou et al. (2021)).

RFMedSAM 2 outperforms all existing methods, establishing a new state-of-the-art benchmark. When provided with proper prompts, RFMedSAM 2 achieves a Dice Similarity Coefficient (DSC) of 92.3%, marking a substantial 5% improvement over the previous best-performing method. Among SAM-based methods using proper prompts, SAM-Med2D achieves the highest DSC of 84.7%, which RFMedSAM 2 surpasses by 7.6%, highlighting its superior effectiveness in leveraging prompts.

In prompt-free settings, RFMedSAM 2 outperforms the other prompt-free SAM-based methods, surpassing SAMed and SAM3D by 9% and 6%, respectively. Compared to non-SAM-based methods, RFMedSAM 2 exceeds nnUNet and nnFormer by 6.4% and 1% in DSC, demonstrating its capability even on highly saturated datasets. Fig. 5 provides qualitative comparisons, illustrating that RFMedSAM 2 predicts the labels for ‘‘Stomach,’’ ‘‘Spleen,’’ and ‘‘Liver’’ with greater accuracy.

	train with prompts	learnable bboxes	learnable masks
w/ obj_score	0.923	0.792	0.847
w/o obj_score	0.920	0.628	0.867

Table 4: Performance of different models with and without object score prediction on BTCV dataset.

Dataset	Step 0 - UNet	Step 1 - SAM	Step 2 - SAM
BTCV	0.856	0.864	0.867
AMOS	0.895	0.898	0.907

Table 5: Performance of output predictions across different steps. Two refinements.

	(2, 1024, 1024)	(8, 512, 512)	(32, 256, 256)
DSC	0.751	0.827	0.867

Table 6: Performance comparison of different patch sizes on the BTCV dataset.

4.3 ANALYSIS

Refinements. Tab. 5 presents experimental results for output predictions at different steps on the BTCV and AMOS datasets. The results demonstrate a gradual improvement in performance, starting from the initial prediction at Step 0 (UNet), followed by refinement at Step 1 (SAM 2), and further refinement at Step 2 (SAM 2). Fig. 6 visualizes these comparisons across the three steps, illustrating how segmentation gaps are progressively filled through the two refinement stages, underscoring the effectiveness of our model’s refinement process.

A standalone UNet with the same structure as Step 0 achieves only 82.5% DSC, a 4.2% drop in performance. Training jointly with SAM 2 improves UNet’s performance due to loss propagation, where SAM 2 effectively acts as a teacher model, refining UNet’s feature representations.

We evaluate three baseline models: fine-tuning SAM 2 with prompts, using learnable bounding boxes as the prompt generator, and using learnable masks as the prompt generator, both with and without object score prediction. Tab. 4 provides the results, revealing the following insights:

- Learning object scores with prompts does not significantly enhance performance compared to using prompts without object scores, as the presence of a prompt inherently implies the object’s existence in a given frame.
- The model with learnable bounding boxes benefits from object score learning since bounding box predictions often exhibit lower accuracy.
- The model with learnable masks performs worse when incorporating object scores. This is likely because the predicted masks already capture a more informative probability distribution, whereas object scores impose a single probability estimate, potentially reducing accuracy.

Input Patch Sizes and UNet Architectures. Tab. 6 evaluates the effect of different input patch sizes while maintaining a constant total number of pixels. Increasing the number of depth slices improves performance, highlighting the benefits of capturing volumetric information. Tab. 7 compares various UNet architectures, showing that 3D UNet outperforms 2D UNet due to its ability to learn depth-wise features. However, incorporating attention blocks in the bottleneck does not yield improvements, likely due to the strong inductive biases present in medical image segmentation tasks.

5 CONCLUSION

In this paper, we present RFMedSAM 2, a framework for automatic prompt refinement that extends SAM 2 with multiple refinement stages for volumetric medical image segmentation. First, we evaluated SAM 2’s upper performance bound with accurate prompts. To enhance spatial feature extraction and enable efficient fine-tuning, we introduced depth-wise convolutional adapters for attention blocks and CNN-Adapters for convolutional layers, along with optimized memory attention positioning. These improvements yielded a DSC of 92.3%, surpassing nnUNet by 12% on BTCV Landman et al. (2015). Second, we eliminated reliance on manual prompts by designing an independent U-Net to generate masks and bounding boxes as inputs to SAM 2, followed by two refinement stages. This achieved DSCs of 90.7% on AMOS2022 Ji et al. (2022) and 86.7% on BTCV. Overall, RFMedSAM 2 achieves state-of-the-art segmentation performance, and future work will explore extensions to MRI, ultrasound, and real-time clinical applications.

Figure 6: Comparison of Step 0, 1, and 2.

486 REFERENCES
487

488 Nhat-Tan Bui, Dinh-Hieu Hoang, Minh-Triet Tran, and Ngan Le. Sam3d: Segment anything model
489 in volumetric medical images. *arXiv preprint arXiv:2309.03493*, 2023.

490 Nhat-Tan Bui, Dinh-Hieu Hoang, Minh-Triet Tran, Gianfranco Doretto, Donald Adjeroh, Brijesh
491 Patel, Arabinda Choudhary, and Ngan Le. Sam3d: Segment anything model in volumetric medical
492 images. In *2024 IEEE International Symposium on Biomedical Imaging (ISBI)*, pp. 1–4. IEEE,
493 2024.

494 Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning
495 Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. *arXiv preprint
496 arXiv:2105.05537*, 2021.

497 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille,
498 and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
499 *arXiv preprint arXiv:2102.04306*, 2021.

500 Tianrun Chen, Ankang Lu, Lanyun Zhu, Chaotao Ding, Chunan Yu, Deyi Ji, Zejian Li, Lingyun
501 Sun, Papa Mao, and Ying Zang. Sam2-adapter: Evaluating & adapting segment anything 2 in
502 downstream tasks: Camouflage, shadow, medical image segmentation, and more. *arXiv preprint
503 arXiv:2408.04579*, 2024.

504 Junlong Cheng, Jin Ye, Zhongying Deng, Jianpin Chen, Tianbin Li, Haoyu Wang, Yanzhou Su, Ziyuan
505 Huang, Jilong Chen, Lei Jiang, et al. Sam-med2d. *arXiv preprint arXiv:2308.16184*, 2023.

506 Guoyao Deng, Ke Zou, Kai Ren, Meng Wang, Xuedong Yuan, Sancong Ying, and Huazhu Fu.
507 Sam-u: Multi-box prompts triggered uncertainty estimation for reliable sam in medical image. In
508 *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp.
509 368–377. Springer, 2023.

510 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
511 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

512 Shizhan Gong, Yuan Zhong, Wenao Ma, Jinpeng Li, Zhao Wang, Jingyang Zhang, Pheng-Ann Heng,
513 and Qi Dou. 3dsam-adapter: Holistic adaptation of sam from 2d to 3d for promptable medical
514 image segmentation. *arXiv preprint arXiv:2306.13465*, 2023.

515 Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth, and Daguang Xu.
516 Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In
517 *International MICCAI Brainlesion Workshop*, pp. 272–284. Springer, 2021.

518 Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman,
519 Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation. In
520 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 574–584,
521 2022.

522 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
523 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
524 vision and pattern recognition*, pp. 16000–16009, 2022.

525 Ziyuan Huang, Haoyu Wang, Zhongying Deng, Jin Ye, Yanzhou Su, Hui Sun, Junjun He, Yun Gu,
526 Lixu Gu, Shaoting Zhang, et al. Stu-net: Scalable and transferable medical image segmentation
527 models empowered by large-scale supervised pre-training. *arXiv preprint arXiv:2304.06716*, 2023.

528 Fabian Isensee, Paul F Jäger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. Auto-
529 mated design of deep learning methods for biomedical image segmentation. *arXiv preprint
530 arXiv:1904.08128*, 2019.

531 Yuanfeng Ji, Haotian Bai, Chongjian Ge, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan
532 Zhanng, Wanling Ma, Xiang Wan, et al. Amos: A large-scale abdominal multi-organ benchmark
533 for versatile medical image segmentation. *Advances in Neural Information Processing Systems*,
534 35:36722–36732, 2022.

540 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 541 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. *arXiv preprint*
 542 *arXiv:2304.02643*, 2023.

543 B Landman, Z Xu, J Eugenio Iglesias, M Styner, T Langerak, and A Klein. Miccai multi-atlas
 544 labeling beyond the cranial vault-workshop and challenge. In *Proc. MICCAI: Multi-Atlas Labeling*
 545 *Beyond Cranial Vault-Workshop Challenge*, 2015.

546 Ho Hin Lee, Shunxing Bao, Yuankai Huo, and Bennett A Landman. 3d ux-net: A large kernel
 547 volumetric convnet modernizing hierarchical transformer for medical image segmentation. *arXiv*
 548 *preprint arXiv:2209.15076*, 2022.

549 Chengyin Li, Prashant Khanduri, Yao Qiang, Rafi Ibn Sultan, Indrin Chetty, and Dongxiao
 550 Zhu. Auto-prompting sam for mobile friendly 3d medical image segmentation. *arXiv preprint*
 551 *arXiv:2308.14936*, 2023.

552 Haofeng Liu, Erli Zhang, Junde Wu, Mingxuan Hong, and Yueming Jin. Surgical sam 2: Real-time
 553 segment anything in surgical video by efficient frame pruning. *arXiv preprint arXiv:2408.07931*,
 554 2024.

555 Jun Ma and Bo Wang. Segment anything in medical images. *arXiv preprint arXiv:2304.12306*, 2023.

556 Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in medical
 557 images. *Nature Communications*, 15(1):654, 2024.

558 Mobina Mansoori, Sajjad Shahabodini, Jamshid Abouei, Konstantinos N Plataniotis, and Arash
 559 Mohammadi. Polyp sam 2: Advancing zero shot polyp segmentation in colorectal cancer detection.
 560 *arXiv preprint arXiv:2408.05892*, 2024.

561 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2, 2023.

562 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 563 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 564 models from natural language supervision. In *International conference on machine learning*, pp.
 565 8748–8763. PMLR, 2021.

566 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 567 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 568 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

569 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 570 image segmentation. In *International Conference on Medical image computing and computer-
 571 assisted intervention*, pp. 234–241. Springer, 2015.

572 Saikat Roy, Gregor Koehler, Constantin Ulrich, Michael Baumgartner, Jens Petersen, Fabian Isensee,
 573 Paul F Jaeger, and Klaus H Maier-Hein. Mednext: transformer-driven scaling of convnets for
 574 medical image segmentation. In *International Conference on Medical Image Computing and
 575 Computer-Assisted Intervention*, pp. 405–415. Springer, 2023.

576 Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
 577 Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical
 578 vision transformer without the bells-and-whistles. In *International Conference on Machine
 579 Learning*, pp. 29441–29454. PMLR, 2023.

580 Junde Wu, Rao Fu, Huihui Fang, Yuanpei Liu, Zhaowei Wang, Yanwu Xu, Yueming Jin, and Tal
 581 Arbel. Medical sam adapter: Adapting segment anything model for medical image segmentation.
 582 *arXiv preprint arXiv:2304.12620*, 2023.

583 Bin Xie, Hao Tang, Bin Duan, Dawen Cai, and Yan Yan. Masksam: Towards auto-prompt sam with
 584 mask classification for medical image segmentation. *arXiv preprint arXiv:2403.14103*, 2024.

585 Bin Xie, Hao Tang, Dawen Cai, Yan Yan, and Gady Agam. Self-prompt sam: Medical image
 586 segmentation via automatic prompt sam adaptation. *arXiv preprint arXiv:2502.00630*, 2025.

594 Jieming Yu, An Wang, Wenzhen Dong, Mengya Xu, Mobarakol Islam, Jie Wang, Long Bai, and
595 Hongliang Ren. Sam 2 in robotic surgery: An empirical evaluation for robustness and generalization
596 in surgical video segmentation. *arXiv preprint arXiv:2408.04593*, 2024.

597 Kaidong Zhang and Dong Liu. Customized segment anything model for medical image segmentation.
598 *arXiv preprint arXiv:2304.13785*, 2023.

600 Yichi Zhang, Zhenrong Shen, and Rushi Jiao. Segment anything model for medical image segmenta-
601 tion: Current applications and future directions. *Computers in Biology and Medicine*, pp. 108238,
602 2024.

603 Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Lequan Yu, Liansheng Wang, and Yizhou Yu. nnformer:
604 Interleaved transformer for volumetric segmentation. *arXiv preprint arXiv:2109.03201*, 2021.

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

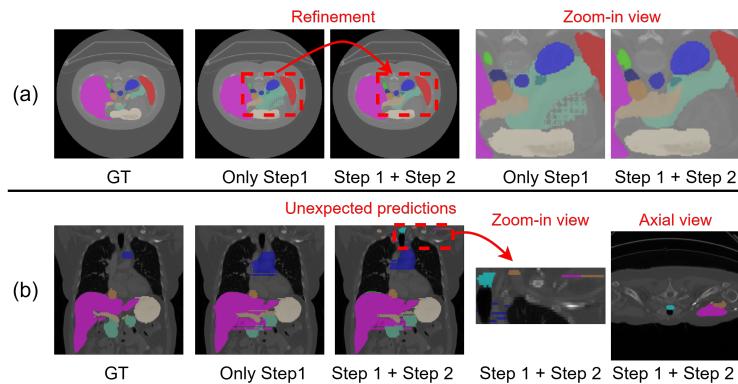
643

644

645

646

647

648 **A INTRINSIC ISSUES OF SAM2**
649650 Figure 2 illustrates the whole pipeline of SAM 2, highlighting several intrinsic issues for medical
651 image segmentation.
652653 **i) Omission to predict the first few frames:** The first frame in two objects is the second frame,
654 therefore, SAM 2 begins processing from the second frame, disregarding the first frame, even though
655 it contains both objects.
656657 **ii) Empty prompt affecting object prediction:** When no prompt is provided for an object, but the
658 object is still present, the empty prompt restricts prediction for that object. For instance, at frames
659 $z = 1$ and $z = 4$, the purple and red objects, respectively, are omitted from the predictions.
660661 **iii) Confusion of temporal positions:** All prompted frames are assigned a temporal position of
662 0. While this approach increases attention to the prompted frames, it loses the relative temporal
663 positioning of all the prompt frames. Moreover, since SAM 2 skips over prompted frames, the relative
664 temporal positions of the unprompted frames are distorted. For example, the real relative temporal
665 position of the frame $z = 3$ with respect to the current frame $z = 6$ should be 3, but due to the
666 prompted frame at $z = 4$, the relative temporal position is incorrectly assigned as 2.
667668 **B POTENTIALS TO FORCE STEP 2 FOR ALL FRAMES.**
669670 When we provide prompts at each frame for each class, SAM 2 does not process Step 2 and does
671 not leverage the capabilities of Memory Attention, which can build relations with previous frames
672 and prompted frames. To explore this functionality, we force Step 2 for all frames after processing
673 Step 1. Although the results decreased slightly from 82.77% to 81.17% Dice, we find a potential
674675 **Figure 7: Benefits for refinement by Step 2.**
676677 refinement benefit illustrated in Figure 7(a). Through Step 2, the green area is refined and becomes
678 more accurate, demonstrating the significant potential of the refinement process. As a result, we plan
679 to incorporate this approach into our method. However, the refinement introduced by Step 2 also has
680 some drawbacks. In Figure 7(b), we show orthogonal planes in relation to the axial plane (a sequence
681 of the axial plane images is fed to SAM 2). The top portion of Figure 7(b) presents unexpected
682 predictions. Since SAM 2 assigns a temporal position of 0 to the prompted frames, which are always
683 involved in memory attention, the incorrect relative temporal positioning leads to these unexpected
684 and incorrect predictions. We will address this issue in the next section.
685694 **C MOTIVATION BEHIND THE DESIGNED ADAPTERS.**
695696 Since the image encoder, the memory attention, and the mask decoder contain attention blocks
697 for image embedding, which includes significant spatial information. Therefore, we design the
698 depth-wise convolutional adaption (DWConvAdapter) illustrated in Figure 4(3b) to learn spatial
699 information. After using DWConvAdapters for the attention blocks with image embedding, the
700 performance increases by 0.47%. The motivation behind the DWConvAdapter design is to extend the
701 original adapter by incorporating a depth-wise convolution layer, followed by layer normalization
702

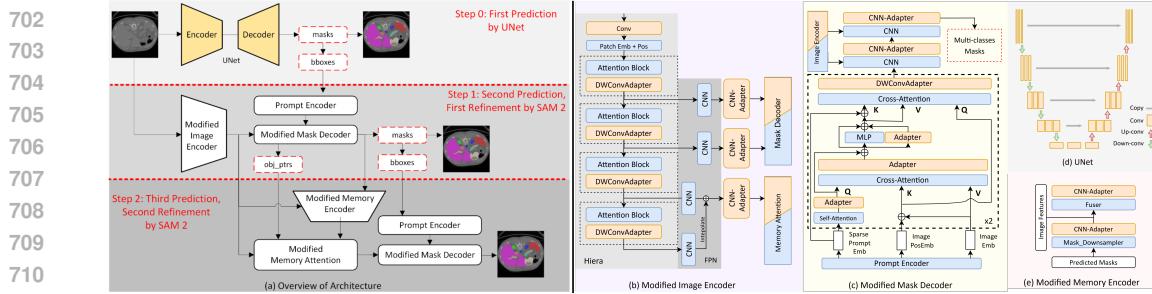


Figure 8: Details of the whole architecture of RFMedSAM 2.

and a GeLU activation function, to effectively learn spatial information. A parallel skip connection is included to preserve the original structure. In the worst case, where the depth-wise layer learns nothing (*i.e.*, its output is zero), the skip connection ensures that all original information is retained. Building on this concept, we designed the CNN-Adapter for adapting convolutional layers since more convolutional layers are involved at SAM 2 compared to SAM. The CNN-Adapter uses a point-wise convolutional layer to downsample the channel dimension, reducing complexity, followed by a depth-wise convolutional layer to capture spatial dimensions. Finally, a point-wise convolutional layer recovers the channel dimension to its original size. Inspired by ConvNext, we use only layer normalization and a GeLU activation function in this block. The bottleneck structure helps reduce complexity, and a parallel skip connection ensures that the output from the convolutional layers in SAM 2 is preserved. In the worst case, where the depth-wise layer learns nothing (*i.e.*, its output is zero), the skip connection still retains all relevant information.

D ARCHITECTURE OF RFMEDSAM 2

Figure 8(a) illustrates the overall pipeline and architecture of RFMedSAM 2, which consists of three primary steps. In Step 0, an additional UNet model is employed to take medical images as input, generating initial multi-class mask predictions, which are then used to create auxiliary bounding boxes for the prompt requirements of SAM 2. In Step 1, the medical images being input are involved into a modified image encoder to produce image embeddings, while the prompt encoder processes the auxiliary bounding boxes to generate point embeddings. These embeddings are passed to the modified mask decoder to generate masks and object pointers. The generated masks are then employed to create second bounding boxes for Step 2. A modified memory encoder processes both the generated masks and current frame features to produce memory features for the next step. Step 2 presents the second prediction by refining the initial predictions and performing the first refinement. In Step 3, the same image features from the modified image encoder are input into a modified memory attention module, which establishes relationships with memory features from previous frames. The output from this memory attention mechanism is fed into the modified mask decoder, while the memory decoder also processes new point embeddings from the prompt encoder. Step 3 generates the third set of predictions and the second refinement, with the final mask prediction being output by the mask decoder. Figure 8(b)-(e) illustrates each component of RFMedSAM 2, described as follows.

D.1 MODIFIED IMAGE ENCODER

Figure 8(b) illustrates the redesigned image encoder. i) SAM works on natural images that have 3 channels for RGB while medical images have varied modalities as channels. There are gaps between the varied modalities of medical images and the RGB channels of natural images. Therefore, we design a sequence of two stacked convolutional layers to an invert-bottleneck architecture to learn the adaption from the varied modalities with any size to 3 channels. ii) SAM 2 employs Hiera Ryali et al. (2023) that is hierarchical with multiscale output features as its image encoder backbone and a FPN module. Hiera consists of four stages with different feature resolutions and every stage contains various number of attention blocks. We insert our designed DWConvAdapter blocks into each attention block in Hiera. The output of each stage will be connected with one convolution in the FPN module. The latest output feature is up-sampled and summed with the second latest output feature as the image embedding. The third and fourth latest output feature are as skip connections

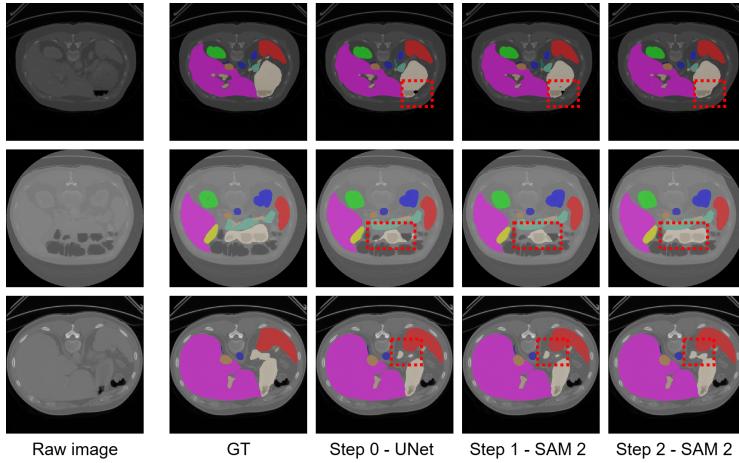


Figure 9: More visualization of two refinements.

to incorporate high-resolution embeddings for the mask decoding. To adapt these convolutional layers, we insert our designed CNN-Adapters for the output features from the FPN module.

D.2 MODIFIED MASK ENCODER

Figure 8(c) illustrates the redesigned mask encoder. The mask encoder contains two subsequent transformers and two following convolutional layers. i) Each transformer first applies self-attention to the prompt embedding. We insert an adapter behind the self-attention. Then, a cross-attention block is adopted for tokens attending to image embedding. We insert an adapter behind the cross-attention. Next, we insert a adapter parallel to an MLP block. Finally, a cross-attention block is utilized for image embedding attending to tokens. We insert a DWConvAdapter behind the cross-attention. In this way, our model can learn the spatial information for the image embedding and adapt information for the prompt embedding. ii) We inserted a CNN-Adapter behind the two following convolution layers to adapt convolutional layers from natural images to medical images.

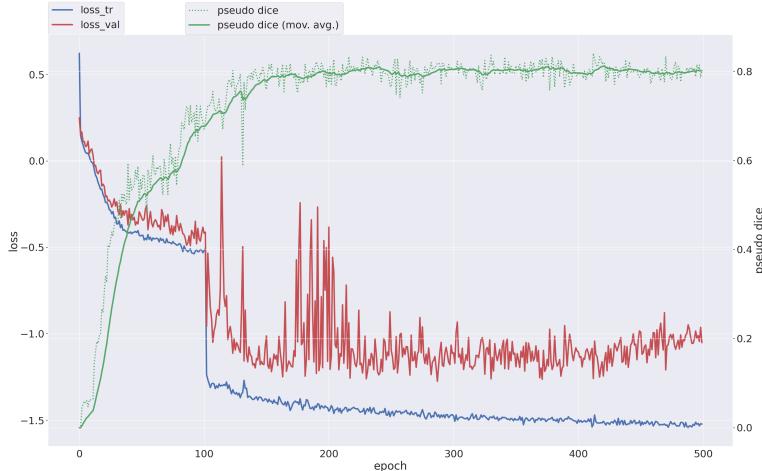
D.3 UNET, MODIFIED MEMORY ENCODER AND MODIFIED MEMORY ATTENTION.

Figure 8(d) and (e) illustrate the UNet and the redesigned memory encoder, respectively. i) UNet is designed with a symmetrical encoder-decoder structure with skip connections. The encoder consists of several stages, each formed by a sequence of convolutional layers followed by down-sampling layers, progressively increasing the number of channels while reducing the spatial resolution to capture different deep-level features. The decoder upsamples the feature maps using transposed convolutions to restore spatial resolution and refine predictions. Skip connections between corresponding encoder and decoder layers enable the network to retain fine-grained spatial details, enhancing localization accuracy. ii) The memory encoder comprises two modules: the mask downsampler, which processes predicted masks, and the fuser, which integrates image features and mask features. To adapt these CNN-based modules to medical images, a CNN-Adapter is inserted after each module. iii) The memory attention module stacks several transformer blocks, the first one taking the image encoding from the current frame as input. Each block performs self-attention, followed by cross-attention to memory features. Therefore, we inserted our designed DWConvAdapter blocks into each attention block since the transformer blocks process the image embedding with the spatial dimension.

E IMPACT OF AUXILIARY LOSSES ON IMAGE ENCODER PARAMETER UPDATES IF PROMPT GENERATOR BUILT WITH IMAGE ENCODER

Figure 4(4d) illustrates a hierarchical structure with convolutional layers combined with multi-level features from the image encoder. The features with a lower resolution gradually increase the resolution by convolution layers and then combined with higher resolution features. Auxiliary loss functions are employed to supervise between the predicted masks and the ground truth. Although this approach achieves a DSC of 84.93%, the result is not competitive. During training, both the auxiliary losses

810 from the generated masks and the final output losses from SAM 2 influence the update of the image
 811 encoder parameters, which constitute a significant portion of the model. However, these two types of
 812 losses, due to their distinct architectural differences, are challenging to optimize simultaneously and
 813 achieve a balanced update for the image encoder parameters.



830 Figure 10: Oscillated losses if prompt generator built with image encoder.

831 We conduct experiments to validate the insights presented in Figure 10. The training process is
 832 divided into two phases: one phase updates the parameters based solely on the auxiliary losses
 833 supervised by the auxiliary loss function, while the other phase updates all parameters based on both
 834 the auxiliary loss function and the final output loss function. The results indicate that after the second
 835 phase begins, the validation loss oscillates and is in an unstable state shown in the red line. The dice
 836 of the auxiliary masks present an unstable state since the final output losses affect the update of the
 837 image encoder and then affect the accuracy of the auxiliary masks.

838 In conclusion, using a prompt generator built with the image encoder creates a challenge in balancing
 839 the update of the image encoder’s parameters. As a result, we abandon this approach and instead
 840 employ an independent U-Net to generate masks and subsequently produce the corresponding
 841 bounding boxes.

843 F ANALYSIS OF PARAMETERS

Method	UNet	Adapters	Total Trainable Params	SAM 2	Total Params
RFMedSAM 2	46M	19M	46M+19M=65M	224M	65M+224.4M=289.4M

847 Table 8: The parameters of each components for our RFMedSAM 2.

848 Table 8 illustrates the number of parameters for each components. Our method is based on the
 849 SAM 2 large model, which contains 224.4M parameters in total. These parameters are entirely
 850 frozen during training. On top of SAM 2, we introduce two trainable components: i) A UNet (step
 851 0) with 46M parameters. ii) Our designed adapters, inserted into SAM 2, with 19M parameters.
 852 Together, these components result in 65M trainable parameters, which is approximately 29% of the
 853 total model size (65M out of 224.4M + 65M = 289.4M, shown at the table below). Despite training
 854 only a small fraction of the overall parameters, our method achieves efficient adaptation and delivers
 855 state-of-the-art performance.

857 G IMPLEMENTATION DETAILS

859 We utilize some data augmentations such as rotation, scaling, Gaussian noise, Gaussian blur, bright-
 860 ness, and contrast adjustment, simulation of low resolution, gamma augmentation, and mirroring. We
 861 set the initial learning rate to 0.001 and employ a “poly” decay strategy in Eq. equation 1.

$$863 lr(e) = init_lr \times \left(1 - \frac{e}{\text{MAX_EPOCH}}\right)^{0.9}, \quad (1)$$

864 where e means the number of epochs, MAX_EPOCH means the maximum of epochs, set it to 1000
 865 and each epoch includes 250 iterations. We utilize SGD as our optimizer and set the momentum to
 866 0.99. The weighted decay is set to 3e-5. We utilize both cross-entropy loss and dice loss by simply
 867 summing them up as the loss function. We utilize instance normalization as our normalization layer.
 868 we employ the deep supervision loss for the supervision of the U-Net. All experiments are conducted
 869 using two NVIDIA RTX A6000 GPUs with 48GB memory.

870 **Deep Supervision.** The U-Net network is trained with deep supervision. For each deep supervision
 871 output, we downsample the ground truth segmentation mask for the loss computation with each deep
 872 supervision output. The final training objective is the sum of all resolutions loss:

$$873 \quad \mathcal{L} = w_1 \cdot \mathcal{L}_1 + w_2 \cdot \mathcal{L}_2 + w_3 \cdot \mathcal{L}_3 + \dots w_n \cdot \mathcal{L}_n \quad (2)$$

875 where the weights halve with each decrease in resolution (*i.e.*, $w_2 = \frac{1}{2} \cdot w_1$; $w_3 = \frac{1}{4} \cdot w_1$, etc), and
 876 all weight are normalized to sum to 1. Meanwhile, the resolution of \mathcal{L}_1 is equal to $2 \cdot \mathcal{L}_2$ and $4 \cdot \mathcal{L}_3$.
 877

878 H MORE VISUALIZATION OF TWO REFINEMENTS

880 In Figure 9, we present additional qualitative results showcasing the refinements at different stages.
 881 With the two refinements, the results clearly illustrate the progressive improvement in segmentation
 882 accuracy, emphasizing the effectiveness of our model’s refinement process.
 883

884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917