
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE DESIGN OF KL-REGULARIZED POLICY GRA-
DIENT ALGORITHMS FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient algorithms have been successfully applied to enhance the reasoning
capabilities of large language models (LLMs). KL regularization is ubiquitous,
yet the design surface, choice of KL direction (forward vs. reverse), normalization
(normalized vs. unnormalized), and estimator (k1/k2/k3), is scattered across the
literature and often intertwined with off-policy estimation. We ask a focused
question: under the off-policy setting, what weighting is required for each KL
variant so that the surrogate we optimize yields the exact gradient of the intended
KL-regularized objective? We answer this with a compact, unified derivation we
call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and
unnormalized KL variants and shows that the widely-used k3 penalty is exactly the
unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses
with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii)
identifies and corrects an off-policy importance-weighting mismatch in GRPO’s
KL term; and (iv) introduces RPG-Style Clip, a truncated-importance-sampling
step within RPG-REINFORCE that enables stable, off-policy policy-gradient
training at scale. On mathematical reasoning benchmarks (AIME24, AIME25),
RPG-REINFORCE with RPG-Style Clip improves accuracy by up to +6 absolute
percentage points over DAPO. We extend our experiments to 8K context length,
and RPG-REINFORCE with RPG-Style Clip achieves 52% accuracy on AIME25,
surpassing the official Qwen3-4B-Instruct model (47%). Notably, RPG is a stable
and scalable RL algorithm for LLM reasoning, realized via (a) a KL-correct
objective, (b) truncated importance sampling, and (c) an iterative reference-policy
update scheme. Code is available at https://anonymous.4open.science/r/verl-neo-
pub-3D2D.

1 INTRODUCTION

Reinforcement learning (RL), particularly policy gradient (PG) methods, provides a powerful frame-
work for solving sequential decision-making problems in complex environments. These methods
have been successfully applied in diverse domains, ranging from robotics to game playing, and have
recently become instrumental in fine-tuning large language models (LLMs) to align with human
preferences and instructions (Ouyang et al., 2022) and enhancing the reasoning capabilities of LLMs
(Shao et al., 2024; Guo et al., 2025). Classical PG algorithms like REINFORCE (Williams, 1992)
optimize policies directly but often suffer from high gradient variance. Advanced methods like
Proximal Policy Optimization (PPO) (Schulman et al., 2017) improve stability and sample efficiency,
enabling large-scale applications, often by operating in an off-policy manner and employing tech-
niques like training critic models for the estimation of value functions. Our theme in this paper is
stability and scalability: which design choices in KL-regularized PG matter for robustness under
off-policy sampling, and practical throughput on modern LLM stacks?

A crucial technique for stabilizing policy optimization, especially when deviating from strictly on-
policy updates or aiming to control policy complexity, is regularization. Kullback-Leibler (KL)
divergence is a commonly used regularizer, penalizing the deviation of the learned policy πθ from
a reference policy πref (e.g., policy from previous iteration πθold or a fixed prior policy πSFT). KL
regularization helps prevent destructive policy updates, encourages exploration around known good
policies, and can prevent catastrophic forgetting or overly confident outputs (Ouyang et al., 2022).

1

https://anonymous.4open.science/r/verl-neo-pub-3D2D
https://anonymous.4open.science/r/verl-neo-pub-3D2D

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Inputs (Iteration t):
Current Policy π(t)

θ

Reference π
(t)
old

Rewards R(x)

RPG Core Engine
1. Construct J(θ(t)) = E

π
(t)
θ

[R]− β · KL

2. Derive ∇θ(t)J(θ(t))
3. Formulate Surrogate Loss L(θ(t))
4. Optimize to get π(t+1)

θ

Outputs:
Updated Policy π(t+1)

θ

Key Design Configuration

1. KL Divergence Type:
• Forward KL(πold∥πθ)
• Reverse KL(πθ∥πold)

2. KL Form:
• Normalized
• Unnormalized (UKL / k3)

3. Loss Estimator:
• Fully Differentiable
• REINFORCE-style

Goal: Stable and Scalable LLM Reasoning

Update for next it-
eration (t + 1):
π
(t+1)
old ← π

(t+1)
θ

Figure 1: Overview of the iterative Regularized Policy Gradient (RPG) framework proposed in this
work. At each iteration t, the central RPG Core Engine processes inputs: the current policy π(t)

θ , a
reference policy π(t)

old , and associated rewards R(x). The engine’s operation encompasses four main
steps: (1) constructing the KL-regularized objective J(θ(t)), which combines the expected reward
with a KL divergence term; (2) deriving the off-policy policy gradient∇θ(t)J(θ(t)); (3) formulating
a corresponding surrogate loss function L(θ(t)); and (4) optimizing the policy parameters to yield an
updated policy π(t+1)

θ , aimed at enhancing LLM reasoning capabilities. The specific behavior of the
RPG Core Engine is configured by three key design choices: (i) the KL Divergence Type (Forward
KL(πold∥πθ) or Reverse KL(πθ∥πold)); (ii) the KL Form (Normalized or Un-normalized, e.g., using
UKL / k3 estimators); and (iii) the Loss Estimator type (Fully Differentiable or REINFORCE-style
with Stop-Gradient). The framework operates iteratively, with the updated policy π(t+1)

θ from one
iteration informing the inputs for the next, including the update of the reference policy π(t+1)

old , to
facilitate continuous learning and performance improvement.

Despite the widespread use of KL regularization in methods such as PPO (often implicitly through
reward penalties) and explicit formulations like GRPO (Shao et al., 2024), there exists a considerable
variety in how the KL divergence is formulated and estimated. Different choices include Forward KL
and Reverse KL, handling potentially unnormalized distributions (Minka et al., 2005) (leading to
unnormalized KL (UKL) and unnormalized reverse KL (URKL) formulations), and the use of various
estimators like the k2 and k3 estimators (Schulman, 2020) designed to potentially reduce variance or
offer different properties compared to the standard log-ratio (k1) estimator. Furthermore, the interplay
between the choice of KL formulation, the policy optimization setting (on-policy vs. off-policy), and
the derivation of appropriate surrogate loss functions (fully differentiable vs. REINFORCE-style
gradient estimators) can lead to subtle differences.

This paper provides systematic derivations and a unifying treatment of KL-regularized policy gradient
methods, and revisits classical REINFORCE through the lens of truncated importance sampling. Our
main contributions are summarized as follows:

• We derive policy gradients and corresponding surrogate losses for Forward/Reverse KL, in normal-
ized (KL) and unnormalized (UKL) forms, under off-policy sampling with importance weights.

• We give both fully differentiable surrogates and REINFORCE-style losses (with stop-gradient)
and prove their gradient-equivalence to the intended regularized objective (Proposition 4.1, Ap-
pendix L).

• We introduce RPG-Style Clip, a truncated-importance-weighted REINFORCE estimator that
substantially improves stability and variance control while preserving the RPG gradients.

• We reveal the equality between the k3 estimator and unnormalized KL (Appendix D), and show
that GRPO’s KL penalty omits an essential importance weight under off-policy sampling. We
provide a corrected estimator and loss consistent with the intended objective.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We present an iterative training framework that periodically updates the reference model to satisfy
KL constraints while allowing the policy to depart meaningfully from the initial checkpoint.

• On math reasoning, RPG-REINFORCE (with RPG-Style Clip) yields stable and scalable training
and outperforms DAPO by up to +6 absolute points on AIME24/25.

• We extend our experiments to 8K context length and find that RPG-REINFORCE with RPG-Style
Clip achieves 52% accuracy on AIME25, surpassing the official Qwen3-4B-Instruct model (47%)
and outperforming strong baselines.

2 PRELIMINARIES

Policy gradient (PG) methods are a cornerstone of modern reinforcement learning (RL), optimizing pa-
rameterized policies πθ by estimating the gradient of an expected objective function J(θ) with respect
to the policy parameters θ. Typically, J(θ) represents the expected cumulative discounted reward
over trajectories τ = (s0, a0, r0, s1, . . . , sT , aT , rT) generated by the policy: J(θ) = Eτ∼πθ

[G(τ)],
where G(τ) =

∑T
t=0 γ

trt is the trajectory return (with discount factor γ), and the expectation is
taken over the trajectories sampled according to the policy πθ(a|s) and the environment dynamics
p(s′|s, a). The Generalized Policy Gradient Theorem (GPPT) provides a foundation for deriving
these gradients (see Appendix J for the proof).
Proposition 2.1 (Generalized Policy Gradient Theorem). Let πθ(x) be a probability density or
mass function parameterized by θ, representing the probability of sampling item x. Let f(x, θ) be
a scalar-valued function associated with x, potentially depending on θ. Under suitable regularity
conditions, the gradient of the expectation Ex∼πθ

[f(x, θ)] with respect to θ is:

∇θEx∼πθ
[f(x, θ)] = Ex∼πθ

[f(x, θ)∇θ log πθ(x) +∇θf(x, θ)] . (2.1)

The term E[f∇ log π] reflects how changes in θ affect the probability of sampling x, while E[∇f]
reflects how changes in θ directly affect the function value f .

The classic REINFORCE algorithm (Williams, 1992) applies the GPPT to the standard RL objective
J(θ) = Eτ∼πθ

[G(τ)]. In this case, f(τ, θ) = G(τ), the total trajectory return, which does not depend
directly on θ (i.e., ∇θG(τ) = 0). The theorem simplifies, and the gradient can be expressed using
per-timestep contributions (Sutton et al., 1998):

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

Gt∇θ log πθ(at|st)

]
,

where Gt =
∑T
k=t γ

k−trk is the return-to-go from timestep t. Due to space limit, we defer the
detailed introduction of REINFORCE to Appendix C.1.

2.1 KL REGULARIZATION IN POLICY GRADIENTS

A common technique to stabilize policy optimization, especially in off-policy settings or when
fine-tuning large models, is regularization. The Kullback-Leibler (KL) divergence is frequently used
to penalize the deviation of the learned policy πθ from a reference policy πref (which could be πθold ,
an initial supervised fine-tuned model, or another prior). KL(P ∥Q) ≥ 0 with equality iff P = Q
almost everywhere. It is asymmetric (i.e., KL(P ∥Q) ̸= KL(Q ∥P)). Minimizing the forward
KL KL(πref ∥πθ) encourages πθ to cover the support of πref (zero-forcing), while minimizing the
reverse KL KL(πθ ∥πref) encourages πθ to be concentrated where πref has high probability mass
(mode-seeking).

Adding a KL penalty to the RL objective, such as J(θ) = Eπθ
[R]− βKL(πθ∥πref), helps control

the policy update size, prevents large deviations from πref , encourages exploration near known good
policies, and can mitigate issues like catastrophic forgetting or overly confident outputs, particularly
relevant in LLM fine-tuning (Ouyang et al., 2022). For PPO (see Appendix C.2), this penalty can be
incorporated implicitly via reward shaping: r′t = rt − β log(πθ(at|st)/πref(at|st)). Alternatively, it
can be added explicitly to the objective function, as in GRPO. The specific form of the KL divergence
(forward/reverse), whether distributions are normalized (KL vs. UKL), and the choice of estimator
(e.g., standard log-ratio vs. k3 estimator (Schulman, 2020)) can vary, leading to different properties
(mode seeking v.s. zero-forcing) and gradient estimators, as explored later in this paper (Sections 3
and 4).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) adapts the PPO framework for
training LLMs, notably by eliminating the need for a learned value function (critic). Instead of using
GAE, GRPO estimates the advantage Âi,t at token t of output oi based on the relative rewards within
a group of G outputs {o1, . . . , oG} sampled from the old policy πθold for the same prompt q.

Crucially, GRPO modifies the PPO objective by explicitly adding a KL regularization term directly
to the objective function. Its objective (simplified notation) is:

JGRPO(θ) = Eq∼P (Q),{oi}∼πold

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
JClip
i,t (θ)− β · KLest

(
πθ(·|hi,t)∥πref(·|hi,t)

))]
,

where hi,t = (q, oi,<t) is the history, JClip
i,t (θ) represents the PPO-Clip term from Eq. (C.3) applied

using the group-relative advantage estimate Âi,t, and πref is a reference model (e.g., the initial SFT
model). For the KL penalty, GRPO employs the k3 estimator form (Schulman, 2020), evaluated per
token oi,t:

KLest(πθ∥πref) ≈ k3
(
πref(oi,t | hi,t)
πθ(oi,t | hi,t)

)
=
πref(oi,t | hi,t)
πθ(oi,t | hi,t)

− log
πref(oi,t | hi,t)
πθ(oi,t | hi,t)

− 1.

This uses the functional form k3(y) = y − log y − 1 as discussed in Schulman (2020), applied with
y = πref(oi,t|hi,t)/πθ(oi,t|hi,t). This form is related to the unnormalized reverse KL divergence,
UKL(πθ∥πref) (see Section 3.2 and Appendix D for a detailed discussion). However, a key ob-
servation regarding GRPO’s KL penalty is its estimation. If the KL penalty in GRPO is intended
to approximate β · UKL(πθ(·|hi,t)∥πref(·|hi,t)), its off-policy estimation (sampling oi,t from πold)
would generally involve an importance weight wi,t =

πθ(oi,t|hi,t)
πold(oi,t|hi,t)

multiplying the k3 term. The
direct subtraction without this weight means the gradient derived from GRPO’s objective does not, in
general, correspond to the gradient of the intended off-policy objective JClip − βUKL(πθ∥πref). For
clarity, a corrected off-policy estimator for the GRPO KL component at history hi,t is

K̂LGRPO-corrected(hi,t; θ) = Eoi,t∼πold(·|hi,t)

[
wi,t k3

(
πref(oi,t|hi,t)
πθ(oi,t|hi,t)

)]
,

which is consistent with URKL/UKL depending on direction (see Section 3 and Appendix D). Our
results in Section 3 provide derivations for KL-regularized objectives that explicitly account for
off-policy sampling via importance weights. Related work is detailed in Appendix A.

3 REGULARIZED POLICY GRADIENTS

In this section, we start from the KL regularized objective J(θ) = E[R] − βKL and we treat this
as the exact target for training. Then we derive its true gradient under off-policy sampling. The
derivation shows that we need precise importance weighting so that the gradient of the surrogate loss
matches the gradient of this objective. The weights are different for Forward vs. Reverse KL, as
summarized in Table 1. This viewpoint unifies many existing estimators within a single framework
and clarifies why the KL term in GRPO can lead to unstable updates when its weighting is chosen
improperly. In the main text, we focus on the unnormalized objectives (UFKL/URKL), while the
normalized formulations (FKL/RKL) and their losses are deferred to Appendix E (see also Table 5).
All proofs are provided in Appendix K.

3.1 UNNORMALIZED FORWARD KL REGULARIZATION

In scenarios where distributions might not be normalized (i.e.,
∫
x
π(x)dx ̸= 1), the standard KL

divergence might not fully capture the dissimilarity. The unnormalized forward KL divergence
addresses this by adding a mass correction term. Let πold(x) be a potentially unnormalized reference
measure with total mass Zold =

∫
x
πold(x)dx. Let π̃old(x) = πold(x)/Zold be the corresponding

normalized probability distribution, such that
∫
π̃old(x)dx = 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Summary of fully differentiable surrogate loss functions L(θ) for unnormalized KL-
regularized objectives (main text). Minimizing L(θ) corresponds to maximizing J(θ) = Eπθ

[R(x)]−
β · Divergence. Samples x are drawn from π̃old = πold/Zold. These losses yield −∇θJ(θ) via dif-
ferentiation. Notation: w(x) = πθ(x)/πold(x), R(x) is reward, β the regularization strength, and
Zold =

∫
πold. Normalized counterparts are in Appendix E (Table 5).
Regularization (Unnormalized) Surrogate loss (expectation w.r.t. π̃old)

Forward (UFKL) Zold E
[
−w(x)R(x) + β

(
w(x)− logw(x)− 1

)]
Reverse (URKL) Zold E

[
−w(x)R(x) + β

(
w(x) logw(x)− w(x)

)]
Definition 3.1 (Unnormalized Forward KL). The unnormalized forward KL divergence (Minka et al.,
2005; Zhu & Rohwer, 1995) between the measure πold and the density πθ is defined as:

UKL(πold∥πθ) =
∫
x

πold(x) log
πold(x)

πθ(x)
dx︸ ︷︷ ︸

Generalized KL

+

∫
x

(
πθ(x)− πold(x)

)
dx︸ ︷︷ ︸

Mass Correction

.

This form is particularly relevant when dealing with reference measures that may not be perfectly
normalized or when connecting to certain KL estimators like k3 (see Remark 3.5).

Consider the objective using UKL regularization as follows:

JUFKL(θ) = Ex∼πθ
[R(x)]− β UKL(πold∥πθ). (3.1)

To estimate this off-policy using samples from the normalized reference π̃old(x) = πold(x)/Zold, we
define the importance weight w(x) = πθ(x)/πold(x) (using the unnormalized πold). The gradient
and corresponding loss function, incorporating the total mass Zold of the reference measure, are given
in Proposition 3.2.
Proposition 3.2 (Policy Gradient and Differentiable Loss for Unnormalized Forward KL). Consider
the unnormalized KL regularized objective function in Eq. (3.1). The gradient of JUFKL(θ) is:

∇θJUFKL(θ) = ZoldEx∼π̃old

[(
w(x)R(x)− β (w(x)− 1)

)
∇θ log πθ(x)

]
.

The corresponding surrogate loss for gradient descent optimization, estimated using samples {xi} ∼
π̃old, is:

LUFKL(θ) = ZoldEx∼π̃old

[
−w(x)R(x) + β

(
w(x)− logw(x)− 1

)]
,

satisfying ∇θLUFKL(θ) = −∇θJUFKL(θ).
Remark 3.3 (Interpretation of UFKL Loss and Gradient). The regularization component of the
surrogate loss LUFKL(θ), specifically ZoldEx∼π̃old

[β(w(x) − logw(x) − 1)], corresponds to an
off-policy estimate of the unnormalized forward KL divergence term β ·UKL(πold∥πθ) present in
the objective JUFKL(θ). This connection is established via the k3 estimator (see Remark 3.5 and
Appendix D). Furthermore, the gradient term −β(w(x)− 1) effectively modifies the reward, guiding
πθ to match not only the shape of πold but also its overall mass Zold, due to the mass correction
component in UKL(πold∥πθ).

3.2 UNNORMALIZED REVERSE KL REGULARIZATION

Similar to the forward case, we can define an unnormalized reverse KL divergence, relaxing the
normalization constraint on the reference distribution πold. Let πold(x) be a potentially unnormal-
ized reference measure with total mass Zold =

∫
πold(x)dx. Let π̃old(x) = πold(x)/Zold be the

corresponding normalized probability distribution.
Definition 3.4 (Unnormalized Reverse KL). The unnormalized reverse KL divergence between the
density πθ and the measure πold is defined as:

UKL(πθ∥πold) =
∫
x

πθ(x) log
πθ(x)

πold(x)
dx︸ ︷︷ ︸

Generalized KL

+

∫
x

(
πold(x)− πθ(x)

)
dx︸ ︷︷ ︸

Mass Correction

.

The mass correction term simplifies to Zold −
∫
πθ(x)dx.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Remark 3.5. (Equivalence to k3 estimator) The k3 estimator (Schulman, 2020), often used for its
empirical properties (e.g., in GRPO (Shao et al., 2024)), is defined for a density ratio y(x) as:

k3(y) := y − 1− log y. (3.2)

As shown in Appendix D, this functional form directly relates to unnormalized KL divergences.
For instance, KLk3(πθ∥πold) := Ex∼πθ

[k3(πold(x)/πθ(x))] is equivalent to UKL(πθ∥πold). This
equivalence relationship justifies the exploration of UKL/URKL formulations within our framework.

Consider the objective using URKL:

JURKL(θ) = Ex∼πθ
[R(x)]− β UKL(πθ∥πold), (3.3)

where UKL is defined above. As with UFKL, we derive the gradient and loss using expectations over
the normalized reference π̃old and the importance weight w(x) = πθ(x)/πold(x) (with unnormalized
πold). The results are summarized in Proposition 3.6.

Proposition 3.6 (Policy Gradient and Differentiable Loss for Unnormalized Reverse KL). Consider
the reverse unnormalized KL regularized objective function in Eq. (3.3). The gradient of JURKL(θ)
is:

∇θJURKL(θ) = ZoldEx∼π̃old

[
w(x)

(
R(x)− β logw(x)

)
∇θ log πθ(x)

]
.

A corresponding surrogate loss for gradient descent optimization, estimated using samples {xi} ∼
π̃old, is:

LURKL(θ) = ZoldEx∼π̃old

[
−w(x)R(x) + β

(
w(x) logw(x)− w(x)

)]
,

satisfying ∇θLURKL(θ) = −∇θJURKL(θ). The constant Zold scales the loss and gradient and may
be omitted in practice.

Remark 3.7 (URKL Loss and Mass Correction). The surrogate loss LURKL(θ) is designed such
that its gradient is −∇θJURKL(θ). Specifically, the term ZoldEx∼π̃old

[β(w(x) logw(x) − w(x))]
in the loss directly relates to the off-policy estimation of the unnormalized reverse KL divergence
βUKL(πθ∥πold), omitting a constant related to the total mass Zold which does not affect the
gradient. The policy gradient’s effective reward scaling factor, (R(x)− β logw(x)), is simpler than
its normalized RKL counterpart.

Remark 3.8. In Appendix B, we show the connection between RPG and the Natural Policy Gradient
(NPG) (Kakade, 2001; Schulman et al., 2015). In particular, the NPG update is a special case of the
RPG update, which uses a linear approximation for the expected return and a quadratic approximation
for the KL regularization. This transforms the problem from simple first-order gradient ascent in PG
(REINFORCE) into a second-order-like update: RPG.

4 REINFORCE-STYLE REGULARIZED POLICY GRADIENTS

In Section 3, we derived policy gradient estimators and corresponding fully differentiable surrogate
losses L(θ) for KL-regularized objectives. Those losses were constructed such that ∇θL(θ) =
−∇θJ(θ) directly, typically by setting L(θ) = −JIS(θ) (where JIS is the importance-sampled
objective) up to constants. Notice that the gradients derived in Section 3 (Theorems 3.2 through 3.6)
share a structural similarity with the REINFORCE estimator:

∇θJ(θ) = Ex∼πsampling [Weight(x, θ)∇θ log πθ(x)]

where πsampling is πold or its normalized version π̃old, and Weight(x, θ) encapsulates the reward and
KL regularization terms, differing for each specific objective.

Proposition 4.1 (Gradient-Equivalence of Surrogates). For each KL-regularized objective J(θ)
derived in Section 3, the corresponding REINFORCE-style losses in Table 2 satisfy ∇θL(θ) =
−∇θJ(θ) under the standard regularity assumptions used in the policy-gradient theorem. In particular,
the stop-gradient operator ensures that dependence of the weight on θ (through importance ratios)
does not leak unintended gradients. A proof sketch follows directly from the policy-gradient theorem
and is completed in Appendix L.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This structural similarity motivates an alternative REINFORCE-style implementation using the stop-
gradient operator SG. The general form of such losses and the detailed rationale for how they yield
the target gradient via automatic differentiation are presented in Appendix F.1 (see Eq. (F.1)).

We explore these REINFORCE-style estimators as part of our framework, as they offer an alternative
implementation path and demonstrate competitive empirical performance (Section 5). Proofs are in
Appendix L. In the main text, we tabulate the unnormalized REINFORCE-style losses; normalized
counterparts are deferred to Appendix F.
Table 2: REINFORCE-style surrogate losses L(θ) for unnormalized KL-regularized objectives using
the stop-gradient operator (SG). These losses yield the target gradient via automatic differentiation.
Compare with the fully differentiable losses in Table 1. Normalized versions are given in Appendix F.

Regularization (Unnormalized) REINFORCE-style loss (sampling x ∼ π̃old)

Forward (UFKL) −E
[
SG(Zold(w(x)R(x)− β(w(x)− 1))) log πθ(x)

]
Reverse (URKL) −E

[
SG(Zoldw(x)(R(x)− β logw(x))) log πθ(x)

]
4.1 RPG-STYLE CLIP: DUAL-CLIP TRUNCATION OF IMPORTANCE RATIOS

Large importance ratios w(x) = πθ(x)
πold(x)

induce high variance and destabilize off-policy updates.
Our RPG-Style Clip follows the dual-clip method implemented in Algorithm 1 in the appendix:
we clip w into [1 − ϵ1, 1 + ϵ2] and additionally impose a lower bound for negative advantages.
Let Â(x; θ) denote the regularized advantage analogue determined by the chosen objective (e.g.,
ÂURKL = (R−b)−β logw, ÂRKL = (R−b)−β(logw+1)). The loss used in our implementation is

LRPG-Clip(x, θ) =

max
(
− w(x) Â(x; θ), −clip(w(x), 1− ϵ1, 1 + ϵ2) Â(x; θ)

)
, Â(x; θ) ≥ 0,

min
(
max

(
− w(x) Â(x; θ), −clip(w(x), 1− ϵ1, 1 + ϵ2) Â(x; θ)

)
, −c Â(x; θ)

)
, Â(x; θ) < 0,

with ϵ1, ϵ2 > 0 and c > 1. The choice of Â for each divergence (URKL/UFKL/RKL/FKL) matches
the gradients in Section 3 and is instantiated in Algorithm 1.

0.5 1 1.5 2 2.5
0.5

1

1.5

1
−
ϵ 1

1
+
ϵ 2

c

wi = πθ(xi)/πold(xi)

L
os

s
co

ef
fic

ie
nt
L

i

Case ψi ≥ 0

Grad via ℓi
Grad = 0

0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

1
−
ϵ 1

1
+
ϵ 2

c

wi = πθ(xi)/πold(xi)

L
os

s
co

ef
fic

ie
nt
L

i

Case ψi < 0

Grad = 0
Grad via ℓi

Figure 2: Visualization of the loss coefficient Li vs. importance weight wi based on the specific
implementation in Algorithm 2. This version swaps the main branching condition compared to
previous versions (branches on ψi > 0). The plot assumes ℓi = − log πθ(xi) = 1 for visualizing
the value of Li. The line styles indicate the nature of the gradient ∇θLi: Solid blue: Gradient
exists, flowing only via ℓi. The coefficient multiplying∇θℓi depends on SG(wi). Dotted magenta:
Gradient is zero. This occurs when ℓi is detached via SG in the loss calculation. Left: Case ψi ≥ 0.
Right: Case ψi < 0.

5 EXPERIMENTS

We just display the curves in Figure 4 and last and best scores on AIME24 and AIME25 benchmarks
in Table 4 for the experiments with 8K context length. The results also demonstrate the superiority of
our algorithms over baselines, including GRPO and DAPO.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

AI
M

E2
4

ac
cu

ra
cy

 m
ea

n@
32

AIME24 accuracy mean@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(a) AIME24

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AI
M

E2
5

m
ea

n@
32

AIME25 mean@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(b) AIME25

0 50 100 150 200 250 300 350 400
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AM
C

23
 a

cc
ur

ac
y

m
ea

n@
32

AMC23 accuracy mean@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(c) AMC23

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

C
rit

ic
 S

co
re

Critic Score
REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(d) Reward (Critic Score)

0 50 100 150 200 250 300 350 400
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ac
to

r E
nt

ro
py

Actor Entropy
REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(e) Entropy

0 50 100 150 200 250 300 350 400
Step

1400

1600

1800

2000

2200

2400

2600

2800

R
es

po
ns

e
Le

ng
th

Response Length

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(f) Response Length

Figure 3: Performance of RPG and REINFORCE-Style Regularized Policy Gradient (RPG-
REINFORCE) methods compared to baselines with 4k context length.

Table 3: Combined performance metrics with 4k context length on the AIME24, AIME25 and
AMC23 mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is
from the 400th training step, assuming the training process remained stable to that point. The highest
score in each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE
methods are highlighted with light cyan and light green backgrounds, respectively.

Method AIME24 AIME25 AMC23

Last Best Last Best Last Best

REINFORCE++-Baseline (300 steps) - 0.4281 - 0.3833 - 0.9172
REINFORCE++ 0.3490 0.3885 0.2822 0.3479 0.8977 0.9297
GRPO 0.3458 0.3677 0.2896 0.3042 0.9016 0.9109
DAPO 0.4063 0.4479 0.3510 0.3938 0.9297 0.9297

RPG-UFKL 0.4031 0.4396 0.3625 0.3979 0.9477 0.9500
RPG-URKL 0.3990 0.4219 0.3438 0.3792 0.9500 0.9531

RPG-REINFORCE-UFKL 0.4281 0.4375 0.3771 0.4042 0.9023 0.9133
RPG-REINFORCE-URKL 0.4458 0.4531 0.4125 0.4313 0.9313 0.9352

In this section, we empirically evaluate our proposed Regularized Policy Gradient (RPG) framework,
including both its fully differentiable (RPG) and REINFORCE-style (RPG-REINFORCE) variants.
We compare their performance against established baselines on challenging mathematical reasoning
tasks using large language models, including GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
Our evaluation focuses on task-specific accuracy, training stability, and key training dynamics such
as reward, policy entropy, and response length.

Base Models and Datasets. We conduct experiments using the Qwen3-4B and Qwen2.5-7B-Instruct
models. For training, we utilize the DAPO-Math-17k dataset (Yu et al., 2025) (13.9k English samples).
We evaluate on AIME2024, AIME2025 and AMC23, and additionally report results on MinervaMath
and OlympiadBench in the Appendix. We compare against baselines including GRPO, DAPO, and
REINFORCE++.

Implementation and Framework. Experiments are implemented using the verl framework (Sheng
et al., 2025) with the vLLM engine (Kwon et al., 2023) for efficient LLM serving and inference.
For practical implementation of our RPG methods, we emphasize that the probabilities (or log-
probabilities) from the last iteration’s model (πold) for the sampled data can be pre-computed and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.1

0.2

0.3

0.4

0.5

0.6

AI
M

E2
4

ac
cu

ra
cy

 m
ea

n@
32

AIME24 accuracy mean@32

GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(a) AIME24

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

AI
M

E2
5

m
ea

n@
32

AIME25 mean@32

GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(b) AIME25

0 50 100 150 200 250 300 350 400
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AM
C

23
 a

cc
ur

ac
y

m
ea

n@
32

AMC23 accuracy mean@32

GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(c) AMC23

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

C
rit

ic
 S

co
re

Critic Score
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(d) Reward (Critic Score)

0 50 100 150 200 250 300 350 400
Step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ac
to

r E
nt

ro
py

Actor Entropy
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(e) Entropy

0 50 100 150 200 250 300 350 400
Step

2000

3000

4000

5000

R
es

po
ns

e
Le

ng
th

Response Length

GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(f) Response Length

Figure 4: Training dynamics and benchmark performance for fully differentiable Regularized Policy
Gradient (RPG) and REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines (GRPO
and DAPO) with 8k context length.

Table 4: Combined performance metrics with 8K context length on the AIME24, AIME25, and
AMC23 mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is
from the 400th training step, assuming the training process remained stable to that point. The highest
score in each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE
methods are highlighted with light cyan and light green backgrounds, respectively.

Method AIME24 AIME25 AMC23

Last Best Last Best Last Best

GRPO 0.3750 0.4396 0.3354 0.4063 0.9109 0.9297
DAPO 0.5438 0.5740 0.4469 0.4740 0.9375 0.9430

RPG-UFKL 0.5938 0.6177 0.4698 0.4865 0.9492 0.9517
RPG-URKL 0.4542 0.5260 0.5261 0.4938 0.9406 0.9539

RPG-REINFORCE-UFKL 0.5906 0.5958 0.4833 0.5031 0.9453 0.9469
RPG-REINFORCE-URKL 0.5708 0.5781 0.5073 0.5208 0.9398 0.9469

stored. This allows the KL regularization terms to be calculated without needing to keep πold in GPU
memory during the training step of the current policy πθ. Consequently, only one model (πθ) needs
to be actively managed in GPU memory for training, which is faster and more memory-efficient
compared to approaches like GRPO that typically require access to at least two models (the current
policy and a reference/sampling policy) during optimization.

Iterative reference updates. To further stabilize optimization, we adopt an iterative reference-update
scheme: we periodically set πold ← πθ (every K optimizer steps, or when a moving average of
token-level KL exceeds a target κ). This realizes a practical KL trust region while avoiding over-
regularization toward the initial checkpoint. Further implementation details and hyperparameters
(learning rate, β, clipping) are provided in Appendix H.

Stabilization and Advanced RL Techniques. Our RPG implementations (both fully differentiable
and REINFORCE-style) incorporate stabilization techniques like baseline subtraction and PPO-style
objective clipping (specifically, Dual-Clip (Ye et al., 2020; Schulman et al., 2017)), crucial for robust
off-policy learning. Detailed algorithmic descriptions are provided in Appendix G (see Algorithm 1
for RPG with Dual-Clip and Algorithm 2 for the REINFORCE-style equivalent, along with Figures 2

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and 5 for visualization). Varying the clip ratios in REINFORCE-style RPG algorithms, we find
that while critic scores and response lengths are similar for (ϵ1, ϵ2) = (0.1, 0.1) and (0.2, 0.28)
(Figure 8), DAPO’s higher-and-clip-higher strategy substantially reduces actor entropy, which appears
to underlie its performance gains, details can be found in Appendix I.2.1. For PPO-style clipping,
we set (ϵ1, ϵ2) = (0.2, 0.28) for RPG, RPG-REINFORCE and DAPO. For GRPO, we use (ϵ1, ϵ2) =
(0.2, 0.2). Furthermore, to enhance training efficiency and data quality, we adopted techniques
introduced by DAPO (Yu et al., 2025), including a dynamic sampling strategy with a group filtering
mechanism (which oversamples challenging prompts and filters out those with near-perfect or near-
zero accuracy based on initial rollouts) and an overlong punishment component in the reward shaping
to discourage excessively verbose outputs. In addition, we enable RPG-Style Clip (Section 4.1) for
the REINFORCE-style estimators, which we found to be the best variant for RL training at larger
scales.

Results and Discussion. Tables 3 and 6 summarize the performance of our RPG algorithms against
baselines with 4k and 2k context lengths, reporting both the last and best scores achieved during
training on these benchmarks. Figure 3 and 6 complement these results by illustrating the evaluation
scores and training dynamics for the fully differentiable RPG variants and baselines when training
the Qwen-3-4B model. These figures display performance on the AIME24 and AIME25 benchmarks,
alongside key training metrics: reward (critic score), policy entropy, and average response length.
Across settings, the RPG-REINFORCE variants with RPG-Style Clip have the strongest results.
Following DAPO (Yu et al., 2025; Yue et al., 2025), we report “Mean@32” (average accuracy of 32
sampled responses). With 8k context length, RPG-REINFORCE achieves 52% accuracy on AIME25,
surpassing the official Qwen3-4B-Instruct baseline (47%).

The quantitative results in Table 3 demonstrate the competitive performance of the proposed RPG
and REINFORCE-style RPG frameworks with 4k context length. On AIME24, RPG-REINFORCE
variants lead, with RPG-REINFORCE-URKL achieving the best “Best” score (0.4531) and the best
“Last” score (0.4458), while RPG-REINFORCE-UFKL attain a second best “Last” score (0.4281).
For AIME25, RPG-REINFORCE-URKL still achieves the top “Best” score (0.4313) and a strong
“Last” score (0.4125) and RPG-REINFORCE-UFKL is second only to that. Overall, RPG and
RPG-REINFORCE methods rank at or near the top across benchmarks and metrics, while exhibiting
stable training dynamics.

Similarly, Table 6 shows the experiment results with 2k context length. It can be observed that
RPG and RPG-REINFORCE variants demonstrate robust performance, often competitive with or
exceeding baselines. For example, RPG-REINFORCE-UFKL achieves the top “Best” scores for
AIME24 (0.3625) and AIME25 (0.3083), and the top “Last” score of AIME25 (0.2927), while
RPG-UFKL attain the top “Last” score of AIME24 (0.3427) and the second highest “Last” score of
AIME25 (0.2833). Their training curves in Figure 6 generally indicate good stability and effective
learning. The consistently high performance across various RPG formulations underscores the utility
of the systematically derived KL-regularized objectives explored in this work.

Moreover, these algorithms generally exhibit stable training progressions regarding reward (critic
score) and policy entropy, as shown in subfigures (c) and (d) in Figures 3 and 6, compared to some
baselines like GRPO, which can show more volatility. This stability likely contributes to their robust
benchmark performances (subfigures a-b). The response lengths (subfigure e) for RPG methods also
appear well-controlled. These observations align with the strong final scores reported in Tables 3
and 6 for these variants.

6 CONCLUSION

We introduced RPG, a framework for deriving and organizing KL-regularized policy gradient al-
gorithms for online, off-policy RL. We provided derivations for policy gradients and surrogate
loss functions covering forward/reverse KL, normalized/unnormalized distributions, and both fully
differentiable and REINFORCE-style estimators. Beyond derivations, we revisited the classical
REINFORCE algorithm and made it viable off-policy through RPG-Style Clip and iterative refer-
ence updates. On LLM reasoning, these design choices deliver stable and scalable training with
competitive and superior accuracy relative to strong baselines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The methods developed in this paper contribute to the broader effort of enhancing the reasoning
capabilities of large language models. Improved reasoning in LLMs has the potential to significantly
benefit various fields, including scientific discovery, education, and complex problem-solving in
engineering and medicine. By providing more stable and efficient training algorithms, our work can
facilitate the development of more reliable and capable AI systems.

However, as with any advancement in AI capabilities, it is crucial to consider the ethical implications
and ensure responsible development and deployment of these technologies to mitigate potential
misuse. While our framework offers a unified perspective on KL-regularized policy gradient algo-
rithms and demonstrates strong empirical performance, it has certain limitations. RPG-Style Clip
introduces a controllable bias: variance trade-off through (ϵ1, ϵ2), so developing principled schedules
for clipping would be valuable.

We used LLMs as assistive tools to polish part of this paper. The roles of LLMs in this work are
restricted to improving readability and presentation.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learning
from human feedback in llms. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 12248–12267, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 4299–4307, 2017.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
reinforcement learning baseline for model reasoning. arXiv preprint arXiv:2504.02546, 2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. RAFT: reward ranked finetuning for generative
foundation model alignment. Trans. Mach. Learn. Res., 2023, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Kaixuan Ji, Guanlin Liu, Ning Dai, Qingping Yang, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan
Gu, and Lin Yan. Enhancing multi-step reasoning abilities of language models through direct
q-function optimization. arXiv preprint arXiv:2410.09302, 2024.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024, 2024.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J. Liu, and Jialu
Liu. Statistical rejection sampling improves preference optimization. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. Advances in Neural Information Processing Systems, 37:124198–124235, 2024.

Tom Minka et al. Divergence measures and message passing. Technical report, Microsoft Research,
2005.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiegel, Andrea
Michi, Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J. Mankowitz,
Doina Precup, and Bilal Piot. Nash learning from human feedback. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

OpenAI. ChatGPT, 2022. URL https://chat.openai.com/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

12

https://chat.openai.com/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman. Approximating kl divergence. http://joschu.net/blog/kl-approx.
html, March 2020. Accessed on November 22, 2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotterdam, The
Netherlands, 30 March 2025 - 3 April 2025, pp. 1279–1297. ACM, 2025.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: bridging theory and practice for rlhf under
kl-constraint. In Proceedings of the 41st International Conference on Machine Learning, pp.
54715–54754, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
18, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
6672–6679, 2020.

13

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, Xiangpeng Wei, et al. Vapo: Efficient and reliable reinforcement
learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

Yifan Zhang, Ge Zhang, Yue Wu, Kangping Xu, and Quanquan Gu. Beyond bradley-terry models: A
general preference model for language model alignment. In Proceedings of the 42nd International
Conference on Machine Learning, 2025.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Huaiyu Zhu and Richard Rohwer. Information geometric measurements of generalisation. Preprint,
1995.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

A Related Work 17

B Connection Between Regularized Policy Gradient and Natural Policy Gradient 18

C REINFORCE and Proximal Policy Optimization (PPO) 19

C.1 REINFORCE . 19

C.2 Proximal Policy Optimization (PPO) . 19

D Equivalence of k3 Estimator and Unnormalized KL Divergence 20

E Normalized KL Regularization 20

E.1 Forward KL Regularization . 20

E.2 Reverse KL Regularization . 21

F REINFORCE-Style Regularized Policy Gradients with Various KL Regularization
Forms 21

F.1 Rationale for REINFORCE-Style Loss Formulation 21

F.2 REINFORCE-Style RPG with Forward KL Regularization 22

F.3 REINFORCE-Style RPG with Unnormalized Forward KL Regularization 22

F.4 REINFORCE-Style RPG with Reverse KL Regularization 22

F.5 REINFORCE-Style RPG with Unnormalized Reverse KL Regularization 22

G More on Algorithmic Details 22

G.1 Stabilization Techniques for Regularized Policy Gradients 22

G.2 Stabilization Techniques for REINFORCE-Style Regularized Policy Gradients . . 24

H Detailed Experimental Setup 26

I Additional Experiment Results 26

I.1 The performance with 2k context length . 26

I.2 Ablation Study . 26

I.3 Experiments on Qwen-2.5-7B-Instruct . 29

J Proof of Theorem 2.1 (Generalized Policy Gradient Theorem) 32

K Proofs for Regularized Policy Gradients 32

K.1 Proof of Proposition E.1 (Policy Gradient and Differentiable Loss for Normalized
Forward KL) . 32

K.2 Proof of Proposition 3.2 (Policy Gradient and Differentiable Loss for Unnormalized
Forward KL) . 33

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

K.3 Proof of Proposition E.3 (Policy Gradient and Differentiable Loss for Normalized
Reverse KL) . 34

K.4 Proof of Proposition 3.6 (Policy Gradient and Differentiable Loss for Unnormalized
Reverse KL) . 35

L Proofs for REINFORCE-Style Regularized Policy Gradients 37

L.1 Proof of Proposition F.1 (REINFORCE-style Policy Gradient for Forward KL) . . 37

L.2 Proof of Proposition F.3 ((REINFORCE-style Policy Gradient for Unnormalized
Forward KL) . 37

L.3 Proof of Proposition F.4 (REINFORCE-Style Loss) 38

L.4 Proof of Proposition F.5 (REINFORCE-Style Loss for Unnormalized Reverse KL) 38

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A RELATED WORK

Fine-tuning large language models (LLMs) using human feedback has become a critical step in
developing capable and aligned AI systems. Broadly, methods fall into two main categories: those
relying on policy optimization using an explicit reward model learned from feedback, and those
directly optimizing policies based on preference data.

RLHF via Policy Optimization. The classic RLHF involves training a reward model (RM) rϕ(x, y)
to predict human preferences and then using reinforcement learning to optimize the language model
policy πθ to maximize the expected reward from the RM, often regularizing against deviating too far
from an initial reference policy πref . This approach was pioneered by Christiano et al. (2017) and
gained widespread prominence with its application to LLMs like InstructGPT (Ouyang et al., 2022)
and ChatGPT (OpenAI, 2022), which utilized Proximal Policy Optimization (PPO) (Schulman et al.,
2017). PPO became a workhorse due to its relative stability, achieved by constraining policy updates
via a clipped surrogate objective. The standard PPO setup for RLHF involves the policy πθ, a value
function Vψ , the RM rϕ, and the reference policy πref .

RLHF via Direct Preference Optimization. An alternative and increasingly popular approach
bypasses explicit reward modeling by directly optimizing the policy πθ based on preference data, typi-
cally pairwise comparisons (yw, yl) indicating that response yw is preferred over yl for a given prompt
x. Inspired by the Bradley-Terry model (Bradley & Terry, 1952), Direct Preference Optimization
(DPO) (Rafailov et al., 2023) derived a simple loss function directly relating preference probabilities
to policy likelihoods under πθ and a reference policy πref . DPO maximizes the relative likelihood of
preferred responses using a logistic loss: LDPO ∝ −E[log σ(β∆logp)], where ∆logp is the difference
in log-probabilities of yw and yl between πθ and πref . DPO’s simplicity and effectiveness led to its
wide adoption in models like Llama-3 (Grattafiori et al., 2024), Qwen2 (Yang et al., 2024), and Phi-3
(Abdin et al., 2024). Numerous variants have followed: SLiC-HF (Zhao et al., 2023) uses a pairwise
hinge loss for calibration; IPO (Azar et al., 2024) uses an identity link function; SimPO (Meng et al.,
2024) offers a simpler objective focusing on the margin; KTO (Ethayarajh et al., 2024) handles binary
(good/bad) feedback; DQO (Ji et al., 2024) incorporates direct Q-value modeling; RAFT (Dong
et al., 2023), RSO (Liu et al., 2024) and RFT (Yuan et al., 2023) use a rejection sampling perspective.
Recognizing that preferences might evolve, iterative methods like Iterative DPO (Xiong et al., 2024),
PCO (Xu et al., 2023) and SPIN (Chen et al., 2024) alternate between generation/preference learning
and policy updates, often using the current policy’s outputs in a self-improvement loop. Game theory
offers another lens, with Nash Learning from Human Feedback (NLHF) (Munos et al., 2024) framing
RLHF as finding a Nash equilibrium between policies. Self-play ideas appear in SPPO (Wu et al.,
2025) and GPO (Zhang et al., 2025), where the policy generates pairs for comparison. Methods like
GPM (Zhang et al., 2025) aim to handle more general preference structures efficiently using latent
embeddings beyond pairwise comparisons.

RL for Enhancing LLM Reasoning. Beyond general alignment with human preferences, RL
techniques are increasingly explored to specifically enhance the multi-step reasoning capabilities of
LLMs in domains like mathematics, coding, and complex instruction following. In these contexts,
RL optimizes the policy to generate sequences (e.g., chain-of-thought, code blocks) that lead to
successful outcomes, often using rewards derived from external feedback like unit test results,
execution outcomes, or correctness checks by an automated judge or specialized reward model trained
on reasoning quality. For instance, the DeepSeekMath model (Shao et al., 2024) employed the
GRPO algorithm, a value-free PPO variant, demonstrating significant improvements in mathematical
problem-solving benchmarks through RL fine-tuning. DeepSeek-R1 (Guo et al., 2025) represents
efforts in applying advanced techniques potentially involving RL for complex tasks, although specific
methods might vary. Furthermore, preference-based methods like SPPO and GPO have been applied
to reasoning-specialized models such as Kimi-1.5 (Team et al., 2025), and the resulting improvements
observed on benchmarks involving coding and math suggest that preference-based RLHF can also
contribute to refining reasoning abilities, potentially by optimizing implicit properties related to
logical consistency and correctness within the preference data. The need for a value function (critic
model) used in PPO incurs significant computational costs, and standard PPO can face stability
challenges with sparse rewards common in LLM tasks. Addressing these issues has driven recent
work. Several methods aim to improve efficiency by removing the value network: RLOO (Kool
et al., 2019; Ahmadian et al., 2024) shows that drawing multiple samples per input allows for a
baseline based on the average reward. ReMax (Li et al., 2024) adapts REINFORCE (Williams, 1992)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

using Monte Carlo returns and normalization; GRPO (Shao et al., 2024) uses a group-average reward
baseline and adds a k3-based KL penalty to the objective; and VinePPO (Kazemnejad et al., 2024)
uses MC sampling from intermediate steps. Other approaches focus on stability and alternative
baselines, such as RLOO (Ahmadian et al., 2024), which uses leave-one-out statistics within a
group, and REINFORCE++ (Hu, 2025), which enhances REINFORCE with token-level KL penalties
(using the k2 estimator) and normalization. Dr. GRPO (Liu et al., 2025) identifies and corrects
a bias found in GRPO’s advantage estimators, DAPO (Yu et al., 2025) introduces strategies like
Clip-Higher, reward over-sampling, and a token-level loss to handle long sequences and entropy
collapse, while VAPO (Yuan et al., 2025) builds upon it with length-adaptive advantage estimation.
Group Policy Gradient (GPG) (Chu et al., 2025) revisits the original REINFORCE objective, using
group-normalized rewards and a debiased gradient estimator. Recently, GSPO (Zheng et al., 2025)
was proposed with sequence-level rewards and used in the Qwen3 model series (Team, 2025).

Our contribution is to make the off-policy weighting and estimator equivalences explicit across
normalized/unnormalized variants, to identify a bias introduced when these weights are omitted (as in
the GRPO KL term), and to provide corrected surrogates that are gradient-equivalent to the intended
objectives. The design-space view makes transparent how several recent algorithms arise as special
cases.

B CONNECTION BETWEEN REGULARIZED POLICY GRADIENT AND NATURAL
POLICY GRADIENT

In this section, we draw the connection between RPG and Natural Policy Gradient (NPG) (Kakade,
2001; Schulman et al., 2015). Note that NPG moves along the steepest-ascent direction defined by
the Riemannian geometry induced by the Fisher information matrix, rather than by the Euclidean
geometry of the raw parameters. More specifically, we demonstrate that the Natural Policy Gradient
(NPG) update can be recovered as a special instance of the RPG update by applying a linear
approximation to the expected return and a quadratic approximation to the KL regularization term.

In detail, consider the RPG objective at iteration k:

JRPG(θ) = J(θ)− β KL(πθk∥πθ), (B.1)

where J(θ) is the expected return. To study the local behavior of the update, we first apply the
first-order Taylor expansion to the return J(θ) around the current policy parameter θk:

J(θ) ≈ J(θk) +∇θJ(θk)⊤∆θ, (B.2)

where ∆θ = θ − θk denotes a small change.

Then we apply the second-order Taylor expansion of the KL divergence term at θk as follows:

KL(πθk∥πθ) ≈ KL(πθk∥πθk) +∇θ KL(πθk∥πθ)
∣∣⊤
θ=θk

∆θ

+
1

2
∆θ⊤∇2

θ KL(πθk∥πθ)
∣∣
θ=θk

∆θ (B.3)

= 0 + 0 +
1

2
∆θ⊤F (θk)∆θ, (B.4)

where ∆θ = θ − θk, and F (θk) is the Fisher information matrix:

F (θk) = Ex∼πθk

[
∇θ log πθ(x)

∣∣
θ=θk
∇θ log πθ(x)

∣∣⊤
θ=θk

]
.

Note that the Fisher information matrix describes the local geometry of the parameter space of the
policy family. It gives a good metric inside a small neigbourhood around θk.

Now insert (B.2) and (B.4) back into the RPG objective (B.1), we obtain the following quadratic
surrogate J̃RPG(∆θ) around θk:

J̃RPG(∆θ) = J(θk) +∇θJ(θk)⊤∆θ −
β

2
∆θ⊤F (θk)∆θ. (B.5)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We now look for the best local step ∆θ∗. Take the gradient of (B.5) with respect to ∆θ and set it
equal to zero, we obtain:

∇∆θJ̃RPG = ∇θJ(θk)− βF (θk)∆θ = 0.

Solving this linear system for ∆θ gives

∆θ∗ =
1

β
F (θk)

−1∇θJ(θk).

The step ∆θ∗ matches the natural policy gradient (Kakade, 2001) update direction up to the factor
1/β. This suggests that the policy gradient update of RPG in (B.1) can be approximated by NPG as
follows

θk+1 ← θk +
1

β
F (θk)

−1∇θJ(θk).

In other words, the maximizer of the local KL regularized RPG approximation follows the same
direction as a natural policy gradient update.

C REINFORCE AND PROXIMAL POLICY OPTIMIZATION (PPO)

C.1 REINFORCE

REINFORCE performs Monte Carlo (MC) updates after sampling a complete trajectory, using the
sampled return Gt as an unbiased estimate of the state-action value function Qπθ (st, at). However,
these MC estimates often exhibit high variance, leading to slow and unstable learning.

To reduce variance, a state-dependent baseline b(st) (commonly an estimate of the state value
function, V πθ (st)) is subtracted from the return-to-go:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

(Gt − b(st))∇θ log πθ(at|st)

]
= Eτ∼πθ

[
T∑
t=0

Ât∇θ log πθ(at|st)

]
.

(C.1)

Here, Ât = Gt−b(st) is an estimate of the advantage functionAπθ (st, at) = Qπθ (st, at)−V πθ (st).
Subtracting a baseline that only depends on the state st does not bias the gradient estimate, since
Eat∼πθ(·|st)[b(st)∇θ log πθ(at|st)] = b(st)∇θ

∑
at
πθ(at|st) = b(st)∇θ1 = 0. REINFORCE with

baseline is typically implemented by minimizing the loss:

LREINFORCE(θ) = −Eτ∼πθ

[
T∑
t=0

SG(Ât) log πθ(at|st)

]
, (C.2)

using the stop-gradient operator SG(·) to prevent gradients from flowing into the advantage estimate
Ât. As REINFORCE uses samples collected under the current policy πθ for gradient estimation, it is
an on-policy algorithm.

C.2 PROXIMAL POLICY OPTIMIZATION (PPO)

On-policy methods like REINFORCE can be sample-inefficient, requiring new trajectories for each
gradient update. Proximal Policy Optimization (PPO) (Schulman et al., 2017) improves stability
and sample efficiency by enabling multiple updates using the same batch of data collected under a
slightly older policy πθold . This makes PPO effectively off-policy. PPO achieves this by optimizing a
surrogate objective function that discourages large deviations between the current policy πθ and the
old policy πθold . The most widely used variant, PPO-Clip, employs a clipped objective:

JPPO-Clip(θ) = Et
[
min

(
wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (C.3)

where the expectation Et is taken over timesteps in the collected batch sampled from πold. Here,
wt(θ) =

πθ(at|st)
πold(at|st) is the importance sampling ratio. Ât is an advantage estimate, typically computed

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

using Generalized Advantage Estimation (GAE) (Schulman et al., 2016), which leverages observed
rewards and a learned state-value function V (s) to reduce variance.

Notably, in many practical implementations, especially in Reinforcement Learning from Human
Feedback (RLHF) for large language models (Ouyang et al., 2022), a KL divergence penalty against a
reference policy πref (e.g., the initial supervised model) is often incorporated implicitly by modifying
the reward signal before calculating the advantage. For example, the reward used for GAE calculation
might become r′t = rt − β log(πθ(at|st)/πref(at|st)). When this r′t is used within GAE to compute
Ât, the KL penalty term is effectively folded into the advantage estimate that multiplies the importance
weight wt(θ) in the objective function. This approach contrasts with adding the KL penalty as a
separate term to the final objective, as seen in GRPO (Section 2.2) or the formal derivations in Section
3.

The hyperparameter ϵ (e.g., 0.2) defines the clipping range [1 − ϵ, 1 + ϵ] for the importance ratio
wt(θ). This clipping limits the influence of potentially noisy importance weights when the policy
changes significantly, preventing destructive updates and further stabilizing the off-policy training.
PPO optimizes the policy πθ by maximizing JPPO-Clip(θ).

D EQUIVALENCE OF k3 ESTIMATOR AND UNNORMALIZED KL DIVERGENCE

As mentioned in Section 3.2, the k3 estimator for KL divergence (Schulman, 2020) is equivalent to
the unnormalized KL (UKL) divergence. The k3 function is defined as k3(y) = y − 1− log y.

Forward KL-k3 and UKL(πold∥πθ): The forward KL-k3 divergence is
KLk3(πold∥πθ) := Ex∼πold [k3(πθ(x)/πold(x))].

Ex∼πold

[
k3

(
πθ(x)

πold(x)

)]
= Ex∼πold

[
πθ(x)

πold(x)
− 1− log

πθ(x)

πold(x)

]
=

∫
x

πold(x)

(
πθ(x)

πold(x)
− 1

)
dx−

∫
x

πold(x) log
πθ(x)

πold(x)
dx

=

∫
x

(πθ(x)− πold(x))dx+

∫
x

πold(x) log
πold(x)

πθ(x)
dx

= UKL(πold∥πθ).

Reverse KL-k3 and UKL(πθ∥πold): The reverse KL-k3 divergence is
KLk3(πθ∥πold) := Ex∼πθ

[k3(πold(x)/πθ(x))].

Ex∼πθ

[
k3

(
πold(x)

πθ(x)

)]
= Ex∼πθ

[
πold(x)

πθ(x)
− 1− log

πold(x)

πθ(x)

]
=

∫
x

πθ(x)

(
πold(x)

πθ(x)
− 1

)
dx−

∫
x

πθ(x) log
πold(x)

πθ(x)
dx

=

∫
x

(πold(x)− πθ(x))dx+

∫
x

πθ(x) log
πθ(x)

πold(x)
dx

= UKL(πθ∥πold).

E NORMALIZED KL REGULARIZATION

For completeness, we collect here the normalized KL formulations that were previously in the main
text. Their proofs remain in Appendix K.

E.1 FORWARD KL REGULARIZATION

Consider the objective function with forward KL regularization:
JFKL(θ) = Ex∼πθ

[R(x)]− βKL(πold ∥ πθ). (E.1)
Proposition E.1 (Policy Gradient and Differentiable Loss for Forward KL). The gradient of JFKL(θ)
with respect to θ is:

∇θJFKL(θ) = Ex∼πold

[(
w(x)R(x) + β

)
∇θ log πθ(x)

]
,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Summary of fully differentiable surrogate losses for normalized KL-regularized objectives
(counterparts to Table 1). Here x ∼ πold, w(x) = πθ(x)/πold(x).

Regularization (Normalized KL) Surrogate loss (sampling x ∼ πold)
Forward KL E[−w(x)R(x)− β log πθ(x)]
Reverse KL E[w(x) (−R(x) + β logw(x))]

where w(x) = πθ(x)/πold(x). A corresponding surrogate loss is:

LFKL(θ) = Ex∼πold

[
− w(x)R(x)− β log πθ(x)

]
,

which satisfies ∇θLFKL(θ) = −∇θJFKL(θ).

Remark E.2 (Connection to Maximum Likelihood Estimation). If R(x) = 0, maximizing JFKL(θ)
reduces to minimizing βKL(πold ∥ πθ), i.e., MLE on samples from πold.

E.2 REVERSE KL REGULARIZATION

Consider the reverse KL objective:

JRKL(θ) = Ex∼πθ
[R(x)]− βKL(πθ ∥ πold). (E.2)

Proposition E.3 (Policy Gradient and Differentiable Loss for Reverse KL). The gradient of JRKL(θ)
is:

∇θJRKL(θ) = Ex∼πold

[
w(x)

(
R(x)− β(logw(x) + 1)

)
∇θ log πθ(x)

]
.

A corresponding surrogate loss is:

LRKL(θ) = Ex∼πold

[
w(x)

(
−R(x) + β logw(x)

)]
,

with ∇θLRKL(θ) = −∇θJRKL(θ).

REINFORCE-style RPG with normalized KL regularizations. REINFORCE-style losses for
FKL/RKL appear in Appendix F (Table analogues to Table 2).

F REINFORCE-STYLE REGULARIZED POLICY GRADIENTS WITH VARIOUS
KL REGULARIZATION FORMS

F.1 RATIONALE FOR REINFORCE-STYLE LOSS FORMULATION

As noted in Section 4 of the main text, the derived off-policy policy gradients (Theorems E.1 through
3.6) share a structural similarity with the REINFORCE estimator:

∇θJ(θ) = Ex∼πsampling [Weight(x, θ)∇θ log πθ(x)] .

This structure suggests an alternative way to implement the gradient update, analogous to the
REINFORCE-style approach used in the on-policy setting. Specifically, one could define a surrogate
loss of the form:

LREINFORCE-style(θ) = −Ex∼πsampling [SG (Weight(x, θ)) log πθ(x)] . (F.1)

The rationale is that applying automatic differentiation to this loss should yield:

∇θLREINFORCE-style(θ)
Autodiff
= −Ex∼πsampling [SG (Weight(x, θ))∇θ log πθ(x)] .

When this gradient is used for optimization, the stop-gradient SG is conceptually removed, resulting in
an update aligned with −∇θJ(θ). This relies on SG preventing gradients from flowing through the θ-
dependence within Weight(x, θ) (specifically, the dependence via the importance weight w(x)). The
following subsections detail these REINFORCE-style loss formulations for each KL regularization
type.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.2 REINFORCE-STYLE RPG WITH FORWARD KL REGULARIZATION

We can convert Forward KL regularization of RPG to REINFORCE-style using the stop-gradient
operator:

Proposition F.1 (REINFORCE-Style Loss for Forward KL). For the forward KL regularized objec-
tive function in Eq. (E.1), the corresponding REINFORCE-style surrogate loss function for gradient
descent optimization via automatic differentiation is:

LREINFORCE-style
FKL (θ) = −Ex∼πold

[SG (w(x)R(x) + β) log πθ(x)] ,

where w(x) = πθ(x)/πold(x). This loss aims to produce the gradient −∇θJFKL(θ) via automatic
differentiation.

Remark F.2. This REINFORCE-style loss requires SG to prevent backpropagation through w(x) in
the weight term. Baselines can be added to R(x) inside SG for variance reduction (see Appendix G).
In practice we further apply RPG-Style Clip (Section 4.1) by replacing w with w̄ and, when present,
logw with log w̄ inside SG(·).

F.3 REINFORCE-STYLE RPG WITH UNNORMALIZED FORWARD KL REGULARIZATION

Similarly, we can also transform the Unnormalized Forward KL Regularization of RPG into
REINFORCE-style as follows:

Proposition F.3 (REINFORCE-Style Loss for Unnormalized Forward KL). For the objective
JUFKL(θ) = Eπθ

[R(x)]− βUKL(πold∥πθ), whose gradient (sampling from π̃old) is
∇θJUFKL(θ) = Ex∼π̃old

[Zold(w(x)R(x)− β(w(x)− 1))∇θ log πθ(x)] (Proposition 3.2), a corre-
sponding REINFORCE-style surrogate loss is:

LREINFORCE-style
UFKL (θ) = −Ex∼π̃old

[SG (Zold (w(x)R(x)− β(w(x)− 1))) log πθ(x)] ,

where π̃old = πold/Zold and w(x) = πθ(x)/πold(x) (using unnormalized πold). This loss aims to
produce the gradient −∇θJUFKL(θ) via automatic differentiation.

F.4 REINFORCE-STYLE RPG WITH REVERSE KL REGULARIZATION

Proposition F.4 (REINFORCE-Style Loss for Reverse KL). For the objective JRKL(θ) =
Eπθ

[R(x)]−βKL(πθ ∥ πold), whose gradient is∇θJRKL(θ) = Ex∼πold
[w(x)(R(x)−β(logw(x)+

1))∇θ log πθ(x)] (Proposition E.3), a corresponding REINFORCE-style surrogate loss is:

LREINFORCE-style
RKL (θ) = −Ex∼πold

[SG (w(x) (R(x)− β logw(x)− β)) log πθ(x)] , (F.2)

where w(x) = πθ(x)/πold(x). This loss aims to produce the gradient −∇θJRKL(θ) via automatic
differentiation.

F.5 REINFORCE-STYLE RPG WITH UNNORMALIZED REVERSE KL REGULARIZATION

Proposition F.5 (REINFORCE-Style Loss for Unnormalized Reverse KL). For the objective
JURKL(θ) = Eπθ

[R(x)]− βUKL(πθ∥πold), whose gradient (sampling from π̃old) is
∇θJURKL(θ) = Ex∼π̃old

[Zoldw(x)(R(x) − β logw(x))∇θ log πθ(x)] (Proposition 3.6), a corre-
sponding REINFORCE-style surrogate loss is:

LREINFORCE-style
URKL (θ) = −Ex∼π̃old

[SG (Zoldw(x) (R(x)− β logw(x))) log πθ(x)] ,

where π̃old = πold/Zold and w(x) = πθ(x)/πold(x) (using unnormalized πold). This loss aims to
produce the gradient −∇θJURKL(θ) via automatic differentiation.

G MORE ON ALGORITHMIC DETAILS

G.1 STABILIZATION TECHNIQUES FOR REGULARIZED POLICY GRADIENTS

Practical implementations of off-policy policy gradient methods often require stabilization techniques
to manage variance or prevent destructively large policy updates. Common techniques include:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Dual-Clip Objective: This method adapts the clipping mechanism from PPO, with a modification
for negative advantages proposed by Ye et al. (2020), to stabilize updates (Schulman et al., 2017).
The Dual Clip objective aims to maximize JDualClip = Ex∼πold

[LDualClip(x, θ)], where Â(x) is an
estimate of the advantage analogue (e.g., R(x)− b or the full term derived from the regularized
gradient), w(x) = πθ(x)/πold(x) is the importance ratio, and LDualClip(x, θ) is defined as:

– If Â(x) ≥ 0: LDualClip(x, θ) = min(w(x)Â(x), clip(w(x), 1− ϵ1, 1 + ϵ2)Â(x)).

– If Â(x) < 0: LDualClip(x, θ) = max(min(w(x)Â(x), clip(w(x), 1 − ϵ1, 1 +

ϵ2)Â(x)), cÂ(x)).

where ϵ1, ϵ2 > 0 are clipping parameters and c > 1 provides a lower bound for negative advantages.
To use this with gradient descent (which minimizes a loss L), we minimize the negative of the
Dual Clip objective term. Using −min(a, b) = max(−a,−b) and −max(a, b) = min(−a,−b),
the corresponding loss term for a single sample x is:

– If Â(x) ≥ 0: LDualClip(x, θ) = max
(
−w(x)Â(x), −clip(w(x), 1− ϵ1, 1 + ϵ2)Â(x)

)
.

– If Â(x) < 0: Let Lclip = max
(
−w(x)Â(x), −clip(w(x), 1− ϵ1, 1 + ϵ2)Â(x)

)
. Then,

LDualClip(x, θ) = min
(
Lclip, −cÂ(x)

)
.

Here, Â(x) should represent the advantage or an analogous term derived from the gradient of the
original (non-negated) regularized objective (e.g., Proposition E.3). The overall loss is L(θ) =
Ex∼πold

[LDualClip(x, θ)]. This loss function is differentiable with respect to θ (which appears in
w(x) and potentially Â(x) if it includes terms like logw(x)).
This loss formulation ensures that updates are conservative. For positive advantages, it acts like
standard PPO-Clip. For negative advantages, it prevents the objective from becoming arbitrarily
large (loss becoming arbitrarily small) by introducing the lower bound cÂ(x) on the objective
(upper bound −cÂ(x) on the loss).

• Baseline Subtraction: Used to define the advantage Â(x) = R(x)− b(x), reducing the variance
of the gradient estimates. The baseline b(x) should ideally not depend strongly on θ. A common
choice is a value function estimate V (x) or simply the batch average reward b = 1

N

∑
R(xi). The

definition of Â(x) might also incorporate regularization terms depending on the base objective
chosen (see RKL example below).

For instance, applying Dual Clip to stabilize the reverse KL objective (Proposition E.3). The gradient
involves the term w(x)

(
(R(x)− b)− β(logw(x) + 1)

)︸ ︷︷ ︸
Analogue to ÂRKL(x,w;b)

∇ log πθ. Using this ÂRKL in the Dual Clip

loss structure LDualClip
RKL (θ) = Ex∼πold

[LDualClip
RKL (x, θ)] where:

• If ÂRKL(x,w; b) ≥ 0:

LDualClip
RKL (x, θ) = max

(
−w(x)ÂRKL,−clip(w(x), 1− ϵ1, 1 + ϵ2)ÂRKL

)
.

• If ÂRKL(x,w; b) < 0: Let Lclip = max

(
−w(x)ÂRKL,−clip(w(x), 1− ϵ1, 1 + ϵ2)ÂRKL

)
.

LDualClip
RKL (x, θ) = min

(
Lclip, −cÂRKL

)
,

where ÂRKL(x,w; b) = (R(x)− b)− β(logw(x) + 1). Simpler approximations might use Â(x) =
R(x)− b.
Using PPO-style clipping alters the optimization objective compared to the original KL-regularized
objectives, trading strict adherence for enhanced stability. The choice of base objective structure,
definition of Â, and stabilization techniques depends on the specific application.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1 RPG with Dual-Clip Stabilization
Require: Reference policy πold, Reward function R(x), Initial policy parameters θ0
Require: Base objective structure Jchosen (implies regularization type), Regularization strength β ≥ 0
Require: Learning rate α > 0, Batch size N > 0, Number of epochs K ≥ 1 per iteration
Require: Dual Clip parameters: ϵ1 > 0, ϵ2 > 0, c > 1
Require: Baseline method (e.g., batch/group average, value function Vϕ)

1: Initialize policy parameters θ ← θ0
2: Initialize value function parameters ϕ (if baseline uses Vϕ)
3: for each training iteration do
4: Sample batch D = {xi}Ni=1 ∼ πold ▷ Collect data using old policy
5: Compute Ri for i = 1..N
6: Compute baselines bi for i = 1..N (e.g., bi = 1

N

∑
j Rj or bi = Vϕ(xi))

7: for k = 1 to K do ▷ Multiple optimization epochs on the same batch
8: Initialize batch loss Lbatch = 0
9: for i = 1 to N do

10: wi =
πθ(xi)
πold(xi)

, logwi = log πθ(xi)− log πold(xi) ▷ Compute importance weight

11: Define Advantage analogue Âi based on Jchosen, Ri, bi, wi, β.
12: ▷ Ex: For RKL, Âi = (Ri − bi)− β(logwi + 1). Note: Âi depends on current θ via wi

13: if Dual Clip enabled then
14: loss_term1i = −wi × Âi ▷ Negative of unclipped term, gradient flows through wi

15: wi,clipped = clip(wi, 1− ϵ1, 1 + ϵ2)

16: loss_term2i = −wi,clipped × Âi ▷ Negative of clipped term
17: Lclip(i) = max(loss_term1i, loss_term2i)

18: if Âi ≥ 0 then
19: Lterm(i) = Lclip(i)

20: else ▷ Âi < 0
21: loss_lower_boundi = −c× Âi ▷ Lower bound term
22: Lterm(i) = min(Lclip(i), loss_lower_boundi)
23: end if
24: else
25: ▷ Define base loss term (unclipped) based on chosen objective’s negative gradient structure
26: ▷ Ex: For RKL loss (no clip): Lterm(i) = wi(−(Ri − bi) + β logwi)

27: Lterm(i) = −wi × Âi

28: end if
29: Lbatch = Lbatch + Lterm(i)
30: end for
31: L̂(θ) = 1

N
Lbatch ▷ Compute final batch loss for minimization

32: g ← ∇θL̂(θ) ▷ Compute gradient (flows through wi and Âi)
33: θ ← OptimizerUpdate(θ, g, α) ▷ Update policy parameters
34: if using a learned baseline Vϕ then
35: Update value function parameters ϕ (e.g., by minimizing E[(Vϕ(xi)−Ri)

2] over the batch)
36: end if
37: end for
38: end for
39: return Optimized policy parameters θ

G.2 STABILIZATION TECHNIQUES FOR REINFORCE-STYLE REGULARIZED POLICY
GRADIENTS

While the REINFORCE-style losses derived in this section (Table 2) provide theoretically grounded
gradient estimators for the regularized objectives, practical implementations often benefit significantly
from stabilization techniques common in policy gradient methods. These techniques aim to reduce
variance and control the magnitude of policy updates, which is especially crucial in the off-policy
setting where importance weights w(x) and can exacerbate instability.

• Baseline Subtraction and Regularized Advantage Definition: This is a standard variance
reduction technique. Critically, when combining with stabilization like PPO clipping in this
REINFORCE-style context, the term playing the role of the advantage (Ât) that gets clipped should
ideally incorporate not just the baselined reward but also the regularization terms derived from the
objective’s gradient.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

1
−
ϵ 1

1
+
ϵ 2

c

w(x) = πθ(x)/πold(x)

L
os

s
te

rm
L

D
ua

lC
lip
(x
,θ
)

Case Â(x) ≥ 0 (e.g., Â = 1)

Grad via w
Grad = 0 (w.r.t w)

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

1
−
ϵ 1

1
+
ϵ 2

c

w(x) = πθ(x)/πold(x)

L
os

s
te

rm
L

D
ua

lC
lip
(x
,θ
)

Case Â(x) < 0 (e.g., Â = −1)

Grad = 0 (w.r.t w)
Grad via w

Figure 5: Visualization of the Dual-Clip loss term LDualClip(x, θ) vs. importance weight w(x), as
described in Section G.1 and Algorithm 1. This formulation is typically implemented as fully
differentiable w.r.t θ (via w(x) and potentially Â(x) if Â depends on θ, e.g., via logw(x)), unlike
REINFORCE-style implementations that use SG(Â) or SG(ℓi) within the loss. For visualization,
Â(x) is treated as constant (Â = 1 left, Â = −1 right) to isolate the effect of w. Solid blue: Loss
depends linearly on w, gradient ∇θL flows via w(x). Dotted magenta: Loss is constant w.r.t w,
gradient ∇θL does not flow via w(x) in this segment (though it might flow via Â if Â depends on θ).
Left: Case Â < 0. Right: Case Â ≥ 0.

Recall the REINFORCE-style gradient structure∇θJ(θ) = Ex∼πsampling [Weight(x, θ)∇θ log πθ(x)].
The PPO objective involves terms like wtÂt. To align these, we define the regularized advantage
Ât such that wtÂt approximates the key part of Weight(x, θ). For example:

– For RKL (Proposition F.4), WeightRKL = w(x)(R(x) − β(logw(x) + 1)). We define the
regularized advantage as ÂRKL

t = (R(x)− b(x))− β(logw(x) + 1).
– For URKL (Proposition F.5), WeightURKL = Zoldw(x)(R(x)− β logw(x)). Ignoring Zold,

we define ÂURKL
t = (R(x)− b(x))− β logw(x).

– For FKL or UFKL, the structure might not cleanly separate into w(x)× (. . .). In such cases,
a common simplification is to use Ât = R(x)− b(x) and accept that the clipping primarily
stabilizes the reward term’s contribution.

This calculated Ât (incorporating reward, baseline, and KL terms) is then treated as constant using
the stop-gradient operator, SG(Ât), when plugged into the clipping loss function.

• RPG-Style Objective Clipping (Dual-Clip Variant): PPO (Schulman et al., 2017) introduces
objective clipping to limit the impact of large importance ratios w(x). The Dual-Clip variant (Ye
et al., 2020) refines this, particularly for negative advantages, using a lower bound parameter c > 1.
When applied in the REINFORCE-style setting, the PPO Dual-Clip objective aims to maximize
(simplified notation, expectation over t ∼ πold):

JDualClip(θ) = Et[LDualClip
t (θ)]

where Ât is the regularized advantage defined above (incorporating Rt, bt, and KL terms), wt(θ) =
πθ(at|st)
πold(at|st) , and LDualClip

t (θ) is defined based on the sign of SG(Ât):

– If SG(Ât) ≥ 0: LDualClip
t (θ) = min(wt(θ) SG(Ât), clip(wt(θ), 1− ϵ1, 1 + ϵ2) SG(Ât))

– If SG(Ât) < 0: LDualClip
t (θ) = max(min(wt(θ) SG(Ât), clip(wt(θ), 1 − ϵ1, 1 +

ϵ2) SG(Ât)), cSG(Ât))

Here, ϵ1, ϵ2 are clipping hyperparameters, and c is the lower bound factor. Note that θ influences
this objective only through wt(θ), as Ât is detached via SG.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

To implement this using gradient descent (minimizing a loss), we minimize the negative of the
PPO Dual-Clip objective. The loss function becomes LDualClip(θ) = Et[LDualClip

t (θ)], where
LDualClip
t (θ) = −LDualClip

t (θ). Explicitly:

– If SG(Ât) ≥ 0: LDualClip
t (θ) = max(−wt(θ) SG(Ât),−clip(wt(θ), 1− ϵ1, 1+ ϵ2) SG(Ât)).

– If SG(Ât) < 0: Let Lclip = max(−wt(θ) SG(Ât),−clip(wt(θ), 1 − ϵ1, 1 + ϵ2) SG(Ât)).
Then, LDualClip

t (θ) = min(Lclip,−cSG(Ât)).

This PPO Dual-Clip loss function LDualClip(θ) replaces the simpler REINFORCE-style losses
derived earlier (like LREINFORCE-style

RKL in Eq. (F.2)). The gradient ∇θLDualClip(θ) is computed via
automatic differentiation, where the gradient flows through wt(θ) but is stopped at Ât. This
approach uses the PPO objective structure with the appropriately defined regularized advantage for
stabilization in an off-policy REINFORCE-style update. Algorithm 2 details this implementation.

H DETAILED EXPERIMENTAL SETUP

Hyperparameters. Unless otherwise specified, all experiments use AdamW optimizer (Loshchilov
& Hutter, 2019) with a learning rate of 1 × 10−6, a weight decay of 0.1 and gradient clipping at
1.0. Training proceeds for 400 steps, including an initial 10 warm-up steps, after which a constant
learning rate is maintained. The global training batch size is 512. For each sample in the batch, we
roll out 16 responses using a temperature of 1.0. The per-GPU mini-batch size is 32, and experiments
are conducted on 8 NVIDIA H100 GPUs. The maximum training and rollout length is set to 4,096
tokens for 2K context length and 8,192 tokens for 4K context length, with dynamic batching enabled.
The KL regularization coefficient β is set to 1× 10−4.

Specific Clipping Parameters and Adopted Techniques. As mentioned in Section 5, we set
(ϵ1, ϵ2) = (0.2, 0.28) for RPG, RPG-REINFORCE and DAPO. For GRPO, we use (ϵ1, ϵ2) =
(0.1, 0.1).

I ADDITIONAL EXPERIMENT RESULTS

I.1 THE PERFORMANCE WITH 2K CONTEXT LENGTH

We just display the curves in 6 and the last and best scores on AIME24 and AIME25 benchmarks in
Table 6 for the experiments with 2K context length. The results also demonstrate the superiority of
our algorithms over baselines, including GRPO and DAPO.

Table 6: Combined performance metrics with 2K context length on the AIME24, and AIME25
mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is from the
400th training step, assuming the training process remained stable to that point. The highest score in
each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE methods
are highlighted with light cyan and light green backgrounds, respectively.

Method AIME24 AIME25

Last Best Last Best

GRPO 0.2563 0.2708 0.2323 0.2479
DAPO 0.3229 0.3281 0.2792 0.2844

RPG-UFKL 0.3427 0.3479 0.2833 0.2833
RPG-URKL 0.3260 0.3594 0.2677 0.2677

RPG-REINFORCE-UFKL 0.3396 0.3625 0.2927 0.3083
RPG-REINFORCE-URKL 0.3188 0.3417 0.2792 0.2938

I.2 ABLATION STUDY

To further investigate our algorithms, we implement an ablation study on the clip ratio and the effect
of the KL regularization coefficient.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 2 REINFORCE-Style RPG with Dual-Clip Stabilization
Require: Reference policy πold, Reward function R(x), Initial policy parameters θ0
Require: KL Component function Compute_KL_Component(x, θ, πold), KL Component Coefficient β
Require: Learning rate α > 0, Batch size N > 0, Number of epochs K ≥ 1 per iteration
Require: Dual Clip parameters: ϵ1 > 0 (low), ϵ2 > 0 (high), c > 1
Require: Baseline method (e.g., batch average, value function Vϕ)

1: Initialize policy parameters θ ← θ0
2: Initialize value function parameters ϕ (if baseline uses Vϕ)
3: for each training iteration do
4: Sample batch D = {xi}Ni=1 ∼ πold
5: Compute rewards Ri for i = 1..N
6: Compute baselines bi for i = 1..N (e.g., bi = 1

N

∑
j Rj or bi = Vϕ(xi))

7: for k = 1 to K do ▷ Multiple optimization epochs on the same batch
8: Initialize batch loss Lbatch = 0
9: for i = 1 to N do

10: wi =
πθ(xi)
πold(xi)

▷ Importance weight
11: ℓi = − log πθ(xi) ▷ Negative log probability
12: AR,i = Ri − bi ▷ Baseline-subtracted reward
13: CKL,i = β · Compute_KL_Component(xi, θ, πold(xi)) ▷ KL component
14: A′

i = AR,i + SG(CKL,i)/SG(wi) ▷ Effective advantage
15: ψi = A′

i × ℓi ▷ Branching term
16: if ψi ≥ 0 then
17: whigh = 1 + ϵ2
18: if wi < whigh then
19: Li = ψi × SG(wi) ▷ Grad exists
20: else ▷ wi ≥ whigh

21: A′
high = AR,i + SG(CKL,i)/SG(whigh)

22: ψhigh = A′
high × SG(ℓi)

23: Li = ψhigh × SG(whigh)
24: end if
25: else ▷ ψi ≤ 0
26: wlow = 1− ϵ1
27: if wi ≤ wlow then
28: A′

low = AR,i + SG(CKL,i)/SG(wlow)
29: ψlow = A′

low × SG(ℓi)
30: Li = ψlow × SG(wlow)
31: else if wi < c then
32: Li = ψi × SG(wi) ▷ Grad exists
33: else ▷ wi ≥ c
34: Li = AR,i × SG(ℓi)× c+ SG(CKL,i)× SG(ℓi)
35: end if
36: end if
37: Lbatch = Lbatch + Li

38: end for
39: L(θ) = 1

N
Lbatch ▷ Compute average batch loss

40: g ← ∇θL(θ) ▷ Compute gradient
41: θ ← OptimizerUpdate(θ, g, α) ▷ Update policy parameters
42: if using a learned baseline Vϕ then
43: Update value function parameters ϕ
44: end if
45: end for
46: end for
47: return Optimized policy parameters θ

I.2.1 ABLATION ON CLIP RATIO

We first implement experiments with different clip ratios on REINFORCE-style RPG algorithms. We
choose (0.1, 0.1) and (0.2, 0.28) for (ϵ1, ϵ2) since they are 2 typical choices of clip ratios (Schulman
et al., 2017; Yu et al., 2025), and the performance curves as well as key training dynamics are
displayed in Figure 8. It can be observed that although the critic score and response length are
similar for different settings, the actor entropy shows a huge difference in trend, demonstrating that an

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

AI
M

E2
4

ac
cu

ra
cy

 m
ea

n@
32

AIME24 accuracy mean@32
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(a) AIME24

0 50 100 150 200 250 300 350 400
Step

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

AI
M

E2
5

m
ea

n@
32

AIME25 mean@32
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(b) AIME25

0 50 100 150 200 250 300 350 400
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AM
C

23
 a

cc
ur

ac
y

m
ea

n@
32

AMC23 accuracy mean@32

GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(c) AMC23

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
rit

ic
 S

co
re

Critic Score
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(d) Reward (Critic Score)

0 50 100 150 200 250 300 350 400
Step

0.0

0.2

0.4

0.6

0.8

Ac
to

r E
nt

ro
py

Actor Entropy
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(e) Entropy

0 50 100 150 200 250 300 350 400
Step

1050

1100

1150

1200

1250

1300

1350

R
es

po
ns

e
Le

ng
th

Response Length

GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(f) Response Length

Figure 6: Training dynamics and benchmark performance for fully differentiable Regularized Policy
Gradient (RPG) and REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines (GRPO
and DAPO) with 2k context length.

Table 7: Combined performance metrics with 4k context length on the Minerva-Math and Olympiad-
Bench mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is
from the 300th training step, assuming the training process remained stable to that point. The highest
score in each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE
methods are highlighted with light cyan and light green backgrounds, respectively.

Method Minerva-Math OlympiadBench

Last Best Last Best

REINFORCE++-Baseline 0.1103 0.1471 0.4926 0.5875
REINFORCE++ 0.1287 0.1287 0.5252 0.6202
GRPO 0.0919 0.1177 0.5178 0.5594
DAPO 0.0809 0.1507 0.4867 0.3938

RPG-UFKL 0.1360 0.2059 0.4733 0.5564
RPG-URKL 0.1177 0.1581 0.4956 0.5801

RPG-REINFORCE-UFKL 0.1029 0.1434 0.5326 0.5564
RPG-REINFORCE-URKL 0.1324 0.1360 0.4525 0.5816

adequately higher and clip-higher strategy proposed by DAPO may greatly contribute to the increase
of performance by increasing the actor entropy.

I.2.2 ABLATION ON KL REGULARIZATION COEFFICIENT

We also implement ablation studies on the effect of the KL regularization coefficient. We implement
experiments with REINFORCE-style RPG-UFKL (RPG-REINFORCE-UFKL) with β = 1× 10−3

and 1× 10−4, and the results are shown in Figure 9. Figures 9(a) and 9(b) show that the coefficient
1×10−4 performs better than 1×10−3, and the trend in response length conforms to the performance,
indicating that longer response length may help with the improvement in performance.

We also dig into the effect of the iteratively updated reference model. We implement another
experiment with no iteratively updated reference model, and display the performance and dynamics
in Figure 9. It can be observed that the performance recovers with longer response length and much

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.50

0.55

0.60

0.65

0.70

AI
M

E2
4

pa
ss

@
32

AIME24 pass@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(a) AIME24

0 50 100 150 200 250 300 350 400
Step

0.40

0.45

0.50

0.55

0.60

AI
M

E2
5

pa
ss

@
32

AIME25 pass@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(b) AIME25

0 50 100 150 200 250 300 350 400
Step

0.90

0.92

0.94

0.96

0.98

1.00

AM
C

23
 p

as
s@

32

AMC23 pass@32
REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-UFKL
RPG-URKL
RPG-REINFORCE-UFKL
RPG-REINFORCE-URKL

(c) AMC23

Figure 7: Pass@32 performances for fully differentiable Regularized Policy Gradient (RPG) and
REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines with 4k context length.

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

AI
M

E2
4

ac
cu

ra
cy

 m
ea

n@
32

AIME24 accuracy mean@32
RPG-REINFORCE-UFKL-Clip(0.1, 0.1)
RPG-REINFORCE-URKL-Clip(0.1, 0.1)
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
RPG-REINFORCE-URKL-Clip(0.28, 0.28)

(a) AIME24

0 50 100 150 200 250 300 350 400
Step

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

AI
M

E2
5

m
ea

n@
32

AIME25 mean@32
RPG-REINFORCE-UFKL-Clip(0.1, 0.1)
RPG-REINFORCE-URKL-Clip(0.1, 0.1)
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
RPG-REINFORCE-URKL-Clip(0.28, 0.28)

(b) AIME25

0 50 100 150 200 250 300 350 400
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AM
C

23
 a

cc
ur

ac
y

m
ea

n@
32

AMC23 accuracy mean@32

RPG-REINFORCE-UFKL-Clip(0.1, 0.1)
RPG-REINFORCE-URKL-Clip(0.1, 0.1)
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
RPG-REINFORCE-URKL-Clip(0.28, 0.28)

(c) AMC23

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

C
rit

ic
 S

co
re

Critic Score
RPG-REINFORCE-UFKL-Clip(0.1, 0.1)
RPG-REINFORCE-URKL-Clip(0.1, 0.1)
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
RPG-REINFORCE-URKL-Clip(0.28, 0.28)

(d) Reward (Critic Score)

0 50 100 150 200 250 300 350 400
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
to

r E
nt

ro
py

Actor Entropy
RPG-REINFORCE-UFKL-Clip(0.1, 0.1)
RPG-REINFORCE-URKL-Clip(0.1, 0.1)
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
RPG-REINFORCE-URKL-Clip(0.28, 0.28)

(e) Entropy

0 50 100 150 200 250 300 350 400
Step

1100

1150

1200

1250

R
es

po
ns

e
Le

ng
th

Response Length

RPG-REINFORCE-UFKL-Clip(0.1, 0.1)
RPG-REINFORCE-URKL-Clip(0.1, 0.1)
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
RPG-REINFORCE-URKL-Clip(0.28, 0.28)

(f) Response Length

Figure 8: Performance of REINFORCE-Style Regularized Policy Gradient (RPG-REINFORCE)
methods with different clip ratios with 2k context length. Plots display accuracy on mathematical
reasoning benchmarks (AIME24, AIME25) and key training dynamics (reward, policy entropy,
response length).

lower actor entropy, showing that longer response length can be an important factor and indicator of
the performance on benchmarks.

I.3 EXPERIMENTS ON QWEN-2.5-7B-INSTRUCT

I.3.1 REGULARIZED POLICY GRADIENT USING QWEN-2.5-7B-INSTRUCT

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AI
M

E2
4

ac
cu

ra
cy

 m
ea

n@
32

AIME24 accuracy mean@32

RPG-REINFORCE-UFKL-1e-4
RPG-REINFORCE-UFKL-1e-3
RPG-REINFORCE-UFKL-1e-3-noiterref

(a) AIME24

0 50 100 150 200 250 300 350 400
Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AI
M

E2
5

m
ea

n@
32

AIME25 mean@32

RPG-REINFORCE-UFKL-1e-4
RPG-REINFORCE-UFKL-1e-3
RPG-REINFORCE-UFKL-1e-3-noiterref

(b) AIME25

0 50 100 150 200 250 300 350 400
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AM
C

23
 a

cc
ur

ac
y

m
ea

n@
32

AMC23 accuracy mean@32

RPG-REINFORCE-UFKL-1e-4
RPG-REINFORCE-UFKL-1e-3
RPG-REINFORCE-UFKL-1e-3-noiterref

(c) AMC23

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
rit

ic
 S

co
re

Critic Score
RPG-REINFORCE-UFKL-1e-4
RPG-REINFORCE-UFKL-1e-3
RPG-REINFORCE-UFKL-1e-3-noiterref

(d) Reward (Critic Score)

0 50 100 150 200 250 300 350 400
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
to

r E
nt

ro
py

Actor Entropy
RPG-REINFORCE-UFKL-1e-4
RPG-REINFORCE-UFKL-1e-3
RPG-REINFORCE-UFKL-1e-3-noiterref

(e) Entropy

0 50 100 150 200 250 300 350 400
Step

1400

1600

1800

2000

2200

2400

2600

2800

R
es

po
ns

e
Le

ng
th

Response Length
RPG-REINFORCE-UFKL-1e-4
RPG-REINFORCE-UFKL-1e-3
RPG-REINFORCE-UFKL-1e-3-noiterref

(f) Response Length

Figure 9: Performance of REINFORCE-Style Regularized Policy Gradient (RPG-REINFORCE)
methods with different KL coefficients with 4K context length. Here, "noiterref" indicates the model
is trained with no iteratively updated reference model. Plots display accuracy on mathematical
reasoning benchmarks (AIME24, AIME25) and key training dynamics (reward, policy entropy,
response length).

Table 8: Combined performance metrics on the AMC23, AIME24, and AIME25 mathematical
reasoning benchmarks with Qwen-2.5-7B-Instruct model, showing “Last” and “Best” scores. The
“Last” score is from the 400th training step, assuming the training process remained stable to that point.
The highest score in each column is bolded, and the second highest is underlined. RPG and RPG-
REINFORCE methods are highlighted with light cyan and light green backgrounds, respectively.

Method AMC23 AIME24 AIME25
Last Best Last Best Last Best

GRPO 0.6266 0.7250 0.1094 0.1406 0.0281 0.0948
REINFORCE++ 0.7625 0.7664 0.0521 0.1177 0.0302 0.0740
REINFORCE++-Baseline 0.8711 0.8711 0.0990 0.1510 0.0656 0.0969
DAPO 0.8039 0.8734 0.0760 0.1240 0.0531 0.1063

RPG-FKL 0.8695 0.8836 0.1083 0.1490 0.0427 0.1083
RPG-RKL 0.8648 0.8672 0.1167 0.1469 0.0677 0.1240
RPG-UFKL 0.8703 0.8703 0.0885 0.1427 0.0927 0.1177
RPG-URKL 0.8258 0.8641 0.0875 0.1271 0.0677 0.0917

RPG-REINFORCE-FKL 0.8727 0.8727 0.1208 0.1667 0.0573 0.0875
RPG-REINFORCE-RKL 0.8305 0.8516 0.1125 0.1375 0.0490 0.0875
RPG-REINFORCE-UFKL 0.8391 0.8602 0.1229 0.1458 0.0740 0.0979
RPG-REINFORCE-URKL 0.8531 0.8531 0.1208 0.1500 0.0813 0.0938

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.4

0.5

0.6

0.7

0.8

AM
C

23
 a

cc
ur

ac
y

m
ea

n@
32

AMC23 accuracy mean@32
REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-FKL
RPG-RKL
RPG-UFKL
RPG-URKL

(a) AMC23

0 50 100 150 200 250 300 350 400
Step

0.06

0.08

0.10

0.12

0.14

AI
M

E2
4

ac
cu

ra
cy

 m
ea

n@
32

AIME24 accuracy mean@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-FKL
RPG-RKL
RPG-UFKL
RPG-URKL

(b) AIME24

0 50 100 150 200 250 300 350 400
Step

0.02

0.04

0.06

0.08

0.10

AI
M

E2
5

m
ea

n@
32

AIME25 mean@32

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-FKL
RPG-RKL
RPG-UFKL
RPG-URKL

(c) AIME25

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
rit

ic
 S

co
re

Critic Score
REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-FKL
RPG-RKL
RPG-UFKL
RPG-URKL

(d) Reward (Critic Score)

0 50 100 150 200 250 300 350 400
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
to

r E
nt

ro
py

Actor Entropy
REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-FKL
RPG-RKL
RPG-UFKL
RPG-URKL

(e) Entropy

0 50 100 150 200 250 300 350 400
Step

650

700

750

800

850

900

R
es

po
ns

e
Le

ng
th

Response Length

REINFORCE++-Baseline
REINFORCE++
GRPO
DAPO
RPG-FKL
RPG-RKL
RPG-UFKL
RPG-URKL

(f) Response Length

Figure 10: Performance of fully differentiable Regularized Policy Gradient (RPG) methods compared
to baselines when using base model: Qwen-2.5-7B-Instruct. Plots display accuracy on mathematical
reasoning benchmarks (AMC23, AIME24, AIME25) and key training dynamics (reward, policy
entropy, response length).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J PROOF OF THEOREM 2.1 (GENERALIZED POLICY GRADIENT THEOREM)

Proof. The proof relies on the log-derivative trick, ∇θπθ(x) = πθ(x)∇θ log πθ(x), and the product
rule under the integral sign:

∇θEx∼πθ
[f(x, θ)] = ∇θ

∫
πθ(x)f(x, θ)dx

=

∫
∇θ(πθ(x)f(x, θ))dx (Swap ∇,

∫
)

=

∫
((∇θπθ(x))f(x, θ) + πθ(x)(∇θf(x, θ))) dx

=

∫
(πθ(x)(∇θ log πθ(x))f(x, θ) + πθ(x)(∇θf(x, θ))) dx (Log-derivative)

=

∫
πθ(x) (f(x, θ)∇θ log πθ(x) +∇θf(x, θ)) dx

= Ex∼πθ
[f(x, θ)∇θ log πθ(x) +∇θf(x, θ)] .

K PROOFS FOR REGULARIZED POLICY GRADIENTS

This section provides detailed proofs for the theorems presented in Section 3, demonstrating that
the gradients of the proposed fully differentiable off-policy surrogate losses correspond to the
negative gradients of the respective original objectives. The core tool used is the policy gradient
theorem: ∇θEx∼πθ

[f(x, θ)] = Ex∼πθ
[f(x, θ)∇θ log πθ(x) + ∇θf(x, θ)]. We use the notation

w(x) = πθ(x)/πold(x) for the importance weight.

K.1 PROOF OF PROPOSITION E.1 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
NORMALIZED FORWARD KL)

Proof. We start by rewriting the objective function JFKL(θ) using expectations with respect to the
fixed reference policy πold. The first term, the expected reward under πθ, can be rewritten using
importance sampling:

Ex∼πθ
[R(x)] =

∫
πθ(x)R(x)dx =

∫
πθ(x)

πold(x)
πold(x)R(x)dx = Ex∼πold

[w(x)R(x)].

The second term is the forward KL divergence:

KL(πold ∥πθ) = Ex∼πold

[
log

πold(x)

πθ(x)

]
= Ex∼πold

[log πold(x)− log πθ(x)]

= Ex∼πold
[− log πθ(x)] + Ex∼πold

[log πold(x)].

Substituting these into the objective function:

JFKL(θ) = Ex∼πold
[w(x)R(x)]− β (Ex∼πold

[− log πθ(x)] + Ex∼πold
[log πold(x)])

= Ex∼πold
[w(x)R(x) + β log πθ(x)]− βEx∼πold

[log πold(x)].

Since πold(x) does not depend on θ, the term βEx∼πold
[log πold(x)] is a constant with respect to

θ. Now we compute the gradient ∇θJFKL(θ). Assuming we can swap gradient and expectation
(standard assumption in policy gradient methods):

∇θJFKL(θ) = ∇θEx∼πold
[w(x)R(x) + β log πθ(x)]

= Ex∼πold
[∇θ(w(x)R(x) + β log πθ(x))]

= Ex∼πold
[(∇θw(x))R(x) + β∇θ log πθ(x)] .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

We use the identity for the gradient of the importance weight:

∇θw(x) = ∇θ
(
πθ(x)

πold(x)

)
=

1

πold(x)
∇θπθ(x)

=
πθ(x)

πold(x)

∇θπθ(x)
πθ(x)

= w(x)∇θ log πθ(x).
Substituting this back into the gradient expression:

∇θJFKL(θ) = Ex∼πold
[w(x)(∇θ log πθ(x))R(x) + β∇θ log πθ(x)]

= Ex∼πold

[(
w(x)R(x) + β

)
∇θ log πθ(x)

]
.

This proves the first part of the theorem.

Now, consider the surrogate loss function:

LFKL(θ) = Ex∼πold
[−w(x)R(x)− β log πθ(x)] .

We compute its gradient:

∇θLFKL(θ) = ∇θEx∼πold
[−w(x)R(x)− β log πθ(x)]

= Ex∼πold
[∇θ(−w(x)R(x)− β log πθ(x))]

= Ex∼πold
[−(∇θw(x))R(x)− β∇θ log πθ(x)]

= Ex∼πold
[−w(x)(∇θ log πθ(x))R(x)− β∇θ log πθ(x)]

= −Ex∼πold

[(
w(x)R(x) + β

)
∇θ log πθ(x)

]
.

Comparing this with the gradient of the objective function, we see that∇θLFKL(θ) = −∇θJFKL(θ).
This confirms that minimizing LFKL(θ) corresponds to maximizing JFKL(θ) using gradient-based
methods.

K.2 PROOF OF PROPOSITION 3.2 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
UNNORMALIZED FORWARD KL)

Proof. We start by expressing the components of JUFKL(θ) using expectations over the normalized
reference distribution π̃old(x) = πold(x)/Zold. The importance weight is w(x) = πθ(x)/πold(x),
which implies πθ(x) = w(x)πold(x) = w(x)Zoldπ̃old(x).

The expected reward term:

Ex∼πθ
[R(x)] =

∫
πθ(x)R(x)dx =

∫
w(x)πold(x)R(x)dx

=

∫
w(x)Zoldπ̃old(x)R(x)dx = ZoldEx∼π̃old

[w(x)R(x)].

The unnormalized KL divergence term UKL(πold∥πθ) has two parts. Part 1 (Generalized KL):∫
πold(x) log

πold(x)

πθ(x)
dx =

∫
Zoldπ̃old(x) log

πold(x)

πθ(x)
dx

= ZoldEx∼π̃old

[
log

1

w(x)

]
= ZoldEx∼π̃old

[− logw(x)] .

Part 2 (Mass Correction):∫
(πθ(x)− πold(x))dx =

∫
(w(x)πold(x)− πold(x))dx

=

∫
(w(x)− 1)πold(x)dx =

∫
(w(x)− 1)Zoldπ̃old(x)dx

= ZoldEx∼π̃old
[w(x)− 1] = ZoldEx∼π̃old

[w(x)]− Zold.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Combining these parts for the UKL term:

UKL(πold∥πθ) = ZoldEx∼π̃old
[− logw(x)] + ZoldEx∼π̃old

[w(x)]− Zold.

Now, substitute everything into the objective JUFKL(θ):

JUFKL(θ) = ZoldEx∼π̃old
[w(x)R(x)]− β (ZoldEx∼π̃old

[− logw(x)] + ZoldEx∼π̃old
[w(x)]− Zold)

= ZoldEx∼π̃old
[w(x)R(x) + β logw(x)− βw(x) + β] .

To compute the gradient∇θJUFKL(θ), we differentiate the terms inside the expectation. The constant
term βZold (arising from β inside the expectation) vanishes upon differentiation.

∇θJUFKL(θ) = ∇θ (ZoldEx∼π̃old
[w(x)R(x) + β logw(x)− βw(x)])

= ZoldEx∼π̃old
[∇θ(w(x)R(x)) + β∇θ(logw(x))− β∇θ(w(x))] .

We need the gradients of w(x) and logw(x):

∇θw(x) = w(x)∇θ log πθ(x) (as derived in Proposition E.1 proof)
∇θ logw(x) = ∇θ(log πθ(x)− log πold(x)) = ∇θ log πθ(x).

Substituting these into the gradient expression:

∇θJUFKL(θ) = ZoldEx∼π̃old
[(∇θw(x))R(x) + β∇θ log πθ(x)− β(∇θw(x))]

= ZoldEx∼π̃old
[w(x)R(x)∇θ log πθ(x) + β∇θ log πθ(x)− βw(x)∇θ log πθ(x)]

= ZoldEx∼π̃old
[(w(x)R(x)− βw(x) + β)∇θ log πθ(x)]

= ZoldEx∼π̃old

[(
w(x)R(x)− β (w(x)− 1)

)
∇θ log πθ(x)

]
.

This proves the first part of the theorem.

Now, consider the surrogate loss function:

LUFKL(θ) = ZoldEx∼π̃old

[
−w(x)R(x) + β

(
w(x)− logw(x)− 1

)]
.

We compute its gradient:

∇θLUFKL(θ) = ZoldEx∼π̃old
[∇θ(−w(x)R(x)) + β∇θ(w(x)− logw(x)− 1)]

= ZoldEx∼π̃old
[−(∇θw(x))R(x) + β(∇θw(x)−∇θ logw(x))]

= ZoldEx∼π̃old
[−w(x)R(x)∇θ log πθ(x) + β(w(x)∇θ log πθ(x)−∇θ log πθ(x))]

= ZoldEx∼π̃old

[(
−w(x)R(x) + βw(x)− β

)
∇θ log πθ(x)

]
= −ZoldEx∼π̃old

[(
w(x)R(x)− β(w(x)− 1)

)
∇θ log πθ(x)

]
.

Comparing this with the gradient of the objective function, we find ∇θLUFKL(θ) = −∇θJUFKL(θ).
This confirms the surrogate loss function. Note that the constant −1 inside the logarithm term in
the loss LUFKL corresponds to the constant βZold in the objective JUFKL and does not affect the
gradient.

K.3 PROOF OF PROPOSITION E.3 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
NORMALIZED REVERSE KL)

Proof. We rewrite the objective function JRKL(θ) using expectations with respect to πold. The
expected reward term is Ex∼πθ

[R(x)] = Ex∼πold
[w(x)R(x)], as shown previously. The reverse KL

divergence term is:

KL(πθ ∥πold) = Ex∼πθ

[
log

πθ(x)

πold(x)

]
= Ex∼πθ

[logw(x)]

=

∫
πθ(x) logw(x)dx

=

∫
πθ(x)

πold(x)
πold(x) logw(x)dx

= Ex∼πold
[w(x) logw(x)].

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Substituting these into the objective function:

JRKL(θ) = Ex∼πold
[w(x)R(x)]− βEx∼πold

[w(x) logw(x)] = Ex∼πold
[w(x)R(x)− βw(x) logw(x)].

Now we compute the gradient ∇θJRKL(θ):

∇θJRKL(θ) = ∇θEx∼πold
[w(x)R(x)− βw(x) logw(x)]

= Ex∼πold
[∇θ(w(x)R(x))− β∇θ(w(x) logw(x))] .

We need the gradient of w(x) logw(x):

∇θ(w(x) logw(x)) = (∇θw(x)) logw(x) + w(x)∇θ(logw(x))
= (w(x)∇θ log πθ(x)) logw(x) + w(x)(∇θ log πθ(x))
= w(x)∇θ log πθ(x)(logw(x) + 1).

Substituting this and ∇θw(x) = w(x)∇θ log πθ(x) into the gradient expression for JRKL(θ):

∇θJRKL(θ) = Ex∼πold
[(∇θw(x))R(x)− βw(x)∇θ log πθ(x)(logw(x) + 1)]

= Ex∼πold
[w(x)(∇θ log πθ(x))R(x)− βw(x)(logw(x) + 1)∇θ log πθ(x)]

= Ex∼πold

[
w(x)

(
R(x)− β(logw(x) + 1)

)
∇θ log πθ(x)

]
.

This proves the first part of the theorem.

Now, consider the surrogate loss function:

LRKL(θ) = Ex∼πold

[
w(x)

(
−R(x) + β logw(x)

)]
.

We compute its gradient:

∇θLRKL(θ) = ∇θEx∼πold
[−w(x)R(x) + βw(x) logw(x)]

= Ex∼πold
[∇θ(−w(x)R(x)) + β∇θ(w(x) logw(x))]

= Ex∼πold
[−(∇θw(x))R(x) + βw(x)∇θ log πθ(x)(logw(x) + 1)]

= Ex∼πold
[−w(x)(∇θ log πθ(x))R(x) + βw(x)(logw(x) + 1)∇θ log πθ(x)]

= Ex∼πold

[
w(x)

(
−R(x) + β(logw(x) + 1)

)
∇θ log πθ(x)

]
= −Ex∼πold

[
w(x)

(
R(x)− β(logw(x) + 1)

)
∇θ log πθ(x)

]
.

Comparing this with the gradient of the objective function, we confirm that ∇θLRKL(θ) =
−∇θJRKL(θ).

K.4 PROOF OF PROPOSITION 3.6 (POLICY GRADIENT AND DIFFERENTIABLE LOSS FOR
UNNORMALIZED REVERSE KL)

Proof. We again express the objective components using expectations over the normalized reference
distribution π̃old(x) = πold(x)/Zold, with w(x) = πθ(x)/πold(x).

The expected reward term: Ex∼πθ
[R(x)] = ZoldEx∼π̃old

[w(x)R(x)].

The unnormalized reverse KL divergence UKL(πθ∥πold) has two parts. Part 1 (Generalized KL):∫
πθ(x) log

πθ(x)

πold(x)
dx =

∫
πθ(x) logw(x)dx

=

∫
w(x)πold(x) logw(x)dx

=

∫
w(x)Zoldπ̃old(x) logw(x)dx

= ZoldEx∼π̃old
[w(x) logw(x)].

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Part 2 (Mass Correction):∫
(πold(x)− πθ(x))dx =

∫
πold(x)dx−

∫
πθ(x)dx

= Zold −
∫
w(x)πold(x)dx

= Zold −
∫
w(x)Zoldπ̃old(x)dx

= Zold − ZoldEx∼π̃old
[w(x)].

Combining these for the UKL term:

UKL(πθ∥πold) = ZoldEx∼π̃old
[w(x) logw(x)] + Zold − ZoldEx∼π̃old

[w(x)].

Now, substitute into the objective JURKL(θ):

JURKL(θ) = ZoldEx∼π̃old
[w(x)R(x)]− β (ZoldEx∼π̃old

[w(x) logw(x)] + Zold − ZoldEx∼π̃old
[w(x)])

= ZoldEx∼π̃old
[w(x)R(x)− βw(x) logw(x)− β + βw(x)] .

We compute the gradient ∇θJURKL(θ). The constant term −βZold vanishes upon differentiation.

∇θJURKL(θ) = ∇θ (ZoldEx∼π̃old
[w(x)R(x)− βw(x) logw(x) + βw(x)])

= ZoldEx∼π̃old
[∇θ(w(x)R(x))− β∇θ(w(x) logw(x)) + β∇θw(x)] .

Using the previously derived gradients ∇θw(x) = w(x)∇θ log πθ(x) and ∇θ(w(x) logw(x)) =
w(x)∇θ log πθ(x)(logw(x) + 1):

∇θJURKL(θ) = ∇θ (ZoldEx∼π̃old
[w(x)R(x)− βw(x) logw(x) + βw(x)])

= ZoldEx∼π̃old
[∇θ(w(x)R(x))− β∇θ(w(x) logw(x)) + β∇θw(x)]

= ZoldEx∼π̃old
[(∇θw(x))R(x)− βw(x)∇θ log πθ(x)(logw(x) + 1) + β(∇θw(x))]

= ZoldEx∼π̃old
[w(x)R(x)∇θ log πθ(x)− βw(x)(logw(x) + 1)∇θ log πθ(x)

+βw(x)∇θ log πθ(x)]

= ZoldEx∼π̃old

[
w(x)∇θ log πθ(x)

(
R(x)− β(logw(x) + 1) + β

)]
= ZoldEx∼π̃old

[
w(x)∇θ log πθ(x)

(
R(x)− β logw(x)

)]
= ZoldEx∼π̃old

[
w(x)

(
R(x)− β logw(x)

)
∇θ log πθ(x)

]
.

This proves the first part of the theorem.

Now, consider the surrogate loss function:

LURKL(θ) = ZoldEx∼π̃old

[
−w(x)R(x) + β

(
w(x) logw(x)− w(x)

)]
.

We compute its gradient:

∇θLURKL(θ) = ZoldEx∼π̃old
[∇θ(−w(x)R(x)) + β∇θ(w(x) logw(x)− w(x))]

= ZoldEx∼π̃old
[−(∇θw(x))R(x) + β(∇θ(w(x) logw(x))−∇θw(x))]

= ZoldEx∼π̃old
[−w(x)R(x)∇θ log πθ(x)

+β
(
w(x)(logw(x) + 1)∇θ log πθ(x)− w(x)∇θ log πθ(x)

)]
= ZoldEx∼π̃old

[−w(x)R(x)∇θ log πθ(x) + βw(x) logw(x)∇θ log πθ(x)]

= ZoldEx∼π̃old

[
w(x)

(
−R(x) + β logw(x)

)
∇θ log πθ(x)

]
= −ZoldEx∼π̃old

[
w(x)

(
R(x)− β logw(x)

)
∇θ log πθ(x)

]
.

Comparing this with the gradient of the objective function, we confirm that ∇θLURKL(θ) =
−∇θJURKL(θ). The constant term +1 (corresponding to −βZold in the objective) that appeared
in the derivation in Section 3.2 does not affect the gradient and is often omitted from the final loss
expression used in practice.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

L PROOFS FOR REINFORCE-STYLE REGULARIZED POLICY GRADIENTS

This section provides justifications for the REINFORCE-style surrogate loss functions presented in
Section 4 (Theorems F.1 to F.5). These proofs demonstrate how automatic differentiation applied
to the proposed losses, utilizing the stop-gradient operator SG, yields the correct gradient direction
(negative of the objective gradient derived in Section 3).

The core idea relies on the operational definition of the stop-gradient operator SG(·) within automatic
differentiation frameworks: ∇θ SG(f(θ)) = 0, while the forward computation uses the value of f(θ).
We use the notation w(x) = πθ(x)/πold(x).

L.1 PROOF OF PROPOSITION F.1 (REINFORCE-STYLE POLICY GRADIENT FOR FORWARD
KL)

Proof. The objective is JFKL(θ) = Eπθ
[R(x)]−βKL(πold ∥πθ). From Proposition E.1, its gradient

is:

∇θJFKL(θ) = Ex∼πold

(w(x)R(x) + β
)︸ ︷︷ ︸

WeightFKL(x,θ)

∇θ log πθ(x)

 .
The proposed REINFORCE-style surrogate loss is:

LREINFORCE-style
FKL (θ) = −Ex∼πold

[SG (w(x)R(x) + β) log πθ(x)] .

We compute the gradient of this loss as it would be computed by an automatic differentiation system.
Assuming the gradient can be swapped with the expectation:

∇θLREINFORCE-style
FKL (θ) = −Ex∼πold

[∇θ (SG (w(x)R(x) + β) log πθ(x))]

= −Ex∼πold

(∇θ SG (w(x)R(x) + β))︸ ︷︷ ︸
=0 by definition of SG

log πθ(x)

+SG (w(x)R(x) + β) (∇θ log πθ(x))]
= −Ex∼πold

[SG (w(x)R(x) + β)∇θ log πθ(x)] .

This gradient expression, when used in an optimization algorithm (where SG is conceptually re-
moved), corresponds to applying updates proportional to:

− (−Ex∼πold
[(w(x)R(x) + β)∇θ log πθ(x)]) = ∇θJFKL(θ).

Thus, minimizing LREINFORCE-style
FKL (θ) using gradient descent with automatic differentiation effectively

performs gradient ascent on the original objective JFKL(θ).

L.2 PROOF OF PROPOSITION F.3 ((REINFORCE-STYLE POLICY GRADIENT FOR
UNNORMALIZED FORWARD KL)

Proof. The objective is JUFKL(θ) = Eπθ
[R(x)] − βUKL(πold∥πθ). From Proposition 3.2, its

gradient is:

∇θJUFKL(θ) = Ex∼π̃old

Zold

(
w(x)R(x)− β (w(x)− 1)

)
︸ ︷︷ ︸

WeightUFKL(x,θ)

∇θ log πθ(x)

 .
The proposed REINFORCE-style surrogate loss is:

LREINFORCE-style
UFKL (θ) = −Ex∼π̃old

[SG (Zold (w(x)R(x)− β(w(x)− 1))) log πθ(x)] .

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Computing the gradient via automatic differentiation:

∇θLREINFORCE-style
UFKL (θ) = −Ex∼π̃old

[∇θ (SG (Zold(. . .)) log πθ(x))]

= −Ex∼π̃old

(∇θ SG(Zold(. . .)))︸ ︷︷ ︸
=0

log πθ(x) + SG(Zold(. . .))(∇θ log πθ(x))


= −Ex∼π̃old

[SG (Zold (w(x)R(x)− β(w(x)− 1)))∇θ log πθ(x)] .
This gradient corresponds to the update direction −∇θJUFKL(θ) when the SG is dropped. Minimiz-
ing this loss achieves gradient ascent on JUFKL(θ). If Zold is omitted, the same argument applies to
the proportionally scaled objective and loss.

L.3 PROOF OF PROPOSITION F.4 (REINFORCE-STYLE LOSS)

Proof. The objective is JRKL(θ) = Eπθ
[R(x)]−βKL(πθ ∥πold). From Proposition E.3, its gradient

is:

∇θJRKL(θ) = Ex∼πold

w(x)(R(x)− β(logw(x) + 1)
)

︸ ︷︷ ︸
WeightRKL(x,θ)

∇θ log πθ(x)

 .
The proposed REINFORCE-style surrogate loss is:

LREINFORCE-style
RKL (θ) = −Ex∼πold

[SG (w(x) (R(x)− β logw(x)− β)) log πθ(x)] .
Computing the gradient via automatic differentiation:

∇θLREINFORCE-style
RKL (θ) = −Ex∼πold

[∇θ (SG (w(x)(. . .)) log πθ(x))]

= −Ex∼πold

(∇θ SG(w(x)(. . .)))︸ ︷︷ ︸
=0

log πθ(x) + SG(w(x)(. . .))(∇θ log πθ(x))


= −Ex∼πold

[SG (w(x) (R(x)− β logw(x)− β))∇θ log πθ(x)] .
This gradient corresponds to the update direction−∇θJRKL(θ) when the SG is dropped. Minimizing
this loss achieves gradient ascent on JRKL(θ).

L.4 PROOF OF PROPOSITION F.5 (REINFORCE-STYLE LOSS FOR UNNORMALIZED REVERSE
KL)

Proof. The objective is JURKL(θ) = Eπθ
[R(x)] − βUKL(πθ∥πold). From Proposition 3.6, its

gradient is:

∇θJURKL(θ) = Ex∼π̃old

Zoldw(x)
(
R(x)− β logw(x)

)
︸ ︷︷ ︸

WeightURKL(x,θ)

∇θ log πθ(x)

 .
The proposed REINFORCE-style surrogate loss is:

LREINFORCE-style
URKL (θ) = −Ex∼π̃old

[SG (Zoldw(x) (R(x)− β logw(x))) log πθ(x)] .
Computing the gradient via automatic differentiation:

∇θLREINFORCE-style
URKL (θ) = −Ex∼π̃old

[∇θ (SG (Zoldw(x)(. . .)) log πθ(x))]

= −Ex∼π̃old

[
(∇θ SG(Zoldw(x)(. . .)))︸ ︷︷ ︸

=0

log πθ(x)

+ SG(Zoldw(x)(. . .))(∇θ log πθ(x))

]
= −Ex∼π̃old

[SG (Zoldw(x) (R(x)− β logw(x)))∇θ log πθ(x)] .

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

This gradient corresponds to the update direction −∇θJURKL(θ) when the SG is dropped. Minimiz-
ing this loss achieves gradient ascent on JURKL(θ). If Zold is omitted, the same argument applies to
the proportionally scaled objective and loss.

39

	Introduction
	Preliminaries
	KL Regularization in Policy Gradients
	Group Relative Policy Optimization (GRPO)

	Regularized Policy Gradients
	Unnormalized Forward KL Regularization
	Unnormalized Reverse KL Regularization

	REINFORCE-Style Regularized Policy Gradients
	RPG-Style Clip: dual-clip truncation of importance ratios

	Experiments
	Conclusion
	Appendices
	Related Work
	blue Connection Between Regularized Policy Gradient and Natural Policy Gradient
	REINFORCE and Proximal Policy Optimization (PPO)
	REINFORCE
	Proximal Policy Optimization (PPO)

	Equivalence of k3 Estimator and Unnormalized KL Divergence
	Normalized KL Regularization
	Forward KL Regularization
	Reverse KL Regularization

	REINFORCE-Style Regularized Policy Gradients with Various KL Regularization Forms
	Rationale for REINFORCE-Style Loss Formulation
	REINFORCE-Style RPG with Forward KL Regularization
	REINFORCE-Style RPG with Unnormalized Forward KL Regularization
	REINFORCE-Style RPG with Reverse KL Regularization
	REINFORCE-Style RPG with Unnormalized Reverse KL Regularization

	More on Algorithmic Details
	Stabilization Techniques for Regularized Policy Gradients
	Stabilization Techniques for REINFORCE-Style Regularized Policy Gradients

	Detailed Experimental Setup
	Additional Experiment Results
	The performance with 2k context length
	Ablation Study
	blue Experiments on Qwen-2.5-7B-Instruct

	Proof of Theorem 2.1 (Generalized Policy Gradient Theorem)
	Proofs for Regularized Policy Gradients
	Proof of Proposition E.1 (Policy Gradient and Differentiable Loss for Normalized Forward KL)
	Proof of Proposition 3.2 (Policy Gradient and Differentiable Loss for Unnormalized Forward KL)
	Proof of Proposition E.3 (Policy Gradient and Differentiable Loss for Normalized Reverse KL)
	Proof of Proposition 3.6 (Policy Gradient and Differentiable Loss for Unnormalized Reverse KL)

	Proofs for REINFORCE-Style Regularized Policy Gradients
	Proof of Proposition F.1 (REINFORCE-style Policy Gradient for Forward KL)
	Proof of Proposition F.3 ((REINFORCE-style Policy Gradient for Unnormalized Forward KL)
	Proof of Proposition F.4 (REINFORCE-Style Loss)
	Proof of Proposition F.5 (REINFORCE-Style Loss for Unnormalized Reverse KL)

