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Abstract

Spatial clustering is a common unsupervised learning problem with many applications in
areas such as public health, urban planning or transportation, where the goal is to identify
clusters of similar locations based on regionalization as well as patterns in characteristics
over those locations. Unlike standard clustering, a well-studied area with a rich literature
including methods such as K-means clustering, spectral clustering, and hierarchical clustering,
spatial clustering is a relatively sparse area of study due to inherent di�erences between the
spatial domain of the data and its corresponding covariates. In the case of our motivating
example, the American Community Survey dataset, spatial di�erences in census tract regions
cannot be directly compared to di�erences in participant survey responses to indicators such
as employment status or income. As such, in this paper, we develop a spatial clustering
algorithm called Gaussian Process Spatial Clustering (GPSC), which clusters functions
between data leveraging the flexibility of Gaussian processes and extends it to the case of
clustering geospatial data. We provide theoretical guarantees and demonstrate its capabilities
to recover true clusters in several simulation studies and a real-world dataset to identify
clusters of tracts in North Carolina based on socioeconomic and environmental indicators
associated with health and cancer risk.

1 Introduction

There is growing research suggesting that socioenvironmental factors can play a key role in a�ecting health
outcomes, potentially contributing to health disparities in marginalized groups, and may even predictably
impact outcomes at the molecular level with diseases such as cancer (Lord et al., 2022; Larsen et al., 2020).
However, identifying areas of such risk can be a di�cult task. In the community-wide socioeconomic
and environmental indicators dataset, the spatial locations of North Carolina census tracts were paired
with socioeconomic data from the American Community Survey (ACS, 2014) from 2014 chosen to reflect
socioeconomic advantage and disadvantage (Palumbo et al., 2016), as well as environmental pollution data
from the U.S. Environmental Protection Agency (EPA) National Air Toxics Assessment (NATA, NAT (2014);
Larsen et al. (2020)). This then poses the problem: How can geographically spread NC census tracts be
clustered together based on risk factors including socioeconomic indicators and environmental pollution?
North Carolina is known to be an ethnically diverse state (Emerson et al., 2020), with a wide range of spatially
dependent di�erences in socioeconomic status such as access to healthcare, poverty rates, and education, while
meaningful clusterings must take into consideration all these di�erences (Emerson et al., 2020). A standard
clustering algorithm applied to the data collected from the patients in each tract or to the environmental
variables alone fails to necessarily capture the significant spatial dependence inherent in the data collected in
the studies. This problem is known as spatial clustering or geospatial clustering (Aldstadt, 2010).

In spatial clustering, the goal is to identify clusters of similar locations based on regionalization, as well as
patterns in characteristics over those locations. Clustering of geospatial data is a common unsupervised
learning problem with many applications to areas, e.g., public health, urban planning, or transportation,
where geography plays an essential role.

Furthermore, spatial data, also known as geospatial data, is commonly characterized by having a distinct
geographic component (Kisilevich et al., 2009). Unlike traditional data that only include observations as
a single set of features x, spatial data may be considered as a vector [s, x], where s œ R2 represents the
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Figure 1: Distribution of socioeconomic and environmental advantage-disadvantage latent class in NC.

spatial location of the observation and x œ Rp is the set of features or covariates. The analysis of such spatial
datasets poses challenges, such as accurately capturing the relative e�ects between the spatial and covariate
domains (Kisilevich et al., 2009). Importantly, geographically close areas may still have very di�erent patterns
of characteristics, while separated areas may share similarities and constitute a single functional cluster.
Together, this can pose challenges to traditional clustering methods that equally treat the separate domains
inherent to geospatial data such as K-means, as the geographic locations of distinct clusters may be well
mixed, or the measurements themselves of di�erent variables at those locations may be well mixed.

Without the spatial component, clustering itself is a well-studied problem with many established techniques
such as K-means clustering (MacQueen, 1967), spectral clustering (Shi & Malik, 2000), hierarchical cluster-
ing (Nielsen, 2016), and density-based spatial clustering of applications with noise (DBSCAN, Ester et al.
(1996)), to name a few popular algorithms. Each of these algorithms o�ers distinct advantages based on their
modeling assumptions when performed on di�erent types of data. Additionally, common extensions of these
algorithms include supervised fuzzy C-means (Yasunori et al., 2009), spatial hierarchical clustering (Carvalho
et al., 2009), and the generalized DBSCAN (GDBSCAN, Sander et al. (1998)) algorithm. These algorithms
are able to better incorporate either response labels or spatial data directly through customized distance
metrics or connectivity constraints.

However, in this paper, we consider the case of supervised spatial data, with observations consisting of
three components (s, x, y), where s œ R2 is the spatial component, x œ Rp is the feature component, while
y œ R is the response variable of particular interests. Assuming that in the data there is a relationship
between features x, or between features and geography (s, x), and the response y, we propose a new spatial
clustering algorithm based on Gaussian Processes (GPs), called Gaussian Process Spatial Clustering (GPSC),
which groups together clusters based on each group’s ability to predict the response variable y. We focus on
single-output cases in this paper for simplicity, but the extension to multi-output cases where y œ Rd with
d > 1 is straightforward.

For the motivating example from NC census tracts community-level data, s is the longitude/latitude pairs
defining each state census tract, x is the set of environmental pollution variables such as levels of hexane,
lead, mercury, etc, as well as average socioeconomic indicators such as unemployment rates, poverty rates, or
education, and the y response to be predicted is a latent class measuring socioeconomic and environmental
advantage/disadvantage as defined in Larsen et al. (2020).

In order to do so, GPSC leverages the flexibility of GPs, well-studied near-universal function approxima-
tors (Wendland, 2004; Ghosal & Van der Vaart, 2017), to fit the true functional relationships within each
clustering and to cluster tract locations and features pertaining to socioeconomic status. Simulation studies
show that the GPSC algorithm is capable of accurately recovering and clustering these functional relationships
even in cases of limited spatial dependencies and regardless of any dependencies in the covariate domain.
This is important because, as in Figure 1, clusters may not always be completely separated, so it is essential
to control the relative influence of each domain in the clustering done in GPSC by choosing the kernel.
Furthermore, GPSC is less sensitive to dependencies in the covariate domain compared to traditional clustering
methods such as K-means clustering. We prove that GPSC is able to find the true clusters as long as the
functional relationships between the clusters are distinct. When applied to community-wide study, GPSC
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successfully clusters tracts in NC with finer detail than traditional methods and can be interpreted by domain
experts.

In summary, our contributions in this paper are 1) a novel spatial clustering GPSC algorithm, 2) theoretical
support to GPSC and 3) application to NC tract level data with new interpretable discoveries. Full proofs
of theorems, implementation details, as well as extended simulations are presented in the Supplementary
Material.

2 Model

2.1 Gaussian Process Regression

In this section, we review the GP model and its application towards regression and classification. By definition,
a GP is a random function for which any finite realization follows a multivariate Gaussian distribution Williams
& Rasmussen (2006):

Definition 2.1. f follows GP in domain � with mean function µ and covariance function K, denoted by
f ≥ GP (µ, K), where µ : � æ R, K : � ◊ � æ R, if for any x1, · · · , xn œ �,

[y1, · · · , yn]€ := [f(x1), · · · , f(xn)]€ ≥ N(v, �),

where v = [µ(x1), · · · , µ(xn)]€ and �ij = K(xi, xj).

A GP is completely determined by the mean function µ and the covariance function K, also known as the
kernel. In this paper, we assume µ = 0 for simplicity and use the radial basis function (RBF), also known as the
squared exponential kernel, defined as: K(x, x

Õ) = ‡
2
e

≠ d2(x,xÕ)
2b , but our model can be extended to other kernels.

The two parameters, i.e., spatial variance ‡
2 and length scale b are estimated by maximizing the log marginal

likelihood (MLE). Given training data (xi, yi)n
i=1 with MLE ◊n = (‡2

n, bn) and a new observation xú, the best
unbiased linear predictor (BLUP, Stein (1999)) of yú = f(xú) is given by ‚yú = K◊n(xú, X)K◊n(X, X)≠1

Y,

where K◊n(xú, X)i = K◊n(xú, xi), K◊n(X, X)ij = K◊n(xi, xj) and Y = [y1, · · · , yn]€ œ Rn. As a flexible
regression algorithm, GP can be modified into a classifier using a link function (Williams & Rasmussen, 2006)
for a discrete response variable y. As a result, we will not distinguish between Gaussian process regression
(GPR) and Gaussian process classification (GPC) in this paper.

2.2 GP Spatial Clustering

Now we will consider observations {(si, xi, yi)}n
i=1, where si œ S µ R2 is the spatial location, xi œ � œ Rp

is the covariate, and yi is the response variable. Let li œ {1, · · · , L} be the unobserved cluster label such
that li = j ≈∆ si œ Sj µ S, where S1, · · · , SL is a partition of �. We focus on the following model.
yi =

qL
j=1 1{siœSi}fj(xi) =

qL
j=1 1{li=j}fj(xi), where fj is unknown function on � in certain function class

that will be discussed in Section 3. That is, the functional relation between yi and xi varies across spatial
clusters supported by Si. The goal is to recover the cluster label li, called spatial clustering since the clusters
are rooted in the spatial domain S.

For example, in the NC tracts data, each Si consists of tracts in NC, while the relationship between the
latent class and the socioeconomic and environmental covariates varies across the tracts spatially. The goal is
to partition NC into several clusters so that each cluster admits a unique functional relationship.

For a given observation xi in cluster j with response yi, we expect the prediction error of fj to be the lowest
among all fj ’s, and hence we can assign xi to the cluster with the lowest prediction error. However, neither
the cluster label li or domain partition Si, nor the functions fj is observed. Motivated by the flexibility of
GP models, we use GP to approximate the unobserved functions fj , denoted by ‚fj , and assign xi to the
cluster labeled by ‚li with the lowest prediction error: ‚li = arg minj ( ‚fj(si, xi) ≠ yi)2. Then we update the
cluster and ‚fj iteratively. The GPSC algorithm is summarized in algorithm 1.
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Algorithm 1 Gaussian Process Spatial Clustering
Input: data (si, xi, yi)n

i=1, number of clusters L, maximum number of iterations T

Initialize l̂i = randomInt(1, 2, · · · , L)
for t = 1 to T do

for j = 1 to L do
(Sj , Xj , Yj) = {(si, xi, yi) : ‚li = j}, ‚fj = GPR(([Sj , Xj ], Yj))

end for
for i = 1 to n do

l̂i = arg minj ( ‚fj((si, xi)) ≠ yi)2

end for
end for

In this flexible construction, it is also possible to extend the reassignment function for di�erent applications,
such as reinforcing spatial contiguity constraints as is common in geographical clustering:

‚li = arg min
j=1,··· ,L

{( ‚fj(si, xi) ≠ yi)2 + ⁄Îsi ≠ CjÎ}

Here, Cj is the center in the spatial domain of the current cluster Sj , while ⁄ is a tuning parameter that
controls the penalization of assigning points to clusters that are spatially distant. For the rest of the paper,
we will focus on the case ⁄ = 0, but will demonstrate the e�ects of adding such penalties in the simulation
studies.

In summary, the inputs to the algorithm are observations {(si, xi, yi)}n
i=1, along with tuning parameters

including the number of iterations T and the number of clusters L. In practice the number of iterations T

need not necessarily be large, and can be replaced with the stopping criterion when the cluster assignments
stabilize. The proper choice of the number of clusters L is a typical challenge in the field of clustering (Mirkin,
2011), which is beyond the scope of this paper. The choice of L often requires domain expertise specific to
the application at hand, see Section 5 for more detailed discussion. In practice, we also typically bound the
parameters of the covariance function during optimization to prevent overfitting.

3 Theory

In this section, we provide theoretical support to the GPSC algorithm. We start with the necessary definitions
to state the assumptions and theorems.
Definition 3.1. Let K be a positive definite kernel on � µ Rp, then FK(�) := span{K(·, x) : x œ �} with
inner product form

1qn
i=1 aiK(·, xi),

qm
j=1 bjK(·, Âxj)

2

K
:=

q
i,j aibjK(xi, Âxj), so that FK(�) is a pre-Hilbert

space with a reproducing kernel K. The linear mapping � � : FK(�) æ C(�) : �(f)(x) := (f, K(·, x))K , is
injective. Then the image of �, NK(�) := �(FK(�)) is a Hilbert space with a reproducing kernel K equipped
with the inner product (f, g)K := (�≠1

f, �≠1
g)K .

For simplicity, we fix K◊ to be the RBF kernel with ◊ = (‡2
, b) from now on.

Definition 3.2. Given observations X and x0 with unobserved y0 to be predicted. Define the following
function:

ÂX,x0 : Y ‘æ K◊(Y )(x0, X)€
K◊(Y )(X, X)≠1

Y

where ◊(Y ) = arg max◊ N(Y |0, K(X, X)) is the maximum likelihood estimator of ◊ based on potential
observations Y . That is, Â is the BLUP of y0 = f(x0) based on observations (X, Y ). By the definition of Â,
the smoothness of the Gaussian density function and the linearity of BLUP, Â is di�erentiable (Stein, 1999).
We also introduce the following assumptions:

(A1) � µ Rp is compact and p(x) > 0, ’x œ �, where p(x) is the density function of x.
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(A2) fj œ NK(�), j = 1, · · · , L.

Theorem 3.3. Under assumptions (A1)-(A2), at any iteration in Algorithm 1, let njk :=
---{i : li = j,‚li = k}

---,

nj :=
---{i : ‚li = j}

--- then the current xi is a assigned to the correct cluster if for any k ”= j,

q
m”=j nmjq
m”=j nmk

<
DlEl

DuEu
≠ ÎfÎKe

≠c1n
1
p
j + ÎfÎKe

≠c2n
1
p
k

DuEun22
, (1)

where c1 and c2 are constants, and

Dl := inf ÎÒÂ(Y )Î Æ Du := ÎÒÂ(Y )ÎŒ,

El := inf
xœ�,j,k=1,··· ,L

|fj(x) ≠ fk(x)|

Æ Eu := sup
xœ�,j,k=1,··· ,L

|fj(x) ≠ fk(x)| < Œ.

In particular, let L = 2, j = 1, k = 2 and let n1, n2 æ Œ, Equation (1) becomes: n21
n22

<
DlEl
DuEu

. That is, the
mis-clustered proportion is small enough.

The right-hand side of inequality equation 1 is highly interpretable. The ratio Dl
Du

measures the robustness of
the BLUP, that is, how the BLUP changes with training data Y . The less robust the BLUP, the smaller
the ratio, and the harder it is to find the correct clusters. The ratio El

Eu
measures the separation between

functions f1, · · · , fL. The smaller the separation, the smaller the ratio, and the harder it is to find the correct
clusters. Theorem 3.3 also implies that the state of correct clustering is an absorbing state, that is, if the
current clusters are close enough to the true clusters, then perfect clustering results will be achieved in the
next iteration. Note that even if the inequality does not hold, the algorithm may still converge to a better
state with more correctly clustered data, although not within one single step. This is because even when
the right-hand side of Equation equation 1 is small, there might be some region �0 µ � where the fj ’s are
relatively well separated so that the right-hand side is relatively large on �0, so that samples within �0 will
be assigned to true clusters. Meanwhile, for the region where fj ’s are well mixed, it is challenging for all
clustering algorithms.

In practice, the response variable y is often subject to measurement error, leading to a more realistic model:
y = f(x) + ‘, where ‘ ≥ N(0, ·

2) represents noise. The following theorem serves as the counterpart to
Theorem 3.3 in the presence of Gaussian noise:
Theorem 3.4. Under the same assumption and notation as of Theorem 3.3, with the addition of Gaussian
noise, the current xi is assigned to the correct cluster if for any k ”= j,

q
m”=j nmjq
m”=j nmk

<
DlEl

DuEu
≠ ÎfÎKe

≠c1n
1
p
j + ÎfÎKe

≠c2n
1
p
k + ›

DuEun22
, (2)

where › is the sum of independent ‰-distributions with degrees of freedom 1, n1 and n2 rescaled by 2· , · and
· respectively.

In particular, when L = 2, j = 1, k = 2, and n1, n2 æ Œ, the right-hand side simplifies to DlEl
DuEu

with
probability one.

When · = 0, that is, the noise vanishes, then › = 0 so Theorem 3.4 coincides with Theorem 3.3.

4 Simulation Studies

To evaluate the performance of GPSC, we present three simulation studies in this section, with detailed
implementation details in the Supplementary Materials. The first simulation will demonstrate an application
of algorithm 1 in the case of responses generated by linear functions with two clusters, while the second
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simulation shows the performance of GPSC in the case of responses generated by nonlinear functions. The
third simulation shows the robustness of GPSC to noisy data and overspecified number of clusters. In
all simulations, we compare the performance of GPSC with traditional clustering algorithms: K-means,
spectral clustering, hierarchical clustering, and DBSCAN, as well as spatial or supervised analogs: supervised
fuzzy C-means, spatial hierarchical clustering, generalized GDBSCAN, and also the Gaussian mixture model
(GMM, Day (1969)). We evaluate the performance using the adjusted Rand index (ARI, Steinley (2004))
and adjusted mutual information (AMI, (Strehl & Ghosh, 2002)) against the true labels. The data used in
these simulations take the form {(si, xi, yi)}n

i=1, where si œ R2 is the spatial domain, xi œ R2 is the covariate
domain, and yi œ R is the response domain, taken for visualization purposes. Note that for all algorithms,
including GPSC and the aforementioned traditional, nonspatial clustering algorithms, the input is taken
to be the full vector (s, x, y) with the spatial domain included, so that all competitors always use the full
information. The results can be directly extended to higher p and multivariate responses.

4.1 Simulation 1 - Linear Functions

In this simulation, y is a linear function of x for visualization purposes, where both si and xi are generated
from independent uniform distributions. After generating the data {(si, xi)}n

i=1, the spatial domain is
subdivided into two clusters, the center ball and the background region. The yi œ R are then generated as
distinct linear functions of xi for each cluster. For visualizations of the resulting clusters in the XY domain
and all ARI/AMI scores, see Supplement D.1.

Figure 2: [Left] GPSC results for Simulation 1, colored by cluster. The first column plots the spatial domain
si œ R2, the second column plots the covariate space xi œ R2, the third column plots the response space
yi œ R , while the right-most column plots yi œ R against xi œ R2. The first row shows the ground truth
generated data. The second row shows the predicted clusters from GPSC after randomized initialization.
[Right] Clusters for Simulation 1 by nine clustering algorithms visualized in the spatial domain.

It can be seen that this simulation is challenging for several reasons. First, there is almost no separation
considering any dimension s, x, or y on its own as in the first three columns in Figure 2 (left); the separation
is solely in the functional domain XY . As a result, most traditional algorithms cannot capture this functional
relationship, as supported by Panels 3-7 in Figure 2 (right). Although it can seen that the Gaussian mixture
model is able to rediscover the clusters in this case (Panel 2), this is due to GMM’s ability to estimate the
pairwise linear correlation between each domain. However, we expect GMM to fail to capture nonlinear
functional relationships, as shown in the following Simulation 2. It is also noted that DBSCAN and GDBSCAN
(Panels 8 and 9) also perform reasonably well, but have challenges of their own such as GDBSCAN greatly
overestimating the number of clusters.
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4.2 Simulation 2 - Nonlinear Functions

In this simulation, we will show that in an irregular spatial distribution with nonlinear relationships between
the covariates and the response variable, GPSC is still able to recover the true functional relationships in
contrast to the competitors. After generating the data {(si, xi)}n

i=1 from independent uniform distributions,
the spatial domain is subdivided into two clusters, the ring and the background region. The yi œ R are then
generated as distinct nonlinear functions of xi for each cluster (the first row of Figure 3).

Figure 3: [Left] Results for Simulation 2 with true generated data (top) and results of GPSC (bottom).
[Right] Clusters for Simulation 2 by nine clustering algorithms visualized in the spatial domain.

It can be seen that in this more challenging simulation, only GPSC is able to recover the true functional
clusters, with the results of each clustering algorithm plotted in the spatial domain in Figure 3 (see Supplement
D.2 for more details).

4.3 Simulation 3 - Model Robustness

In Simulation 3, we present a more realistic scenario of three clusters that have some degree of spatial
separation. Motivated by our real-world application of clustering North Carolina census tracts, the sun and
moon clusters could be interpreted to represent two urban centers surrounded by a larger rural region. By
applying the spatially penalized version of GPSC, we will show that the clustering results remain stable
across both increasing levels of noise, as well as to overspecification of the input number of clusters. Full
visualization and comparisons can be found in Supplement D.3, D.4 and D.5.

After generating the data {(si, xi)}n
i=1 from independent uniform distributions, the spatial domain is sub-

divided into the three clusters, the sun and moon shape, and the background region. The yi œ R are then
generated as distinct nonlinear functions of xi for each cluster with varying degrees of zero-mean Gaussian
noise. For an extension of Simulation 3 to nonlinear functions of both si and xi, see Supplement D.5.

4.3.1 Noisy Responses

In this section, we show that GPSC works under noisy conditions as per Theorem 3.4. In Figure 25, we
present Simulation 3 with noise variance = 100, showing that the spatially penalized version of GPSC still
performs well under noisy conditions. In particular, GPSC is able to outperform competitors at all tested
noise levels, where no other competitor is able to recover the true clusters (with exact ARI/AMI scores and
additional details in Supplement D.3).
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Figure 4: [Left] Results for Simulation 3 with true generated data (top) and results of GPSC (bottom).
[Right] Clusters for Simulation 3, by nine clustering algorithms visualized in the spatial domain.

4.3.2 Overspecified Number of Clusters

Finally, we show that GPSC is stable when the number of clusters is overspecified. Specifically, it can be
seen in Figure 5 when the number of specified clusters is 5, the sun (teal) and moon (yellow) clusters remain
stable, while the background cluster (originally purple) is split into three purple, indigo, and light green
clusters. In contrast, the competitors are unable to recover the true clusters when the number of clusters
are overspecified, while further visualizations and comparisons to the competitor models are presented in
Supplement D.4.

Figure 5: [Left] GPSC results for Simulation 3 with overspecified number of clusters as 5, along with
competitors. [Right] Results of nine algorithms with overspecified input presented in the spatial domain.

5 Applications to NC Tract Data

This dataset consists of 29 community-wide covariates aggregated by census tracts in North Carolina. Such
covariates ranged from measures of environmental pollution to averages of socioeconomic indicators such as
unemployment, housing environment, education, etc (see Supplement E for a full list). Each census tract is
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associated with a single (longitude, latitude) pair of coordinates. The overall socioeconomic indicators were
previously aggregated using latent class analysis into a single advantage/disadvantage class ranging from 1-8
Larsen et al. (2020).

Figure 6: Baseline aggregate groups of socioeconomic and environmental latent class indicator.

Based on the distribution of the full latent classes seen in Figure 1, we can see that there is some degree
of separation in the spatial domain between certain groups. Thus, we initialized our GPSC algorithm by
performing traditional K-means clustering on solely the spatial domain. We then applied our GPSC algorithm
using this latent class as the response variable, taking all other features as the set of covariates, and compared
the results with K-means clustering for comparison. Here, we focus on K-means for comparison due to
its interpretable results from previous studies in Larsen et al. (2020), with results from other algorithms
presented in Supplement E. Based on our results, we find that L = 3 produced the most interpretable clusters,
and thus aggregated the 8 latent classes into 3 to visualize as a baseline against GPSC seen in Figure 6. Using
the language of Larsen et al. (2020) for our predicted 3 clusters, we will consider the overall socioeconomic
and environmental advantage to be three levels: low (pink), medium (gray), and high (green).

Figure 7: Clusters by GPSC and K-means for tract data, interpreted as overall socioeconomic/envrionmental
advantage between levels of low (pink), medium (grey), and high (green).

At first glance, the general spatial distribution of our GPSC and K-means algorithms tends to agree. However,
the GPSC predicted clusters di�er from K-means and baseline in several meaningful ways. First, in the
central region depicted in the first row of Figure 8, GPSC identifies more areas of high advantage (green).
Notably, this includes the area surrounding cities such as Chapel Hill, Cary, and the capital city Raleigh
(Research Triangle Park), as well as Greensboro and High Point (the Piedmont Triad), which are known to
be wealthier and more urbanized regions of the state, whereas the K-means algorithm puts tracts within this
region in the medium (gray) advantage group.

Towards the edges of the state we can also see significant di�erences as the GPSC algorithm tends to further
di�erentiate tracts around the extremities between low and medium advantage. Most notably, around
Asheville and Wilmington, two more prominent cities in North Carolina, we are able to distinguish further
di�erences between low and medium advantage tracts, as seen in the second and third rows in Figures 8.
Considering the ARI and AMI scores between the two clusterings, we find the scores to be both 0.002,
suggesting that clusterings, despite visually seeming to separate the tracts spatially in similar patterns, are
actually very di�erent. One challenge of K-means clustering in Larsen et al. (2020) when determining the
original 8 latent classes was a potential lack of finer detail from the K-means predicted clusters. However,
here we have shown that despite using the same L = 3 clusters, GPSC is able to further di�erentiate between
areas of low and medium disadvantage, in less dense areas of the state along the coast and the western region.
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Figure 8: GPSC and K-means cluster results for NC tracts. Row 1: Central NC; Row 2: Western NC
(Asheville); Row 3: Southeastern NC (Wilmington)

Furthermore, there is reason to believe that not all 8 classes are necessary to describe the di�erent advantage
groups. In the original grouping, the latent class 2 is actually an empty group, as seen in Figure 1. Thus,
the results from GPSC in comparison to K-means and baseline suggest that the algorithm is able to better
balance nuance against a traditional clustering algorithm, while also retaining simpler interpretability by
using fewer clusters.

6 Discussion

Spatial clustering o�ers unique challenges in comparison to traditional clustering problems due to the spatial
domain inherent to geographic data. In our application, the census tract data have distinctly di�erent
properties compared to the measured covariates over the tracts. In this paper, we propose a GP-based
clustering algorithm and demonstrate its performance in both simulation studies and a real data application.
The advantages of GPSC include being able to capture the relative e�ects between the spatial domain
and the measured covariates, largely independent of intersections in the covariate domain as long as the
clustered functions themselves have some degree of separation. We also provide theoretical guarantees to the
convergence of GPSC and extend it to noisy settings. In the simulations, we demonstrate these scenarios
in which the clusters were mostly inseparable when considering any single domain, yet the GPSC model
outperforms all competitors in recovering the true cluster by fitting the relationship between the covariate
and the response.

GPSC can also be highly scalable; the complexity of the algorithm stems from the fitting of each GP in
each iteration, where standard Gaussian processes regression is O(n3) in the size of the input. In our case,
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we applied a standard Gaussian process regression model from the scikit-learn package (Pedregosa et al.,
2011) since our sample size was relatively small. However, in cases of large sample size, scalable GP methods
can be applied for a reduction in runtime to O(n log n) (Liu et al., 2020). The GPSC model also has few
tuning parameters, notably the number of clusters, optional spatial penalty for data thought to contain
spatially contiguous clusters, and and can also be highly flexible through the choice of GP kernel. Although
the form of our theorem is independent of the specific choice of kernel (only the convergence rate will di�er),
in practice more nuanced anisotropic or nonstationary kernels may be more suitable for datasets with strong
heterogeneity, for which the actual design of such kernels remains an open problem.

In the real-world application, we applied GPSC to a North Carolina socioeconomic and environmental
indicator dataset and found distinct patterns of advantage-disadvantage across the state that captured finer
details around the less dense outer regions of the state in comparison to K-means and other clustering
methods (presented in Supplement E), while our method also o�ered simpler interpretability than previous
analysis. When utilized by domain experts, the goal of the results of these models is to supplement the
identification of marginalized communities, which could be targeted with interventions.

6.1 Broader Impacts Statement

In context of our long-term goal of designing interventions, ensuring the accuracy of these models is also of
high ethical importance. Therefore in our case, before any application, we can perform sensitivity analyses
that tile the geographic region with alternative regional classifiers (county, AHEC region, latitude and
longitude tiles of uniform size) to confirm that the same areas arise in multiple boundary definitions. This will
confirm that the boundary definitions are not driving artifactual associations. More broadly, it is important
that in these high-stakes applications we do not over-rely on any one method. We envisage the possibility of
using these clustering results (and GPSC in general) as a supplementary tool for experts to potentially better
identify marginalized communities and areas that may be otherwise overlooked.
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A Appendix Overview

In Section B we continue the discussion section of the main paper on the potential limitations of our algorithm
and provide some general guidance on usage. In Section C we provide proofs for the two convergence
theorems presented in the main paper. Section D contains the full implementation details, and additional
figures for the three simulation studies presented in the main paper, as well as an extension to spatially-
dependent functions. Section E contains additional details for the real-world application of the main
paper as well as additional comparisons to competitor algorithms. All code is available anonymously at
https://anonymous.4open.science/r/gpsc-tmlr24-CD3D/README.md.
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B Potential Limitations

Here we continue our discussion from the paper on potential limitations of the GPSC model. The first is the
question of tuning the appropriate number of clusters. This is a well-known challenge in clustering, which is
beyond the scope of our study. However, some clustering algorithms have the capability to automatically
determine the number of clusters. In this regard, we found that DBSCAN and GDBSCAN generally performed
poorly in our simulation studies, resulting in incorrect and irrelevant clusters. As such, like in our real world
application, selecting the appropriate number of clusters for the problem is best handled on a case-by-case
basis with input from domain experts or prior background knowledge. The same can be said of the optional
tuning parameter ⁄, which again reinforces contiguous spatial restraints by penalizing assignments to distant
clusters. In our application, we were able to compare our results with previous studies on the socioeconomic
and environmental cancer risk factors across the state, as well as collaborate with epidemiologists and cancer
experts familiar with the datasets.

Next we briefly revisit the modeling assumptions of GPSC. Our main focus is spatial clustering, as motivated
by the CBCS application, where di�erent spatial clusters exhibit di�erent functional relations between the
response variable y and input features. In this case, according to our theorems presented in the main paper,
the performance of GPSC is influenced by several key factors, including Du, Dl, Eu, and El. In simpler terms,
if the true underlying functions fj in di�erent clusters are not clearly distinguishable, or they have unbounded
derivatives, it may be challenging to achieve optimal clustering results. However, this is a common challenge
for most clustering algorithms, and overcoming this limitation may require more advanced techniques and
designs.

C Proofs

C.1 Proof of Theorem 3.3

We first consider the case of L = 2 that is, there are two clusters. Let li be the unobserved true cluster label
of the xi and ‚li be the cluster label of xi in the current iteration. Let x0 be a sample to be clustered with
(unobserved) label l0 = 1, that is, x0 should be assigned to cluster-1. Our goal is to show that GPSC does
assign x0 to cluster-1 under the condition explicitly stated in Theorem 3.3.

Let (X1, Y1) := {(xi, yi) : ‚li = 1} be the set of samples assigned to cluster-1 with size n1 := #{i : ‚li = 1}.
Similarly, let (X2, Y2) := {(xi, yi) : ‚li = 2} be the set of samples assigned to cluster-2 with size n2 := #{i :
‚li = 2}. According to Algorithm 1, we train two GPR models based on (X1, Y1) and (X2, Y2), to obtain two
predictors of y0 denoted by ‚y(1) and ‚y(2). Under the notation in Definition 3.2, we have ‚y(1) = ÂX,x0(Y1) and
‚y(2) = ÂX,x0(Y2), it su�ces to show that e1 := |y0 ≠ ‚y(1)| < e2 := |y0 ≠ ‚y(2)| as long as

n21
n22

<
DlEl

DuEu
≠ ÎfÎe

≠c1n
1
p
1 + ÎfÎe

≠c2n
1
p
2

DuEu
.

To calculate e1, we introduce the following partially observed dummy variables ÂY1 := f1(X1) and let
Ây(1) := ÂX1,x0(ÂY1). We plug this term in e1 and apply triangle inequality to obtain the following:

e1 = |y0 ≠ ‚y(1)| = |y0 ≠ Ây(1) + Ây(1) ≠ ‚y(1)| Æ |y0 ≠ Ây(1)|¸ ˚˙ ˝
1

+ |Ây(1) ≠ ‚y(1)|¸ ˚˙ ˝
2

.

Observe that 1 is the prediction error of standard Gaussian process regression on (X1, ÂY1), without any
misspecified samples. As a result, the upper bound of 1 comes from Lemma C.1, the asymptotic theory of
Gaussian process regression. That is, 1 Æ ÎfÎe

≠c1/hn1 for some constant c1. Assumption (A1) and Dudley’s

theorem imply that hn1 = O(n≠ 1
p

1 ), so 1 Æ ÎfÎe
≠c1n

1
p
1 .
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To analyze 2 , we first observe that ‚y(1) = ÂX1,x0(Y1) is based on partially correct clusters, while Ây(1) =
ÂX1,x0(ÂY1) is based on true clusters. Then by the di�erentiability of Â, we have

2 = |ÂX1,x0(Y1) ≠ ÂX1,x0(ÂY1)| Æ ÎÒÂX1,x0ÎŒÎY1 ≠ ÂY1Î = DuÎY1 ≠ ÂY1Î,

where Du = supX1µX,x0œX ÎÒÂX1,x0ÎŒ. As a result, it su�ces to find an upper bound of ÎY1 ≠ ÂY1Î.

Observe that among samples in (X1, Y1), some are correctly clustered, denoted by (X11, Y11) = {(xi, yi) : li =
1,‚li = 1} with size n11, while the rest are incorrectly clustered, denoted by (X21, Y21) = {(xi, yi) : li = 2,‚li = 1}

with size n21. After reordering the samples, we have X1 =
5
X11
X21

6
and Y1 =

5
Y11
Y21

6
. By the model

assumption, for the correctly clustered samples Y11 = f1(X11), while for the incorrectly clustered samples,

Y21 = f2(X21) ”= f1(X21). By the same rule, we can split ÂY1 into two components as well, i.e., ÂY1 =
C

ÂY11
ÂY21

D

with ÂY11 = f1(X11) = Y11 and ÂY21 = f1(X21). That is, the di�erence between Y1 and ÂY only comes from Y21
and ÂY21:

|Y1 ≠ ÂY1Î =

.....

5
Y11
Y21

6
≠

C
ÂY11
ÂY21

D..... =
....

5
f1(X11)
f2(X21)

6
≠

5
f1(X11)
f1(X21)

6....

= Îf2(X21) ≠ f1(X21)Î Æ n21Îf2 ≠ f1ÎŒ = n21Eu,

where Eu = Îf2 ≠ f1ÎŒ. Combining 1 and 2 , we derive the upper bound of e1:

e1 Æ C1e
≠c1n

1
p
1 + n21DuEu.

Then we calculate e2 by similar idea, but with all inequalities reversed. Again, we introduce the partially
unobserved variables ÂY2 := f1(X2) and let Ây(2) := ÂX2,x0(ÂY2). Again, by triangle inequality, we fin the
following lower bound of e2:

e2 = |y0 ≠ ‚y(2)| = |y0 ≠ Ây(2) + Ây(2) ≠ ‚y(2)| Ø |Ây(2) ≠ ‚y(2)|¸ ˚˙ ˝
3

≠ |y0 ≠ Ây(2)|¸ ˚˙ ˝
4

Finding the upper bound for 4 follows similar logic as for the upper bound for 1 . Observe that 4 is the
prediction error of standard Gaussian process regression on (X2, ÂY2), without any misspecified samples. As a

result, the upper bound of 4 comes from Lemma C.1 and Assumption (A1). That is, 4 Æ ÎfÎe
≠c2n

1
p
2 for

some constant c2.

While, unlike finding upper bound for 2 , our goal is to find a lower bound for 3 . By mean value theorem,

3 = |ÂX2,x0(ÂY2) ≠ ÂX2,x0(Y2)| Ø inf ÎÒÂX2,x0(Y )ÎŒÎY1 ≠ ÂY1Î = DlÎÂY2 ≠ Y2Î.

To find the lower bound of ÎÂY2 ≠ Y2Î, we again split both vectors into two components: X2 =
5
X12
X22

6
and

Y2 =
5
Y12
Y22

6
, where Y12 = f2(X12) and Y22 = f1(X22). Then,

ÎY2 ≠ ÂY2Î =

.....

5
Y12
Y22

6
≠

C
ÂY12
ÂY22

D..... =
....

5
f1(X12)
f2(X22)

6
≠

5
f1(X12)
f1(X22)

6....

= Îf2(X22) ≠ f1(X22)Î Ø n22 inf
xœ�

|f2(x) ≠ f1(x)| Ø n22El.

Combining 3 and 4 , we find the lower bound of e2:

e2 Ø n22DlEl ≠ C2e
≠c2n

1
p
2 .

Finally, we conclude that e1 < e2 if C1e
≠c1n

1
p
1 + n21DuEu < n22DlEl ≠ C2e

≠c2n
1
p
2 , that is inequality 1.
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Lemma C.1 (Wendland (2004)). When f œ NK(�) where K is the RBF kernel in Rp, then let ‚fn be
the approximation to f by GP based on training samples (X, Y ) with sample size n and filled distance
hn := supxœ� mini Îx ≠ xiÎ, then

Îf ≠ ‚fnÎŒ Æ e
≠c/hnÎfÎK . (3)

To prove Theorem 3.3 for arbitrary L and j, the only di�erence is in the construction of ÂYj , which splits
into L components. To analyze ej , ÂYj = [ÂY1j , · · · , ÂYLj ]€ where ÂYkj = fj(Ykj) with ÂYjj = Yjj . As a result,
ÎÂYj ≠ YjÎ Æ

q
k ”=j nkjDuEu and

ej Æ ÎfÎe
≠c1n

1
p
j +

ÿ

k ”=j

nkjDuEu.

Similarly, for ek with k ”= j, ÂYk = [ÂY1k, · · · , ÂYLk]€ where ÂYmk = fj(Ymk) with ÂYjk = Yjk. As a result,
ÎÂYk ≠ YkÎ Ø

q
m”=k nmkDlEl and

ek Ø
ÿ

m”=k

nkjDlEl ≠ ÎfÎe
≠ckn

1
p
k .

C.2 Proof of Theorem 3.4

For simplicity, we show the case of L = 2 only, the extension to general case is similar to the proof of Theorem
3.3. Following the proof in Section C.1, it su�cies to analyze 1 . Recall that y0 = f1(x0) + ‘, we first define
y0ú := f1(x0), then |y0 ≠ y0ú| Æ |‘| Æ 3· with probability 99.7% since ‘ ≥ N(0, ·

2). Since y0ú is the clean
observation without any noise, the previous analysis carries to |y0ú ≠ Ây(1)| naturally, that is,

1 = |y0 ≠ Ây(1)| = |y0 ≠ y0ú ≠ y0ú + Ây(1)|

Æ |y0 ≠ y0ú| + |y0ú ≠ Ây(1)| Æ |‘0| + ÎfÎe
≠c1n

1
p
1

where ‘0 ≥ (0, ·
2). To analyze 2 , by the same argument, it su�ces to bound ÎY1 ≠ ÂY1Î.

ÎY1 ≠ ÂY1Î =

.....

5
Y11
Y21

6
≠

C
ÂY11
ÂY21

D..... =
....

5
f1(X11)
f2(X21)

6
+ � ≠

5
f1(X11)
f1(X21)

6....

= Îf2(X21) ≠ f1(X21)Î + Î�1Î Æ n21Îf2 ≠ f1ÎŒ = n21Eu + Î�1Î,

where �1 is the vector of noise ‘’s so Î�1Î ≥ ‰(n1). As a result,

e1 Æ C1e
≠n

1
p
1 + n21DuEu + |‘0| + Î�1Î.

In the same logic, we have 3 Ø n22DlEl ≠ Î�2Î, 4 Æ |‘| + ÎfÎe
≠c2n

≠ 1
p

2 , and

e2 Ø n22DlEl ≠ C2e
≠n

1
p
2 ≠ |‘0| ≠ Î�2Î.

Finally, we conclude that e1 < e2 if

C1e
≠n

1
p
1 + n21DuEu + |‘0| + Î�1Î < n22DlEl ≠ C2e

≠n
1
p
2 ≠ |‘0| ≠ Î�2Î,

that is,

n21DuEu < n22DlEl ≠ C1e
≠c1n

1
p
1 ≠ C2e

≠c2n
1
p
2 ≠ 2|‘| ≠ Î�1Î ≠ Î�2Î.

Note that 2|‘| = 2·‰(1), Î�1Î = ·‰(n1) and Î�2Î = ·‰(n2). Then Theorem 3.4 follows by setting
› = 2|‘| + Î�1Î + Î�2Î, the sum of independent ‰-distributions with degrees of freedom 1, n1 and n2 rescaled
by 2· , · and · respectively.

The limiting case holds since ‰(n)/n
næŒ≠≠≠≠æ, that is, the ‰ random variable grows sub-linearly with the degree

of freedom.
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D Details on Simulation Studies

All simulation experiments were carried out on an Apple Macbook Pro with M1 Pro processor with 32 GB
of memory. The scikit-learn clustering package Pedregosa et al. (2011) and scikit-fuzzy Warner & Sexauer
package were used for all experiments to perform traditional clustering as well as handling Gaussian process
regression for the GPSC algorithm and computing clustering metrics. All code for the simulation studies
has also been made available. Note that for all simulations in the main paper, as well as in each of the
additional simulations presented in this section, GPSC and all other competitor algorithms were tuned on a
single random seed. Experiments were then replicated using these same parameters 49 more times on the
next 49 random seeds in order for a total of 50 replicates, and the adjusted Rand index and adjusted mutual
information scores are reported as mean ± standard deviation. Finally, an early stopping condition was
employed for all experiments. When both the adjusted Rand index and adjusted mutual information both
are above 0.90 (exact value can be set by user) on an iteration by iteration basis, the algorithm is thought to
have converged and stopped. The exact values for all experiments are presented with the code.

For parameter tuning of the competitor methods, a grid search over the parameters maximizing the adjusted
mutual information score against the true labels was performed as followed: 1) For K-means, the default
parameters were used in the scikit-learn package. 2) For spectral clustering, the a�nity matrix was determined
by nearest neighbors, where the number of neighbors was tuned between 1 and 50 in increments of one. 3)
For DBSCAN, the eps parameter (maximum distance between two samples in a single neighborhood) was
searched between 1 and 100 in increments of one, and the minimum number of samples in a neighborhood was
tuned between 1 and 40 in increments of one. 4) For standard hierarchical clustering, the default parameters
were used under the ward linkage. 5) For supervised fuzzy C-means, the default arguments in the scikit-fuzzy
package were used, except the algorithm was initialized using the response variable y as the labels. 6)
For GDBSCAN, the distance thresholds were tuned individually for each simulation. 7) For spatialized
hierarchical clustering, the spatial connectivity matrix was determined by k-nearest neighbors, where the
number of neighbors was searched between 1 and at least 75 in increments of one, and where the linkage was
also varied between the set {average, complete, ward, single}. 8) Finally for the Gaussian mixture model, the
default parameters in the scikit-learn package were used. Any auxiliary parameters unspecified here were left
as the default values from the packages.

D.1 Simulation 1

The data used in this simulation takes the form {(si, xi, yi)}n
i=1, where si œ R2, the spatial domain, xi œ R2,

the covariate domain, and yi œ R, the response domain, for visualization purposes.

In this simulation, both si œ R2 and xi œ R2 are generated from independent uniform distributions, where
si ≥ Unif(≠5, 5) and xi ≥ Unif(≠3, 3) component-wise.

After generating the data {(si, xi)}n
i=1, where n = 1000 samples, the domain square is subdivided into two

clusters, the ball shape cluster and the rest region. This is done by subsetting all points {(si, xi)} within 2.8
units of the point (0, 0) solely in the spatial domain into cluster 2 (ball), and the remaining points of the
background into cluster 1.

For each cluster, y is generated as a linear function of x. For cluster 1, the true function is:

y = ≠x1.

And for cluster 2, the true function is:
y = x1.

After the data was generated, GPSC was applied with the following input: 2 clusters, 50 iterations with early
stopping, GP input {xi, si}, constant bounds (1e

≠15
, 1e

6), length scale bounds (1e
6
, 1e

15), input data. For
the GP, the RBF kernel was used. Then K-means clustering, spectral clustering, hierarchical clustering with
Ward linkage, and DBSCAN were also applied. For spectral clustering, the a�nity matrix was generated
with using nearest-neighbors set to 11. For DBSCAN, the maximum distance was set to 77, and minimum
number of samples set to 3. The full set of {xi, si, yi} as a vector was input into each algorithm along with
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L = 2 clusters where relevant. For supervised C-means clustering, the supervised labels were set according to
the y domain with otherwise default parameters. For GDBSCAN, the covariate distance threshold was set
to 3, spatial distance set to 13, and minimum set to 0. For the spatialized hierarchical clustering method,
the connectivity matrix was specified using k-nearest neighbors using 1 neighbor and ward linkage. Finally,
default parameters were used for Gaussian mixture model. These parameters were found by searching over
a wide range of values such that the adjusted mutual information was maximized against the true labels.
Parameter tuning for all methods, including GPSC, was only done on the first seed (14), and all replicates
used the same set of parameters (for seeds 15-63). Any parameters not mentioned were left as default as per
the scikit-learn package. The code is provided for full details and implementation.

(a) Spatial Domain (b) XY Domain

Figure 9: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation 1.

Table 1: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for Simulation 1, replicated over 50 random seeds reported as mean ± standard deviation for.

method ari ami method ari ami
gpsc 0.91 ± 0.27 0.90 ± 0.27 gmm 0.82 ± 0.39 0.82 ± 0.39
k-means 0.00 ± 0.00 0.00 ± 0.00 C-means 0.00 ± 0.00 0.00 ± 0.00
hier. 0.03 ± 0.03 0.11 ± 0.06 spat. hier. 0.03 ± 0.03 0.12 ± 0.06
dbscan 0.10 ± 0.08 0.08 ± 0.06 gdbscan 0.09 ± 0.03 0.24 ± 0.04
spectral 0.03 ± 0.14 0.15 ± 0.12

D.2 Simulation 2

The data used in this simulation takes the form {(si, xi, yi)}n
i=1, where si œ R2, the spatial domain, xi œ R2,

the covariate domain, and yi œ R, the response domain, for visualization purposes.

In this simulation, both si œ R2 and xi œ R2 are generated from independent uniform distributions, where
si ≥ Unif(≠5, 5) and xi ≥ Unif(≠3, 3) component-wise.

After generating the data {(si, xi)}n
i=1, where n = 1000 samples, the domain square is subdivided into again

two clusters, the ring and background. Cluster 1 (ring) was made by subsetting all points {(si, xi)} within
3.5 but greater than 2 units of the point (0,0) solely in the spatial domain, with the rest forming cluster 2.
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For each cluster, y is generated as a nonlinear function of just xi. For cluster 1, the true nonlinear function is:

y = ≠(x1)3
.

And for cluster 2, the true nonlinear function is:

y = (x1)3
.

After the data was generated, the GPSC was applied with the following input: 2 clusters, 20 iterations with
early stopping, (note that GP input remains {xi, si} even though the true functions generating the clusters
are functions only of x), constant bounds (1e

≠15
, 1e

6), length scale bounds (1e
6
, 1e

15), input data. For the
GP, again the RBF kernel was used.

Then K-means clustering, spectral clustering, hierarchical clustering with Ward linkage, and DBSCAN was
also applied. For spectral clustering, the a�nity matrix was generated with using nearest-neighbors set to
5. For DBSCAN, the maximum distance was set to 3, and minimum number of samples set to 3. The full
set of {xi, si, yi} as a vector was input into each algorithm along with L = 2 clusters where relevant. Any
parameters not mentioned were left as default as per the scikit-learn package. For spectral clustering, all
neighbors between 1 and 50 were tested by comparing the adjusted mutual information scores. For DBSCAN,
the maximum distance distance was tested between 1 and 100, and for each distance, the minimum samples
were tested between 1 and 300, again by adjusted mutual information scores. For supervised C-means
clustering, the supervised labels were set according to the y domain with otherwise default parameters. For
GDBSCAN, the covariate distance threshold was set to 3, spatial distance threshold set to 13, and minimum
set to 0. Finally, for the spatialized hierarchical clustering method, the connectivity matrix was specified
using k-nearest neighbors using 11 neighbors and ward linkage. For Gaussian mixture model, the default
parameters were used. These parameters were found by searching over a wide range of values such that
the adjusted mutual information was maximized against the true labels. Parameter tuning for all methods,
including GPSC, was only done on the first seed (14), and all replicates used the same set of parameters (for
seeds 15-63). Any parameters not mentioned were left as default as per the scikit-learn package. The code is
provided for full details and implementation.

(a) Spatial Domain (b) XY Domain

Figure 10: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation 2.
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Table 2: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for Simulation 2, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.38 ± 0.13 0.28 ± 0.10 gmm 0.11 ± 0.12 0.07 ± 0.11
k-means 0.00 ± 0.01 0.00 ± 0.00 C-means 0.00 ± 0.01 0.00 ± 0.00
hier. 0.00 ± 0.00 0.00 ± 0.00 spat. hier. 0.00 ± 0.00 0.00 ± 0.00
dbscan 0.08 ± 0.05 0.10 ± 0.02 gdbscan 0.02 ± 0.01 0.17 ± 0.01
spectral 0.02 ± 0.09 0.06 ± 0.06

D.3 Simulation 3 - Noisy Cluster Results

The data used in this simulation takes the form {(si, xi, yi)}n
i=1, where si œ R2, the spatial domain, xi œ R2,

the covariate domain, and yi œ R, the response domain, for visualization purposes.

In this simulation, both si œ R2 and xi œ R2 are generated from independent uniform distributions, where
si ≥ Unif(≠5, 5), x1 ≥ Unif(≠6, 6), x2 ≥ Unif(≠2, 4) component-wise.

After generating the data {(si, xi)}n
i=1, where n = 1000 samples, the domain square is subdivided into three

clusters, the sun shape cluster, moon shape cluster, and the rest region. Cluster 1 was made by subsetting all
points {(si, xi)} within 2.5 units of the point (-2.2, 2.2) solely in the spatial domain. Cluster 2 was made
subsetting all points {(si, xi)} within 3 units of (1.8, -1.8) and further than 2 units apart from (1, -1), again
solely in the spatial domain, with the remaining points forming cluster 3.

For each cluster, y is generated as a function of just xi with independent Gaussian distributed noise
‘ ≥ N(0, ‡

2). For cluster 1, the true nonlinear function is:

y = 40x
2
1 ≠ 400 + ‘.

For cluster 2, the true nonlinear function is:

y = ≠(x1 ≠ 8)3 + ‘.

And for cluster 3, the true nonlinear function is:

y = (x1 + 8)3 ≠ 20 + ‘.

After the data was generated, the GPSC was applied with the following input: 3 clusters, 40 iterations with
early stopping, (note that GP input remains {xi, si} even though the true functions generating the clusters
are functions only of x), constant bounds (1e

≠15
, 1e

4), length scale bounds (1e
6
, 1e

15), input data. For the
GP, again the RBF kernel was used. Note that here, two forms of GPSC were used. First, standard GPSC
was performed with results shown in the table. Then, GPSC with ⁄ = 75 was used, and it was shown that
the GPSC model was better able to find the clusters with this spatial penalty.

Then K-means clustering, spectral clustering, hierarchical clustering with Ward linkage, and DBSCAN was
also applied. For spectral clustering, the a�nity matrix was generated with using nearest-neighbors set to
12. For DBSCAN, the maximum distance was set to 41, and minimum number of samples set to 27. The
full set of {xi, si, yi} as a vector was input into each algorithm along with k = 3 clusters where relevant.
Any parameters not mentioned were left as default as per the scikit-learn package. For supervised C-means
clustering, the supervised labels were set according to the y domain with otherwise default parameters. For
GDBSCAN, the covariate distance threshold was set to 675, spatial distance threshold set to 5, and minimum
set to 0. For the spatialized hierarchical clustering method, the connectivity matrix was specified using
k-nearest neighbors using 9 neighbors and ward linkage. Finally for Gaussian mixture model, the default
parameters were used. These parameters were found by searching over a wide range of values such that
the adjusted mutual information was maximized against the true labels. Parameter tuning for all methods,
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including GPSC, was only done on the first seed (14), and all replicates used the same set of parameters (for
seeds 15-63). Any parameters not mentioned were left as default as per the scikit-learn package. The code is
provided for full details and implementation.

D.3.1 ‡
2 = 2

Figure 11: GPSC results for Simulation 3, ‡
2 = 2, L = 3, colored by cluster and separated by data domain as

in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 12: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation
3, ‡

2 = 2, L = 3.
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Table 3: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, ‡

2 = 2, L = 3, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.72 ± 0.27 0.70 ± 0.24 gmm 0.16 ± 0.02 0.14 ± 0.02
k-means 0.17 ± 0.02 0.13 ± 0.01 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.17 ± 0.03 0.13 ± 0.03 spat. hier. 0.16 ± 0.11 0.17 ± 0.08
dbscan 0.22 ± 0.04 0.15 ± 0.03 gdbscan 0.10 ± 0.02 0.24 ± 0.04
spectral 0.08 ± 0.02 0.16 ± 0.02

D.3.2 ‡
2 = 50

Figure 13: GPSC results for for Simulation 3, ‡
2 = 50, L = 3, colored by cluster and separated by data

domain as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 14: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation
3, ‡

2 = 50, L = 3.
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Table 4: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, ‡

2 = 50, L = 3, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.73 ± 0.25 0.71 ± 0.22 gmm 0.16 ± 0.02 0.13 ± 0.03
k-means 0.17 ± 0.02 0.13 ± 0.01 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.17 ± 0.03 0.13 ± 0.03 spat. hier. 0.17 ± 0.10 0.18 ± 0.08
dbscan 0.23 ± 0.03 0.13 ± 0.03 gdbscan 0.09 ± 0.03 0.23 ± 0.03
spectral 0.08 ± 0.02 0.16 ± 0.01

D.3.3 ‡
2 = 100

Figure 15: GPSC results for for Simulation 3, ‡
2 = 100, L = 3, colored by cluster and separated by data

domain as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 16: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation
3, ‡

2 = 100, L = 3.
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Table 5: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, ‡

2 = 100, L = 3, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.56 ± 0.26 0.55 ± 0.23 gmm 0.15 ± 0.02 0.13 ± 0.03
k-means 0.17 ± 0.02 0.13 ± 0.01 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.16 ± 0.04 0.13 ± 0.03 spat. hier. 0.15 ± 0.09 0.17 ± 0.06
dbscan 0.21 ± 0.02 0.10 ± 0.02 gdbscan 0.09 ± 0.03 0.23 ± 0.04
spectral 0.07 ± 0.02 0.14 ± 0.01

D.3.4 ‡
2 = 200

Figure 17: GPSC results for for Simulation 3, ‡
2 = 200, L = 3, colored by cluster and separated by data

domain as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 18: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation
3, ‡

2 = 200, L = 3.
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Table 6: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, ‡

2 = 200, L = 3, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.33 ± 0.17 0.33 ± 0.15 gmm 0.16 ± 0.02 0.13 ± 0.02
k-means 0.17 ± 0.02 0.13 ± 0.01 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.16 ± 0.04 0.12 ± 0.02 spat. hier. 0.15 ± 0.08 0.1 ± 0.06
dbscan 0.16 ± 0.02 0.06 ± 0.01 gdbscan 0.08 ± 0.02 0.22 ± 0.03
spectral 0.06 ± 0.02 0.10 ± 0.01

D.4 Simulation 3 - Cluster Overspecification Results

D.4.1 L = 3, ‡
2 = 2

Figure 19: GPSC results for for Simulation 3, L = 3, ‡
2 = 2, colored by cluster and separated by data domain

as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 20: Comparisons to spatial and supervised clustering algorithms for Simulation 3, L = 3, ‡
2 = 2.
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Table 7: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, L = 3, ‡

2 = 2, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.72 ± 0.27 0.70 ± 0.24 gmm 0.16 ± 0.02 0.14 ± 0.02
k-means 0.17 ± 0.02 0.13 ± 0.01 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.17 ± 0.03 0.13 ± 0.03 spat. hier. 0.16 ± 0.11 0.17 ± 0.08
dbscan 0.22 ± 0.04 0.15 ± 0.03 gdbscan 0.10 ± 0.02 0.24 ± 0.04
spectral 0.08 ± 0.02 0.16 ± 0.02

D.4.2 L = 4, ‡
2 = 2

Figure 21: GPSC results for for Simulation 3, L = 4, ‡
2 = 2, colored by cluster and separated by data domain

as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 22: GPSC and comparisons to spatial clustering and supervised clustering algorithms, L = 4, ‡
2 = 2.
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Table 8: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, L = 4, ‡

2 = 2, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.58 ± 0.14 0.69 ± 0.11 gmm 0.08 ± 0.01 0.18 ± 0.02
k-means 0.15 ± 0.02 0.22 ± 0.02 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.14 ± 0.03 0.19 ± 0.04 spat. hier. 0.13 ± 0.10 0.20 ± 0.07
dbscan 0.22 ± 0.04 0.15 ± 0.03 gdbscan 0.10 ± 0.02 0.24 ± 0.04
spectral 0.09 ± 0.01 0.14 ± 0.15

D.4.3 L = 5, ‡
2 = 2

Figure 23: GPSC results for for Simulation 3, L = 5, ‡
2 = 2, colored by cluster and separated by data domain

as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 24: GPSC and comparisons to spatial clustering and supervised clustering algorithms, L = 5, ‡
2 = 2.
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Table 9: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, L = 5, ‡

2 = 2, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.47 ± 0.08 0.65 ± 0.09 gmm 0.10 ± 0.04 0.20 ± 0.06
k-means 0.15 ± 0.02 0.20 ± 0.02 C-means 0.16 ± 0.02 0.13 ± 0.01
hier. 0.14 ± 0.03 0.20 ± 0.03 spat. hier. 0.13 ± 0.09 0.22 ± 0.06
dbscan 0.22 ± 0.04 0.15 ± 0.03 gdbscan 0.10 ± 0.02 0.24 ± 0.04
spectral 0.09 ± 0.01 0.14 ± 0.02

D.4.4 L = 6, ‡
2 = 2

Figure 25: GPSC results for for Simulation 3, L = 6, ‡
2 = 2, colored by cluster and separated by data domain

as in previous simulation. The first row indicates ground truth with results from GPSC in the second.

(a) Spatial Domain (b) XY Domain

Figure 26: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation
3, L = 6, ‡

2 = 2.
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Table 10: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for for Simulation 3, L = 6, ‡

2 = 2, replicated over 50 random seeds reported as mean ± standard deviation.

method ari ami method ari ami
gpsc 0.43 ± 0.05 0.63 ± 0.04 gmm 0.10 ± 0.03 0.24 ± 0.04
k-means 0.14 ± 0.02 0.19 ± 0.01 C-means 0.16 ± 0.16 0.13 ± 0.01
hier. 0.14 ± 0.04 0.19 ± 0.02 spat. hier. 0.13 ± 0.08 0.23 ± 0.06
dbscan 0.22 ± 0.04 0.15 ± 0.03 gdbscan 0.10 ± 0.02 0.24 ± 0.04
spectral 0.08 ± 0.01 0.18 ± 0.02

D.5 Simulation 3 - Functions of s and x

The set up here is exactly as in Simulation 3, however, the functions are now functions of both the spatial
domain and the covariate domain. It can be see that GPSC is still able to recover the true clusters under
these conditions. Exact implementation and final parameters can be found in the submitted code.

For each cluster, y is generated as a function of just xi with independent Gaussian distributed noise ‘ ≥ N(0, 2).
For cluster 1, the true nonlinear function is:

y = 10(s1 + s2)2 + 40(x1)2 + (x2)2 ≠ 500 + ‘.

For cluster 2, the true nonlinear function is:

y = 10(s2)2 ≠ (x1 ≠ 8)3 + (x2)3 + ‘.

For cluster 3, the true nonlinear function is:

y = ≠10(s1)2 + (x1 + 8)3 + (x2)3 ≠ 20 + ‘.

Figure 27: GPSC results for Simulation 3 analog with functions of both s and x, colored by cluster and
separated by data domain as in previous simulation. The first row indicates ground truth with results from
GPSC in the second.

As can be seen, GPSC performs well regardless of whether the functional relationships are based on s, x or s

and x. Regardless of the which case the true functional relationship is in, the full vector (s, x, y) is used as
input and GPSC is able to accurately recover the clusters.
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(a) Spatial Domain (b) XY Domain

Figure 28: GPSC and comparisons to spatial clustering and supervised clustering algorithms for Simulation 3
analog with functions of both s and x.

Table 11: Adjusted Rand index and adjusted mutual information of di�erent methods against the true labels
for Simulation 3 analog with functions of both s and x, replicated over 50 random seeds reported as mean ±
standard deviation.

method ari ami method ari ami
gpsc 0.69 ± 0.28 0.65 ± 0.25 gmm 0.09 ± 0.02 0.09 ± 0.02
k-means 0.08 ± 0.01 0.05 ± 0.01 C-means 0.08 ± 0.01 0.05 ± 0.01
hier. 0.08 ± 0.02 0.05 ± 0.02 spat. hier. 0.10 ± 0.06 0.10 ± 0.07
dbscan 0.15 ± 0.02 0.09 ± 0.02 gdbscan 0.09 ± 0.02 0.21 ± 0.03
spectral 0.01 ± 0.05 0.03 ± 0.02
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E Details on NC Tracts Data

E.1 Application Details

The full list of variables used in the clustering analysis is as follows:

Variable Description
Spatial Data S
LATITUDE Latitude coordinate of

population-weighted geographic center of tract
LONGITUDE Longitude coordinate of

population-weighted geographic center of tract
Covariates X
PRFL_M Men in professional occupation
PRFL_F Women in professional occupation
LS_HS Less than high school education
SINGLE Single with dependent
HSHLDR_F Female head of household
NHBLK Non-Hispanic Black
PA Public assistance
POV Poverty
NO_VHCL No vehicle
RENT Rental housing
CROWD Crowded housing
UNMPLYD Unemployment
PHONE No phone
ACET Acetaldehyde
BENZENE Benzene
BUTA 1,3-Butadiene
CARBON Carbon Tetrachloride
DIESEL Diesel PM2.5
ETHYL Ethylbenzene
FORM Formaldehyde
HEXANE Hexane
LEAD Lead compounds
MANG Manganese compounds
MERC Mercury compounds
METH Methanol
METHYL Methyl Chloride
NICK Nickel
TOLUENE Toluene
XYLENE Xylenes
Response Y
MLCJOINT Overall class membership into 8 possible groups

Table 12: Full set of variables used for NC tracts data application.

Again, the analysis was performed on an Apple Macbook Pro with M1 Pro processor with 32 GB of memory.
The scikit-learn clustering package Pedregosa et al. (2011) package was used for all experiments to perform
comparison K-means clustering as well as handling Gaussian process modeling for the GPSC algorithm and
computing clustering metrics. Although we are unable to release the data and auxiliary files for our real
world application, the code for clustering and plotting has been submitted along with all the simulation code.
For both K-means and GPSC, the full set of data shown in Table 12 including the covariates and spatial data
were input into both algorithms.
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E.2 Additional Real World Application Comparisons

In this section we present additional results of the best performing competitors from the simulation studies
(using default parameters) on the CBCS real world example of the main paper, which already contained the
comparison to K-means clustering. We also include one algorithm of each type from the set of competitors,
again for diversity of results. It can be seen that the di�erent types of clustering models have distinct
di�erences to the results of GPSC as discussed below.

E.2.1 Gaussian Mixture Model

Here we report the clustering results of the Gaussian Mixture Model. It can be seen that the results are
visibly similar to the results of K-means clustering, where again the algorithm appears to mostly center
the cluster diversity around the major urban centers of the state, with fewer cluster diversity across the
extremities and regions between the urban centers.

Figure 29: GMM results for the real world application presented in main paper.

E.2.2 Spectral Clustering

Spectral clustering, similar to the spatial hierarchical clustering results presented below, seems to pick up
more global trends with lower nuance specifically around the dense city regions of the state.

Figure 30: Spectral clustering results for the real world application presented in main paper.
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E.2.3 Spatial Hierarchical Clustering

Spatial hierarchical clustering is presented here with 5 neighbors (result did not vary significantly over di�erent
specifications of the neighbor count). It can be seen that although the algorithm may be picking up on more
global trends across the state, there is decreased nuance around the specific city centers of the state.

Figure 31: Spatial hierarchical clustering results for the real world application presented in main paper.

E.2.4 DBSCAN

Here DBSCAN was chosen over GDBSCAN due to having fewer hyperparameters required to tune (default
used), while having similar performance in the simulation studies. It can be seen here that the main challenge
of DBSCAN (as well as GDBSCAN) is the inability to mandate the number of clusters, especially in this
application where we specifically seek a small number of clusters for interpretability.

Figure 32: DBSCAN clustering results for the real world application in the main paper.

32


	Introduction
	Model
	Gaussian Process Regression
	GP Spatial Clustering

	Theory
	Simulation Studies
	Simulation 1 - Linear Functions
	Simulation 2 - Nonlinear Functions
	Simulation 3 - Model Robustness
	Noisy Responses
	Overspecified Number of Clusters


	Applications to NC Tract Data
	Discussion
	Broader Impacts Statement

	Appendix Overview
	Potential Limitations
	Proofs
	Proof of Theorem 3.3
	Proof of Theorem 3.4

	Details on Simulation Studies
	Simulation 1
	Simulation 2
	Simulation 3 - Noisy Cluster Results
	2 = 2
	2 = 50
	2 = 100
	2 = 200

	Simulation 3 - Cluster Overspecification Results
	L=3, 2 = 2
	L=4, 2 = 2
	L=5, 2 = 2
	L=6, 2 = 2

	Simulation 3 - Functions of s and x

	Details on NC Tracts Data
	Application Details
	Additional Real World Application Comparisons 
	Gaussian Mixture Model
	Spectral Clustering
	Spatial Hierarchical Clustering
	DBSCAN



