Bootstrapping-Based Regularisation for Stable Deep Learning Clinical
Prediction Models

Motivation & Contribution. Deep learning clinical prediction models have increasingly been applied
for patient risk estimation, yet their outputs can be unstable when trained on different samples of the same
population, thus undermining trust in clinical settings. Ensemble methods such as bagging can reduce this
instability, but they require training and maintaining many models, which reduces interpretability, one of
the key barriers to successful health AT implementation. We address this gap by introducing a bootstrapping-
based regularisation that embeds stability directly into the training of deep neural networks (DNNs). By
penalising divergence between predictions from the original training data and those from bootstrapped
datasets, our method achieves ensemble-like robustness while remaining efficient and interpretable.

Methods & Data. Given training data D = {(z;,3;)}~, with binary outcomes y; € {0,1} and a
prediction model fy(x), we minimise the loss function

R(0) = £o(D) + 5 > (£, (x0), fox2))|
=1

where Ly(D) represents the standard binary cross-entropy loss and the second part is our additional
regularisation. The stability penalty is defined as d(f, (), fo(x)) = ||log f; (x)—log fo(x)||, which measures
how much the current model’s predictions diverge from those produced by bootstrap-trained models féb

based on resamples D®) ~ B(D).

Our stable model is a two-hidden-layer feed-forward DNN with a sigmoid activation, optimised using
Adam. The expectation was approximated using predictions from 100 models drawn from a pool of
200 models trained on bootstrapped versions of the original datasets. We evaluated on three clinical
datasets: GUSTO-I (n=40,830), Framingham (n=4,434), and SUPPORT (n=9,103). The stable model
was compared to a standard DNN without the regularisation. Metrics assessed stability (mean absolute
difference (MAD) between the stable model’s predictions and median of the bootstrapped predictions,
proportion of significantly deviating predictions from the median), discrimination (AUC), and feature
attribution consistency between the standard model and stable model (SHAP correlations).

Results. Our stable model consistently reduced instability while maintaining discrimination and attribu-
tion consistency. Table 1 showcases some of the key results.

Dataset MAD ({) Deviating Pred. (%) () AUC (1) SHAP Corr. (1)
GUSTO-I 0.059 — 0.019 87.1 = 13.9 0.811 — 0.810 0.894
Framingham 0.088 — 0.057 55.0 = 214 0.810 — 0.815 0.965
SUPPORT 0.092 — 0.071 57.7 — 40.2 0.614 — 0.643 0.529

Table 1: Prediction stability improvements of the stable model relative to a standard DNN; SHAP corre-
lation indicates per-participant attribution agreement. We report the change from a standard DNN to the
stable model as Std — Stable. For each metric, arrows indicate the desired direction of better performance.

Conclusion. Embedding bootstraping-based regularisation as a training objective yields deep models
with substantially improved individual-level prediction stability, whilst preserving AUC and strong SHAP
concordance. By adjusting the regularisation strength A, our framework spans a continuum between a
standard model (A = 0) and a bagging model (A — oo0). This allows users to tune the trade-off between
predictive performance and stability while retaining the simplicity of a single, interpretable model. This
stability-centric training objective addresses a key barrier of deep learning deployment in healthcare by
producing risk estimates that are accurate, stable and reproducible.



