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ABSTRACT

Policy gradient algorithms have been successfully applied to enhance the reasoning
capabilities of large language models (LLMs). KL regularization is ubiquitous,
yet the design surface, choice of KL direction (forward vs. reverse), normalization
(normalized vs. unnormalized), and estimator (k; /k2/k3), is scattered across the
literature and often intertwined with off-policy estimation. We ask a focused
question: under the off-policy setting, what weighting is required for each KL
variant so that the surrogate we optimize yields the exact gradient of the intended
KL-regularized objective? We answer this with a compact, unified derivation we
call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and
unnormalized KL variants and shows that the widely-used k3 penalty is exactly the
unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses
with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii)
identifies and corrects an off-policy importance-weighting mismatch in GRPO’s
KL term; and (iv) introduces RPG-Style Clip, a truncated-importance-sampling
step within RPG-REINFORCE that enables stable, off-policy policy-gradient
training at scale. On mathematical reasoning benchmarks (AIME24, AIME25),
RPG-REINFORCE with RPG-Style Clip improves accuracy by up to 46 absolute
percentage points over DAPO. We extend our experiments to 8K context length,
and RPG-REINFORCE with RPG-Style Clip achieves 52% accuracy on AIME25,
surpassing the official Qwen3-4B-Instruct model (47%). Notably, RPG is a stable
and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct
objective, (b) truncated importance sampling, and (c) an iterative reference-policy
update scheme. Code is available at https://anonymous.4open.science/r/verl-neo-
pub-3D2D.

1 INTRODUCTION

Reinforcement learning (RL), particularly policy gradient (PG) methods, provides a powerful frame-
work for solving sequential decision-making problems in complex environments. These methods
have been successfully applied in diverse domains, ranging from robotics to game playing, and have
recently become instrumental in fine-tuning large language models (LLMs) to align with human
preferences and instructions (Ouyang et al., 2022) and enhancing the reasoning capabilities of LLMs
(Shao et al., 2024; Guo et al., 2025). Classical PG algorithms like REINFORCE (Williams, 1992)
optimize policies directly but often suffer from high gradient variance. Advanced methods like
Proximal Policy Optimization (PPO) (Schulman et al., 2017) improve stability and sample efficiency,
enabling large-scale applications, often by operating in an off-policy manner and employing tech-
niques like training critic models for the estimation of value functions. Our theme in this paper is
stability and scalability: which design choices in KL-regularized PG matter for robustness under
off-policy sampling, and practical throughput on modern LLM stacks?

A crucial technique for stabilizing policy optimization, especially when deviating from strictly on-
policy updates or aiming to control policy complexity, is regularization. Kullback-Leibler (KL)
divergence is a commonly used regularizer, penalizing the deviation of the learned policy 7y from
a reference policy T (e.g., policy from previous iteration 7, or a fixed prior policy 75FT). KL
regularization helps prevent destructive policy updates, encourages exploration around known good
policies, and can prevent catastrophic forgetting or overly confident outputs (Ouyang et al., 2022).
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Goal: Stable and Scalable LLM Reasoning
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Figure 1: Overview of the iterative Regularized Policy Gradient (RPG) framework proposed in this
work. At each iteration ¢, the central RPG Core Engine processes inputs: the current policy Tl'ét) ,a

. t . . . .
reference policy wélg, and associated rewards R(x). The engine’s operation encompasses four main

steps: (1) constructing the KL-regularized objective .J(6(*)), which combines the expected reward
with a KL divergence term; (2) deriving the off-policy policy gradient V) J(6®)); (3) formulating

a corresponding surrogate loss function £(6(*)); and (4) optimizing the policy parameters to yield an

updated policy Wét+1), aimed at enhancing LLM reasoning capabilities. The specific behavior of the

RPG Core Engine is configured by three key design choices: (i) the KL Divergence Type (Forward
KL(7o1a||7g) or Reverse KL(7g||mo1a)); (i) the KL Form (Normalized or Un-normalized, e.g., using
UKL / k3 estimators); and (iii) the Loss Estimator type (Fully Differentiable or REINFORCE-style

with Stop-Gradient). The framework operates iteratively, with the updated policy Wét+1) from one

iteration informing the inputs for the next, including the update of the reference policy wéf: 1), to

facilitate continuous learning and performance improvement.

Despite the widespread use of KL regularization in methods such as PPO (often implicitly through
reward penalties) and explicit formulations like GRPO (Shao et al., 2024), there exists a considerable
variety in how the KL divergence is formulated and estimated. Different choices include Forward KL
and Reverse KL, handling potentially unnormalized distributions (Minka et al., 2005) (leading to
unnormalized KLL (UKL) and unnormalized reverse KL (URKL) formulations), and the use of various
estimators like the k5 and k3 estimators (Schulman, 2020) designed to potentially reduce variance or
offer different properties compared to the standard log-ratio (k1) estimator. Furthermore, the interplay
between the choice of KL formulation, the policy optimization setting (on-policy vs. off-policy), and
the derivation of appropriate surrogate loss functions (fully differentiable vs. REINFORCE-style
gradient estimators) can lead to subtle differences.

This paper provides systematic derivations and a unifying treatment of KL-regularized policy gradient
methods, and revisits classical REINFORCE through the lens of truncated importance sampling. Our
main contributions are summarized as follows:

* We derive policy gradients and corresponding surrogate losses for Forward/Reverse KL, in normal-
ized (KL) and unnormalized (UKL) forms, under off-policy sampling with importance weights.

* We give both fully differentiable surrogates and REINFORCE-style losses (with stop-gradient)
and prove their gradient-equivalence to the intended regularized objective (Proposition 4.1, Ap-
pendix L).

* We introduce RPG-Style Clip, a truncated-importance-weighted REINFORCE estimator that
substantially improves stability and variance control while preserving the RPG gradients.

* We reveal the equality between the k3 estimator and unnormalized KL (Appendix D), and show
that GRPO’s KL penalty omits an essential importance weight under off-policy sampling. We
provide a corrected estimator and loss consistent with the intended objective.
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» We present an iterative training framework that periodically updates the reference model to satisfy
KL constraints while allowing the policy to depart meaningfully from the initial checkpoint.

* On math reasoning, RPG-REINFORCE (with RPG-Style Clip) yields stable and scalable training
and outperforms DAPO by up to +6 absolute points on AIME24/25.

* We extend our experiments to 8K context length and find that RPG-REINFORCE with RPG-Style
Clip achieves 52% accuracy on AIME25, surpassing the official Qwen3-4B-Instruct model (47%)
and outperforming strong baselines.

2 PRELIMINARIES

Policy gradient (PG) methods are a cornerstone of modern reinforcement learning (RL), optimizing pa-
rameterized policies 7y by estimating the gradient of an expected objective function J () with respect
to the policy parameters 6. Typically, J(6) represents the expected cumulative discounted reward
over trajectories T = (so, ag,T0, 81, - - -, ST, a1, 1) generated by the policy: J(6) = Erur, [G(7)],
where G(7) = Zt o Y7 is the traJectory return (with discount factor 7y), and the expectation is
taken over the trajectories sampled according to the policy 7y (a|s) and the environment dynamics

(s'|s,a). The Generalized Policy Gradient Theorem (GPPT) provides a foundation for deriving
these gradients (see Appendix J for the proof).

Proposition 2.1 (Generalized Policy Gradient Theorem). Let 7y(z) be a probability density or
mass function parameterized by 0, representing the probability of sampling item . Let f(z, ) be
a scalar-valued function associated with x, potentially depending on 6. Under suitable regularity
conditions, the gradient of the expectation E,,.,[f(x, #)] with respect to ¢ is:

VoEgmmy [f(2,0)] = Epor, [f(x,0)Vologmg(z) + Vo f(z,0)]. 2.1

The term E[fV log 7] reflects how changes in 6 affect the probability of sampling x, while E[V f]
reflects how changes in 6 directly affect the function value f.

The classic REINFORCE algorithm (Williams, 1992) applies the GPPT to the standard RL objective
J(0) = Err, [G(7)]. In this case, f(7,0) = G(7), the total trajectory return, which does not depend
directly on 6 (i.e., VyG(7) = 0). The theorem simplifies, and the gradient can be expressed using
per-timestep contributions (Sutton et al., 1998):

T
Vo (0) = Erun, | > GiVologmg(aslse)|

t=0

where G; = Zf:t v#=tr), is the return-to-go from timestep ¢. Due to space limit, we defer the
detailed introduction of REINFORCE to Appendix C.1.

2.1 KL REGULARIZATION IN POLICY GRADIENTS

A common technique to stabilize policy optimization, especially in off-policy settings or when
fine-tuning large models, is regularization. The Kullback-Leibler (KL) divergence is frequently used
to penalize the deviation of the learned policy 7y from a reference policy 7y (Which could be mg_,,,
an initial supervised fine-tuned model, or another prior). KL(P || Q) > 0 with equality iff P = Q
almost everywhere. It is asymmetric (i.e., KL(P | Q) # KL(Q || P)). Minimizing the forward
KL KL(7yef || o) encourages 7y to cover the support of 7o (zero-forcing), while minimizing the
reverse KL KL(g || mref) €ncourages 7y to be concentrated where 7,.of has high probability mass
(mode-seeking).

Adding a KL penalty to the RL objective, such as J(0) = E,[R] — 8 KL(mg||7rct), helps control
the policy update size, prevents large deviations from 7..¢, encourages exploration near known good
policies, and can mitigate issues like catastrophic forgetting or overly confident outputs, particularly
relevant in LLM fine-tuning (Ouyang et al., 2022). For PPO (see Appendix C.2), this penalty can be
incorporated implicitly via reward shaping: r; = r; — 8 log(mg(a¢|s:)/mrer(at]st)). Alternatively, it
can be added explicitly to the objective function, as in GRPO. The specific form of the KL divergence
(forward/reverse), whether distributions are normalized (KL vs. UKL), and the choice of estimator
(e.g., standard log-ratio vs. kg estimator (Schulman, 2020)) can vary, leading to different properties
(mode seeking v.s. zero-forcing) and gradient estimators, as explored later in this paper (Sections 3
and 4).
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2.2  GROUP RELATIVE PoLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) adapts the PPO framework for
training LLMs, notably by eliminating the need for a learned value function (critic). Instead of using
GAE, GRPO estimates the advantage A, ; at token ¢ of output o; based on the relative rewards within

a group of G outputs {01, ..., 0c} sampled from the old policy my_,, for the same prompt q.

Crucially, GRPO modifies the PPO objective by explicitly adding a KL regularization term directly
to the objective function. Its objective (simplified notation) is:

G o]
1 1 :
Jcrpo(0) = Bgnp(@), (o}~ [G DD (o) - 8- KLest(wa<~|hi,t>|mef<-|hi,t>))] ,
i=1 "t =1

where h; ; = (g, 0;, <) is the history, Jf ?p(G) represents the PPO-Clip term from Eq. (C.3) applied

~

using the group-relative advantage estimate A; ;, and 7, is a reference model (e.g., the initial SFT
model). For the KL penalty, GRPO employs the k3 estimator form (Schulman, 2020), evaluated per
token o; ;:

-1

re 7 hz re 7 hi re 7 hz
KLest (709 || Tref) ~ k3 <7T £(04 | ,t)> _ et (04,8 | Piye) —logﬂ £(04,t | hig)

m9(0ie | hit) ) mo(0ie | hit) 7o (0i4 | hit)

This uses the functional form k3(y) = y — logy — 1 as discussed in Schulman (2020), applied with
Y = Tre (0i,¢|hi ) /T (0 t|hi ¢ ). This form is related to the unnormalized reverse KL divergence,
UKL(mg||mre) (see Section 3.2 and Appendix D for a detailed discussion). However, a key ob-
servation regarding GRPO’s KL penalty is its estimation. If the KL penalty in GRPO is intended
to approximate 3 - UKL(mg(+|h; ¢ )||mree(+| i ), its off-policy estimation (sampling o; ; from 7oiq)
o (0i,¢|hi¢)

o (o)) multiplying the ks term. The

direct subtraction without this weight means the gradient derived from GRPO’s objective does not, in
general, correspond to the gradient of the intended off-policy objective JP — 3 UKL(7g||myef). For
clarity, a corrected off-policy estimator for the GRPO KL component at history h; 4 is

Fref(Oi,t|hi,t)>]

770(0i,t|hi,t)

would generally involve an importance weight w; ; =

KLGrpo-comrected (Pi,t50) = Eo, ,mmora(hi.0) |:wzt k3(

which is consistent with URKL/UKL depending on direction (see Section 3 and Appendix D). Our
results in Section 3 provide derivations for KL-regularized objectives that explicitly account for
off-policy sampling via importance weights. Related work is detailed in Appendix A.

3 REGULARIZED POLICY GRADIENTS

In this section, we start from the KL regularized objective J(#) = E[R] — 5 KL and we treat this
as the exact target for training. Then we derive its true gradient under off-policy sampling. The
derivation shows that we need precise importance weighting so that the gradient of the surrogate loss
matches the gradient of this objective. The weights are different for Forward vs. Reverse KL, as
summarized in Table 1. This viewpoint unifies many existing estimators within a single framework
and clarifies why the KL term in GRPO can lead to unstable updates when its weighting is chosen
improperly. In the main text, we focus on the unnormalized objectives (UFKL/URKL), while the
normalized formulations (FKL/RKL) and their losses are deferred to Appendix E (see also Table 5).
All proofs are provided in Appendix K.

3.1 UNNORMALIZED FORWARD KLL REGULARIZATION

In scenarios where distributions might not be normalized (i.e., fw m(x)dx # 1), the standard KL
divergence might not fully capture the dissimilarity. The unnormalized forward KL divergence
addresses this by adding a mass correction term. Let 7,14 (2) be a potentially unnormalized reference
measure with total mass Z,q = fm Told(@)dx. Let Toia(x) = mora(z)/Zowa be the corresponding

normalized probability distribution, such that [ Toq(z)dz = 1.
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Table 1: Summary of fully differentiable surrogate loss functions £(6) for unnormalized KL-
regularized objectives (main text). Minimizing £(6) corresponds to maximizing J(0) = E,, [R(z)]—
3 - Divergence. Samples z are drawn from 7o1q = To1a/Zold- These losses yield —VgJ(0) via dif-
ferentiation. Notation: w(z) = mg(x)/mo1a(x), R(x) is reward, /3 the regularization strength, and
Zold = f To1d- Normalized counterparts are in Appendix E (Table 5).

Regularization (Unnormalized) Surrogate loss (expectation w.r.t. To1q)
Forward (UFKL) Zoa E[—w(z)R(z) + B(w(z) — logw(z) — 1)]
Reverse (URKL) Zoa E[~w(z)R(z) + B(w(z)logw(z) — w(x))]

Definition 3.1 (Unnormalized Forward KL). The unnormalized forward KL divergence (Minka et al.,
2005; Zhu & Rohwer, 1995) between the measure 7,1q and the density 7y is defined as:

UKL(7o1q]|mg) = /ﬂold(a:)log 71;::1(%) dac—&—/(ﬂ'g(x) — Tota()) da .

Generalized KL Mass Correction

This form is particularly relevant when dealing with reference measures that may not be perfectly
normalized or when connecting to certain KL estimators like k3 (see Remark 3.5).

Consider the objective using UKL regularization as follows:
JUFKL(Q) = Ewmﬂe [R(J?)] — ﬂ UKL(TI'OldHT(g). (31)

To estimate this off-policy using samples from the normalized reference ojq(x) = To1a(2)/Zo1d, We
define the importance weight w(x) = mg(x)/mo1a(x) (using the unnormalized 7o1q). The gradient
and corresponding loss function, incorporating the total mass Z,q of the reference measure, are given
in Proposition 3.2.

Proposition 3.2 (Policy Gradient and Differentiable Loss for Unnormalized Forward KL). Consider
the unnormalized KL regularized objective function in Eq. (3.1). The gradient of Jypky, () is:

Vourir(0) = ZoaEans,y | (w(@)R() = 8 (w(z) = 1)) Vologmo ()] -

The corresponding surrogate loss for gradient descent optimization, estimated using samples {x;} ~
Told, 1S:
LurkL(0) = ZolaBanz,, [—w(z)R(x) + S(w(z) —logw(z) —1)],

satisfying VOEUFKL(H) = _VGJUFKL<9)o

Remark 3.3 (Interpretation of UFKL Loss and Gradient). The regularization component of the
surrogate loss Lyrkr(0), specifically ZoaE, 7., [8(w(z) — logw(z) — 1)], corresponds to an
off-policy estimate of the unnormalized forward KL divergence term /3 - UKL(7mo1q||79) present in
the objective Jyrkr,(0). This connection is established via the ks estimator (see Remark 3.5 and
Appendix D). Furthermore, the gradient term —f(w(x) — 1) effectively modifies the reward, guiding

Ty to match not only the shape of m,q but also its overall mass Z,1q, due to the mass correction
component in UKL(7o14||7g).

3.2 UNNORMALIZED REVERSE KL REGULARIZATION

Similar to the forward case, we can define an unnormalized reverse KL divergence, relaxing the
normalization constraint on the reference distribution 7,14. Let 7o1q () be a potentially unnormal-
ized reference measure with total mass Zoiq = [ moida(z)dz. Let Toa(z) = mo1a(x)/Zowa be the
corresponding normalized probability distribution.

Definition 3.4 (Unnormalized Reverse KL). The unnormalized reverse KL divergence between the
density my and the measure 7,1q is defined as:

UKL(rg||ort) = / o) log T2 gy 1 / (Wold(x) —ﬂg(:ﬂ))da:.

- Told ()

Generalized KL Mass Correction

The mass correction term simplifies to Zo1q — [ mg(2)dz.
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Remark 3.5. (Equivalence to k3 estimator) The k3 estimator (Schulman, 2020), often used for its
empirical properties (e.g., in GRPO (Shao et al., 2024)), is defined for a density ratio y(z) as:

k3(y) ==y —1—logy. (3.2)

As shown in Appendix D, this functional form directly relates to unnormalized KL divergences.
For instance, KL, (7g||Tol) := Egmm, [k3(mo1a(x) /79 (2))] is equivalent to UKL(mg||moq). This
equivalence relationship justifies the exploration of UKL/URKL formulations within our framework.

Consider the objective using URKL:
JurkL(0) = Eznrmy [R(2)] — B UKL(mg || mo1a), (3.3)

where UKL is defined above. As with UFKL, we derive the gradient and loss using expectations over
the normalized reference 7o1q and the importance weight w(z) = mg(x)/mo1a () (with unnormalized
Told)- The results are summarized in Proposition 3.6.

Proposition 3.6 (Policy Gradient and Differentiable Loss for Unnormalized Reverse KL). Consider
the reverse unnormalized KL regularized objective function in Eq. (3.3). The gradient of Jyrkr,(6)
is:

VoJurkr () = ZowaBons,,, [w(x) (R(x) — Blog w(:z:)) v, log m(z)} .

A corresponding surrogate loss for gradient descent optimization, estimated using samples {x;} ~
ﬁ)ld: is:

LyrkL(0) = ZowEonz,, [~w(@)R(z) 4+ B(w(z) logw(z) — w(x))],

satisfying Vo Lurkr(0) = —VeJurkw(6). The constant Z,)q scales the loss and gradient and may
be omitted in practice.

Remark 3.7 (URKL Loss and Mass Correction). The surrogate loss Lurk1. () is designed such
that its gradient is —VgJurkw(0). Specifically, the term ZojaE, 5, [8(w(x) log w(z) — w(x))]
in the loss directly relates to the off-policy estimation of the unnormalized reverse KL divergence
BUKL(7mgl||mo1a), omitting a constant related to the total mass Z,q which does not affect the
gradient. The policy gradient’s effective reward scaling factor, (R(x) — §logw(x)), is simpler than
its normalized RKL counterpart.

Remark 3.8. In Appendix B, we show the connection between RPG and the Natural Policy Gradient
(NPG) (Kakade, 2001; Schulman et al., 2015). In particular, the NPG update is a special case of the
RPG update, which uses a linear approximation for the expected return and a quadratic approximation
for the KL regularization. This transforms the problem from simple first-order gradient ascent in PG
(REINFORCE) into a second-order-like update: RPG.

4 REINFORCE-STYLE REGULARIZED POLICY GRADIENTS

In Section 3, we derived policy gradient estimators and corresponding fully differentiable surrogate
losses L(#) for KL-regularized objectives. Those losses were constructed such that Vo £(6) =
—VyJ(0) directly, typically by setting £() = —Jis(#) (where Jis is the importance-sampled
objective) up to constants. Notice that the gradients derived in Section 3 (Theorems 3.2 through 3.6)
share a structural similarity with the REINFORCE estimator:

VoJ(0) = Eormpmpne [Weight(z, 0)Vg log mp(z)]

where Tgampling 1S Told OF its normalized version 7,14, and Weight(z, 0) encapsulates the reward and
KL regularization terms, differing for each specific objective.

Proposition 4.1 (Gradient-Equivalence of Surrogates). For each KL-regularized objective J(6)
derived in Section 3, the corresponding REINFORCE-style losses in Table 2 satisfy VyL£(0) =
—VJ(0) under the standard regularity assumptions used in the policy-gradient theorem. In particular,
the stop-gradient operator ensures that dependence of the weight on 6 (through importance ratios)
does not leak unintended gradients. A proof sketch follows directly from the policy-gradient theorem
and is completed in Appendix L.
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This structural similarity motivates an alternative REINFORCE-style implementation using the stop-
gradient operator SG. The general form of such losses and the detailed rationale for how they yield
the target gradient via automatic differentiation are presented in Appendix F.1 (see Eq. (F.1)).

We explore these REINFORCE-style estimators as part of our framework, as they offer an alternative
implementation path and demonstrate competitive empirical performance (Section 5). Proofs are in
Appendix L. In the main text, we tabulate the unnormalized REINFORCE-style losses; normalized
counterparts are deferred to Appendix F.

Table 2: REINFORCE-style surrogate losses £(6) for unnormalized KL-regularized objectives using
the stop-gradient operator (SG). These losses yield the target gradient via automatic differentiation.
Compare with the fully differentiable losses in Table 1. Normalized versions are given in Appendix F.

Regularization (Unnormalized) REINFORCE-style loss (sampling = ~ 7o14)
Forward (UFKL) -E [ SG(Zowa(w(z)R(z) — B(w(z) — 1))) logme (m)]
Reverse (URKL) _E [ SG(Zoaw(z)(R(z) — Blogw(x))) log m(x)]

4.1 RPG-STYLE CLIP: DUAL-CLIP TRUNCATION OF IMPORTANCE RATIOS

Large importance ratios w(x) = :fd(a)) induce high variance and destabilize off-policy updates.

Our RPG-Style Clip follows the dual-clip method implemented in Algorithm 1 in the appendix:
we clip w into [1 — €1, 1 + €3] and additionally impose a lower bound for negative advantages.

Let g(az, ) denote the regularized advantage analogue determined by the chosen objective (e.g.,
Aurkr = (R—b)—Blogw, Arkr, = (R—b)—B(log w+1)). The loss used in our implementation is

LRPG-Cln, o) max( —w(x) /T(:r 0), —clip(w(z), 1 — €1, 1 + €2) es 9)), X(:r 0) >0,
B min(max( —w(z) A(z;0), —clip(w(z), 1 —e1, 1+ €3) A(a; 9)), —c Al 0)), A(z;0) <0,

with €1, €5 > 0 and ¢ > 1. The choice of A for each divergence (URKL/UFKL/RKL/FKL) matches
the gradients in Section 3 and is instantiated in Algorithm 1.

Case ¢; > 0 Case ¢; <0
‘ T - : - ‘ T -
Grad via £;
G 1.5 . Grad =0 [ d -1
B ||| e o =
L 2
Q Q —
% & 1.5
o 1 - 8
Q Q
Z 2 -2
o e}
— —
0.5 [ | | | | —2.5 |
0.5 g1 ¢ 15 2 © 2.5 0.5 &
[ + +
wi = We(wi)/ﬂold(l?i) w; = W@(ﬂci)/ﬂold(xi)

Figure 2: Visualization of the loss coefficient £; vs. importance weight w; based on the specific
implementation in Algorithm 2. This version swaps the main branching condition compared to
previous versions (branches on ; > 0). The plot assumes ¢; = — log mg(x;) = 1 for visualizing
the value of £;. The line styles indicate the nature of the gradient Vy.L;: Solid blue: Gradient
exists, flowing only via ¢;. The coefficient multiplying V¢; depends on SG(w;). Dotted magenta:
Gradient is zero. This occurs when /¢; is detached via SG in the loss calculation. Left: Case v; > 0.
Right: Case ¢; < 0.

5 EXPERIMENTS

We just display the curves in Figure 4 and last and best scores on AIME24 and AIME25 benchmarks
in Table 4 for the experiments with 8K context length. The results also demonstrate the superiority of
our algorithms over baselines, including GRPO and DAPO.
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Figure 3: Performance of RPG and REINFORCE-Style Regularized Policy Gradient (RPG-
REINFORCE) methods compared to baselines with 4k context length.

Table 3: Combined performance metrics with 4k context length on the AIME24, AIME25 and
AMC23 mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is
from the 400th training step, assuming the training process remained stable to that point. The highest
score in each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE
methods are highlighted with light cyan and light green backgrounds, respectively.

Method ‘ AIME24 ‘ AIME25 AMC23
| Last Best | Last Best | Last Best
REINFORCE++-Baseline (300 steps) - 0.4281 - 0.3833 - 0.9172
REINFORCE++ 0.3490 0.3885 | 0.2822 0.3479 | 0.8977 0.9297
GRPO 0.3458 0.3677 | 0.2896 0.3042 | 0.9016 0.9109
DAPO 0.4063 0.4479 | 0.3510 0.3938 | 0.9297 0.9297
RPG-UFKL 0.4031 0.4396 | 0.3625 0.3979 | 0.9477 0.9500
RPG-URKL 0.3990 0.4219 | 0.3438 0.3792 | 0.9500 0.9531
RPG-REINFORCE-UFKL 0.4281 0.4375 | 0.3771 0.4042 | 09023 0.9133
RPG-REINFORCE-URKL 0.4458 0.4531 | 0.4125 0.4313 | 09313 0.9352

In this section, we empirically evaluate our proposed Regularized Policy Gradient (RPG) framework,
including both its fully differentiable (RPG) and REINFORCE-style (RPG-REINFORCE) variants.
We compare their performance against established baselines on challenging mathematical reasoning
tasks using large language models, including GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
Our evaluation focuses on task-specific accuracy, training stability, and key training dynamics such
as reward, policy entropy, and response length.

Base Models and Datasets. We conduct experiments using the Qwen3-4B and Qwen2.5-7B-Instruct
models. For training, we utilize the DAPO-Math-17k dataset (Yu et al., 2025) (13.9k English samples).
We evaluate on AIME2024, AIME2025 and AMC23, and additionally report results on MinervaMath
and OlympiadBench in the Appendix. We compare against baselines including GRPO, DAPO, and
REINFORCE++.

Implementation and Framework. Experiments are implemented using the ver1 framework (Sheng
et al., 2025) with the vLLM engine (Kwon et al., 2023) for efficient LLM serving and inference.
For practical implementation of our RPG methods, we emphasize that the probabilities (or log-
probabilities) from the last iteration’s model (7,1q) for the sampled data can be pre-computed and
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Figure 4: Training dynamics and benchmark performance for fully differentiable Regularized Policy
Gradient (RPG) and REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines (GRPO
and DAPO) with 8k context length.

Table 4: Combined performance metrics with 8K context length on the AIME24, AIME25, and
AMC23 mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is
from the 400th training step, assuming the training process remained stable to that point. The highest
score in each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE
methods are highlighted with light cyan and light green backgrounds, respectively.

RPG-REINFORCE-UFKL | 0.5906 0.5958
RPG-REINFORCE-URKL | 0.5708 0.5781

0.4833 0.5031
0.5073  0.5208

0.9453  0.9469
0.9398  0.9469

Method | AIME24 | AIME25 |  AMC23
| Last Best | Last Best | Last Best
GRPO 0.3750 0.4396 | 0.3354 0.4063 | 09109 0.9297
DAPO 0.5438 0.5740 | 0.4469 0.4740 | 09375 0.9430
RPG-UFKL 0.5938 0.6177 | 0.4698 0.4865 | 0.9492 0.9517
RPG-URKL 0.4542  0.5260 | 0.5261 0.4938 | 0.9406 0.9539

stored. This allows the KL regularization terms to be calculated without needing to keep 74 in GPU
memory during the training step of the current policy my. Consequently, only one model (7g) needs
to be actively managed in GPU memory for training, which is faster and more memory-efficient
compared to approaches like GRPO that typically require access to at least two models (the current
policy and a reference/sampling policy) during optimization.

Iterative reference updates. To further stabilize optimization, we adopt an iterative reference-update
scheme: we periodically set m,q < 7 (every K optimizer steps, or when a moving average of
token-level KL exceeds a target ). This realizes a practical KL trust region while avoiding over-
regularization toward the initial checkpoint. Further implementation details and hyperparameters
(learning rate, (3, clipping) are provided in Appendix H.

Stabilization and Advanced RL Techniques. Our RPG implementations (both fully differentiable
and REINFORCE-style) incorporate stabilization techniques like baseline subtraction and PPO-style
objective clipping (specifically, Dual-Clip (Ye et al., 2020; Schulman et al., 2017)), crucial for robust
off-policy learning. Detailed algorithmic descriptions are provided in Appendix G (see Algorithm 1
for RPG with Dual-Clip and Algorithm 2 for the REINFORCE-style equivalent, along with Figures 2
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and 5 for visualization). Varying the clip ratios in REINFORCE-style RPG algorithms, we find
that while critic scores and response lengths are similar for (e1,€e2) = (0.1,0.1) and (0.2, 0.28)
(Figure 8), DAPO’s higher-and-clip-higher strategy substantially reduces actor entropy, which appears
to underlie its performance gains, details can be found in Appendix 1.2.1. For PPO-style clipping,
we set (€1, €2) = (0.2,0.28) for RPG, RPG-REINFORCE and DAPO. For GRPO, we use (€1, €2) =
(0.2,0.2). Furthermore, to enhance training efficiency and data quality, we adopted techniques
introduced by DAPO (Yu et al., 2025), including a dynamic sampling strategy with a group filtering
mechanism (which oversamples challenging prompts and filters out those with near-perfect or near-
zero accuracy based on initial rollouts) and an overlong punishment component in the reward shaping
to discourage excessively verbose outputs. In addition, we enable RPG-Style Clip (Section 4.1) for
the REINFORCE-style estimators, which we found to be the best variant for RL training at larger
scales.

Results and Discussion. Tables 3 and 6 summarize the performance of our RPG algorithms against
baselines with 4k and 2k context lengths, reporting both the last and best scores achieved during
training on these benchmarks. Figure 3 and 6 complement these results by illustrating the evaluation
scores and training dynamics for the fully differentiable RPG variants and baselines when training
the Qwen-3-4B model. These figures display performance on the AIME24 and AIME25 benchmarks,
alongside key training metrics: reward (critic score), policy entropy, and average response length.
Across settings, the RPG-REINFORCE variants with RPG-Style Clip have the strongest results.
Following DAPO (Yu et al., 2025; Yue et al., 2025), we report “Mean@32” (average accuracy of 32
sampled responses). With 8k context length, RPG-REINFORCE achieves 52% accuracy on AIME25,
surpassing the official Qwen3-4B-Instruct baseline (47%).

The quantitative results in Table 3 demonstrate the competitive performance of the proposed RPG
and REINFORCE-style RPG frameworks with 4k context length. On AIME24, RPG-REINFORCE
variants lead, with RPG-REINFORCE-URKL achieving the best “Best” score (0.4531) and the best
“Last” score (0.4458), while RPG-REINFORCE-UFKL attain a second best “Last” score (0.4281).
For AIME25, RPG-REINFORCE-URKL still achieves the top “Best” score (0.4313) and a strong
“Last” score (0.4125) and RPG-REINFORCE-UFKL is second only to that. Overall, RPG and
RPG-REINFORCE methods rank at or near the top across benchmarks and metrics, while exhibiting
stable training dynamics.

Similarly, Table 6 shows the experiment results with 2k context length. It can be observed that
RPG and RPG-REINFORCE variants demonstrate robust performance, often competitive with or
exceeding baselines. For example, RPG-REINFORCE-UFKL achieves the top “Best” scores for
AIME24 (0.3625) and AIME25 (0.3083), and the top “Last” score of AIME25 (0.2927), while
RPG-UFKL attain the top “Last” score of AIME24 (0.3427) and the second highest “Last” score of
AIME25 (0.2833). Their training curves in Figure 6 generally indicate good stability and effective
learning. The consistently high performance across various RPG formulations underscores the utility
of the systematically derived KL-regularized objectives explored in this work.

Moreover, these algorithms generally exhibit stable training progressions regarding reward (critic
score) and policy entropy, as shown in subfigures (c) and (d) in Figures 3 and 6, compared to some
baselines like GRPO, which can show more volatility. This stability likely contributes to their robust
benchmark performances (subfigures a-b). The response lengths (subfigure e) for RPG methods also
appear well-controlled. These observations align with the strong final scores reported in Tables 3
and 6 for these variants.

6 CONCLUSION

We introduced RPG, a framework for deriving and organizing KL-regularized policy gradient al-
gorithms for online, off-policy RL. We provided derivations for policy gradients and surrogate
loss functions covering forward/reverse KL, normalized/unnormalized distributions, and both fully
differentiable and REINFORCE-style estimators. Beyond derivations, we revisited the classical
REINFORCE algorithm and made it viable off-policy through RPG-Style Clip and iterative refer-
ence updates. On LLM reasoning, these design choices deliver stable and scalable training with
competitive and superior accuracy relative to strong baselines.

10
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ETHICS STATEMENT

The methods developed in this paper contribute to the broader effort of enhancing the reasoning
capabilities of large language models. Improved reasoning in LLMs has the potential to significantly
benefit various fields, including scientific discovery, education, and complex problem-solving in
engineering and medicine. By providing more stable and efficient training algorithms, our work can
facilitate the development of more reliable and capable Al systems.

However, as with any advancement in Al capabilities, it is crucial to consider the ethical implications
and ensure responsible development and deployment of these technologies to mitigate potential
misuse. While our framework offers a unified perspective on KL-regularized policy gradient algo-
rithms and demonstrates strong empirical performance, it has certain limitations. RPG-Style Clip
introduces a controllable bias: variance trade-off through (e1, €3), so developing principled schedules
for clipping would be valuable.

We used LLMs as assistive tools to polish part of this paper. The roles of LLMs in this work are
restricted to improving readability and presentation.
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A RELATED WORK

Fine-tuning large language models (LLMs) using human feedback has become a critical step in
developing capable and aligned Al systems. Broadly, methods fall into two main categories: those
relying on policy optimization using an explicit reward model learned from feedback, and those
directly optimizing policies based on preference data.

RLHF via Policy Optimization. The classic RLHF involves training a reward model (RM) r4(z, y)
to predict human preferences and then using reinforcement learning to optimize the language model
policy mg to maximize the expected reward from the RM, often regularizing against deviating too far
from an initial reference policy m..¢. This approach was pioneered by Christiano et al. (2017) and
gained widespread prominence with its application to LLMs like InstructGPT (Ouyang et al., 2022)
and ChatGPT (OpenAl, 2022), which utilized Proximal Policy Optimization (PPO) (Schulman et al.,
2017). PPO became a workhorse due to its relative stability, achieved by constraining policy updates
via a clipped surrogate objective. The standard PPO setup for RLHF involves the policy 7y, a value
function V,;, the RM 4, and the reference policy 7.

RLHF via Direct Preference Optimization. An alternative and increasingly popular approach
bypasses explicit reward modeling by directly optimizing the policy my based on preference data, typi-
cally pairwise comparisons (y.,, ¥;) indicating that response ¥,, is preferred over y; for a given prompt
z. Inspired by the Bradley-Terry model (Bradley & Terry, 1952), Direct Preference Optimization
(DPO) (Rafailov et al., 2023) derived a simple loss function directly relating preference probabilities
to policy likelihoods under 7y and a reference policy m..¢. DPO maximizes the relative likelihood of
preferred responses using a logistic loss: Lppo xx —E[log o(8Alogp)], where Alogp is the difference
in log-probabilities of y,, and y; between 7y and 7. DPO’s simplicity and effectiveness led to its
wide adoption in models like Llama-3 (Grattafiori et al., 2024), Qwen2 (Yang et al., 2024), and Phi-3
(Abdin et al., 2024). Numerous variants have followed: SLiC-HF (Zhao et al., 2023) uses a pairwise
hinge loss for calibration; IPO (Azar et al., 2024) uses an identity link function; SimPO (Meng et al.,
2024) offers a simpler objective focusing on the margin; KTO (Ethayarajh et al., 2024) handles binary
(good/bad) feedback; DQO (Ji et al., 2024) incorporates direct Q-value modeling; RAFT (Dong
et al., 2023), RSO (Liu et al., 2024) and RFT (Yuan et al., 2023) use a rejection sampling perspective.
Recognizing that preferences might evolve, iterative methods like Iterative DPO (Xiong et al., 2024),
PCO (Xu et al., 2023) and SPIN (Chen et al., 2024) alternate between generation/preference learning
and policy updates, often using the current policy’s outputs in a self-improvement loop. Game theory
offers another lens, with Nash Learning from Human Feedback (NLHF) (Munos et al., 2024) framing
RLHEF as finding a Nash equilibrium between policies. Self-play ideas appear in SPPO (Wu et al.,
2025) and GPO (Zhang et al., 2025), where the policy generates pairs for comparison. Methods like
GPM (Zhang et al., 2025) aim to handle more general preference structures efficiently using latent
embeddings beyond pairwise comparisons.

RL for Enhancing LLM Reasoning. Beyond general alignment with human preferences, RL
techniques are increasingly explored to specifically enhance the multi-step reasoning capabilities of
LLMs in domains like mathematics, coding, and complex instruction following. In these contexts,
RL optimizes the policy to generate sequences (e.g., chain-of-thought, code blocks) that lead to
successful outcomes, often using rewards derived from external feedback like unit test results,
execution outcomes, or correctness checks by an automated judge or specialized reward model trained
on reasoning quality. For instance, the DeepSeekMath model (Shao et al., 2024) employed the
GRPO algorithm, a value-free PPO variant, demonstrating significant improvements in mathematical
problem-solving benchmarks through RL fine-tuning. DeepSeek-R1 (Guo et al., 2025) represents
efforts in applying advanced techniques potentially involving RL for complex tasks, although specific
methods might vary. Furthermore, preference-based methods like SPPO and GPO have been applied
to reasoning-specialized models such as Kimi-1.5 (Team et al., 2025), and the resulting improvements
observed on benchmarks involving coding and math suggest that preference-based RLHF can also
contribute to refining reasoning abilities, potentially by optimizing implicit properties related to
logical consistency and correctness within the preference data. The need for a value function (critic
model) used in PPO incurs significant computational costs, and standard PPO can face stability
challenges with sparse rewards common in LLM tasks. Addressing these issues has driven recent
work. Several methods aim to improve efficiency by removing the value network: RLOO (Kool
et al., 2019; Ahmadian et al., 2024) shows that drawing multiple samples per input allows for a
baseline based on the average reward. ReMax (Li et al., 2024) adapts REINFORCE (Williams, 1992)
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using Monte Carlo returns and normalization; GRPO (Shao et al., 2024) uses a group-average reward
baseline and adds a k3-based KL penalty to the objective; and VinePPO (Kazemnejad et al., 2024)
uses MC sampling from intermediate steps. Other approaches focus on stability and alternative
baselines, such as RLOO (Ahmadian et al., 2024), which uses leave-one-out statistics within a
group, and REINFORCE++ (Hu, 2025), which enhances REINFORCE with token-level KL penalties
(using the ko estimator) and normalization. Dr. GRPO (Liu et al., 2025) identifies and corrects
a bias found in GRPO’s advantage estimators, DAPO (Yu et al., 2025) introduces strategies like
Clip-Higher, reward over-sampling, and a token-level loss to handle long sequences and entropy
collapse, while VAPO (Yuan et al., 2025) builds upon it with length-adaptive advantage estimation.
Group Policy Gradient (GPG) (Chu et al., 2025) revisits the original REINFORCE objective, using
group-normalized rewards and a debiased gradient estimator. Recently, GSPO (Zheng et al., 2025)
was proposed with sequence-level rewards and used in the Qwen3 model series (Team, 2025).

Our contribution is to make the off-policy weighting and estimator equivalences explicit across
normalized/unnormalized variants, to identify a bias introduced when these weights are omitted (as in
the GRPO KL term), and to provide corrected surrogates that are gradient-equivalent to the intended
objectives. The design-space view makes transparent how several recent algorithms arise as special
cases.

B CONNECTION BETWEEN REGULARIZED POLICY GRADIENT AND NATURAL
PoLICY GRADIENT

In this section, we draw the connection between RPG and Natural Policy Gradient (NPG) (Kakade,
2001; Schulman et al., 2015). Note that NPG moves along the steepest-ascent direction defined by
the Riemannian geometry induced by the Fisher information matrix, rather than by the Euclidean
geometry of the raw parameters. More specifically, we demonstrate that the Natural Policy Gradient
(NPG) update can be recovered as a special instance of the RPG update by applying a linear
approximation to the expected return and a quadratic approximation to the KL regularization term.

In detail, consider the RPG objective at iteration k:
Jrec(0) = J(0) — B KL(m, ||7a), (B.1)

where J(0) is the expected return. To study the local behavior of the update, we first apply the
first-order Taylor expansion to the return J(6) around the current policy parameter 6

J(0) = J(0x) + Ve (01) T A0, (B.2)
where Af = 0 — 0}, denotes a small change.
Then we apply the second-order Taylor expansion of the KL divergence term at 6, as follows:

T
KL(ﬂ'gk ||7T9) ~ KL(ﬂ'ek Hﬂ'gk) + Vg KL(ﬂ'gk ||7T9) |0:9kA9
1
+ 5 A0TVEKL (o, |70)| o, A (B.3)
1

=0+0+ §A9TF(9;€)A9, (B.4)

where A = 6 — 0y, and F'(6},) is the Fisher information matrix:

F(Or) = Eonry, [ Vologmo(w)],_y, Vologmo()]y_, |

Note that the Fisher information matrix describes the local geometry of the parameter space of the
policy family. It gives a good metric inside a small neigbourhood around 6.

Now insert (B.2) and (B.4) back into the RPG objective (B.1), we obtain the following quadratic
surrogate Jrpg(A#) around 0y;:

B

Trvc(80) = T (00) + Vo (0:) A0 — 5

AOTF(6;)A8. (B.5)

18



Under review as a conference paper at ICLR 2026

We now look for the best local step Af*. Take the gradient of (B.5) with respect to A# and set it
equal to zero, we obtain:

Va6 JrpG = VoJ(0r) — BF(0,)A0 = 0.
Solving this linear system for Af gives

AG* = %F(Gk)_1V9J(€k).

The step A8* matches the natural policy gradient (Kakade, 2001) update direction up to the factor
1/. This suggests that the policy gradient update of RPG in (B.1) can be approximated by NPG as
follows

1
Okt1 < O + BF(%)_IVGJ(@J@)-

In other words, the maximizer of the local KL regularized RPG approximation follows the same
direction as a natural policy gradient update.

C REINFORCE AND PROXIMAL PoLICY OPTIMIZATION (PPO)

C.1 REINFORCE

REINFORCE performs Monte Carlo (MC) updates after sampling a complete trajectory, using the
sampled return G; as an unbiased estimate of the state-action value function Q™ (s, a;). However,
these MC estimates often exhibit high variance, leading to slow and unstable learning.

To reduce variance, a state-dependent baseline b(s;) (commonly an estimate of the state value
function, V™ (s;)) is subtracted from the return-to-go:

T

VoJ(0) = Ern, Z(Gt —b(s¢)) Vg log mg(at|st)

t=0

= ETNﬂ'g

T
Z AV log mg(ay |5t)] .
t=0
(C.1)
Here, A, = G —b(s;) is an estimate of the advantage function A™ (s, a;) = Q™ (sy, az) — V™ (sy).
Subtracting a baseline that only depends on the state s; does not bias the gradient estimate, since

B, om0 [0(5t) Vg log ma(as|si)] = b(s¢) Ve Zat mg(at]s:) = b(st)Vel = 0. REINFORCE with
baseline is typically implemented by minimizing the loss:

EREINFORCE(Q) = _ETNTFQ

T
> SG(A)log m(atbt)] : 2
t=0
using the stop-gradient operator SG(-) to prevent gradients from flowing into the advantage estimate

A;. As REINFORCE uses samples collected under the current policy 7y for gradient estimation, it is
an on-policy algorithm.

C.2 PROXIMAL PoLICY OPTIMIZATION (PPO)

On-policy methods like REINFORCE can be sample-inefficient, requiring new trajectories for each
gradient update. Proximal Policy Optimization (PPO) (Schulman et al., 2017) improves stability
and sample efficiency by enabling multiple updates using the same batch of data collected under a
slightly older policy mg,,,. This makes PPO effectively off-policy. PPO achieves this by optimizing a
surrogate objective function that discourages large deviations between the current policy 7y and the
old policy m,,,. The most widely used variant, PPO-Clip, employs a clipped objective:

JPPO-Clip(G) =, [min (wt(g)A\t’ clip(wt(e), 1—¢€1+ 6)24})} s (C.3)

where the expectation [, is taken over timesteps in the collected batch sampled from 7,q4. Here,

we(8) = % is the importance sampling ratio. Et is an advantage estimate, typically computed
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using Generalized Advantage Estimation (GAE) (Schulman et al., 2016), which leverages observed
rewards and a learned state-value function V'(s) to reduce variance.

Notably, in many practical implementations, especially in Reinforcement Learning from Human
Feedback (RLHF) for large language models (Ouyang et al., 2022), a KL divergence penalty against a
reference policy ¢ (€.g., the initial supervised model) is often incorporated implicitly by modifying
the reward signal before calculating the advantage. For example, the reward used for GAE calculation
might become r; = r; — S log(mg(at|st)/mret(at]s¢)). When this r} is used within GAE to compute
Et, the KL penalty term is effectively folded into the advantage estimate that multiplies the importance
weight w,(0) in the objective function. This approach contrasts with adding the KL penalty as a
separate term to the final objective, as seen in GRPO (Section 2.2) or the formal derivations in Section
3.

The hyperparameter ¢ (e.g., 0.2) defines the clipping range [1 — €, 1 + €] for the importance ratio
wy (). This clipping limits the influence of potentially noisy importance weights when the policy
changes significantly, preventing destructive updates and further stabilizing the off-policy training.
PPO optimizes the policy 7y by maximizing .J*FO-Clip(g).

D EQUIVALENCE OF k3 ESTIMATOR AND UNNORMALIZED KL DIVERGENCE
As mentioned in Section 3.2, the k3 estimator for KL divergence (Schulman, 2020) is equivalent to

the unnormalized KL (UKL) divergence. The k5 function is defined as k3(y) =y — 1 — log y.

Forward KL-k3 and UKL (7gq||7): The forward KL-k3 divergence is
KL, (motal|79) := By [k3(mo () /Tora(2))]-

Told(2) Told () Tola(7)

_ /I o) ( mo(®) _ 1) dz — /x roa(z) log &) g,

Tola () Tod ()

_ /x(ﬂ_o(m) _ Wold(x))d‘r + ‘/x 7T01d(33‘) log 7;‘-);(1((:3) dx
= UKL(7ou|79)-

Reverse KL-k3 and UKL (g ||mea): The reverse KL-k3 divergence is
KLy (9|7o1a) := By [ (mora () /70 (2))]-

Egror, [k;j (Wold($)>:| R, [wom(az) 1 log Fold(m)]

mo(z) () ()
= | m(x m’ld(x)— T — wxowx
= [rato) (T 1) e [[matoyios 25
_ mo ()
_/I(ﬂ'o]d(.r) —wa(a:))dx—l-/zﬂ'g(x) log Wold(l’)dx
= UKL(ﬂ'gHﬂ'Old).

E NORMALIZED KL REGULARIZATION

For completeness, we collect here the normalized KL formulations that were previously in the main
text. Their proofs remain in Appendix K.

E.1 FORWARD KL REGULARIZATION

Consider the objective function with forward KL regularization:
JrKL(0) = Egnry [R(2)] — BKL(7o1a || m9)- (E.1)

Proposition E.1 (Policy Gradient and Differentiable Loss for Forward KL). The gradient of Jpkr,(6)
with respect to @ is:

VoJrkL(0) = Eproy [(w(x)R(ﬂc) + B)V@ log we(x)} ,
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Table 5: Summary of fully differentiable surrogate losses for normalized KL-regularized objectives
(counterparts to Table 1). Here & ~ moq, w(x) = mo(x)/To1a ().

Regularization (Normalized KL)) Surrogate loss (sampling x ~ 7,14)

Forward KL E[-w(z)R(z) — Blogme(z)]
Reverse KL Elw(z) (—R(z) + Blogw(z))]

where w(x) = mg(x)/mo1a(x). A corresponding surrogate loss is:
Lrkn(0) = Eporyy [ —w(x)R(x) — Blog 71'9(17)],
which satisfies Vg Lrkr, (9) = —VoJrkL (9)

Remark E.2 (Connection to Maximum Likelihood Estimation). If R(z) = 0, maximizing Jgkr,(0)
reduces to minimizing 8 KL(7o1q || 79), i.e., MLE on samples from 7,yq4.

E.2 REVERSE KL REGULARIZATION

Consider the reverse KL objective:
JRKL(O) = EJ;Nﬂ—e [R(m)] — 6 KL(ﬂ'g || 7Told)~ (EZ)

Proposition E.3 (Policy Gradient and Differentiable Loss for Reverse KL). The gradient of Jrkr,(0)
is:

Vo it (0) = Bannyy [0(@) (R(@) — Bllog w(x) +1)) Vo log ma(a)]
A corresponding surrogate loss is:
Lrir(0) = Ezoryy [w(z)(~R(z) + Blogw(z))]
with Vo Lrkr(0) = =V Jrkr(0).

REINFORCE-style RPG with normalized KL regularizations. REINFORCE-style losses for
FKL/RKL appear in Appendix F (Table analogues to Table 2).

F REINFORCE-STYLE REGULARIZED POLICY GRADIENTS WITH VARIOUS
KL REGULARIZATION FORMS

F.1 RATIONALE FOR REINFORCE-STYLE LOSS FORMULATION

As noted in Section 4 of the main text, the derived off-policy policy gradients (Theorems E.1 through
3.6) share a structural similarity with the REINFORCE estimator:

Vo J(0) = Eqrrmnpn, [Weight(z, 0) Vg log mo ()] .

This structure suggests an alternative way to implement the gradient update, analogous to the
REINFORCE-style approach used in the on-policy setting. Specifically, one could define a surrogate
loss of the form:

LREINFORCEstyle (0) = — By [SG (Weight(z, 0)) log mp ()] . (F.1)
The rationale is that applying automatic differentiation to this loss should yield:

Autodiff .
V o LREINFORCE style(6) * = —E g [SG (Weight(z, 0)) Vg log mg ()] .

When this gradient is used for optimization, the stop-gradient SG is conceptually removed, resulting in

an update aligned with —VyJ(6). This relies on SG preventing gradients from flowing through the 6-

dependence within Weight(z, ) (specifically, the dependence via the importance weight w(x)). The

following subsections detail these REINFORCE-style loss formulations for each KL regularization

type.
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F.2 REINFORCE-STYLE RPG WITH FORWARD KLL REGULARIZATION

We can convert Forward KL regularization of RPG to REINFORCE-style using the stop-gradient
operator:

Proposition F.1 (REINFORCE-Style Loss for Forward KL). For the forward KL regularized objec-
tive function in Eq. (E.1), the corresponding REINFORCE-style surrogate loss function for gradient
descent optimization via automatic differentiation is:

LRRTORE 9y = B, o [SG (w(z)R(x) + B) log mo(z)] ,

where w(x) = mp(x)/mo1a(x). This loss aims to produce the gradient —Vy Jrk1,(0) via automatic
differentiation.

Remark F.2. This REINFORCE-style loss requires SG to prevent backpropagation through w(x) in
the weight term. Baselines can be added to R(z) inside SG for variance reduction (see Appendix G).
In practice we further apply RPG-Style Clip (Section 4.1) by replacing w with w and, when present,
log w with log @ inside SG(-).

F.3 REINFORCE-STYLE RPG WITH UNNORMALIZED FORWARD KL REGULARIZATION

Similarly, we can also transform the Unnormalized Forward KL Regularization of RPG into
REINFORCE-style as follows:

Proposition F.3 (REINFORCE-Style Loss for Unnormalized Forward KL). For the objective
Jurkr () = Eq, [R(z)] — B UKL(7o1a||7g), whose gradient (sampling from 7o1q) is

Vo JurkL(8) = Epzoyy[Zota(w(z)R(x) — S(w(z) — 1)) Ve log me(z)] (Proposition 3.2), a corre-
sponding REINFORCE-style surrogate loss is:

Lo T (0) = By [SG (Zow (w(z)R(z) — B(w(w) — 1)) log 7o ()] ,

where Told = Told/Zola and w(x) = wp(x)/mo1a(x) (using unnormalized 7y14). This loss aims to
produce the gradient —VyJurk,(0) via automatic differentiation.

F.4 REINFORCE-STYLE RPG WITH REVERSE KL REGULARIZATION
Proposition F.4 (REINFORCE-Style Loss for Reverse KL). For the objective Jrky(f) =
E.,[R(x)]—BKL(7mp || mo1a), whose gradient is Vo Jrkr(0) = Ezrr,, [w(x)(R(x) — B(log w(z)+
1))V log mg(x)] (Proposition E.3), a corresponding REINFORCE-style surrogate loss is:

LR () = —Byr,, [SG (w(@) (R(z) — Blogw(w) — 8))logme(x)],  (F2)

where w(z) = mg(z)/mo1a(z). This loss aims to produce the gradient —V g Jrkr,(f) via automatic
differentiation.

F.5 REINFORCE-STYLE RPG WITH UNNORMALIZED REVERSE KLL REGULARIZATION
Proposition F.5 (REINFORCE-Style Loss for Unnormalized Reverse KL). For the objective
JurkL(0) = E.,[R(z)] — B UKL(mg||mo1a), whose gradient (sampling from 7o1q) is
VoJurkL(0) = By [Zoaw(z)(R(z) — Blogw(z))Velog mg(x)] (Proposition 3.6), a corre-
sponding REINFORCE-style surrogate loss is:

Lorrr - Y(0) = ~Epniyg [SG (Zoaw(w) (R(x) — Blog w(x))) log me(x)]

where Told = Told/Zola and w(x) = wp(x)/mo1a(z) (using unnormalized 7,14). This loss aims to
produce the gradient —VyJugrkr, (6) via automatic differentiation.

G MORE ON ALGORITHMIC DETAILS

G.1 STABILIZATION TECHNIQUES FOR REGULARIZED POLICY GRADIENTS

Practical implementations of off-policy policy gradient methods often require stabilization techniques
to manage variance or prevent destructively large policy updates. Common techniques include:
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* Dual-Clip Objective: This method adapts the clipping mechanism from PPO, with a modification
for negative advantages proposed by Ye et al. (2020), to stabilize updates (Schulman et al., 2017).

The Dual Clip objective aims to maximize JP"CP = E, . [LPualClip (3 9)] where A(x) is an
estimate of the advantage analogue (e.g., R(x) — b or the full term derived from the regularized
gradient), w(z) = my(z)/7o1a () is the importance ratio, and LPU3CHP (2, §) is defined as:

— If A(z) > 0: LPuICP (3 9) = min(w(2)A(z), clip(w(z),1— 1,1+ e3)A(x)).

- If A\(l) < 0 [PulClip(y g) = max(min(w(x)g(x), clip(w(z),1 — €,1 +

€2)A(2)), cA(x)).

where €1, e > 0 are clipping parameters and ¢ > 1 provides a lower bound for negative advantages.
To use this with gradient descent (which minimizes a loss £), we minimize the negative of the
Dual Clip objective term. Using — min(a, b) = max(—a, —b) and — max(a,b) = min(—a, —b),
the corresponding loss term for a single sample z is:

— If A(z) > 0: £LOwICp (5 g) = max(—w(x)ﬁ(x), —clip(w(z),1 — e1,1+ 62)E(x)).
— If A(z) < 0: Let Lap = max(_w(x)ﬁ(x), —clip(w(z),1— e, 1+ 62)2@)). Then,
L£PuaIClp (7 9) = min (Lclip, —cg(x)>

Here, g(m) should represent the advantage or an analogous term derived from the gradient of the
original (non-negated) regularized objective (e.g., Proposition E.3). The overall loss is £(0) =
Eyoro,, [LPU4CHP (2, §)]. This loss function is differentiable with respect to § (which appears in
w(x) and potentially ﬁ(x) if it includes terms like log w(x)).

This loss formulation ensures that updates are conservative. For positive advantages, it acts like
standard PPO-Clip. For negative advantages, it prevents the objective from becoming arbitrarily
large (loss becoming arbitrarily small) by introducing the lower bound c;l(a:) on the objective
(upper bound —C/T(a:) on the loss).

« Baseline Subtraction: Used to define the advantage A(z) = R(z) — b(x), reducing the variance
of the gradient estimates. The baseline b(z) should ideally not depend strongly on 6. A common
choice is a value function estimate V (z) or simply the batch average reward b = 3+ > R(w;). The
definition of E(m) might also incorporate regularization terms depending on the base objective
chosen (see RKL example below).

For instance, applying Dual Clip to stabilize the reverse KL objective (Proposition E.3). The gradient
involves the term w(z) ((R(z) — b) — B(logw(x) 4 1)) V log g. Using this Ak in the Dual Clip

Analogue to ERKL (z,w;b)
DualClip _ DualClip /. .
loss structure L28P(9) = By, (L2 (z,0)] where:

o If A\RKL(x,w; b) > 0:

£E}fﬂcnp(x, 0) = max (—w(x)A\RKL, —clip(w(x),1 — €1, 1+ ez)A\RKL> .

o If A\RKL<377 wy b) < 0: Let Lclip = max <—w(x)A\RKL7 —Clip(w(a:)7 1-— €1, 1+ €2)A\RKL> .

EEI?LICHP(% ¢) = min (Lclipv *CERKL)v
where A\RKL($7 w; b) = (R(z) — b) — B(log w(z) + 1). Simpler approximations might use E(m) =
R(z) —b.

Using PPO-style clipping alters the optimization objective compared to the original KL-regularized
objectives, trading strict adherence for enhanced stability. The choice of base objective structure,

definition of E, and stabilization techniques depends on the specific application.
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Algorithm 1 RPG with Dual-Clip Stabilization

Require: Reference policy mo14, Reward function R(x), Initial policy parameters 6o

Require: Base objective structure Jehosen (implies regularization type), Regularization strength 8 > 0
Require: Learning rate o > 0, Batch size N > 0, Number of epochs K > 1 per iteration

Require: Dual Clip parameters: €1 > 0,e2 > 0,¢ > 1

Require: Baseline method (e.g., batch/group average, value function V)

: Initialize policy parameters 6 < 6o

2: Initialize value function parameters ¢ (if baseline uses V)

3: for each training iteration do

4 Sample batch D = {z;} 1 ~ To1a > Collect data using old policy
S: Compute R; fors = 1..N
6
7
8

Ju—

Compute baselines b; fori = 1..N (e.g., bi = + >, By orb = V(i)

for k = 1to K do > Multiple optimization epochs on the same batch
: Initialize batch loss Lyaech = 0
9: for i = 1to N do

10: w; = %, log w; = log me(x;s) — log mora(xs) > Compute importance weight
11: Define Advantage analogue 22 based on Jehosen, R, bi, wi, B.
12: > Ex: For RKL, 1& = (R; — b;) — B(logw; + 1). Note: z& depends on current 6 via w;
13: if Dual Clip enabled then
14: loss_term1; = —w; X A; > Negative of unclipped term, gradient flows through w;
15: Wi clipped = clip(wh 1—e, 1A+ 62)
16: loss_term2; = —w; clipped X As > Negative of clipped term
17: Leip () = max(loss_term1;, loss_term2;)
18: if A; > 0 then
19: ﬂlerm(i) = Lclip(i) R
20: else N >A; <0
21: loss_lower_bound; = —c x A; > Lower bound term
22: Lierm(2) = min(Leip(4), loss_lower_bound,)
23: end if
24: else
25: > Define base loss term (unclipped) based on chosen objective’s negative gradient structure
26: > Ex: For RKL loss (no clip): Liem (i) = wi(—(R:i — bs) + Blogw;)
27: Lierm (4) = —w; X A;
28: end if
29: Loach = Lpaich + Lierm (Z)
30: end for
31: L(0) = %Ebamh > Compute final batch loss for minimization
32: g+ VQE(H) > Compute gradient (flows through w; and A;)
33: 0 < OptimizerUpdate(0, g, @) > Update policy parameters
34: if using a learned baseline V;; then
35: Update value function parameters ¢ (e.g., by minimizing E[(V; (2:) — R;)?] over the batch)
36: end if
37: end for
38: end for

39: return Optimized policy parameters 6

G.2 STABILIZATION TECHNIQUES FOR REINFORCE-STYLE REGULARIZED POLICY
GRADIENTS

While the REINFORCE-style losses derived in this section (Table 2) provide theoretically grounded
gradient estimators for the regularized objectives, practical implementations often benefit significantly
from stabilization techniques common in policy gradient methods. These techniques aim to reduce
variance and control the magnitude of policy updates, which is especially crucial in the off-policy
setting where importance weights w(x) and can exacerbate instability.

* Baseline Subtraction and Regularized Advantage Definition: This is a standard variance
reduction technique. Critically, when combining with stabilization like PPO clipping in this
REINFORCE-style context, the term playing the role of the advantage (A\t) that gets clipped should
ideally incorporate not just the baselined reward but also the regularization terms derived from the
objective’s gradient.
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Case A(z) > 0(e.g., A =1) Case E(a:) <0(eg,A=-1)
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Figure 5: Visualization of the Dual-Clip loss term £PUClP (2 §) vs. importance weight w(z), as
described in Section G.1 and Algorithm 1. This formulation is typically implemented as fully

differentiable w.r.t 6 (via w(z) and potentially A(z ) if A depends on 0, e.g., via log w(z)), unlike
REINFORCE-style implementations that use SG(A) or SG(¢;) within the loss. For visualization,

A( ) is treated as constant (A = 1left, A = —1 right) to isolate the effect of w. Solid blue: Loss
depends linearly on w, gradient VL flows via w(z). Dotted magenta: Loss is constant w.r.t w,

gradient VgL does not flow via w(z) in this segment (though it might flow via Aif A depends on ).
Left: Case A < 0. Right: Case A > 0.

Recall the REINFORCE-style gradient structure Vo.J (0) = By [Weight(z, 0) Vg log 7o ()]
The PPO objective involves terms like wtﬁt. To align these, we define the regularized advantage
Ay such that w; A, approximates the key part of Weight(z, §). For example:
— For RKL (Proposition F.4), Weightg .;, = w(z)(R(z) — B(logw(z) + 1)). We define the
regularized advantage as ARKL = (R(z) — b(z)) — B(logw(x) + 1).
— For URKL (Proposition E.5), Weight gk, = Zolaw () (R(x) — Blog w(z)). Ignoring Zg14,
we define AVRKL = (R(z) — b(z)) — Blog w(x).
— For FKL or UFKL, the structure might not cleanly separate into w(x) x (... ). In such cases,
a common simplification is to use A, = R(x) — b(x) and accept that the clipping primarily
stabilizes the reward term’s contribution.
This calculated gt (incorporating reward, baseline, and KL terms) is then treated as constant using
the stop-gradient operator, SG(&), when plugged into the clipping loss function.

* RPG-Style Objective Clipping (Dual-Clip Variant): PPO (Schulman et al., 2017) introduces
objective clipping to limit the impact of large importance ratios w(z). The Dual-Clip variant (Ye
et al., 2020) refines this, particularly for negative advantages, using a lower bound parameter ¢ > 1.
When applied in the REINFORCE-style setting, the PPO Dual-Clip objective aims to maximize
(simplified notation, expectation over t ~ mo1q):

JDualClip (9) — Et [L]t)ualClip (9)}

where A\t is the regularized advantage defined above (incorporating R;, b;, and KL terms), w;(0) =
olarls) and LU (6) is defined based on the sign of SG(A,):

mold(at|st)’
— If SG(A;) > 0: L2 (9) = min(w;(6) SG(Ay), clip(w:(0),1 — 1,1 + €2) SG(Ay))
—If SG(A) < 0: LP"(4) = max(min(w,(0)SG(A,),clip(w;(F),1 — e1,1 +
€2) SG(Ay)), cSG(Ay))
Here, €1, €2 are clipping hyperparametAers, and c is the lower bound factor. Note that # influences
this objective only through w;(6), as A; is detached via SG.

25



Under review as a conference paper at ICLR 2026

To implement this using gradient descent (minimizing a loss), we minimize the negative of the
PPO Dual-Clip objective. The loss function becomes £P%IClp(9) = E,[£P"“(9)], where
L£PUICP gy — _ [PwICtP(9) Explicitly:
— IfSG(A;) > 0: £2"""(9) = max(—w,(0) SG(Ay), —clip(w(6),1 — €1, 1+ €3) SG(Ay)).
— If SG(A;) < 0: Let Laip = max(—w;(0) SG(A,), —clip(w(0),1 — 1,1 + €3) SG(Ay)).
Then, £ () = min(Lep, —c SG(A,)).
This PPO Dual-Clip loss function £P%IC1P(9) replaces the simpler REINFORCE-style losses
derived earlier (like CﬁgIEFORCE'Ster in Eq. (F.2)). The gradient V£P"ICP(0) is computed via
automatic differentiation, where the gradient flows through w;(6) but is stopped at A;. This

approach uses the PPO objective structure with the appropriately defined regularized advantage for
stabilization in an off-policy REINFORCE-style update. Algorithm 2 details this implementation.

H DETAILED EXPERIMENTAL SETUP

Hyperparameters. Unless otherwise specified, all experiments use AdamW optimizer (Loshchilov
& Hutter, 2019) with a learning rate of 1 x 107°, a weight decay of 0.1 and gradient clipping at
1.0. Training proceeds for 400 steps, including an initial 10 warm-up steps, after which a constant
learning rate is maintained. The global training batch size is 512. For each sample in the batch, we
roll out 16 responses using a temperature of 1.0. The per-GPU mini-batch size is 32, and experiments
are conducted on 8§ NVIDIA H100 GPUs. The maximum training and rollout length is set to 4,096
tokens for 2K context length and 8,192 tokens for 4K context length, with dynamic batching enabled.
The KL regularization coefficient 3 is set to 1 x 1074,

Specific Clipping Parameters and Adopted Techniques. As mentioned in Section 5, we set
(e1,e2) = (0.2,0.28) for RPG, RPG-REINFORCE and DAPO. For GRPO, we use (e1,€3) =
(0.1,0.1).

I ADDITIONAL EXPERIMENT RESULTS

I.1 THE PERFORMANCE WITH 2K CONTEXT LENGTH

We just display the curves in 6 and the last and best scores on AIME24 and AIME25 benchmarks in
Table 6 for the experiments with 2K context length. The results also demonstrate the superiority of
our algorithms over baselines, including GRPO and DAPO.

Table 6: Combined performance metrics with 2K context length on the AIME24, and AIME25
mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is from the
400th training step, assuming the training process remained stable to that point. The highest score in
each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE methods
are highlighted with light cyan and light green backgrounds, respectively.

RPG-REINFORCE-UFKL | 0.3396 0.3625
RPG-REINFORCE-URKL | 0.3188 0.3417

0.2927  0.3083
0.2792  0.2938

Method | AIME24 |  AIME25S
| Last Best | Last Best
GRPO 0.2563 0.2708 | 0.2323  0.2479
DAPO 0.3229 0.3281 | 0.2792 0.2844
RPG-UFKL 0.3427 0.3479 | 0.2833 0.2833
RPG-URKL 0.3260 0.3594 | 0.2677 0.2677

1.2 ABLATION STUDY

To further investigate our algorithms, we implement an ablation study on the clip ratio and the effect
of the KL regularization coefficient.
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Algorithm 2 REINFORCE-Style RPG with Dual-Clip Stabilization

> Multiple optimization epochs on the same batch

> Importance weight

> Negative log probability

> Baseline-subtracted reward
> KL component

> Effective advantage

> Branching term

> Grad exists
> Wi > Whigh

>; <0

> Grad exists
>w; > ¢

> Compute average batch loss
> Compute gradient
> Update policy parameters

Require: Reference policy 7o, Reward function R(z), Initial policy parameters 0o
Require: KL Component function Compute_KIL_Component(z, 0, 714 ), KL Component Coefficient 3
Require: Learning rate o > 0, Batch size N > 0, Number of epochs K > 1 per iteration
Require: Dual Clip parameters: ¢; > 0 (low), e2 > 0 (high), ¢ > 1
Require: Baseline method (e.g., batch average, value function V)
1: Initialize policy parameters 6 <— 6o
2: Initialize value function parameters ¢ (if baseline uses V)
3: for each training iteration do
4: Sample batch D = {x;} ¥ ~ 7o
S: Compute rewards R; fori = 1..INV
6: Compute baselines b; fori = 1..N (e.g., bi = + >, By orb = V(i)
7: for k = 1to K do
8: Initialize batch loss Lyaen = 0
9: fori =1to N do
10: w; = Tz
Told (%4)
11: l; = —log mo(x;)
12: AR,i = Ri — bz
13: Cxu,; = B - Compute_KL_Component(z;, 6, mou(x;))
14: A} = AR, + SG(Cxk,i)/ SG(w;)
15: 1/)1 = A; X £;
16: if ¢; > 0 then
17: Whigh = 1+ e
18: if w; < whign then
19: L =1 X SG(wl)
20: else
21 high = AR, +SG(Cxr,i)/ SG(whign)
22: Ynigh = Apign X SG(4;)
23: Li = nigh X SG(Wnign)
24 end if
25: else
26: Wow = 1 — €1
27: if w; < wiow then
28: Alow = Ar,i + SG(Ckw,:)/ SG(wiow)
29: 'lﬁlow = Aiow X SG(&)
30: L‘,i = ’LMOW X SG(wlow)
31: else if w; < c then
32: El = ’lﬁl X SG(wl)
33: else
34 L; = AR,i X SG(&) X c+ SG(CKL,Z) X SG(&)
35: end if
36: end if
37: ['batch - L"batch + £’L
38: end for
39: L(0) = % Lbaicn
40: g < VoL(0)
41: 0 < OptimizerUpdate(0, g, «)
42: if using a learned baseline V4 then
43: Update value function parameters ¢
44 end if
45: end for
46: end for

47: return Optimized policy parameters 6

[.2.1

ABLATION ON CLIP RATIO

We first implement experiments with different clip ratios on REINFORCE-style RPG algorithms. We
choose (0.1,0.1) and (0.2,0.28) for (1, €2) since they are 2 typical choices of clip ratios (Schulman
et al., 2017; Yu et al., 2025), and the performance curves as well as key training dynamics are
displayed in Figure 8. It can be observed that although the critic score and response length are
similar for different settings, the actor entropy shows a huge difference in trend, demonstrating that an

27



Under review as a conference paper at ICLR 2026
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Figure 6: Training dynamics and benchmark performance for fully differentiable Regularized Policy
Gradient (RPG) and REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines (GRPO
and DAPO) with 2k context length.

Table 7: Combined performance metrics with 4k context length on the Minerva-Math and Olympiad-
Bench mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is
from the 300th training step, assuming the training process remained stable to that point. The highest
score in each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE
methods are highlighted with light cyan and light green backgrounds, respectively.

| Minerva-Math | OlympiadBench
| Last Best | Last Best
REINFORCE++-Baseline 0.1103  0.1471 | 0.4926 0.5875

Method

REINFORCE++ 0.1287 0.1287 | 0.5252  0.6202
GRPO 0.0919 0.1177 | 0.5178  0.5594
DAPO 0.0809 0.1507 | 0.4867 0.3938
RPG-UFKL 0.1360 0.2059 | 0.4733 0.5564
RPG-URKL 0.1177 0.1581 | 0.4956 0.5801

RPG-REINFORCE-UFKL | 0.1029 0.1434 | 0.5326 0.5564
RPG-REINFORCE-URKL | 0.1324 0.1360 | 0.4525 0.5816

adequately higher and clip-higher strategy proposed by DAPO may greatly contribute to the increase
of performance by increasing the actor entropy.

1.2.2 ABLATION ON KL REGULARIZATION COEFFICIENT

We also implement ablation studies on the effect of the KL regularization coefficient. We implement
experiments with REINFORCE-style RPG-UFKL (RPG-REINFORCE-UFKL) with 8 = 1 x 1073
and 1 x 10~%, and the results are shown in Figure 9. Figures 9(a) and 9(b) show that the coefficient
1 x 10~ performs better than 1 x 1072, and the trend in response length conforms to the performance,
indicating that longer response length may help with the improvement in performance.

We also dig into the effect of the iteratively updated reference model. We implement another
experiment with no iteratively updated reference model, and display the performance and dynamics
in Figure 9. It can be observed that the performance recovers with longer response length and much
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Figure 7: Pass@32 performances for fully differentiable Regularized Policy Gradient (RPG) and
REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines with 4k context length.
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Figure 8: Performance of REINFORCE-Style Regularized Policy Gradient (RPG-REINFORCE)
methods with different clip ratios with 2k context length. Plots display accuracy on mathematical
reasoning benchmarks (AIME24, AIME25) and key training dynamics (reward, policy entropy,
response length).

lower actor entropy, showing that longer response length can be an important factor and indicator of
the performance on benchmarks.

1.3 EXPERIMENTS ON QWEN-2.5-7B-INSTRUCT

1.3.1 REGULARIZED POLICY GRADIENT USING QWEN-2.5-7B-INSTRUCT
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Figure 9: Performance of REINFORCE-Style Regularized Policy Gradient (RPG-REINFORCE)
methods with different KL coefficients with 4K context length. Here, "noiterref" indicates the model
is trained with no iteratively updated reference model. Plots display accuracy on mathematical
reasoning benchmarks (AIME24, AIME25) and key training dynamics (reward, policy entropy,
response length).

Table 8: Combined performance metrics on the AMC23, AIME24, and AIME25 mathematical
reasoning benchmarks with Qwen-2.5-7B-Instruct model, showing “Last” and “Best” scores. The
“Last” score is from the 400th training step, assuming the training process remained stable to that point.
The highest score in each column is bolded, and the second highest is underlined. RPG and RPG-
REINFORCE methods are highlighted with light cyan and light green backgrounds, respectively.

Method | AMC23 | AIME24 |  AIME2S
| Last Best | Last Best | Last Best
GRPO 0.6266 0.7250 | 0.1094 0.1406 | 0.0281 0.0948
REINFORCE++ 0.7625 0.7664 | 0.0521 0.1177 | 0.0302 0.0740
REINFORCE++-Baseline 0.8711 0.8711 | 0.0990 0.1510 | 0.0656 0.0969
DAPO 0.8039 0.8734 | 0.0760 0.1240 | 0.0531 0.1063
RPG-FKL 0.8695 0.8836 | 0.1083 0.1490 | 0.0427 0.1083
RPG-RKL 0.8648 0.8672 | 0.1167 0.1469 | 0.0677 0.1240
RPG-UFKL 0.8703 0.8703 | 0.0885 0.1427 | 0.0927 0.1177
RPG-URKL 0.8258 0.8641 | 0.0875 0.1271 | 0.0677 0.0917
RPG-REINFORCE-FKL 0.8727 0.8727 | 0.1208 0.1667 | 0.0573 0.0875
RPG-REINFORCE-RKL 0.8305 0.8516 | 0.1125 0.1375 | 0.0490 0.0875
RPG-REINFORCE-UFKL | 0.8391 0.8602 | 0.1229 0.1458 | 0.0740 0.0979
RPG-REINFORCE-URKL | 0.8531 0.8531 | 0.1208 0.1500 | 0.0813 0.0938
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Figure 10: Performance of fully differentiable Regularized Policy Gradient (RPG) methods compared
to baselines when using base model: Qwen-2.5-7B-Instruct. Plots display accuracy on mathematical
reasoning benchmarks (AMC23, AIME24, AIME25) and key training dynamics (reward, policy
entropy, response length).
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J  PROOF OF THEOREM 2.1 (GENERALIZED POLICY GRADIENT THEOREM)

Proof. The proof relies on the log-derivative trick, Vgmg(z) = mg(x) Vg log me(z), and the product
rule under the integral sign:

VoEor, [f (. 0)] = Vo / o) (2, 6)dc
:/Vg(m(:c)f(x,G))dx (Swap v,/)
Z/((Vaﬂe(x))f(%e)+W0($)(V9f($a9)))d$
- / (0 () (Vo Yog mg(2)) £ (2, 0) + 70 (2)(Vo £ (,0))) dir (Log-derivative)

= /779(30) (f(x,0)Vologmg(x) + Vo f(z,0))dx
=Epmn, [f(2,0)Vologmg(x) + Vo f(z,0)].

K PROOFS FOR REGULARIZED POLICY GRADIENTS

This section provides detailed proofs for the theorems presented in Section 3, demonstrating that
the gradients of the proposed fully differentiable off-policy surrogate losses correspond to the
negative gradients of the respective original objectives. The core tool used is the policy gradient
theorem: VoE,r,[f(2,0)] = Epor,[f(z,0)Vologme(z) + Vo f(x,0)]. We use the notation
w(zx) = mo(x)/mo1a(x) for the importance weight.

K.1 PROOF OF PROPOSITION E.1 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
NORMALIZED FORWARD KL)

Proof. We start by rewriting the objective function Jrk1, () using expectations with respect to the
fixed reference policy moq. The first term, the expected reward under 7y, can be rewritten using
importance sampling:

oy )] = [ @) Ra)de = [ TX1a(0) R0 = By () )

The second term is the forward KL divergence:

md(x)]
mo(z)

=Epr,qlog mola(z) — log mg ()]

= Eonroa[—10g m0(2)] 4+ Egnrmoiq 108 Tora (2)]-

KL(7o1a || m9) = Eprmyia [log

Substituting these into the objective function:

JrkL(0) = Epmryg [w(2) R(2)] = B (Egmy [~ log mo(7)] + Egom,yy [log Tora (2)])
= ]EJCNTFold [w(m)R(x) + B log g ($>] - /BEJJN‘ITQId [log Told (l‘)]
Since mo1q(x) does not depend on 6, the term SE;r,,[log mo1a ()] is a constant with respect to

6. Now we compute the gradient Vg Jrky,(f). Assuming we can swap gradient and expectation
(standard assumption in policy gradient methods):

vGJFKL (0) = VGEW\WOM [’U)(JJ)R(Z‘) + ﬁ IOg o (x)}
= Bonroa [Vo(w(z)R(2) + Blog mg ()]
= Bonroa [(Vow(z)) R(2) + Vg log mo ()]
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We use the identity for the gradient of the importance weight:

Vow(z) = Vg < ™5 () >

Told (1’)

1
= 771_01(1 (x) V97T9 (QZ)
_ m(z) Vomo(x)

Tola(x) o ()
= w(x)Vylog me(x).

Substituting this back into the gradient expression:
Vo JrkL(0) = Egronoyy [w(2) (Vo log mg(z))R(x) + BV log me(z)]
= Eonmon [(w(x)R(x) + B)VO log 779(33)] .
This proves the first part of the theorem.
Now, consider the surrogate loss function:
Lrkr(0) = Epory [—w(z)R(x) — Blog mg(z)] .
We compute its gradient:
VoLrkL(0) = VoEinm,, [—w(z)R(z) — Blog mg(z)]

=B [Vo(—w(z)R(z) — Blog mo(x))]

= Eonmoa [-(Vow(z)) R(z) — BVg log mo(x)]

= Eyrroq [~w(2) (Vo log mo(2)) R(z) — BV log mp ()]

— —Eyomyy [(w(@)R() + 8) Volog m(x)]

Comparing this with the gradient of the objective function, we see that Vy Lpk1,(0) = —VoJrkr ().
This confirms that minimizing Lyky,(#) corresponds to maximizing Jrkr,(6) using gradient-based
methods. O]

K.2 PROOF OF PROPOSITION 3.2 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
UNNORMALIZED FORWARD KL)

Proof. We start by expressing the components of Jyrkry,(6) using expectations over the normalized
reference distribution 714 () = To1d(z)/Zo1a. The importance weight is w(z) = mg(x)/mo1a (),
which implies 79 (z) = w(z)mo1a(x) = w(x) Zo1aTora ().

The expected reward term:
Epmry [R(2)] = /wa(x)R(x)dx = /w(x)wold(x)R(x)dx
= /w(m)Zold%old(x)R(x)dx = ZoaEpnsm,  [w(z)R(z)].

The unnormalized KL divergence term UKL(1q||7g) has two parts. Part 1 (Generalized KL):
Told () ~ Told ()
o 1 d == Zo o 1 d
/7r 1a(z) log 0 () x / 1d7old () log g x
1
w()

= oldEz~%01d |:10g :| = ZoldEIN%old [_ Ing(x)] :

Part 2 (Mass Correction):
/ (o (2) — Tora (2))dar = / (w0(2)Tora () — Tora(z))da
_ / (w(2) — 1) o (x)dz = / (w0(2) — 1) ZoraFora(z)dz

= ZoldBanz o, [W(T) — 1] = ZolaBonzy [0 ()] = Zola-
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Combining these parts for the UKL term:
UKL (7o1a||m0) = ZowdExnsyy [—logw(x)] + ZoraEpms,, [w(x)] — Zola.
Now, substitute everything into the objective Jyrkr(0):
Jurkr(0) = Zold]EacN%old [w(z)R(x)] — B (ZoraEgnoy [ log w ()] + ZolaBenz i [w(2)] = Zoia)
= ZowaEynz g [0(@)R(z) + Blogw(z) — fw(z) + A].

To compute the gradient Vg Jurkr, (6), we differentiate the terms inside the expectation. The constant
term 37,4 (arising from [ inside the expectation) vanishes upon differentiation.

VGJUFKL(9) Vo (ZouaEgnz,, [w(z)R(z) + Blogw(z) — Bw(z)])
= ZaBanry, [Vo(w(@)R(z)) + BVs(log w(z)) — AVa(w(z))].

We need the gradients of w(x) and log w(x):

Vow(z) = w(x)Vglogme(x) (as derived in Proposition E.1 proof)

Vologw(x) = Ve(log mg(x) — log mora(x)) = Vg log mo(x).
Substituting these into the gradient expression:
Vo JurkL(0) = ZoldEm%old [(Vow(z))R(x) + BV log mg(x) — B(Vew(x))]

= ZgaBys,, [wW(z)R(x)Volog mg(x) + BV log me(x) — fw(x) Ve log me ()]
= ZolaBanzyq [(w(z)R(z) — Bw(z) + B) Vg log m(z)]
(

= ZoaBonra | (w(@)R(@) = B (w(z) =1)) Vologm(a)] -
This proves the first part of the theorem.

Now, consider the surrogate loss function:

LurkL(0) = ZoaBonir,y [—w(m)R(J:) + B(w(a:) —logw(z) — 1)] )
We compute its gradient:
VoLurkL(0) = Zold]ExN%Old \Y

[Vo(—w(z)R(x)) + BV (w(z) —logw(z) — 1)]
- old]EzNﬂ'Old [ )
-

o(—w(x)
(Vow(z))R(z) + B(Vow(z) — Vg log w(x))]
= ZoldBonz, [~w0(2)R(2)Velog mg(z) + B(w(x) Vg log me(z) — Vg log mg(z))]

= ZotaEsrrga | (~0(@)R(@) + fu(@) = ) Volog mo(a)|
= ~ZotaBarry | (0(@) R(@) = B(w(z) — 1)) Vo log ma(a)]

Comparing this with the gradient of the objective function, we find Vg Lurk1(0) = —VeJurkL(0).
This confirms the surrogate loss function. Note that the constant —1 inside the logarithm term in
the loss Lypkr, corresponds to the constant 57,14 in the objective Jyrkr, and does not affect the
gradient. O

K.3 PROOF OF PROPOSITION E.3 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
NORMALIZED REVERSE KL)

Proof. We rewrite the objective function Jrkr,(f) using expectations with respect to mo1q. The
expected reward term is E, ., [R(2)] = Egon,, [w(x) R(x)], as shown previously. The reverse KL
divergence term is:

() }
KL(7g || mo1a) = Egnorr, |10
(7o || mo1a) . [ 8 ()

= E,mn, [log w(z)]
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Substituting these into the objective function:
JRKL(0) = By [0(2) R(2)] = BEamry [w (@) log w(2)] = Exnm [w(2) R(z) — fw(z) log w(z)].
Now we compute the gradient Vg Jrk1,(0):

VoJrkL(0) = VoE,n,y [w(z)R(x) — fw(x) log w(x)]
= Einmoa [Vo(w(2)R(2)) — BVe(w(z)log w(z))] .

We need the gradient of w(x) logw(x):

Vo(w(x)logw(z)) = (Vow(z)) logw(z) + w(z)Ve(logw(x))
= (w(z)Vologmg(x)) logw(z) + w(z)(Velog mg(x))
= w(xz)Velogmg(x)(logw(z) + 1).

Substituting this and Vyw(z) = w(x) Ve log mg(x) into the gradient expression for Jrkr,(6):

VoJrkL(0) = Epry [(Vow(x))R(x) — fw(x) Vg log mp(x)(log w(x) + 1)]
= Bz [w(2) (Vo logme(z)) R(x) — fw(z)(log w(z) + 1)V log mo(2)]

= Eqnnyg [w(a) (R(@) = Allogw(z) +1)) Valog ma(a)]
This proves the first part of the theorem.

Now, consider the surrogate loss function:
Lri1(0) = Egnryy [w(z)(—R(z) + Blogw())] -
We compute its gradient:

VoLrki.(0) = VoEoymr,, [~w(@)R(z) + fu(z) log ()]
= Eoronya [Vo(—w(2)R(x)) + 8V (w(x) log w(x))]
= Euronge [~ (Vow(@)) R(z) + fu(z) Vg log m(z) (log w(z) + 1)]
= Buron e [-0(2) (Vg log () Rlx) + Bu(x)(log w(x) + 1)V log 7 ()]

=Epnoy [w(:lc) (—R(x) + B(log w(z) + 1)>Vg log 71'9(5(}):|
= Eyor,, [w(x) (R(z) — Bllog w(x) + 1))% log 74 (x)} :

Comparing this with the gradient of the objective function, we confirm that VyLgrky,(0) =
—VQJRKL(Q). D
K.4 PROOF OF PROPOSITION 3.6 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR

UNNORMALIZED REVERSE KL)

Proof. We again express the objective components using expectations over the normalized reference
distribution To1q(x) = mo1d () /Zo1a, with w(x) = me(x)/To1a ().

The expected reward term: E,r, [R(2)] = ZowaEons,,, [w(z) R(2)].
The unnormalized reverse KL divergence UKL(mg||mo1q) has two parts. Part 1 (Generalized KL):

7o () _
/71'9 (z)log — dx = /71'9 (z)logw(x)dx
= /w(m)ﬂold(fﬂ) log w(z)dz

- / () ZowaFora () log w(x)da

= oldEzNﬂold [’LU( 10gw( )]
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Part 2 (Mass Correction):
/ (ora () — 7 (2))dar = / rora(2)dz — / 7o () dz
— Zo — / w(2) o () dz
— Z / w(&) ZaFora () da

= Zold — ZoldBani, [w(x)].

Combining these for the UKL term:

UKL(’]T@ H7T01d) = ZoldEwN%old [U)(l’) log w(x)] =+ Zold — ZoldEzrw%old [w(x)}
Now, substitute into the objective Jyrkr(0):
Jurkr(0) = ZoldEm~%old [w(@)R(2)] — B (ZolaEaniiy [w(z)log w(z)] + Zoa — ZoaEynzq [w()])

= ZoEynzog [w(@)R(z) — Bw(z)logw(z) — B + Sw(x)].
We compute the gradient Vg Jurkr(6). The constant term —/3Z,q vanishes upon differentiation.

VoJurkL(0) = Vo (ZouEynz,, [w(z)R(z) — Bw(z) log w(z) + fw(z)])
= ZoaEgnsg [Vo(w(z)R(z)) — BVe(w(z) logw(z)) + BVew(z)] .

Using the previously derived gradients Vow(z) = w(x)Vglogmy(x) and Vy(w(z)logw(z)) =
w(x)Velog mg(x)(logw(x) + 1):
Vo JurkL(0) = Vo (ZolaEenio, [w(2)R(z) — fw(z)logw(z) + fuw(x)])
= ZoaEy i, [Vo(w(z)R(x)) — BVg(w(a:) logw(x)) + BVew(z)]
= ZoldEsnz, [(Vow(@))R(x) — Bw(z) Ve log mo(z) (log w(z) + 1) + B(Vew(x))]
= ZolaBonzy, [W(2)R(x) Vg log T (2) — Bw(z)(logw(z) + 1)V log mg ()
+Bw(x)Vglog e ()]
= ZolaEgmioy, [w(x)Ve log g () (R(;U) — B(logw(z) + 1) + ﬁ)}

= ZoaBpr.,, |w [ ()V log 7o () (R(z) - ﬁlogw(x))]

= ZoldEpnioy lw(m) (R(x) — Blog w(a:)) Vg log 7T9(J,‘)‘| .

This proves the first part of the theorem.
Now, consider the surrogate loss function:
LURkL(0) = ZoaEymioy, [—w(x)R(x) + 5(w(x) logw(z) — w(:c))} .
We compute its gradient:
VoLurkL(0) = ZowaEonz,, [Vo(—w(@)R(z)) + BVe(w(z) logw(z) — w(z))]
= ZolaBonzg [— (Vew(fv)) (@) + B(Vo(w(z)logw(z)) — Vow(x))]
= ZolaBanzyq [—w(@)R(x) Ve log mo ()
+B8(w(z)(log w(x) + 1)Vg log mo(z) — w(x) Vg log me())]
= ZoldEomiy [—w(z)R(x) Vg log () + Bw(z)log w(z)Velog mg(x)]

)
= ZoldBoniz g |W [ ( R(x)+ﬂlogw(m))V9 10g7ﬂ9($)}

= —ZoaEznz,4

w(zx) (R(a:) — Blog w(x)) Vo log mg (a:)] .

Comparing this with the gradient of the objective function, we confirm that VyLygrky () =
—VoJurkL(6). The constant term +1 (corresponding to —3Z,q in the objective) that appeared
in the derivation in Section 3.2 does not affect the gradient and is often omitted from the final loss
expression used in practice. O
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L PROOFS FOR REINFORCE-STYLE REGULARIZED POLICY GRADIENTS

This section provides justifications for the REINFORCE-style surrogate loss functions presented in
Section 4 (Theorems F.1 to E.5). These proofs demonstrate how automatic differentiation applied
to the proposed losses, utilizing the stop-gradient operator SG, yields the correct gradient direction
(negative of the objective gradient derived in Section 3).

The core idea relies on the operational definition of the stop-gradient operator SG(-) within automatic
differentiation frameworks: Vo SG(f(6)) = 0, while the forward computation uses the value of f(6).
We use the notation w(z) = wp(z)/mo1a(x).

L.1 PROOF OF PROPOSITION F.1 (REINFORCE-STYLE POLICY GRADIENT FOR FORWARD
KL)

Proof. The objective is Jpkr,(0) = Er, [R(z)] — 8 KL(7o14 || m9). From Proposition E.1, its gradient
is:

VoJrkL(0) = Egaryg | (w(z)R(z) + B) Vg logmo()
N——
Weightpr, (,6)
The proposed REINFORCE-style surrogate loss is:
L, " Y(0) = ~Eanryy [SG (w(@)R(z) + 5) log mo(a)]

We compute the gradient of this loss as it would be computed by an automatic differentiation system.
Assuming the gradient can be swapped with the expectation:

VoLrur CXEE(9) = —Eyon,, [Vo (SG (w(z)R(z) + B) log me(z))]

= —Eyury | (VoSG (w(z)R(x) + B)) logme(x)
=0 by definition of SG
+SG (w(z)R(z) + B) (Vg log me(x))]
= —Eyuny [SG (w(z)R(z) + ) Vg log mg(x)] .

This gradient expression, when used in an optimization algorithm (where SG is conceptually re-
moved), corresponds to applying updates proportional to:

— (~Egnmgq [(w(@)R(x) + B) Vo log mg(2)]) = Vo JrkL(0).

Thus, minimizing £y 0N () using gradient descent with automatic differentiation effectively
performs gradient ascent on the original objective Jrkr, (6). O

L.2 PROOF OF PROPOSITION F.3 ((REINFORCE-STYLE POLICY GRADIENT FOR
UNNORMALIZED FORWARD KL)

Proof. The objective is JupkL(f) = Er,[R(x)] — 8 UKL(7o4||7e). From Proposition 3.2, its
gradient is:

VodurkL(0) = Exnzpg | Zola (w(iﬂ)R(ﬂf) - B(w(x) - 1)) Vg log mg ()

Weighty gy, (,0)

The proposed REINFORCE-style surrogate loss is:

LERGORE () = —B, oz, [SG (Zow (w(z) R(z) — Bw(z) — 1)) log ma ()] .
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Computing the gradient via automatic differentiation:
VoLl 0 (0) = ~Eanzy [Vo (SG (Zotal- ) log mo ()]

=—E; 7., (Vg SG(ZOld(. .. ))) log ﬂ'g(x) + SG(ZOld(. .. ))(Vg log 779(3:))
=0
= —Eaonzy [SG (Zoa (w(z)R(z) — B(w(z) — 1)) Vg logmp(z)] .
This gradient corresponds to the update direction —V g Jyrkr,(6) when the SG is dropped. Minimiz-

ing this loss achieves gradient ascent on Jypkr,(6). If Z1q is omitted, the same argument applies to
the proportionally scaled objective and loss.

L.3 PROOF OF PROPOSITION F.4 (REINFORCE-STYLE L0OSS)

Proof. The objective is Jrk1(0) = E,,[R(x)] — 8 KL(7g || mo1a). From Proposition E.3, its gradient
is:

VoIuki.(0) = Eamryy |0(@) (R(@) — Blogw(z) + 1)) Vylog mo()

Weightg i, (2,0)
The proposed REINFORCE-style surrogate loss is:
Crgr 0 Y(0) = ~Eanry [SG (w(2) (R(z) — Blogw(x) — ) log my(x)]
Computing the gradient via automatic differentiation:
Volgr Y 0) = ~Eanry [Vo (SG (w(x)(...)) log mo(x))

= —Epunoy | (VoSG(w(z)(...))) logme(x) + SG(w(x)(...)) (Vg logm(z))
=0
= Far, [5G (w(z) (R(z) — Blogu(z) — £)) Ve logma(x)]

This gradient corresponds to the update direction —VyJri1,(6) when the SG is dropped. Minimizing
this loss achieves gradient ascent on Jrkr,(6). O

L.4 PROOF OF PROPOSITION F.5 (REINFORCE-STYLE LOSS FOR UNNORMALIZED REVERSE
KL)

Proof. The objective is Jurkr(0) = Er,[R(x)] — 8 UKL(mg||mo1a). From Proposition 3.6, its
gradient is:

VoJurkr(9) = Eorory | Zowaw () (R(m) . Blogw(w)) Vo log ()

Weighty g, (2,6)
The proposed REINFORCE-style surrogate loss is:

LRk 0) = ~Eanig [SG (Zoaw() (R(x) — flog w(x))) log mp(x)]
Computing the gradient via automatic differentiation:
VoLlngr 0 (0) = ~Eaniy [Vo (SG (Zow(z)(....)) log mp(2))]

(Vo SG(Zojaw(x)(...))) log ()

=0

= —Euioa

+ SQ(Zoaw(z)(. .. )) (Vg log mo ()

= —Eusn#oa [SG (Zowaw(z) (R(z) — Blogw(x))) Vg log 7 (x)] -
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This gradient corresponds to the update direction —VyJurkr,(#) when the SG is dropped. Minimiz-
ing this loss achieves gradient ascent on Jyrkr, (). If Zo1q is omitted, the same argument applies to
the proportionally scaled objective and loss. O
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