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Abstract

Neural Architecture Search (NAS) methods have shown to output networks that largely outper-
form human-designed networks. However, conventional NAS methods have mostly tackled the
single dataset scenario, incuring in a large computational cost as the procedure has to be run from
scratch for every new dataset. In this work, we focus on predictor-based algorithms and propose a
simple and efficient way of improving their prediction performance when dealing with data distri-
bution shifts. We exploit the Kronecker-product on the randomly wired search-space and create a
small NAS benchmark composed of networks trained over four different datasets. To improve the
generalization abilities, we propose GRASP-GCN, a ranking Graph Convolutional Network that
takes as additional input the shape of the layers of the neural networks. GRASP-GCN is trained
with the not-at-convergence accuracies, and improves the state-of-the-art of 3.3 % for Cifar-10 and
increasing moreover the generalization abilities under data distribution shift.

Keywords: Distribution Shifts, Neural Architecture Search, Graph Convolutional Networks

1 Introduction

Neural Architecture Search (NAS) has drawn large research attention due to its efficacy in auto-
matically optimizing the architecture of Deep Neural Networks (DNNs), replacing the error-prone
manual design which demands high expertise. As the NAS process can be very expensive many
methods were proposed to save time or computation, following two main directions: i) reducing the
time required to evaluate each searched architecture proposing a weight sharing mechanism (Cai
et al. (2020); Bender et al. (2018) Pham et al. (2018); Liu et al. (2019); Xie et al. (2020)), ii) using
sample efficient algorithms so that only few architectures are evaluated (Zoph et al. (2018); Zela
et al. (2018); Klein et al. (2016); Real et al. (2019)). Predictor-based algorithms follow the second
approach, and train a proxy model that can infer the validation accuracy of DNNs directly from
their network structure. During optimization, the proxy can be used to narrow down the number
of architectures for which the true validation accuracy must be computed, which makes predictor-
based algorithms sample efficient. Predictor-based algorithms have been proposed by Wen et al.
(2019); Ning et al. (2020) and Dudziak et al. (2020). Despite the success of these kinds of ap-
proaches, only few methods (Lee et al. (2021); Huang et al. (2022)) tackle the problem of sharing
or re-using the predictor knowledge on different datasets. Most conventional NAS methods are
indeed task-specific, requiring repeatedly training the model from scratch for each new dataset.
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Moreover, existing NAS benchmarks either i) provide architectures trained on a single dataset
(Ying et al. (2019)), ii) define a benchmark across different tasks but not datasets (Duan et al.
(2021)), iii) or do not provide the full training-log of architectures and define not-unique networks
in their searchspace ( Dong et al. (2020)). This limit the possible studies that can be done on the
datasets to correctly interpret possible predictor results. In this paper, we restrict the problem to
predictor-based algorithms, which given a NAS benchmarks are extremely fast to train (∼10 min
on GeForce GTX 1080). Therefore, a natural question arises: Can we re-use the knowledge that a
predictor has learned on one dataset and transfer it to get a more sample-efficient algorithm on an-
other dataset? To this aim, we study the impact of distribution shifts on the predictor performance,
by analysing the ranking of the architectures trained on commonly used datasets for the task of
image classification, and propose simple yet effective solutions to address the shift. Specifically, we
design a randomly wired search space, that exploits the Kronecker product to impose a Resnet-like
structure and create a dataset of 2000 architectures trained on Cifar-10, Cifar-100, Tiny-ImageNet
and Fashion-MNIST datasets. We study the generalization abilities of the predictor when directly
used on a new dataset without fine-tuning and propose to integrate the so called vertex shapes - the
shapes each layer has given a different input size, and to adopt early stopping - training the predic-
tor with not-converged accuracies. Our study shows which are the limitations of predictor based
algorithms, and our simple approach improves of 3.7% and 9.5% (without and with distribution
shift) with respect to the näıve approach . To summarize, our contributions are threefold:

• We propose a new way of defining search spaces, that exploit the generality of randomly wired
spaces but samples neural network efficiently through the Kronecker product and a criterion
based on a desired skeleton, to obtain specific categories of neural networks.

• We analyse the generalization capabilities of näıve predictor based algorithms on two different
scenarios, involving different latent data but the same observed data and different latent data
with different observed data.

• We propose GRASP-GCN, which integrates the shapes of the layers of the neural networks
as input to predictor, and trains with the accuracies of non-specialized neural networks.

2 Related Works

Different techniques were proposed to mitigate the large computation burden of NAS. These ap-
proaches primarily target the acceleration of either the evaluation or search modules within the
NAS framework. The former accelerates the evaluation of each DNN, the latter increases the sam-
ple efficiency so that fewer architectures need to be evaluated for discovering a good network. Our
work falls under the second category, as the predictor can be utilized to sample architectures that
most likely perform well on a given task.

2.1 Single dataset predictor-based algorithms

Many predictor-based methods, that set the baseline for following works, focus on a single dataset.
Wen et al. (2019) train a regressor model on a small built dataset and select the top-K predicted
architectures to train them from scratch. The proposed approach leads to a more than 20× sample
efficient algorithm compared to standardly used evolution ones. Wei et al. (2023) used graph neural
network-based accuracy predictors and an iterative approach to estimate the accuracy of models.
Wen et al. (2019) propose a Graph-based neural Architecture Encoding Scheme, i.e. GATES, to
improve the generalization abilities of performance predictors by modeling the information flow of

2



GRASP-GCN

Figure 1: Architectures are sampled from the search space and trained over 4 datasets. The struc-
ture of DNNs is given as input with the shapes of the layers to a ranking GCN, which
given the accuracies, ranks DNNs so that the search space is narrowed down.

the actual data processing of the architecture as the attributes of the input nodes. Dudziak et al.
(2020) propose an efficient hardware-aware NAS method enabled by an accurate performance pre-
dictor based on Graph Convolutional Network (GCN). The authors show that the sample efficiency
of predictor based NAS can be improved by considering binary relations of models and an iterative
data selection strategy. Similarly to BRP-NAS, we employ a binary ranking GCN, but we extend
the focus on multiple datasets and employ as labels the validation accuracy of non-specialized
networks to improve the generalization abilities.

2.2 Transferable predictor-based algorithms

Relevant approaches to ours tackling the generalization problem across multiple dataset are MetaD2A
by Lee et al. (2021), and Arch-Graph by Huang et al. (2022). MetaD2A stochastically generates
graphs from a dataset via a cross-modal latent space that is learned via amortized meta-learning.
From the encoding of the dataset, obtained through a permutation invariant encoder set, a graph is
decoded. A meta-predictor estimates and selects the best architecture for a given dataset. Instead
of using an encoder set, we propose a much simpler and more general solution that does not lack the
possibility to adapt it to video-datasets due to the encoder-set. We provide as additional input to
the GCN the “vertex shapes”, which are strictly related to the shapes of the data. In Arch-Graph
the generalization problem is addressed as task generalization, rather than dataset generalization.
The method predicts task-specific optimal architectures with respect to given task embeddings, by
leveraging correlations across multiple tasks through their embeddings as a part of the predictor’s
input for fast adaptation. Despite being sample efficient across many tasks, the method requires
predictor-tuning on the new task/dataset. With respect to previous approaches, our work tackles
the problem from the point of view of the distribution shift in the dataset, proposing a simpler
yet more general method that accounts the specialization (or overfitting) of neural networks over
datasets, the shape characteristics of the data and their effect on networks, and that does not
require fine-tuning the predictor.

3 Methods

Our goal is to obtain a predictor that generalizes well across different datasets without need to
re-train or finetune. To this end, we sample architectures from our search-space and train them
over 4 image classification datasets (3.1) and propose GRASP-GCN (3.2), which trains a ranking
predictor with an additional input consisting in the vertex shapes.
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3.1 Search-space definition

NAS is formalized as a bi-level optimization problem:
A∗ = argmin AJv(A,w∗)

s.t. w∗ = argmin wJt(A,w),
(3.1)

where A describes the architecture, w are the trainable weights of the considered DNN, and Jv
and Jt are the validation and training loss, respectively. In our work we define A = (A,X), with
AN×N and XN×D encoding the connections in the graph and the types of layers, respectively. The
dimensions of the matrices are related to the N number of nodes (layers) and the D number of input
features, i.e. the number of layer types allowed. We sample A from our search space composed of all
feed-forward convolutional networks, belonging to the randomly-wired search space Xie et al. (2019)
and exploit the Kronecker product, a trick that allows us balancing flexibility and efficiency, avoiding
the sampling of big random matrices. We generate resnet-like architectures miming evolutionary
sampling. Two random matrices R4×4

1 and R4×4
2 are indeed sampled from the search space and

multiplied with two skeleton matrices K4×4
1 and K4×4

2 :

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

K1

⊗

 R1

 +


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

K2

⊗

 R2

 =


R1 R2

R1 R2

R1 R2

R1

 (3.2)

In Eq. 3.2, K1 which is multiplied by R1 defines the feed-forward structure, while K2, with the
off-diagonal values, defines the shortcuts. The input and the output layers are finally added to the
generated matrix A16×16, leading to a maximum dimension of 18×18. As shown, the Kronecker
product ⊗ allows repeating R1 and R2 structures, limiting the randomly wired search space in
a meaningful way. Moreover, it generates easily scalable networks, a key advantage as proven
by Zoph et al. (2018), by stacking multiple blocks. This design choice was intentional to focus
on analyzing the true impact of the dataset itself. Moreover, it does not represent a limitation
as the only requirement to properly train a GCN predictor is to have both very-well and very
badly-performing DNNs. Table 1 summarizes our candidate layers constituting our X18×9.

Layer stem conv3×3 conv3×3 conv3×3×d conv3×3×h conv3×3s2 conv3×3s2×d conv3×3s2×h

Channels 64 Same Doubles Halves Same Doubles Halves

Stride - - - - 2 2 2

Table 1: Layers in the search space. Same / Double / Halves refer to the channels of the parent
nodes.

3.2 Ranking GCN

Graph Convolutional Networks are DNN architectures that extract multi-scaled localized spatial
features to extract highly expressive representations of graphs, dealing with the difficulty of “lo-
calized convolution” filters in non-Euclidean domains. GCNs performs a convolution looking for
essential vertices and edges with the goal of learning the features of the graph. It takes as input:
(i) a feature description Xi for every node i summarized in a feature matrix XN×D where N is the
number of nodes, D the number of input features; (ii) a representative description of the graph
structure summarized in the adjacency matrix AN×N . For the classification task, the GCN pro-
duces a node-level output HN×F , where F is the number of output features per node. The GCN
outputs h(A,X) which is the concatenation of each Hl layer mapping done, as described in Eq. 3.3:
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Figure 2: Working principles of a GCN used as a ranking network.

h(A,X) = (HL ◦HL−1 ◦ · · · ◦H l · · · ◦H1)(A,X) (3.3)

where l = 1, 2, .. L, is the number of layers in the GCN, and Hl is given by the propagation
rule (eq. 3.4) defined by in Kipf and Welling (2017):

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (3.4)

with Ã = A + I, (I identity matrix), D̃ii =
∑

j Ãij is the degree matrix, W (l) is the layer-specific

trainable weight matrix, σ is the ReLU activation function, H(l) ∈ RN×D is the matrix of activations
in the l(th) layer, and H(l+1) is the output to the next layer. Graph-level outputs are modeled by
introducing some form of pooling operation. In our work we exploit a GCN with 3 layers and
a classification head, and following BRP-NAS we exploit a Ranking GCN, which learns a binary
relation that focuses on the prediction of ranking. Indeed, as previously observed by Dudziak
et al. (2020) i) accuracy prediction is not necessarily required to produce faithful estimates (in
the absolute sense) as long as the predicted accuracy preserves the ranking of the models; ii)
any antisymmetric, transitive and convex binary relation produces a linear ordering of its domain,
implying that NAS could be solved by learning binary relations, where O(n2) training samples can
be used from n measurements. Given the architecture’s search space, a ranking network predicts
how likely any network in the search space reaches a higher accuracy than the current best. Fig.
2 shows how a GCN can be used as a ranking network: two architectures A1 and A2 are fed to
the GCN. The GCN outputs two graph encodings h1 and h2, which are then concatenated into
the vector h. A softmax function σ() is applied, obtaining the ranking probabilities which are
then compared with the target t. Given for example the tuple (acci,Aj , acci,Ak

) where acci,Aj is the
accuracy of architectureAj and acci,Ak

is the accuracy ofAk, both over dataseti, if acci,Aj > acci,Ak
,

then the target vector takes as values t = [1 0]. Our goal is to maximize the log probability that
Aj is better than Ak, and therefore the predictor is trained with the loss in Eq. 3.5:

J = −tT · ln(σ(y)). (3.5)

As Aj,k gives the information about the structure of the graphs, and X defines the layers in the
DNN architecture, given a DNN architecture that is characterized by a bottleneck, the predictor
won’t capture the implications of a severe reduction of the feature maps if provided with these
inputs only. We therefore add the dimensions characterizing each DNN layer. This info shortly
called “vertex shapes” and is concatenated to X that has now dimensions 18×12. We normalize
the vertex shapes with respect to the maximum dimensions in our dataset and encode them as
float numbers. One hot encoding was discarded as it implicitly looses any ordering and distance
knowledge, i.e. we don’t know anymore if (3,32,32) is closer to (3,64,64) or to (4096,3,3).

4 Experiments

We investigate the statistics of our small NAS dataset composed of (architectures, accuracy) pairs
to provide ground-truth values for the predictor (Sec. 4.1). We show the performance of our
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F-MNIST C10 C100 Tiny

F-MNIST 0 0.0273 0.0461 0.0516

C10 0.1781 0 0.1032 0.1293

C100 0.4559 0.2653 0 0.1743

Tiny 0.5157 0.3456 0.1817 0

Table 2: 1-NDCG@2092
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Figure 3: Left: the columns display the training dataset, rows the validation dataset Color bar:
(lowest highest). Right: the ranking of each architecture on one of the four
datasets, sorted by the ranking in Cifar-10.

predictor under distribution shift (Sec. 4.2) and further validate the usage of the vertex shapes as
additional input and of not converged accuracies through ablations (Sec. 4.3). Our performance
are reported with three different measures: The validation accuracy, the precision@10, and the
Normalized Discounted Cumulative Gain (NDCG). We refer the reader to appendices A and C for
insights on the measures and for implementation details.

4.1 Dataset

The 4 datasets were chose to investigate a variety of conditions for the transferability of the predic-
tor, and to extend and be partially comparable with previous works that involve three datasets, as
in NATS-Bench Dong et al. (2020). Two different scenarios were defined: i) transferability when
different latent data is involved but the observed data is the same, ii) transferability when differ-
ent latent data is involved and the observed data is not the same. Hence, we chose (a) Cifar-10
as a baseline dataset, (b) Cifar-100 as it is composed of Cifar-10 images, labeled differently, (c)
Fashion-MIST as it is composed of black and white images (different latent data), belonging to
completely different categories with respect to Cifar-10, and (d) Tiny-ImageNET to consider a
more complex dataset with a larger number of classes. 2000 unique architectures were sampled
from the search space and trained over the aforementioned datasets. Models trained over different
input distributions are not guaranteed to perform in the same way. Do they “overfit” the dataset
specializing during training? Can early stopping be applied to reduce the training time it takes to
get the true validation accuracy of the architectures?
Distribution Shift Tab. 2, to be read column-wise, highlights that the order induced by compelx
datasets generalizes better for simpler datasets than vice-versa. This result is complemented by
Fig. 2a, that displays the ranking stability of each architecture on one of the four datasets. The
plot was obtained by sorting the architectures trained on Cifar-10 in descending order with respect
to their accuracy on the dataset, and inducing the same ID-order on the architectures trained on
different datasets. In this way, it is possible to observe what rank has been assigned to the archi-
tectures trained over different datasets, having as baseline Cifar-10 rank. We can observe that (i)
Fashion-MNIST architectures cause a higher variability in terms of architectures rank ii) the plot
start tighter, increase variance as we move towards bigger ranks, and gets tighter as we approach
the “worst” architectures. We can deduce that, not only the worst architectures are such since the
very beginning of training, (Fig. 4b), but as it could be naturally expected, some architectures
simply do not have enough capacity to solve any classification task and perform badly indepen-
dently on the input distribution they are provided, further validating the early stopping method
we propose in Sec. 4.2.
Network Specialization We compared through NDCG the ranking induced by the validation
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F-MNIST C10 C100 Tiny

F-MNIST 85.1 ± 0.7 76.4 ± 0.5 68.2 ± 0.6 68.4 ± 0.8

C10 74.2 ± 0.6 87.9 ± 0.4 84.9 ± 0.4 83.4 ± 0.7

C100 70.8 ± 0.6 85.0 ± 0.1 87.0 ± 0.4 85.6 ± 0.3

Tiny 72.3 ± 0.3 83.6 ± 0.9 85.3 ± 0.2 87.9 ± 0.2

(a) Average validation accuracy of the predictor.(%)

F-MNIST C10 C100 Tiny

FMNIST 100 ± 0 93 ± 2 94 ± 2 96 ± 1

C10 80 ± 4 99 ± 1 97 ± 2 95 ± 3

C100 36 ± 3 {60 ± 2 65 ± 1 63 ± 1

Tiny 41 ± 2 61 ± 3 57 ± 3 69 ± 2

(b) Average Precision@10 (×100) of the predictor.

Table 3: For each element of the table, the mean and the std of four runs are given. The columns
are the training datasets, the rows are the validation datasets.

accuracy v acci with i = 1, . . . , 120 with v acc120 at the end of training. Fig. 4a highlights a
possible correlation between the change of rank and the epoch where the learning rate is dropped
(we refer to Appendix C for details on hyper-parameters). Moreover, focusing on the NDCG@10,
that considers only the top-10, the plot reaches zero way before the end of the training. There-
fore, we formulated the hypothesis that the difference between NDCG@2092 and the NDCG@10
could be caused by the average performing networks, which are more strongly influenced by the
hyper-parameters. We checked the evolution of ranking during training (Fig. 4b) by counting how
many times the architectures change the relevance value (Eq. A.2 Appendix). We observe that
top-performing DNNs stop changing rank at earlier epochs, average performing ones have the peak
shifted towards the end of training, and DNNs not able to solve the task are such since the early
epochs.

Figure 4: Cifar-10 results. 1-NDCG plot (a) showing the ranking correlation. The lower the better.
The dashed lines highlight the epoch where the learning rate is dropped. Ranking evolu-
tion during training (b) derivative plot. The x-axis shows the architectures in a descent
ordered w.r.t their accuracy. The y-axis carries the training epochs. The heatmap dis-
plays large numbr of rank changes (yellow) to no changes (blue). (c) Validation accuracy
the GCN can obtain when trained with the previous rankings.

4.2 GRASP-GCN

We use the validation accuracy and the Precision@10 measures to evaluate the performance of
GRASP-GCN. Tab 3a, Tab. 3b show the results obtained for each training dataset (columns) on
each of the four validation datasets (rows). The values in the table are above 80 % when Fashion-
MNIST is not involved, which suggests that the predictor trained over the datasets involved in the
lower part of the table, e.g. Cifar-10, Cifar-100, Tiny- ImageNET, can transfer knowledge over one
of these datasets. On the other hand, when Fashion-MNIST is involved, either as the training or
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F-MNIST C10 C100 Tiny

F-MNIST 84.1 | 82.2 | 79.8 74.4 | 71.1 | 68.2 68.2 | 64.8 | 68.2 68.4 | 63.5 | 65.5
C10 74.2 | 73.8 | 73.2 87.9 | 84.1 | 86.2 84.9 | 81.1 | 80.8 83.4 | 81.1 | 80.7
C100 70.8 | 68.5 | 70.7 85.0 | 80.1 | 79.1 87.0 | 82.1 | 84.3 85.6 | 82.4 | 85.0
Tiny 72.3 | 66.4 | 70.1 83.6 | 79.2 | 83.2 85.3 | 80.1 | 83.4 87.9 | 84.0 | 86.6

Table 4: Comparison between (black) ours, (blue) BRP-NAS, (red), MetaD2A.

the validation dataset, the performance drops drastically. Finally, Tab. 4 shows that GRASP-GCN
surpasses all other methods when trained and evaluated over Cifar-10 and when directly applied
to new datasets.

4.3 Ablation

F-MNIST C10 C100 Tiny

F-MNIST 84.1 | 79.1 | 83.8 74.4 | 67.7 | 74.7 68.2 | 65.8 | 69.2 68.4 | 61.7 | 65.9
C10 74.2 | 71.9 | 73.4 87.9 | 84.2 | 86.6 84.9 | 82.3 | 84.0 83.4 | 80.1 | 83.4
C100 70.8 | 68.9 | 71.2 85.0 | 82.5 | 84.3 87.0 | 84.4 | 86.5 85.6 | 82.7 | 84.8
Tiny 72.3 | 62.5 | 70.9 83.6 | 81.1 | 83.6 85.3 | 83.0 | 85.0 87.9 | 84.0 | 87.3

Table 5: Accuracy (%) with vertex shapes and early stopping (black values), without vertex shapes
(purple), without early stopping (blue).

Tab. 5 highlights how the predictor significantly improves the performance when trained and val-
idated over the same dataset (diagonal values) improving the baseline of more than 3 %. If we
focus on transferability, looking out of the diagonal, we have even larger improvements, with gaps
exceeding 9%. We refer to Appendix D for Precision@10 comparisons. Finally, Fig. 4c ablates on
the early-stopping mechanism we propose to employ in the NAS procedure. We can observe that if
we use as training set the accuracies the architectures have after the first drop of the learning rate
(epoch 40) the performance of the predictor is not affected. This is further validated by Tab. 5,
which compares our best results with and without early stopping.

5 Conclusions

In our work, we face the problem of analyzing the transferability of a predictor under data distribu-
tion shift. For this reason, we created our small dataset composed of architectures trained on four
datasets. Our ranking analysis on the trained networks showed an association between the drop of
the learning rate and the epoch where architectures stop changing their ranking during training,
highlighting that top-performing architectures keep their ranking since early training epochs, while
the worst ones are such since the early epochs. We moreover spotted that the ranking induced by
complex datasets generalizes better than those induced by simple datasets. Given this, we improve
the naive predictor training by including the vertex shapes as input, and employing an early stop-
ping procedure. Our method surpasses state-of-the art performance on predictor-based algorithms
addressed by distribution shifts.
Limitations and future works Possible future works could include enlarging the datasets by con-
sidering new tasks such as object detection and new modalities such as videos. Another interesting
direction could be studying how the method improves with the inclusion of gradients information
as input to the predictor.
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Appendix A. Ranking measures

Several measures are commonly used to assess the quality of a ranking. We focus on: 1) NDCG@k,
2) Precision@k and 3) Kendall’s τ .

NDCG DCG (Discounted Cumulative Gain) is founded on the idea that when assessing search
results, highly relevant documents ranked lower should receive a larger penalty than less relevant
documents wrongly ranked. This is because the graded relevance value decreases logarithmically
as the position of the result worsens. This measure applies very well to predictor-based algorithms
since our focus is on allowing the predictor to find the best-forming architectures in such a way
that they are placed on the top of the list, while we don’t care about how bad networks are ranked.
Eq. A.1 exactly shows how highly relevant objects that appear lower in the ranked list are penalized
by reducing the graded relevance value logarithmically proportional to the position of the result:

DCGk =
k∑

i=1

2reli − 1

log2(i + 1)
. (A.1)

Starting from A.1, the NDCG can be easily obtained normalizing w.r.t the Ideal Discounted
Cumulative Gain (IDCG), as shown in Eq. A.2:

NDCGk =
DCGk

IDCGk
∈ [0, 1], IDCGk =

|RELk|∑
i=1

2reli − 1

log2(i + 1)
(A.2)

where reli is the relevance value assigned to each object and RELk is the list of relevant objects
ordered by their relevance up to position k. In a perfect ranking algorithm, the DCGp will be the
same as the IDCGp producing an NDCG of 1. We used the NDCG in two different variants: the
NDCG@2092 was used to get a big picture of the general behavior all architectures have, while the
NDCG@10 was used to focus on the ranking quality of the top-10 performing architectures, which
are those we are interested in.

Precision@k It is defined as the proportion of recommended items in the top-k set that are
relevant. It is mathematically defined as:

Precision@k =
#of items @k that are relevant

k
∈ [0, 1], (A.3)

where again, as it can be observed, the concept of relevance is involved.

Kendall’s τ The Kendall rank correlation coefficient is used to measure the ordinal association
between two measured quantities. It’s range is in [−1, 1], with Kendall’s τ = 0 that indicates
absence of correlation. Let (x1, x2, . . . xn) and (y1, y2, . . . yn) be a set of observations of the joint
variables X and Y, such that all the values of (xi) and (yi) are unique (ties are neglected for
simplicity). Any pair of observations (xi, yi) and (xj , yj), where i < j are said to be concordant if
the sort of order (xi, xj) and (yi, yj) agrees: that is, if either both xi > xj and yi > yj holds if both
xi < xj and yi < yj ; otherwise, they are said to be discordant. Eq. A.4 defines, based on this, the
coefficient:

τ =
(#of concordant pairs)− (#of discordant pairs)(

n
2

) ∈ [−1, 1], (A.4)
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Appendix B. More details on the dataset

The ranking correlation of the architectures trained on the four datasets introduced in 4.1 is com-
plemented by the Kendall’sτ correlation, reported in Tab. 6. From Tab. 6 it emerges a strong
correlation among Cifar-100 and Tiny-ImageNET dataset, among Cifar-10 and Cifar-100 dataset,
and, with a smaller value, among Cifar-10 and Tiny-ImageNET datasets. Fashion-MNIST on the
other hand, when related to these three datasets, appears out of the choir. This is extremely in-
teresting, as it confirms previous results, and shows also that the similarities between the image
datasets might be transferred to the architectures trained over those input datasets. These values
are consistent with those presented in Dong et al. (2020).

F-MNIST C10 C100 Tiny

F-MNIST 1.00 0.44 0.35 0.23

C10 0.44 1.00 0.81 0.70

C100 0.35 0.81 1.00 0.85

Tiny 0.23 0.70 0.85 1.00

Table 6: Kendall’s τ correlation values. Every dataset is sorted with respect to the validation
accuracy so that the best performing architecture is in the 1st position and the worst
performing in the last one. The architectures are then assigned a rank going from 1, . . .
2000. The table is symmetric, as the definition of Kendall’s τ implies.

Ranking evolution Figures 5 complement the results previously introduced in Sec. 4.1 for Cifar-
10 (Fig. 4a). The plots indicate how 1) the ordering of the architectures trained over Fashion-
MNIST seems to be the same since the very first epochs, as the 1-NDCG starts from values very
close to 0. 2) The correlation between the drop of the learning rate and the change in the ranking
verifies also for Cifar-100 and Tiny-ImageNET.
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(a) Fashion-MNIST
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(b) Cifar-100
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Figure 5: 1-NDCG plot showing the ranking correlation among the sorting the architectures have
at epoch i w.r.t the sorting of the architectures at epoch 120. Every figure displays the
results for considering one dataset at a time. The dashed lines over each plot highlight
the epoch where the learning rate is dropped. Every plot displays both the NDCG@10
(light color) and the NDCG@2092 (dark color).
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GRASP-GCN

Fig. 6 gives more details on the behaviour of the networks during training, confirming Cifar-10
results (Sec. 4.1 of the main paper). This can be used to speed-up the NAS pipeline, as we can
early-discard failing architectures by checking how they perform with respect to the current best
trained ones, further motivating the early-stopping procedure introduced in Sec. 4.2.

(a) Fashion-MNIST

(b) Cifar-100

(c) Tiny-ImageNET

Figure 6: Plot of the changes of the relevance values of the architectures during training. (Left)
Cumulative weighted count of the number of times an architecture changes relevance
value. On the y-axis, the architectures are ordered from the best forming to the worst
performing, on the x-axis the epochs are displayed. (Right) Derivative plot: the horizon-
tal and the vertical axis represent respectively the y-axis and the x-axis of the left plot.
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Appendix C. Implementation details

Our hyper-parameters are summarized in Tab. 7 which displays those used for training the archi-
tectures sampled from our search-space and in Tab 8 for training our GRASP-GCN. All hyper-
parameters were optimized using Optuna framework1. We moreover provide the pseudo-code for
the creation of our NAS dataset (1, and for the functioning of predictor-based algorithms within
the NAS framework (2.

Dataset Learning rate Weight decay Drop lr Optimizer Batch-size

F-MNIST 0.100 0.0002 of 10 at epoch 40, 80 SGD 128

C10 0.097 0.0006 of 10 at epoch 40, 80 SGD 128

C100 0.065 0.0015 of 5 at epoch 40, 80, 100 SGD 128

Tiny 0.012 0.0011 of 10 at epoch 30, 60, 90 SGD 64

Table 7: List of hyper-parameters derived from Optuna optimization for ResNet-18. The columns
show the learning rate (lr), the weight decay (wd), the drop of the learning rate (drop lr),
the optimizer, and the size of the batches.

Units per layer Learning rate Weight decay Optimizer

265 0.019041 0.001126 Adagrad

Table 8: List of hyper-parameters derived from Optuna optimization for GRASP-GCN.

Algorithm 1 Dataset creation

1: if Cifar10 then
2: for iteration = 1, . . . , 2000 do
3: sample A = A,X
4: train A
5: save values in hash(A)
6: end for
7: end if
8: if FashionMNIST or Cifar100 or TinyImageNET then
9: for iteration = 1, . . . , 2000 do

10: random sample A from Cifar10 dataframe
11: new directory = hash(A)
12: while new directory exist do
13: random sample A from Cifar10 dataframe
14: new directory = hash(A)
15: end while
16: train A
17: save values in new directory
18: end for
19: end if

1. https://optuna.readthedocs.io/en/stable/

14



GRASP-GCN

F-MNIST C10 C100 Tiny

F-MNIST 1.00 | 1.00 | 1.00 0.93 | 0.90 | 0.93 0.94 | 0.88 | 0.95 0.96 | 0.90 | 0.95
C10 0.80 | 0.78 | 0.82 0.99 | 0.98 | 0.98 0.97 | 0.80 | 0.95 0.95 | 0.90 | 0.91
C100 0.36 | 0.35 | 0.41 0.60 | 0.45 | 0.41 0.65 | 0.45 | 0.50 0.63 | 0.40 | 0.60
Tiny 0.41 | 0.10 | 0.50 0.61 | 0.40 | 0.58 0.57 | 0.43 | 0.55 0.69 | 0.50 | 0.64

Table 9: Average Precision@10 of the predictor with vertex shapes and early stopping (black val-
ues), without vertex shapes (purple), without early stopping (blue). The columns are the
training datasets, the rows are the validation datasets.

Algorithm 2 Predictor-based neural architecture search

1: S = Architecture search space
2: f(A, θ) : A → R: Predictor that outputs the predicted performance given the architecture
3: N (k): Number of architectures to sample in the k-th iteration
4: k = 1
5: S̃ = Ø
6: while k ≤ MAX ITER do
7: Sample a subset of architectures C(k) = {A(k)

j }j=1,...,N(k) from S utilizing f(A, θ)

8: Evaluate architectures in S(k), get C̃(k) = {A(k)
j , y

(k)
j }j=1,...,N(k) (y is the performance)

9: S = S − C
10: S̃ = S̃ ∪ C̃
11: Optimizing f(A, θ) using the ground-truth architecture evaluation data S̃
12: k ← k + 1
13: end while
14: Output Aj∗ ∈ S̃ with best corresponding y∗; Or, A∗ = argmaxS̃ f(A, θ)

Appendix D. Early stopping and vertex shapes

More ablations on the usage of early stopping and vertex shapes in GRASP-GCN. Tab. 9 presents
complements the results introduced in Tab. 5 reporting the Precision@10. We can observe that
results are coherent with the performance of GRASP-GCN in terms of accuracy, further proving
the benefits of employing the vertex shapes as additional input. Moreover, we show how in most of
the cases early-stopping either improves the performance or leaves them unchanged, meaning that
we can benefit in terms of training-speed.
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(a) Cifar-10
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(c) Cifar-100
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Figure 7: Validation accuracy of the GCN when trained with the previous sortings to predict
the ranking of networks under distribution shift. Every point is obtained training the
predictor with a training dataset composed by the sorting induced by the validation
accuracy the architectures, trained over the dataset reported on the caption, have at
epoch i, and with a validation dataset composed by the sorting induced by the validation
accuracy the architectures, trained over the other three datasets, have at epoch 120.
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