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ABSTRACT

The availability of a wide range of large language models embedded in various
agentic systems has significantly increased the potential of model selection strate-
gies to improve the cost-performance tradeoff. Existing strategies involve either
routing, where a single model is chosen per query, or cascading, which sequen-
tially runs increasingly larger models until a satisfactory answer is found. How-
ever, current approaches face three key limitations: they (1) lack formal proofs of
optimality, (2) fail to identify the conditions under which these strategies are most
effective, and (3) are unable to combine both paradigms. To address this, we pro-
pose cascade routing, a unified framework that integrates routing and cascading
into a theoretically optimal strategy. Further, we identify good quality estimators
as the critical factor for the success of model selection. Finally, we show that
cascade routing consistently outperforms the baselines by a large margin.

1 INTRODUCTION

Large language models (LLMs) are applied in a wide range of tasks, some of which are easily han-
dled by small models, while others require state-of-the-art LLMs. Thus, so-called model selection
can significantly improve the cost-performance tradeoff by selecting the best model for each query.

Routing and Cascading So far, two model selection strategies have been proposed. The first,
routing, directs each query to a specific model from a set of available models (Chen et al., 2022,
as illustrated in Fig.[I(a)} This approach enables the selection of the most suitable expert for each
query. The second strategy, cascading, processes a query through a sequence of increasingly larger
models, stopping when a model produces an answer deemed sufficiently good (Chen et al., |[2023),
as illustrated in Fig. [I(b)] Cascading allows simpler queries to be addressed by smaller models.

Current Limitations Despite their utility, both routing and cascading impose significant restric-
tions on the model selection process. In routing, the initial selection of a model is final, preventing
any reconsideration. In cascading, each query must pass through all models without skipping. Fur-
ther, a lack of theoretical understanding hinders the development of more effective model selection
strategies. More importantly, prior work fails to provide insights into the limitations of model selec-
tion strategies and cannot identify the conditions under which they are useful in practical scenarios.

This Work: Cascade Routing To address these limitations, we first derive optimal routing and
cascading strategies by framing them as linear optimization problems. Building on this analysis,
we propose a new paradigm called cascade routing, which generalizes both routing and cascading.
As illustrated in Fig. cascade routing initially routes a query to any available model but keeps
rerouting to different models until a model produces an answer of sufficient quality. We prove the
optimality of cascade routing and show that it significantly outperforms both approaches.

Importance of Quality Estimation Leveraging our theoretical analysis, we find that accurate
estimates of model performance and response quality are crucial for the effectiveness of model se-
lection. For routing, reliable ex-ante quality estimation—the ability to predict whether a model will
perform well on a given query—is essential. For cascading, robust post-hoc quality estimation—the
ability to evaluate the quality of a model’s response after generation—is critical.

'Code available at https://github.com/eth-sri/cascade- routing.
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Figure 1: Overview of three model selection strategies. Routing selects a single model for a query,
cascading processes queries through a sequence of models, and cascade routing generalizes both.

Results We show that cascade routing significantly outperforms all baselines. Notably, cascade
routing is consistently better than baselines and improves performance by up to 8% on RouterBench
(Hu et al., 2024) and by 14% on SWE-Bench (Jimenez et al.,|[2024).

Key Contributions Our main contributions are:
* We derive optimal strategies for routing and cascading and obtain a new cascading strategy
that is provably better than prior approaches (§2] §3).
* We introduce cascade routing, a new paradigm that combines the strengths of routing and
cascading, and prove its optimality (§4).
* We conduct a thorough evaluation, demonstrating that cascade routing consistently outper-
forms the baselines and highlighting the critical role of quality estimation (§3).

2 ROUTING AS LINEAR OPTIMIZATION
We now derive the optimal routing strategy. Proofs are provided in App.[A]

Routing In routing, our goal is to develop a strategy that selects the best language model for a
given input query. Formally, let X" represent the distribution over all possible queries, and suppose
we have k language models m, ..., my available for routing. Further, let A denote the set of all
probability distributions over k variables. A routing strategy can then be defined as follows:

Definition 1 (Routing). A routing strategy s is a function s: X — Ay, that maps a query x € X to
a probability distribution over models. s;(x) denotes the probability that m; is selected for query .

Thus, a routing strategy selects a model by sampling from the distribution s(x) for each query x.

Quality and Cost In routing, we seek to maximize the expected output quality of the selected
model while adhering to a given cost budget B. Quality could measure model accuracy, user prefer-
ence, or any other performance indicator. We define the quality function ¢;(x) as the output quality
of model m; on query z, and the cost function ¢;(z) as the cost of running model m; on x.

However, since these functions are unknown in practice, we need estimators ;(x) and ¢;(x) for the
output quality and cost. For the quality estimates one can train a small classifier (Hu et al., 2024;
Shnitzer et al., 2023)), while cost can be estimated via tokenization, API rates, or execution time.

Optimal Routing Using these estimators, we can formally define the optimal routing strategy:

Definition 2 (Optimal Routing). The optimal routing strategy sopr for a given cost budget B is
the solution to the optimization problem that maximizes the expected output quality of the selected
model while adhering to the budget:

k k

max B (S0 50)i@) st B (Y1 sli) <5

To solve this problem for a given query x, we show (see App.[A) that the optimal routing strategy
selects the model maximizing the cost-quality tradeoff 7;(x, \) = §;(x) — Aé;(z). Here, A € RT is
a hyperparameter that controls the balance between quality and cost based on the budget B.

However, it can occur that several models achieve the same optimal tradeoff for a given query. To
address this, we define two strategies s, () and s3),, (z) that respectively select the cheapest and
most expensive model obtaining the optimal tradeoff. The optimal routing strategy Sepr is then:
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Theorem 1 (Optimal Routing Strategy). For a cost budget B, there existsa A € RT and a~y € [0, 1]
such that the optimal routing strategy sopr equals s, + (1 — ¥)s{.x. Furthermore, all routing
strategies that have an expected cost that is exactly equal to B and can be written as a convex

combination of va\;m and si‘I/AX for some N € RT achieve the same optimal quality.

Due to the second part of Theorem|[I} we only need to find a set of parameters A and ~ that achieve
the cost budget. In App.[A] we explain how to determine them using a single binary search over \.

Ex-Ante Quality Estimation We explicitly distinguish the model’s true quality g;(x) and the ex-
ante quality estimate ¢;(x). An optimal routing strategy will select a good model only if ¢;(z) ~
gi(x), otherwise the objective in Eq. (1) is not appropriate. Thus, even when routing is suited for the
application, the strategy will fail if the quality estimates are inaccurate, making quality estimation
central to routing. This is unlike cost estimates which in practice can be approximated more easily.

3 CASCADING AS SEQUENTIAL ROUTING
We extend our analysis to a cascade, providing proofs for all statements in App.

Cascading In cascading, an input query is processed sequentially, typically through a chain of
increasingly larger models. The cascade stops and returns a model’s output once a certain condition
is met. We will interpret cascading as a sequence of routing problems. To do so, we first define the
models over which we need to route, which we refer to as supermodels.

Definition 3 (Supermodel). A supermodel M is a sequence of models (m;,, ..., m;,) such that
running a query through M is equivalent to running it through each of the models in the sequence.
M denotes the set of all supermodels and by M;.; we denote the supermodel (m;, ..., m;).

In cascading, we only need to consider the supermodels Mi.;, Mi.o, ..., Mj.i.

Cascading as Sequential Routing Running a cascade on a sample x yields a sequence of steps,
where at each step, the cascade determines whether to run the next model in the sequence or termi-
nate. By step j, we have obtained outputs from the first j — 1 models. To decide whether to continue
and run m;, we need to determine, in expectation, how well the supermodels M;.;_1, ... M. will
perform on the sample z. Once again, this performance is measured as having the highest expected
output quality within a certain cost budget. If M;.;_ offers the best performance, we terminate the
cascade and return its output, i.e., the output of m;_;. Otherwise, if any of M;.;, ..., M., has bet-
ter performance, we continue the cascade and run m ;. Therefore, at step j, the cascade is equivalent
to a routing strategy that selects the best supermodel from Mj.;_1, ..., My.;. Thus, a cascade can
be formally defined as follows:

Definition 4 (Cascading Strategy). A cascading strategy s is a sequence of routing strategies
(s(l), R s(k)) such that s9) routes between the supermodels My.;_1, ..., M.

Quality and Cost To apply Theorem || to find the optimal cascading strategy, we first need to
derive the quality and cost estimates of the supermodels. Both of these can depend on the answers
of previously computed models. Therefore, let G)(z) and ¢\9) (z) represent the updated estimates
in step j after computing the first j — 1 models. In App.[B] we explain how the estimates associated
with supermodel M;.; can be determined based on the estimates of the individual models.

Optimal Cascading We now leverage the optimal routing strategy from Theorem I]to determine
the optimal cascading strategy. As before, optimality is defined in terms of maximizing the expected
output quality while adhering to a given cost budget. However, the budget is now only enforced over
the entire cascade, and not over individual steps. This leads to a slightly different formulation:

Theorem 2 (Optimal Cascading Strategy). For a given cost budget B, there exist Ay, ..., \, € RT

and a vy € [0, 1] such that the optimal cascading strategy Sopr = (s(()}))T, el s(()]f))T) is given by sg,)T =

vs,(vﬂ)N’Aj +(1- v)sﬁfjgﬁj where s](\fI)N’AJ and sl(ﬂ;?] are defined as in Theorem|l

The main difference between Theorem [2and Theorem|[T]is that not all combinations of hyperparam-
eters A\1,...,\x € RT and v € [0,1] that achieve cost budget B are optimal. To find the optimal
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hyperparameters, we first assume A; = - - - = A, = A and apply the binary search technique from §?|
to determine ). This is then used as initialization for a hyperparameter optimization tool, Hyperopt’}
to find the optimal values. Further details are provided in App.

Prior Work Prior work on cascading has often relied on strong assumptions to simplify cascading.
The most common technique uses a threshold to decide whether to continue the cascade on an input

(Chen et al.,|2023; Gupta et al, 2024). Specifically, in step j, the cascade continues if qAJ(j_) (z) <75
for some 7; € R. In App. we show that this thresholding strategy is a special case of our cascading

strategy, but puts very restrictive assumptions on the quality and cost estimates.

Post-Hoc Quality Estimation This framework emphasizes the shift from ex-ante to post-hoc qual-
ity estimation, which is crucial for cascading. Cascading is only advantageous when the post-hoc
quality estimate provides significantly better information than the ex-ante estimate. If this improve-
ment is minimal, it would be more effective to directly route queries to the most suitable model,
bypassing the cascading process. However, ex-ante estimates remain useful for cascading as they
can inform the cascade whether future models are likely to improve the output quality.

4 CASCADE ROUTING AS CASCADE GENERALIZATION

Cascading and routing are often orthogonal: routing relies on accurate ex-ante estimates, while
cascading benefits from good post-hoc estimates. Therefore, we introduce cascade routing as a
generalization of both. Proofs are provided in App.[C]

Cascade Routing Cascade routing closely resembles cascading, but with one crucial difference:
the routing strategy at step j routes between all possible supermodels, not just the supermodels
My.j—1,. .., M. Therefore, both Definition 4] and Theorem [2]can be extended to this setting.

Definition 5 (Cascade Routing). A cascade routing strategy s is a sequence of routing strategies
(s(l), ey s(k)) such that, for a given sample x € X, s\9) routes between all supermodels in M that
start with the j — 1 models that have already been computed for this query.

Theorem 3 (Optimal Cascade Routing). For a given cost budget B, there exist \1,...,\;, € R

and a v € RY such that the optimal cascade routing strategy sopy = (58,)T7 ceey sgf,)T) is given by

S(()jl;)—r = ysif&’*j +(1- ’y)sﬁ,f,z;{\j where S,(\;ZI)N’M and 5,(\;172;3" are defined as in Theorem

While cascade routing extends cascading and can therefore use the same hyperparameter optimiza-
tion scheme, it also introduces additional challenges, namely computational complexity and model
order determination, which we resolve in App. [C]

5 EXPERIMENTAL EVALUATION

In this section, we demonstrate that cascade routing significantly outperforms the baselines on
several benchmarks. We distinguish benchmarks where accurate quality estimation is and is not
available. Additional experiments on RouterBench (Hu et al.l 2024) are provided in App. [D.1] In
App.[D.2] we include an ablation study to examine the impact of our design choices on performance
and runtime. For all details about the benchmarks, models, and estimators, we refer to App.

Accurate Quality Estimation We evaluate cascade routing on two benchmarks that allow accu-
rate quality estimation. First, we use SWE-Bench (Jimenez et al.l |2024)) as a benchmark where
accurate post-hoc quality estimation is available using the ground-truth test cases. Second, to simu-
late a use-case where ex-ante quality estimation is accurate, we evaluate the Math and Coder models
from the QWEN-2.5 model family (Yang et al.,|2024} Hui et al., 2024) on a combination of Minerva
Math (Lewkowycz et al.l [2022)) and LiveCodeBench (Jain et al.l [2024). We incorporate a sample’s
origin benchmark as a feature in the quality estimation model.

Results Table (1] (Ieft) shows the results for both benchmarks. In SWE-Bench, our methods out-
perform baseline strategies by up to 14%. As expected, the routing strategy does not outperform
the trivial baseline on this benchmark, as ex-ante quality estimates are insufficient. For Minerva

2https://github.com/hyperopt/hyperopt
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Table 1: AUC scores on practical benchmarks with good quality estimates (left) and poor quality
estimates (right). The highest numbers are bolded, and underlined numbers are within the 95%
confidence intervals of the highest number. For a discussion on confidence intervals, refer to App. E}

SWE-Bench Math+Code | Classification Open-Form
10 MODELS 5 MODELS QWEN \ LLaMA GEMMA LLAMA GEMMA
Linear Interp. 40.51 38.64 39.63 74.28 61.68 79.11 54.10
Routing 40.47 39.40 47.46 74.92 64.44 79.32 58.40
Cascade (Baseline) 38.52 45.89 37.68 74.81 54.32 79.23 56.18
Cascade (Ours) 53.20 50.94 46.76 75.46 62.79 79.22 56.18
Cascade Routing (Ours) 54.12 51.09 48.55 75.52 64.84 79.88 59.66

Math and LiveCodeBench, the opposite trend holds true. With accurate ex-ante quality estimation,
the routing strategy achieves strong performance, surpassing the baseline cascade strategy by 10%.
However, the cascade routing strategy still outperforms all methods. Interestingly, despite poor
post-hoc quality estimation, our cascading strategy nearly matches the performance of routing.

Poor Quality Estimation We perform experiments on classification and open-form reasoning
tasks where there is no known accurate quality estimator. The classification benchmarks include
ARC-Challenge (Clark et al.,[2018)), MMLU-Pro (Wang et al., 2024), and MixEval (Ni et al.,[2024)).
For the open-form reasoning task, we use MMLU-Pro and GSM8k (Cobbe et al., 2021)). In clas-
sification, models select a single option representing their answer, with no intermediate reasoning
process. In contrast, open-form reasoning allows models to generate their answers after reasoning.
Here, we evaluate two model families consisting of three models, LLAMA and GEMMA, and show
similar numbers for MISTRAL in App.[H| We create a quality estimator based on|Gupta et al.|(2024).

Results Table [I] (right) presents the results for the LLAMA and GEMMA model families across
both benchmarks. Cascade routing consistently performs on par with or outperforms all baselines,
though with much narrower margins reaching up to 1.2%. This reduced gain can be attributed to the
fact that the quality and cost estimates are very noisy, leading to small performance gains for any
model selection strategy, no matter how optimal.

6 RELATED WORK

Routing Routing is a key problem in machine learning, often used to direct queries to specialized
models. Many works focus on model selection for natural language queries with known answers,
training models to predict whether a given model will answer correctly (Chuang et al., 2024; Ding
et al.,[2024; Hari and Thomson, 2023} [Liu et al.|[2024; |Jang et al.,|2023;Nguyen et al.| |2024; [Sakota
et al., 2024; |Shnitzer et al., [2023)). Routing is also applied in preference-based quality estimation
(Lu et al., |2024; Ong et al.,|2024), API selection (Chen et al. 2022}, software agent task allocation
(Zhang et al.| [2024b)), and token-level routing (Pichlmeier et al., [2024).

Cascading Cascading reduces inference costs by first using smaller models and escalating to
larger ones if needed. Most methods rely on confidence thresholds (Chen et al.||2023;2024; Ramirez
et al., 2024} |Varshney and Barall 2022), while others use response variance of the smaller model
(Madaan et al.| |2023). Early stopping is another approach, stopping computation when intermediate
layers provide sufficient information (Li et al., 2021} |Schuster et al.| |2022). Furthermore, quality
estimation in cascading has been explored via uncertainty measures (Gupta et al., [2024; Jitkrittum
et al.,[2023)), dynamic voting (Xue et al.,|2023)), and multi-objective metrics (Zhang et al.| 2024a)).

7 CONCLUSION

In this work, we presented a novel framework for routing and cascading that enabled us to propose
theoretically optimal strategies for both paradigms. We combined these two into a new cascade
routing technique. We showed that our optimal cascade improves significantly over prior work and
that cascade routing outperforms all baselines consistently, especially given good quality and dost
estimates. Our work provides a solid theoretical foundation for model selection and paves the way
for future research, particularly in the area of improving the accuracy of quality and cost estimates.



Published as a workshop paper at SCOPE - ICLR 2025

ACKNOWLEDGEMENTS

This work was funded in part by the Swiss National Science Foundation (SNSF) [200021_207967].

This work has been done as part of the EU grant ELSA (European Lighthouse on Secure and Safe Al,
grant agreement no. 101070617). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or European Commission. Neither
the European Union nor the European Commission can be held responsible for them.

The work has received funding from the Swiss State Secretariat for Education, Research and Inno-
vation (SERI).

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/1lama3/blob/
main/MODEL_CARD.md.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732,2021. URL https://arxiv.org/abs/2108.
07732.

Dong Chen, Yueting Zhuang, Shuo Zhang, Jinfeng Liu, Su Dong, and Siliang Tang. Data shunt:
Collaboration of small and large models for lower costs and better performance. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 11249-11257.
AAAI Press, 2024. doi: 10.1609/AAAIL.V38110.29003. URL https://doi.org/10.1609/aaai.
v38110.29003.

Lingjiao Chen, Matei Zaharia, and James Zou. Efficient online ML API selection for multi-label
classification tasks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learn-
ing Research, pages 3716-3746. PMLR, 2022. URL https://proceedings.mlr.press/v162/
chen22ad.html.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. CoRR, abs/2305.05176, 2023. doi: 10.48550/ARXIV.
2305.05176. URL |https://doi.org/10.48550/arXiv.2305.05176.

Yu-Neng Chuang, Helen Zhou, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara
Bolouki, and Xia Hu. Learning to route with confidence tokens. CoRR, abs/2410.13284, 2024.
doi: 10.48550/ARXIV.2410.13284. URL https://doi.org/10.48550/arXiv.2410.13284.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
ArXiv preprint, abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv preprint, abs/2110.14168,
2021.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Riihle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: cost-efficient and quality-
aware query routing. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?1d=02f3mUtqgnM.


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1609/aaai.v38i10.29003
https://doi.org/10.1609/aaai.v38i10.29003
https://proceedings.mlr.press/v162/chen22ad.html
https://proceedings.mlr.press/v162/chen22ad.html
https://doi.org/10.48550/arXiv.2305.05176
https://doi.org/10.48550/arXiv.2410.13284
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=02f3mUtqnM

Published as a workshop paper at SCOPE - ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 07 2024. URL |https://zenodo.org/records/12608602,

Thomas Mesnard Gemma Team, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, and et al.
Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL |https://www.kaggle.com/m/3301.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
KgaBScZ4VI.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models. CoRR, abs/2308.11601, 2023. doi: 10.48550/ARXIV.2308.11601. URL
https://doi.org/10.48550/arXiv.2308.11601.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In Proc. of ICLR, 2021.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. CoRR, abs/2403.12031, 2024. doi: 10.48550/ARX1V.2403.12031. URL https://doi.
org/10.48550/arXiv.2403.12031.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-coder technical report. CoRR, abs/2409.12186, 2024. doi:
10.48550/ARXIV.2409.12186. URL https://doi.org/10.48550/arXiv.2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. CoRR, abs/2403.07974, 2024. doi: 10.48550/
ARXIV.2403.07974. URL https://doi.org/10.48550/arXiv.2403.07974.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moontae Lee,
Kyungjae Lee, and Minjoon Seo. Exploring the benefits of training expert language models over
instruction tuning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 14702—-14729. PMLR, 2023. URL https://proceedings.mlr.press/
v202/jang23a.htmll

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William ElI Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi:
10.48550/ARXIV.2310.06825.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024. URL |https://openreview.net/forum?id=VTF8yNQM66.

Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh
Rawat, and Sanjiv Kumar. When does confidence-based cascade deferral suffice? In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,


https://zenodo.org/records/12608602
https://www.kaggle.com/m/3301
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI
https://doi.org/10.48550/arXiv.2308.11601
https://doi.org/10.48550/arXiv.2403.12031
https://doi.org/10.48550/arXiv.2403.12031
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2403.07974
https://proceedings.mlr.press/v202/jang23a.html
https://proceedings.mlr.press/v202/jang23a.html
https://openreview.net/forum?id=VTF8yNQM66

Published as a workshop paper at SCOPE - ICLR 2025

editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1f09elee5035a4c3fe38a5681cae5815-Abstract-Conference. html.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
18abbeef8cfe9203fdf9053c9c4fel9l-Abstract-Conference.html.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun. Cascadebert: Ac-
celerating inference of pre-trained language models via calibrated complete models cascade. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Find-
ings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 16-20 November, 2021, pages 475-486. Association for Com-
putational Linguistics, 2021. doi: 10.18653/V1/2021.FINDINGS-EMNLP43. URL |https:
//doi.org/10.18653/v1/2021.findings-emnlp.43.

Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, and Zhigiang Li. Optllm: Optimal
assignment of queries to large language models. CoRR, abs/2405.15130, 2024. doi: 10.48550/
ARXIV.2405.15130. URL |https://doi.org/10.48550/arXiv.2405.15130.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. In Kevin Duh,
Helena Gémez-Adorno, and Steven Bethard, editors, Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024,
pages 1964-1974. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
NAACL-LONG.109. URL |https://doi.org/10.18653/v1/2024.naacl- long.109.

Aman Madaan, Pranjal Aggarwal, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upad-
hyay, Mausam, and Manaal Faruqui. Automix: Automatically mixing language models. CoRR,
abs/2310.12963, 2023. doi: 10.48550/ARXIV.2310.12963. URL https://doi.org/10.48550/
arxiv.2310.12963.

Quang H. Nguyen, Duy C. Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V. Chawla, and
Khoa D. Doan. Metallm: A high-performant and cost-efficient dynamic framework for wrapping
llms. CoRR, abs/2407.10834, 2024. doi: 10.48550/ARXIV.2407.10834. URL https://doi.
org/10.48550/arXiv.2407.10834.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from LLM benchmark mixtures. CoRR,
abs/2406.06565, 2024. doi: 10.48550/ARXIV.2406.06565. URL |https://doi.org/10.48550/
arxiv.2406.06565.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M. Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data.
CoRR, abs/2406.18665, 2024. doi: 10.48550/ARXIV.2406.18665. URL https://doi.org/10.
48550/arXiv.2406.18665.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.

Josef Pichlmeier, Philipp Ross, and Andre Luckow. Domain-Aware LLM Routing Dur-
ing Generation . In 2024 IEEE International Conference on Big Data (BigData), pages
8235-8237, Los Alamitos, CA, USA, December 2024. IEEE Computer Society. doi: 10.
1109/BigData62323.2024.10825152. URL |https://doi.ieeecomputersociety.org/10.1109/
BigData62323.2024.10825152,


http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.48550/arXiv.2405.15130
https://doi.org/10.18653/v1/2024.naacl-long.109
https://doi.org/10.48550/arXiv.2310.12963
https://doi.org/10.48550/arXiv.2310.12963
https://doi.org/10.48550/arXiv.2407.10834
https://doi.org/10.48550/arXiv.2407.10834
https://doi.org/10.48550/arXiv.2406.06565
https://doi.org/10.48550/arXiv.2406.06565
https://doi.org/10.48550/arXiv.2406.18665
https://doi.org/10.48550/arXiv.2406.18665
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825152
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825152

Published as a workshop paper at SCOPE - ICLR 2025

Guillem Ramirez, Alexandra Birch, and Ivan Titov. Optimising calls to large language models with
uncertainty-based two-tier selection. CoRR, abs/2405.02134, 2024. doi: 10.48550/ARXIV.2405.
02134. URL https://doi.org/10.48550/arXiv.2405.02134.

Marija Sakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Luz Angelica Caudillo-Mata, Silvio Lattanzi, Andrés Muifioz
Medina, Leman Akoglu, Aristides Gionis, and Sergei Vassilvitskii, editors, Proceedings of the
17th ACM International Conference on Web Search and Data Mining, WSDM 2024, Merida,
Mexico, March 4-8, 2024, pages 606-615. ACM, 2024. doi: 10.1145/3616855.3635825. URL
https://doi.org/10.1145/3616855.3635825.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay,
and Donald Metzler. Confident adaptive language modeling. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
6fac9e316adae’/5ea244ddcef1982c71-Abstract-Conference.html.

Tal Shnitzer, Anthony Ou, Mirian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thomp-
son, and Mikhail Yurochkin. Large language model routing with benchmark datasets. CoRR,
abs/2309.15789, 2023. doi: 10.48550/ARXIV.2309.15789. URL https://doi.org/10.48550/
arxXiv.2309.15789.

Neeraj Varshney and Chitta Baral. Model cascading: Towards jointly improving efficiency and
accuracy of NLP systems. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 11007-11021. Associa-
tion for Computational Linguistics, 2022. doi: 10.18653/V1/2022. EMNLP-MAIN.756. URL
https://doi.org/10.18653/v1/2022.emnlp-main.756.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. CoRR, abs/2406.01574, 2024. doi: 10.48550/ARXIV.2406.01574.
URL |https://doi.org/10.48550/arXiv.2406.01574.

Mingfeng Xue, Dayiheng Liu, Wengiang Lei, Xingzhang Ren, Baosong Yang, Jun Xie, Yidan
Zhang, Dezhong Peng, and Jiancheng Lv. Dynamic voting for efficient reasoning in large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 3085-3104. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.203. URL https://doi.org/10.18653/v1/2023.findings-emnlp.203.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement. CoRR, abs/2409.12122, 2024. doi: 10.48550/ARXIV.2409.12122.
URL https://doi.org/10.48550/arXiv.2409.12122.

Kai Zhang, Ligian Peng, Congchao Wang, Alec Go, and Xiaozhong Liu. LLM cascade with multi-
objective optimal consideration. CoRR, abs/2410.08014, 2024a. doi: 10.48550/ARXIV.2410.
08014. URL |https://doi.org/10.48550/arXiv.2410.08014.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan
Wang, and Caiming Xiong. Diversity empowers intelligence: Integrating expertise of software
engineering agents, 2024b. URL https://arxiv.org/abs/2408.07060.


https://doi.org/10.48550/arXiv.2405.02134
https://doi.org/10.1145/3616855.3635825
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2309.15789
https://doi.org/10.48550/arXiv.2309.15789
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.48550/arXiv.2406.01574
https://doi.org/10.18653/v1/2023.findings-emnlp.203
https://doi.org/10.48550/arXiv.2409.12122
https://doi.org/10.48550/arXiv.2410.08014
https://arxiv.org/abs/2408.07060

Published as a workshop paper at SCOPE - ICLR 2025

A ROUTING
We first prove Theorem[I]and then explain how to determine the optimal hyperparameters A and .

A.1 PRrOOF THEOREM[I]

To prove Theorem([I] we first rewrite the routing optimization problem in Eq. (I as a linear program
over functions s : X — R* instead of functions s : X — Ay,. This makes the optlmlzatlon problem

more tractable. Specifically, Eq. (I) can be rewritten as follows:
k

max Eiox Z (m)(jz(x)]
i=1

<B )

k
Vie {1, k}: Vo € X :s5(z) >0 Z

We then rewrite Theorem [I]to allow for a more exact formulation of the optimal routing strategy:

Theorem 4. (Optimal Routing Strategy) Suppose there exists an admissible solution to the set of
constraints in Eq. . For any A € RT, let S\ be the set of routing strategies s that satisfy the
following constraints:

Ve e X,Vie{l,..,k}: di(x) — Aé(z) < maxg;(xz) — Aé(x) = si(x) =0 3)
J

If there exists a strategy in Sy that has a cost less than or equal to B, then this strategy achieves the
optimal quality. Otherwise, there exists a \* € R™ such that Sy, contains a routing strategy that has
exactly cost B and all routing strategies in | J, g+ Sx that have cost B achieve the same optimal

quality.

There is one extra condition mentioned here that we omitted in the main text. The requirement of
having at least an admissible solution to the constraints in Eq. (2)) is necessary to ensure that the set
of possible solutions to Eq. (Z) is not empty. For instance, the cost budget B can be too low such
that even running the cheapest model for each query is too expensive.

The formulation of sopr as a convex combination of 53}, and sM Ax 1s a direct consequence of The-

*

orem Indeed, let A\* be as defined in Theorem El Then s7), Tesp. 53, must have the lowest,
resp. highest, cost among all routing strategies in Sy«. Smce there is a routing strategy in S~ that
has cost B, there must exist a convex combination of s}, and s3},, that also has cost B and thus
achieves the optimal quality.

MIN MAX

We first prove several lemmas before proving the theorem.
Lemma 1. Sy is non-empty and convex for all A € R*.

Proof. Non-emptiness follows from the fact that the routing strategy that assigns all probability
mass for a sample z to a model ¢ for which §;(z) — Aé;(z) is maximal, is in Sy. For convexity,
let sV, s(2) € S, be arbitrary. Let 57 be the convex combination of s(!) and s(2) with weight
v € [0,1]. Let # € X be arbitrary. Then, s] (x) > 0 if and only if sl(-l)(x) > 0or 31(2) (x) > 0. Since
s, s ¢ Sy, we have Gi(z) — Aéi(z) > max; g;(2) — Aéj(x) for all i such that s\ (z) > 0 or
552)(:5) > 0. This implies that ¢; (z) — Aé; () > max; ¢;(z) — Aéj(x) for all ¢ such that s (z) > 0.
Thus, s7 € S). O

Lemma 2. Let A\; < Xy and sV, resp. s be arbitrary routing strategies in Sx,, resp. Sx,. Then,
the cost of sV is greater or equal to the cost of s, ie.,

k
3 sV (@)éi(@)
1=1

k

Zs&”(x)éiw]

i=1

EmNX > ECENX
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Proof. We show that for any = € X, the cost of s(!) is greater or equal to the cost of s(?). Letz € X
be arbitrary. Suppose s(!) is strictly cheaper than s(2). Then, there must exist a model pair i, j such
Fhatlfzi(x) < &(a), sV (@) > s (2) = 0, and s () > s\ (x) > 0. However, s{"(z) > 0
implies

Gi(x) = Méi(x) > §j(x) — Are;().
Furthermore, since A; — Ay < 0, we have

Gi(x) (M — A2) > &(x) (M1 — A2).
Adding these two inequalities gives

Gi(x) = A2ti(x) > Gj () — Aoty (),

which is a contradiction with 55-2)(33) > 0. Thus, the cost of s(!) is greater or equal to the cost of

5@, O

Lemma 3. Let A be the set of points A € R such that there exist an x € X and i # j such that
gi(x) — Aéi(x) = gj(x) — Aé(x). Let Ay < Ao be such that [\, \2] N A = (. Then, S, = S},.
Furthermore, if [A1, A2]) N A = {\*}, then Sy C Sy« for all X\ € [A\1, Aa).

Proof. We first show the first statement by showing that Sy, \ Sy, = 0. Sy, \ Sy, = 0 follows
analogously. Suppose there exists a routing strategy s € Sy, \ Sh,. Since s ¢ Sy,, there must exist
an z € X and model 7 such that s;(z) > 0 and §;(x) — A\2é;(x) < max; ¢;(z) — A2€;(x). Let j be
an index such that g;(z) — A\2é;(z) < ¢j(x) — A26j(x). Since s € Sy,, we have §;(x) — A1 é(z) >
g;(x)—X1¢;(z). By continuity, there exists a A € [A1, Ao] such that §;(z)—\é; () = ¢j(x) =N (),
which is a contradiction with [Ay, Ao] N A = ().

Now suppose [A1, A2] N A = {A*}. Let A € [A\1, A*) be arbitrary and let s € S be arbitrary. We
show that s € Sy«. For A € (A*, Ag], the proof is completely analogous. By contradiction, suppose
there exists an € X and model i such that s;(x) > 0 and ¢;(xz) —A*¢;(z) < max; §;(x)—A*¢;(z).
This means there exists a model j such that ¢;(z) — A*¢;(z) < ¢j(z) — A*¢;(x). Since s € Sy, we
know that g;(x) — Aé;(x) > ¢j(x) — Aé;(x). This implies that there must exist a A" € [A;, A*) such
that ¢;(z) — N'é;(z) = ¢;j(z) — N¢;(x). However, this is a contradiction with [Aq, \*) N A = 0.
Thus, s € Sy« O

In what follows, we will assume that |[A| < oo. This is a very minor assumption. For instance,
if ¢ and ¢ only take on a finite amount of values, this is trivially satisfied. Since estimators are
implemented on a computer, they will always have a finite precision, meaning that § and ¢ will only
take on a finite amount of values.

Lemma 4. Let \; < Ay and sV, resp. s be arbitrary routing strategies in Sy,, resp. Sh,, with
costs resp. By and Bs. Then, for any B € By, Bs] there exists a A € [\1, \a] such that S contains
a routing strategy that has exactly cost B.

Proof. Let B € [By, Bs] be arbitrary. If B = By or B = Bs, the statement is trivially true.
Therefore, suppose B € (B, By). Let A be as defined in Lemma 3} By Lemma [2| there exists
a A\* € [A1, A2] such that all strategies in Sy for A < A\*, resp. A > A*, have cost at least, resp.
at most, B. If \* ¢ A, then the first part of Lemma [3| together with |A| < oo, implies that
Sx+ = Sys—e = Sy for some € > 0. All the strategies in S)- must therefore have cost both
at least and at most B, meaning they should equal B. We can therefore assume that A* € A. By
Lemmaand |A| < oo, there is en € > 0 such that Sy-_. C S+ and Sy+4 C Sy+. Lets™ € Sy»_,
and s € Sy« be arbitrary. Let s7 be the convex combination of s~ and s with weight v € [0, 1].
Since s~,sT € Sy-, we have s7 € Sy~ by Lemmal(l| Denote by B~, resp. B, the cost of s, resp
sT. Furthermore, the cost of s7 is yB~ + (1 —~v)B™. Since B € [B~, BT], there exists ay € [0, 1]
such that s” has cost exactly B. O

We can now prove the theorem.
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Proof. If Sy contains a solution that has cost less than or equal to B, then this solution trivially
achieves the optimal quality. Thus, for the rest of the proof we can assume that the cost of every so-
lution in Sy is greater than B. For A — oo, S contains the solution that assigns all probability mass
to the model with the lowest cost. Since there is an admissible solution, this solution necessarily has
cost less than B. Therefore, by Lemma there exists a A* € R such that Sy« contains a routing
strategy that has exactly cost B.

Let s be an arbitrary routing strategy in ( J, g+ S that has cost B. Specifically, let s € Sy. Let s’
be any other routing strategy that is an admissible solution to the optimization problem. Then:

k r ok
Erex [Z Sg(w)di(ﬂf)] =Epex Z s;(x)4i(r) — AB + AB
:1,:1
< Eeex , si(x) (Gi(x) — Aéi(w)) + AB
:121
< Epex Z si(z) (Gi(z) — Aéi(x)) + AB
:1;1
=Erex Z Si(x)(ji(x)‘|

Thus, s achieves the optimal quality.

A.2 HYPERPARAMETERS

Finally, we explain how to determine the optimal hyperparameters A and . To do so, we estimate
the cost of a strategy using a validation dataset D that is representative of the query distribution X'
We then perform a hyperparameter search to find optimal values of A and ~y. By leveraging several
properties of routing strategies (see before), one can show that this hyperparameter search can be
reduced to a single binary search over A, enabling a quick and efficient hyperparameter optimization
process.

B CASCADING

We first determine the quality and cost estimates associated with supermodels (App.[B.T). We then
prove the optimality of our cascading strategy (App.|[B.2). Finally, we discuss the conditions under
which the thresholding strategy by prior work is equivalent to our cascading strategy (App.[B.3).

B.1 QUALITY AND COST ESTIMATES

We determine the quality and cost estimates associated with supermodel M.;, denoted as (jﬁ) (x)
and égjf (x). Trivially, the cost of the supermodel is equal to the sum of the individual model costs.
The quality of a supermodel, however, is governed by the best model within it. Thus, it equals
E;, [max(gi(x), ..., d;(z))], where the expected value reflects the uncertainty in each quality esti-
mate. Specifically, each quality estimate ¢;(x) is modeled as a random variable estimating the true
quality ¢;(x). This is crucial since ignoring uncertainty would falsely assume that the quality of a
supermodel is always equal to the best model within it, even though the best model may return a

poor answer, while another returns a good one. To estimate the uncertainties associated with the
)

estimates, we compute the variance of ;"' (x) — qfk) (z) over a validation dataset.
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B.2 PROOF OF THEOREM[Z]

To prove Theorem[2] we heavily rely on the results derived in App.[A] As explained in §3] cascading
can be reinterpreted as a sequence of routing problems. However, to prove optimality, we need to be
slightly more careful with the exact formulation of the problem.

At step j, the cascading strategy needs to decide whether to stop the cascade or to continue to

the next model. It should continue to the next model if any of the supermodels M;.;, ..., M.y is
better to run than M;.;_; for some measure of "better’. Therefore, the cascading strategy is indeed
performing a routing operation between the supermodels M;.;_1, ..., M.

However, the optimization problem does slightly change compared to the routing problem. First of
all, for each query z € X, there is a possibility that the cascade is stopped before step j. Therefore,
the cascade should not aim to optimize the quality at step j for such a query, since it would not have
any effect on the overall quality of the cascade. Furthermore, the budget B is only enforced over the
entire cascade, and not over the individual steps. Since the problem changes through steps, it is not
required that the cost of the router at step j is exactly equal to B.

Therefore, we reformulate cascading using an inner and outer optimization problem. The inner
optimization problem aims to find the optimal routing strategy at step j for a given budget B;. The
outer optimization problem aims to find the optimal budget B; for each step j such that the overall
quality of the cascade is maximized under the constraint that the total cost of the cascade is at most
B.

To formulate this more exactly, let P;(A/) be the probability that the cascade computed supermodel
M by step j. Then, the inner optimization problem at step j can be formulated as:

k
max  Egox | Pj(Myj-1) ri(@)ay) (z)
™ i i=j—1 |
- . 7
st. Egox | Pj(Myj—1) Z le(x)égjz) ()| < B @)
i=j—1
k
Vie{j—1,..,k}:Vee X :ry(z) >0A Z riq(x) =1
i=j—1

Note that P;(M;.j—1) can be incorporated in the quality and cost estimates. This leaves us with the
exact same optimization problem as the routing problem, but with a different budget B;. Since the

chosen model only depends on the maximization of P;(Mi.;_1 )q(” ()= Aj P (M1 )67@ (z), the

i
probability P;(Mj.;—1) can be divided out of the optimization problem.
The inner optimization problems prove the existence of optimal routing strategies at each step j

with parameters );. We note that there only needs to be one parameter -y that determines the convex
combination since the budget B is only enforced over the entire cascade.

Let us denote the quality and cost of the entire cascading strategy for given parameters Aq, ..., A\
and vy as Q(A1,..., Ak,y) and C(Aq, ..., A\, ) respectively. Then, the outer optimization problem
can be formulated as:

max QMy- -, Akyy)
A yeos ARy )

st. C(A1,...,\e,7) < B

To solve this outer optimization problem, we simply perform a hyperparameter search over the
budgets By, . .., By using a hyperparameter optimization search as discussed in
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B.3 PRIOR APPROXIMATIONS

Intuitively, the thresholding cascading strategy can be seen as a special case of our cascading strat-
egy. However, it puts very restrictive assumptions on the quality and cost estimates. We first formally
state these conditions:

Corollary 1 (Optimal Threshold Strategy). Under minor technical assumptions, the thresholding
strategy is equivalent to our cascading strategy if and only if the following conditions hold: C(J )( )
is independent of « for all i,j € {1,... k}, A(J)( ) is independent of x for all i > j, and A(J)( ) is
equal to q}@ ().

Before proving Corollary [T} we first need to define what we exactly mean by equivalency. For this
purpose, let C; be defined as follows:

C = {s | sis a cascading strategy with parameters A1, ..., Ag,y = 0 using estimates q(j), é(j)}
Similarly, let C be defined as follows:
Coy = {3 | sis a thresholding strategy with parameters 74, . . ., 7 using estimates cj(j ), el )}

We note that we set v = 0 since the thresholding strategy is deterministic. We therefore restrict the
cascading strategy to be deterministic as well.

We define the equivalence between the two sets as follows:

Definition 6 (Equivalence of Strategies). We say a set of strategies Cy is equivalent to another set
of strategies Ca, denoted as C1 = Co, if for all sy € C1 U Cs there exists a s1 € C1, and a s3 € Cqy
such that for all x € X, s, s1 and so take the same decisions on x.

We can now more accurately state the conditions under which the thresholding strategy is equivalent
to the optimal strategy.

Corollary 2 (Optimal Thresholding Strategy). Let C1, Co be deﬁned as above. Then, C1 = Cq if and

only if there exists alternative quality and cost estimates q(j ) () and c(] )y (x) with associated set of

cascading strategies Cy such that C; = C} and the following condmons hold on these alternative
NG

K3

quality and cost estimates: é(-j ) () is independent of x and bigger than 0, §;”’ (x) is independent

i)' /() is equal to q(]) (2).

of x forall i > j, and gy,
The main difference between Corollary 2] and Corollary [T]is that we impose the possibility of alter-
native quality and cost estimates. However, this does not really influence equivalency in the intuitive
sense. Indeed, one could alternatively phrase the corollary as follows: the thresholding strategy
is equivalent to any of our cascading strategies if and only if it is possible to construct alternative
estimates such that the conditions hold.

Proof. We note that the cascade s € C; continues on a sample if the following condition holds:

Q)1 (@) = M) (@ )<l€gl§t_}_<k}qgjz)( z) = N (@) (6)

If C; = Cy, itis clear that Eq. (@) reduces to the thresholding strategy for all strategies in C}. Indeed,

for any s € C7, set 7; = maX;e(;, ..k} qg = A c(J ) and the thresholding strategy is equivalent to s.

Alternatively, if s € Co, suppose max;e (;,....k} qijt) Aj 65] L) (J )

set \j =7,/ é; (jg / ¢, and the cascading strategy is equlvalent to s. Therefore, C; = C] = Ca.

- c(»] ) for some index 7. Then,

Suppose now that C; = C,. We construct alternative quality and cost estimates ql(j ) () and égj ) (x)
such that the conditions hold and such that C; = C}. For this purpose, we define C(J y (x) =1 for
alli,j € {1,...,k}, q(7) (x) = 1foralli > j, and q(J) (z) = ¢ (x) otherwise. Furthermore, we

set injl)/(x) = §J) (x) for all 4,5 € {1,...,k}. The equivalence of C; and Co can now be proven
analogously to the previous paragraph. Therefore, C; = C| = Cs. [
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C CASCADE ROUTING

We first note that the proof of the optimality of the cascade routing strategy is equivalent to the proof
of the optimality of the cascade strategy, except that the expectation in the optimization problem
Eq. (@) is now not only over « € X, but also over all possible supermodels that were computed by
step j — 1. However, this does not change the optimization problem, and the proof is completely
analogous to the proof given in §3]

We now explain and mitigate two challenges that arise when applying cascade routing in practice:
the model order and the number of supermodels.

Model Order In cascading, the model order is predetermined, and the routing strategy only de-
cides whether to proceed with the next model in the sequence. In contrast, cascade routing must
dynamically determine the order in which models are computed. Despite this, both the estimated
quality (jgi[) (x) and cost éE\J/[) (x) of a supermodel M are order-independent. Therefore, supermodels
that contain the same models in a different order will have the same associated cost and quality. To
mitigate this, we sort the models within the selected supermodel by cost and compute the cheap-
est one first. This approach aligns with cascading, where more expensive models are only used if
cheaper models do not suffice.

Number of Supermodels In cascading, the quality and cost must be computed for a maximum
of k supermodels at each step. However, in cascade routing, the number of supermodels grows
exponentially, leading to the need to evaluate up to 2* supermodels. This increase can become
prohibitively costly, particularly since the model selection process must remain computationally
negligible with respect to model computation. To mitigate this, we leverage so-called negative
marginal gains. Specifically, if a model m in a supermodel M negatively impacts the quality-cost
tradeoff, all supermodels containing all models in M can be pruned from the search space. Since
this negative contribution is quite common, this allows us to prune the search space significantly.
More formally, this pruning operation relies on the following lemma:

Lemma 5 (Negative Marginal Gain). Let M € M and m be any model in M. Let the marginal gain
of mw.rt. M be defined as Tar(x, A) — Tap\(m} (z, A). Then, if the marginal gain of m w.r.t. M is
strictly negative for a given query, the optimal cascade routing strategy will never run a supermodel
M’ € M that contains all models in M.

To prove the lemma, we first prove the following lemma.

Lemma 6. Let Q)1, ..., Q) be distributions. Let S be the superset of {1,...,k}. Then f : S — R
defined as f(S) = E(max;cg Q;) is submodular. Here, we define max;cg Q; = —00

Proof. LetT € S C {1,...,k}and j € {1,...,k} be arbitrary. To show the submodularity of f,

we need to show that
F(TU{j}) = £(T) > fF(SU{j}) — f(9).

We can write:

(
= E(max(0, Q; — max Q;))
< E(max(0, Q, max Q:))
1€
= E( ma i) — E(max Q;
(o Q) ~ E(max Q)
= [(TU{j}) - £(T)
In the proof, we needed max;cy Q; = —oo in the case T' = ). O
We note that the assertion that max;c¢y (); = —oo corresponds to the fact that giving no answer to a

query has —oo quality.

We can now prove Lemma 5]
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Table 2: AUC scores in % for different strategies on RouterBench across model and noise levels. All
baselines are always worse than the 95% confidence intervals of cascade routing. For a discussion
on confidence intervals, we refer to App. E}

Three Models Five Models Eleven Models
Low Med High Low Med High Low Med High
Linear Interp. 69.62 69.62 69.62 69.22 69.22 69.22  70.51 70.51 70.51
Routing 79.73 7497 7181 8124 7443 71.33 83.25 74.63 72.67
Cascade (Baseline) 80.86  74.64 7248 8233 73.03 69.53 8448 73.64 69.79
Cascade (Ours) 81.09 76.16 72.67 83.06 75.17 70.18 84.47 75.10 70.26

Cascade Routing (Ours) 82.36 76.55 73.22 84.33 76.31 72.75 87.24 77.57 74.40

Proof. Let M and m be as in the lemma. Suppose M’ is a supermodel that contains all models in
M. Furthermore, let M = M’ \ m. We show that the supermodel M" is always strictly preferred
over M’. To see this, we note that the difference between 7/ (2, \) and 737~ (2, A) is equal to

E( o G () — E( max g (2)) = Xy ()

By Lemma@ this difference is smaller than §as () — Gan\ {m} (2) — Ajém (). Thus, by assumption,
this difference is negative, and therefore M" is always preferred over M’, which concludes the
proof. O

D ADDITIONAL EXPERIMENTS

D.1 ROUTERBENCH

RouterBench (Hu et al.l 2024) is a benchmark developed to evaluate the efficacy of different
model selection strategies. It includes questions from seven diverse benchmarks, such as MMLU
(Hendrycks et al., 2021), GSM8k (Cobbe et al., 2021), and MBPP (Austin et al., [2021), alongside
answers from eleven different models ranging from GPT-4 (OpenAll 2023) to Mistral-7B (Jiang
et al.l [2023)).

Quality and Cost Estimates Similar to (Hu et al.,[2024), we estimate quality and cost by adding
zero-centered Gaussian noise to their true values. Both cost and quality estimates are modeled
as linear functions fitted on these noisy signals. Thus, the quality estimate can be expressed as
Gw.p(x) = W(q(x) + €) + b where € ~ N(0, ). A similar expression holds for the cost estimate.
We define the variance of the noisy signal as o2, before model computation (ex-ante estimates)
and Ugosr after (post-hoc estimates). To explore different uncertainty levels, we vary the variances

to simulate low-, medium-, and high-noise scenarios, with exact values for the variances given in

App.[EJ|

Models We evaluate cascade routing on RouterBench using three, five, and eleven models avail-
able for model selection, ensuring a comprehensive evaluation across a range of scenarios. The exact
models are provided in App.[E.3]

Strategies We compare cascade routing against several baseline strategies, including the routing
strategy described in §2] the threshold-based cascading approach from prior work (Corollary [I)),
and the optimal cascading strategy (Theorem E]) Additionally, as in (Hu et al., [2024), we include a
baseline that linearly interpolates cost and quality on the Pareto frontier of the models.

Evaluation Metric For each method, we evaluate performance using cost budgets ranging from
the cheapest to the most expensive model. This produces a quality-cost curve for each strategy.
Following (Hu et al.,2024)), we use the Area Under the Curve (AUC) as the performance metric.

Results Table [2| presents the results for the zero-shot setting, with the five-shot results detailed
in App.[H} Cascade routing consistently outperforms all baseline strategies with performance gains
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(a) Comparison of cascade routing with routing. (b) Comparison of cascade routing with cascading.

Figure 2: Difference in AUC performance between cascade routing and baseline strategies on
RouterBench for various noise values. Red indicates cascade routing is much better, while blue
indicates it is only a bit better.

between 1% to 4%, which measured relatively to the naive linear interpolation baseline means that
cascade routing improves by 13% to 80% over the baselines. This performance gap widens as
more models are available and narrows under higher noise levels, indicating that cascade routing is
most effective with large model sets and accurate cost and quality estimates. Furthermore, our new
cascading strategy outperforms the threshold-based cascade by up to 2%, reinforcing the practical
relevance of our theoretical results.

Quality Estimation To better understand the impact of quality estimation on model selection
strategies, we additionally conduct experiments with five models under a broader range of varying
noise levels. Fig. [2 illustrates the difference in AUC performance between cascade routing and
baseline strategies for all possible noise levels. The results demonstrate that cascade routing con-
sistently outperforms the baselines, achieving up to an 8% improvement for cascading and up to a
12% improvement for routing. Notably, the performance gap highlights key differences between the
cascading and routing strategies. For routing, the value of oy is critical—high o,y significantly
reduces performance compared to cascade routing. Conversely, for cascading, opos plays a more
influential role, with higher values causing substantial performance degradation. These findings un-
derscore the importance of accurate quality estimation for both strategies. Cascade routing proves
to be a more robust solution by unifying the strengths of both approaches and effectively leveraging
low anee and low oo to enhance performance.

D.2 ABLATION STUDY

We conduct an ablation study to examine the impact of various design choices in cascade routing
on performance and runtime. Runtime is a critical factor because the overhead introduced by the
strategy must be negligible compared to the time required for model computation. If the strategy
adds significant overhead, its performance gains may be offset by the increased runtime. We also
include an additional ablation that specifically targets runtime on random data in App.[D.3]

To investigate this, we repeat the experiment from ?? when using all eleven models, testing different
variations of cascade routing. We evaluate a slower variation that omits Lemmal5] thereby requiring
more supermodels to be evaluated (SLOW), a greedy variation that only considers supermodels of
length j + 1 at step 7 (GREEDY), and a version that does not compute the expected value when
evaluating supermodel quality, using the quality of the best model instead (NO-EXPECT).

Results Table 3| presents the results. As expected, the SLOW variation is almost an order of mag-
nitude slower while achieving similar performance. In contrast, both GREEDY and NO-EXPECT
are faster but perform worse in the low- and medium-noise scenarios by 0.5% to 1.3%. Interest-
ingly, there is a much smaller performance gap in the high-noise scenario. This is due to the very
low variance in the quality estimates, since the linear model used for quality estimation predicts an
almost constant value for each query in this scenario, making the expected value computation less
important.
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Table 3: AUC scores and average runtime for variations of cascade routing on RouterBench when
using all eleven models.

Low-Noise Medium-Noise High-Noise
AUC (%) Time (ms) AUC (%) Time (ms) AUC (%) Time (ms)
Cascade Routing 87.29 15.26 77.61 9.53 74.41 13.68
SLow 87.30 78.88 77.61 87.72 74.40 88.76
GREEDY 85.93 1.39 7717 1.17 74.35 0.89
NO-EXPECT 85.98 4.78 77.11 2.49 74.35 2.08

Furthermore, the GREEDY and NO-EXPECT variants perform very similarly, while GREEDY is about
twice as fast as NO-EXPECT. This suggests that one should almost always use the normal variant of
cascade routing, and only consider the GREEDY variant if runtime is a critical concern. Neither the
SLOW nor the NO-EXPECT variant is recommended, as they either perform worse or are significantly
slower than the normal variant.

D.3 RUNTIME ANALYSIS

We further analyze the runtime of the four variants of cascade routing presented in App.[D.2] Specif-
ically, we perform experiments with random data, scaling the number of models to 80 to evaluate
the runtime of all variants. Furthermore, we include a fifth variant of cascade routing in the analysis
MAX-DEPTH, which restricts cascade routing to a maximum depth of 3 models. MAX-DEPTH does
not reduce performance of cascade routing if the optimal depth is less than or equal to 3 models.
However, it does significantly reduce the runtime of cascade routing.

For each number of models, we generate 100 data points, each with random quality and cost esti-
mates associated with each model. For each point, we generate the hyperparameters Ay, ..., A and
~ randomly. We then report the average runtime of the five variants of cascade routing in Fig.

The results show the varying computational complexity of the ~ Runtime (s)

different variants of cascade routing. SLOW has the high- 107 /-\./“‘
est runtime, and becomes computationally too expensive even 10! . /

when using less than 20 models. In contrast, standard cascade / - e
routing has a significantly lower runtime, and is able to handle 10° J /./'/ =l

up to 40 models within a 1 second runtime. Its faster variant, /:f:/'/'/
MAX-DEPTH, is able to handle up to 80 models within a 1 sec- | e NomwaL

ond runtime. Furthermore, we now also see a clear difference 107 [/ —e— CREEDY
between NO-EXPECT and GREEDY. While GREEDY remains |, ; /’ i :C:)EXPECW e
computationally very cheap even for 80 models, NO-EXPECT ol - iR B
has a significantly higher runtime, even obtaining higher run- 107 0 0 0 o0 0

times than MAX-DEPTH for 80 models. Number of Models

Thus, the conclusions from App. [D.2]are further supported by
the runtime analysis: GREEDY is the most efficient variant of lng variants for different numbers
cascade routing, while NORMAL is the most efficient variant of models.

that does not compromise performance. MAX-DEPTH is a good choice if the optimal depth is
known to be less than or equal to 3 models, as it significantly reduces runtime without compromising
performance. Since cascades of more than 3 models are rare, MAX-DEPTH is a good choice in
practice.

Figure 3: Runtime of cascade rout-

E EXPERIMENTAL DETAILS

We describe some additional details about the experimental setup and the datasets used in our ex-
periments.

E.1 ACCURATE QUALITY ESTIMATION

Data Split For the SWE-Bench benchmark, we use its verified data split and divide the dataset into
training and calibration subsets, with each comprising 50% of the data. For the Minerva Math and
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LiveCodeBench benchmark, we only include the Algebra portion of Minerva Math to ensure that
both benchmarks have a comparable number of samples for evaluation. Similarly, we also perform
a 50% split of this dataset into training and calibration sets.

Evaluation Setting For the SWE-Bench evaluation, we analyze the performance of 10 models
submitted to the benchmark’s leaderboard. The logs for these models were obtained from the official
SWE-Bench repositoryﬂ Specifically, we evaluated the following models:

* 20240402_sweagent_claude3opus

* 20241007_nfactorial

* 20240728_sweagent_gpt4o

* 20240620_sweagent_claude3.5sonnet

* 20241016_epam-ai-run-gpt-4o0

* 20240824_gru

* 20241106_navie-2-gptd4o-sonnet

* 20240820_epam-ai-run-gpt-4o

* 20241202_agentless-1.5_claude-3.5-sonnet-20241022

* 20241028 _agentless-1.5_gptdo

For each model, we extract the time required to complete a task to measure cost.

For LiveCodeBench and Minerva Math, we evaluate the following models:
* QWEN-2.5-CODER-7B-INSTRUCT

* QWEN-2.5-CODER-1.5B-INSTRUCT
* QWEN-2.5-MATH-7B-INSTRUCT
¢ QWEN-2.5-MATH-1.5B-INSTRUCT

We conduct experiments using version 5 of the LiveCodeBench benchmark from its official reposi-
tory. For Minerva Math, we utilize the LM Evaluation Harness (Gao et al.|[2024)) to ensure consistent
and reliable evaluation.

Cost Estimation For SWE-Bench, the cost is defined as the time (in seconds) that a model takes
to complete a task. A linear regression model is fitted to predict this cost based on the query length
and, when available, the cost of running other models.

For LiveCodeBench and Minerva Math, the cost is calculated as the total number of tokens in both
the query and the answer, multiplied by the size of the model (in billions of parameters). Similar
to SWE-Bench, a linear model is used to predict the cost based on query length and other models’
costs.

Quality Estimation For ex-ante quality estimation in SWE-Bench, we train a logistic regression
model that predicts quality based on the query length and a one-hot encoded variable representing
the query’s source repository. Post-hoc quality estimation leverages the ground-truth quality scores
computed during evaluation.

For ex-ante quality estimation in Minerva Math and LiveCodeBench, we include the query length,
query source (Minerva Math or LiveCodeBench), and the difficulty level of the problem as defined
by the benchmark. Post-hoc quality estimation incorporates additional information, such as whether
the parsed answers from different models agree with one another.

E.2 POOR QUALITY ESTIMATION

Data Split We split each dataset in each benchmark into a training set and a test set, each com-
prising 50% of the data. For all datasets except GSM8K, the training set is created by splitting the
original test data. In the case of GSMS8K, since a separate training set is already available, we use
this pre-existing training data, leaving the original test set unchanged. The training set is then further
divided, with 50% used for training quality and cost estimators, and the remaining 50% reserved for
hyperparameter optimization through validation.

3https://github.com/swe—bench/experiments
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Table 4: Standard deviations of the noise levels on the RouterBench dataset.

Quality Cost
Obefore O after Obefore O after
Low 0.6 0.3 0.0002  0.00005
MEDIUM 1.6 0.8 0.0004  0.0001
HIGH 2.4 1.2 100 100

Evaluation Setting We use completion-based evaluation in a one-shot setting for each benchmark.
For the classification tasks, we obtain the probability associated with each class ("A", "B", "C", ...)
from the model directly. For open-form reasoning tasks, we extract the answer by instructing the
model to generate a completion that ends with an extractable answer. If the model does not output
an answer in the correct format, we perform a best-effort extraction by trying various regex patterns.
Details on the prompts and regex patterns used for each benchmark are provided in the code.

Models Forthe LLAMA-3.1 model family (Al@Meta,2024), we use the models LLAMA-3.1-8B-
INSTRUCT, LLAMA-3.1-70B-INSTRUCT, and LLAMA-3.1-405B-INSTRUCT. For the GEMMA
model family (Gemma Team et al., 2024), we use the models GEMMA-2B-INSTRUCT, GEMMA -
2-9B-INSTRUCT, and GEMMA-2-27B-INSTRUCT. For the MISTRAL model family (Jiang et al.,
2023)), we use the models MISTRAL-7B-INSTRUCT-V0.3, MIXTRAL-8X7B-INSTRUCT-VO0.1, and
MIXTRAL-8X22B-INSTRUCT-VO.1.

Cost Estimation For cost estimation, we first calculate the number of tokens in both the query
and the model’s response. We then use API-based prices per token for each model to estimate
the costE] In classification, where responses consist of a single token, the cost can be determined
before running the model. In open-form reasoning tasks, where response lengths vary, we estimate
this length based on responses from previous models in the cascade if the model has not yet been
computed. If no model response is available, we estimate the response length using the average from
the training data.

Features Quality Estimates We specify the exact features used for the logistic regression model
that serves as the quality estimator. First, we include a one-hot encoding of the various datasets
in each benchmark. Furthermore, for classification, we include the probability associated with the
highest class and the entropy of the class probabilities if the model has been computed. If several
models have been computed, we include both whether they agree on their prediction, and the JS-
divergence between their class probabilities. For open-form reasoning, we include the perplexity,
number of tokens, and several quantiles of the logits if the model has been computed, in accordance
with|Gupta et al.| (2024). If several models have been computed, we also include whether they agree
on their prediction.

We note that we train a separate logistic regression model for each history of computed models, and
for each model separately as well. Thus we have one linear model for each combination of a target
model m; and computed models m;, , ..., m;,. All the linear models are trained on the training set
included in the benchmark.

E.3 ROUTERBENCH

Data Split We use 5% of the RouterBench data (around 2000 samples) to optimize the hyperpa-
rameters of cascading, routing, and cascade routing. The remaining 95% is used for evaluation. We
use the same data split for all noise levels.

Noise In Table[dwe specify the standard deviations of the noise levels on the RouterBench dataset.
To put these numbers into context, we note that quality varies between 0 and 1, and the average cost
of the smallest models is 0.000073, while the average cost of the largest models is 0.003281. We
fit a logistic regression model on this noisy signal to obtain the quality and cost estimates. This
simulates the noise in the features that are used to estimate the quality and cost of the models.

*We used the Together API for all our experiments.
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Table 5: AUC scores in % for different strategies on RouterBench in the 0-shot setting with 2¢
confidence intervals.

Three Models Five Models Eleven Models
Low Med High Low Med High Low Med High
Cascade Routing (Ours) ~ 82.37%0-3)  76.577032  73.2370437  84.33%0325  76.32703%  72.757035  87.24703%% 7758703 74.417033
— Routing 26475015 1597013 140701 3.101917 1.88t3jg 1417937 4005527 2.047020 1737513
— Cascade (Baseline) L50EGTS 1915005 0.74ffil 2000017 3200038 322003 276tGil 802005 461503
— Cascade (Ours) 1.287012 0395015 0547018 1.27F019 147020 25703t 277100 2467537 414702

Table 6: AUC scores in % for different strategies on RouterBench in the 5-shot setting across model
and noise levels with 20 confidence intervals. Bold numbers indicate that the confidence interval

contains zero.

Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Cascade Routing (Ours) 83.7910%,  78.85103)  77.17032 8551020 7877103 7674103 88781022 80.891035  78.03%03,

— Routing 2.31014 L64Tpie  LITRER 3.08%0hG Loafpif 1217000 3.43%010 3130y L6T0g
— Cascade (Baseline) —0.647510 0287013 0.227018  1.23%512 2197521 2.83702%  1.647012 220702 3.00752]
— Cascade (Ours) 1.02408, 009791 01794 125750, 1597007 245%02 206757 2227021 295703

Models In the evaluated scenarios for three models, we use the models MIXTRAL-8X7B-
CHAT, GPT-3.5-TURBO-1106, and GPT-4-1106-PREVIEW. When using five models, we add
WIZARDLM-13B-V1.2 and CLAUDE-V?2 to the mix. For eleven models, we use all models avail-
able in the benchmark.

F CONFIDENCE INTERVALS

To check whether the results obtained by cascade routing are significantly higher than our baselines
in Tables [1] 2] and [I0] we perform bootstrapping on the samples in the dataset. Specifically, we
compute the confidence interval associated with the difference between the AUC scores of cascade
routing and the baselines. If this difference is positive and its 20 confidence interval does not contain
zero, we can conclude that cascade routing is significantly better than the baseline. These confidence

intervals are reported in Tables
G DETAILED RESULTS

We present benchmark-specific AUC values for the experiment performed in §5|in Table 8] for clas-
sification and Table 9] for open-form reasoning.

H ADDITIONAL RESULTS

In Table [I0] we report the AUC scores for the RouterBench dataset for different noise levels for
the five-shot evaluation. Our conclusions presented in App. [D.I]remain consistent with the results
presented in Table [I0] However, there is one notable inconsistency: in two of the three low-noise
scenarios, our cascading strategy performs worse than the threshold-based baseline cascade. In the
scenario with three models, we find its cause can be found in the more difficult optimization surface
for the hyperparameters of our cascading strategy. Specifically, our cascading strategy at some point
starts to lose quality as cost increases. By simply setting the hyperparameters of the cascading
strategy once it starts to lose quality to the ones where it obtained its highest quality, we obtain a
quality of 83.35% over the 83.17% of the baseline cascade.

In contrast, for low-noise and eleven models, a similar approach does not yield a better result. Rather,
the discrepancy is caused by a small mismatch between the quality estimates of supermodels and
the chosen model. While the quality estimate is based on the expected maximum of all models, we
restrict the selected model to be the last model that was computed in the cascade. Since the expected
maximum is higher than the quality of the last model, this discrepancy can lead to suboptimal de-
cisions. By allowing both the baseline cascade and our cascading strategy to select the model with
the highest quality estimate, we find that our cascading strategy once again outperforms the base-
line cascade. Note that this slight discrepancy is not relevant for cascade routing, since the extra
restriction is not imposed in this setting.
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Table 7: AUC scores on the realistic benchmarks with 20 confidence intervals. Bold numbers
indicate that the confidence interval contains zero.

SWE-Bench Math+Code Classification Open-Form

10 MODELS 5 MODELS QWEN LLAMA GEMMA MISTRAL LLAMA GEMMA MISTRAL

Cascade Routing (Ours) ~ 54.2177-12  51.207735  48.51%295  75.5671 7 64.8971%5  65.02713) 79.957135  59.70%18% 5877182

— Routing 1365005 1.7 L1IARE 060037 0397059 0.081033 056105 1.2670%7  0.027503
— Cascade (Baseline) 1536755 517706 1077557, 07105 10517097 379707 0.65t8;§§ 3471050 10451708
— Cascade (Ours) 0.837190 0114195 182703 0061315 204103 167794 020400 200192 3.06108%

Table 8: Classification AUC values for each benchmark separately for the experiment performed in

¥

LLAMA GEMMA MISTRAL
MMLU ARC MixEval \ MMLU ARC MixEval \ MMLU ARC MixEval
Linear Interp. 53.82 93.15 82.86 39.40 82.28 70.97 39.76 85.39 73.03
Routing 55.32 93.12 82.86 40.01 83.13 73.12 40.61 85.64 74.28
Cascade (Baseline) 54.80 94.08 84.15 36.43 77.53 66.10 36.99 83.88 72.73

Cascade (Ours) 55.05  94.16 84.00 37.68  79.80 70.57 37.03  86.27 74.42
Cascade Routing (Ours)  55.40  93.90 83.91 39.93  83.74 73.16 40.56  86.52 74.64

Table 9: Open-form AUC values for each benchmark separately for the experiment performed in

LLAaMA GEMMA MISTRAL
MMLU GSM8k | MMLU GSM8k | MMLU  GSM8k
Linear Interp. 65.64 94.43 36.52 73.86 41.40 67.84
Routing 65.75 94.15 38.08 75.01 43.03 68.00
Cascade (Baseline) 66.07 95.17 35.76 68.44 38.88 60.82
Cascade (Ours) 66.25 94.94 38.16 71.10 40.76 64.53

Cascade Routing (Ours) 66.60 94.69 40.43 75.25 42.93 68.30

Table 10: AUC scores in % for different strategies on RouterBench across model and noise levels
for five-shot evaluation. Highest numbers are bolded, underlined numbers are within the 95% confi-
dence intervals of the highest number. For a discussion on confidence intervals, we refer to App. B

Three Models Five Models Eleven Models
Low Med High Low Med High Low Med High
Linear Interp. 74.21 74.21 74.21 73.82 73.82 73.82 75.16 75.16  75.16
Routing 81.50 77.22 76.01 82.43 76.84  75.54  85.34  TT.T7 76.44
Cascade (Baseline) 83.16 78.58 76.89  84.27  76.59 73.92 87.14 78.60 74.94
Cascade (Ours) 82.78 78.77  77.01 84.26 77.19 74.30  86.72 78.67  75.08

Cascade Routing (Ours) 83.80 78.86 77.11 85.50 78.78 76.75 88.78 80.90 78.04

Table 11: AUC scores on several benchmarks for the MISTRAL model family. Highest numbers
are bolded, underlined numbers are within the 95% confidence intervals of the highest number. For
confidence intervals, see App. E

Classification ~ Open-Form

Linear Interp. 63.39 53.86
Routing 64.89 58.71
Cascade (Baseline) 61.20 48.29
Cascade (Ours) 63.31 55.51
Cascade Routing (Ours) 64.97 58.73
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