
SIGMA: A Dataset for Text-to-Code Semantic
Parsing with Statistical Analysis

Saleh Almohaimeed*, Shenyang Liu*, May Alsofyani*, Saad Almohaimeed, and
Liqiang Wang

Department of Computer Science, University of Central Florida, USA
{saleh, shenyang, may_sof, saadm}@knights.ucf.edu, lwang@cs.ucf.edu

Abstract. In the domain of semantic parsing, significant progress has
been achieved in Text-to-SQL and question-answering tasks, both of
which focus on extracting information from data sources in their na-
tive formats. However, the inherent constraints of their formal mean-
ing representations, such as SQL programming language or basic logical
forms, hinder their ability to analyze data from various perspectives,
such as conducting statistical analyses. To address this limitation and
inspire research in this field, we design SIGMA, a new dataset for Text-
to-Code semantic parsing with statistical analysis. SIGMA comprises
6000 questions with corresponding Python code labels, spanning across
160 databases. Half of the questions involve query types, which return
information in its original format, while the remaining 50% are statistical
analysis questions, which perform statistical operations on the data. The
Python code labels in our dataset cover 4 types of query types and 40
types of statistical analysis patterns. We evaluated the SIGMA dataset
using three different baseline models: LGESQL, SmBoP, and SLSQL.
The experimental results show that the LGESQL model with ELEC-
TRA outperforms all other models, achieving 83.37% structure accuracy.
In terms of execution accuracy, the SmBoP model, when combined with
GraPPa and T5, reaches 76.38%.

Keywords: Semantic Parsing · Statistical Analysis · Text-to-Code

1 Introduction

An important field of natural language processing is semantic parsing (SP),
which focuses on translating natural language sentences into machine-interpretable
meaning representations. These target representations can be various forms
such as specific programming language (SQL), formal mathematical expression
(lambda calculus), or simple representation (text). The focus of most SP tasks
is on retrieving information from knowledge sources e.g., databases, web pages,

1946-0759/23/$31.00 ©2023 IEEE

* These authors contributed equally to this work.
Our dataset avaliable at github.com/sasmohaimeed/SIGMA

2 S. Almohaimeed et al.

without much consideration for the use of statistical analysis to explore the data
in different ways. The Text-to-SQL task is one of the most popular tasks in se-
mantic parsing with few statistical capabilities. It is limited to three statistical
functions (Sum, Average, and Count), making it incapable of performing more
advanced statistical calculations.

In order to accommodate diverse data exploration requirements and empha-
size the most commonly used statistical functions, we design SIGMA, a cross-
domain dataset with 160 databases and 6,000 natural language questions, each
paired with corresponding Python code labels. SIGMA encompasses a total of
40 statistical analysis patterns, enabling the execution of statistical functions on
data prior to presenting the results to users. Furthermore, there are 4 types of
query patterns that resemble SQL language clauses, which directly retrieve data
from the database. Within SIGMA’s 6,000 questions, 3,000 statistical questions
were written by nine individuals who are either in their final year of undergrad-
uate studies or holding a degree in statistics. Within the 3,000 query questions,
2000 of these were composed by three graduate computer science students, and
1000 questions were taken from the Spider [23] dataset to ensure a variety range
of questions. Given Python’s ability to conduct various types of statistical analy-
sis and perform operations beyond that scope, we chose it as the target language.

To evaluate the quality and diversity of this dataset, we conducted experi-
ments using three semantic parsing models: LGESQL [3], SLSQL [9], and SmBoP
[17]. Our experimental findings indicate that the LGESQL model delivers the
highest performance in structural accuracy, while the SmBoP model attains good
results in execution accuracy.

This paper makes the following contributions. (1) We design SIGMA, a
dataset that consists of 6,000 questions over 160 databases. In total, the dataset
covers 44 distinct patterns, including 40 statistical analysis patterns and 4 kinds
of SQL clauses. (2) We develop a built-in Python executor capable of executing
all 44 patterns featured in our dataset. (3) Experiments are conducted on the
dataset using three models: LGESQL [3], SLSQL [9] and SmBoP [17].

2 Related Work
Over the past two decades, many semantic parsing and code generation tasks
have been introduced to address specific user needs. The target meaning repre-
sentations (MRs) vary from one task to another. While some MRs are simple,
such as sentences or numbers, others are more complex, such as programming
languages or multiple paragraphs. Our work, text-to-code, is relevant to three
semantic parsing tasks: Text-to-SQL, question-answering, and code generation
tasks.

For the Text-To-SQL task, an extensive amount of research has been con-
ducted on the process of querying and retrieving information from relational
databases. The Text-to-SQL task attempts to map natural language questions
into executable SQL queries. Early research on this task was based on small
and single-domain datasets such as ATIS [14] [5], Academic [10], and Scholar
[7]. Followed by studies on large datasets such as WikiSQL [25] and more com-
plex cross-domain datasets like Spider [23]. Recent research continues to address

SIGMA: Text-to-Code dataset 3

the challenge of handling cross-domain datasets as well as dealing with multiple
interrelated natural languages queries such as SParC [24] and CoSQL [22].

The purpose of Question-Answering task is to answer questions from a given
context. The context can be one single document like in SQuAD [16] or multi-
ple documents like in TriviaQA [8]. The context can be stored in a structured
or semi-structured knowledge base like in QAngaroo [19] and WebQuestions [1]
datasets. To accomplish this task, models with advanced reasoning capabilities
should be devised to comprehend the given context and answer the user’s ques-
tions.

For the code generation task, there are a wide range of subtasks within
the code generation task, including repairing code, translating from code to
code, completing code, and generating code from text. We focus on text-to-
code generation in this research, in which a text sequence is translated into a
code sequence. A few datasets were created in this task, including Card2code
[11] that maps descriptions of cards to codes that implement them using the
Python programming language. The disadvantage of Card2code is that it is
too domain-specific. This domain-specific limitation is addressed by the Django
[12] dataset. It contains the entire Django web framework source code with
English annotations for each line of code. In the CoNaLa [20] dataset, the natural
language intents of developers are mapped to code snippets collected from Stack
Overflow. To enhance model performance on this task, researchers should explore
strategies for establishing parallel alignments between natural language queries
and the corresponding code. This can be achieved by implementing a set of rules
to constrain the generation of code.

In semantic parsing, information is extracted from a variety of sources, such
as databases, knowledge graphs, documents, and web pages. However, current
approaches do not leverage the features of current programming languages and
manipulate the data in the user’s favor before it is retrieved. One of our moti-
vations for this paper is to address the need by developing a dataset with an
executor that can analyze the data statistically and explore it from a variety of
perspectives.

3 Dataset
There are 6,000 questions in the SIGMA dataset, each with corresponding Python
code as the ground truth. Nine people with degrees in statistics or related fields
wrote 3,000 statistical questions. Of the remaining 3000 questions, 2000 were
written by three graduate students in computer science, and 1000 questions
were taken from Spider [23] dataset.

The statistical analysis field contains a large number of different patterns.
We conducted extensive research to determine what patterns to include. [2] pro-
vides a detailed explanation of how to apply different statistical patterns to
data science. From [2], we chose all applicable statistical analysis patterns for
our dataset and classify them into three categories, i.e., distribution, plot, and
numeric. Distribution includes functions that show curves indicating all possible
value positions for a given data variable, such as normal, exponential, and chi-

4 S. Almohaimeed et al.

square distributions. Plot includes graphical techniques for representing one or
more data variables such as histogram, hexbin, and contour techniques. The re-
sults of distribution and plot categories will be presented using different types of
figures. The numerical category includes all other statistical calculations whose
results can be expressed as tables or numbers, such as mean, correlation matrix,
and frequency table. In addition to statistical analysis, we have considered dif-
ferent types of queries for databases, which include four SQL clauses: SELECT,
WHERE, GROUP BY, and ORDER BY. Table 3 shows all the statistical and
SQL patterns included in our dataset.

Table 1. This table displays all the statistical and SQL patterns contained in our
dataset. The type of each pattern refers to the Main-Kind type.

Pattern Type Pattern Type Pattern Type

Select Query Box Plot Outlier Numeric
Where Query KDE Plot Standard Deviation Numeric

Order by Query Pie Plot Variance Numeric
Group By Query Bar Plot Range Numeric

Noraml Distribution Scatter Plot Interquartile Range Numeric
Standard Normal Distribution Hexbin Plot Frequency Table Numeric

Long Tailed Distribution Contour Plot Mode Numeric
Binomial Distribution Violin Plot Standard Error Numeric
Poisson Distribution Mean Numeric Percentile Numeric

Exponential Distribution Weighted Mean Numeric Correlation Matrix Numeric
Weibull Distribution Trimmed Mean Numeric Correlation Coefficient Numeric

Chi-Square Distribution Mean Absolute Deviation Numeric Contingency table Numeric
T Distribution Median Numeric Size Numeric
F Distribution Weighted Median Numeric Confidence Interval Numeric

Histogram Plot Median Absolute Deviation Numeric

3.1 Components of Label (Python Code)

Our goal is to map natural language text into a Python code snippet that will be
inserted later into Python functions and executed. Python code snippet includes
five components, as shown in Figure 1. The first component is main-kind, which
can be one of four values: Distribution, Plot, Numeric, or Query. The second
is known as sub-kinds, which vary depending on the main-kind. There are 10,
9, 21, and 4 different sub-kinds for Distribution, Plot, Numeric, and Query,
respectively. The third component is related to the database table. In the fourth
component, the selected columns from the database are indicated. Extra-param
is the fifth component, which includes additional information required by the
sub-kind. For example, when the sub-kind is labeled as “orderby”, it is essential
to specify whether the order is ascending or descending in the extra-param.
However, most sub-kinds do not necessitate an extra-param, so they can be left
empty.

SIGMA: Text-to-Code dataset 5

Fig. 1. The overall architecture of our text-to-code task. The questions and the schema
tables and columns are the inputs for the models, while the Python code labels are the
outputs of the models. To verify the results, the Python code can be executed using
the built-in Python executer and results will be presented.

3.2 Question and Python Code Construction

When creating questions, the designers are not given the freedom to choose the
columns in the database at their will. Instead, we provide them an excel sheet
that contains the database name, table name, and column names. Additionally,
we allow them to explore the databases in order to view the values in the tables.
Their job is only to write the questions. We ensure that all individuals who wrote
the questions follow the rules below.

Question Clarity. An ambiguous question refers to a question in which dif-
ferent people interpret the same word or phrase differently. For example, if the
question was “Calculate the mean of the employee table”, it is impossible to cal-
culate the mean of the employees if the column is unknown. A better question
would be “Calculate the mean of the employees’ income”. In addition, there are
no questions that require the use of outsources, such as "Calculate the mean
salary of the hard workers". If the database does not have any information re-
garding the amount of work that each employee performs, then it is necessary to
refer to outsource information that indicates which employees are hard workers.
Hence, such questions with ambiguity are not included in our dataset.

Question Synonyms. Each participant has been asked not to indicate the ex-
act column, table, and statistical patterns names in each question. There should
be at least 20 percent of questions that contain synonyms. As an example, if
a column was named “salary”, a participant should use other synonyms such
as “income” or “wage” for some questions. Additionally, participants should be
aware that they do not write all the questions in the same manner, such as men-

6 S. Almohaimeed et al.

tioning the statistical patterns always before the columns or starting with “what
are” phrase for every question.

3.3 Dataset Statistics

In Text-to-SQL tasks, the inputs to the models are the questions and schemas,
which are the same as inputs to the models in Text-to-Code task. Therefore, in
Table 2 we summarize a comparison of our dataset with other popular Text-to-
SQL datasets.

Note that the number of questions in the SIGMA dataset is not as many as
other datasets such as the Spider data [23], but there is a great deal of diversity
in the questions. Compared to Spider [23], which was annotated by 11 students,
our dataset contains 5000 questions annotated by 12 individuals who are experts
in the field of SQL language or statistics. Additionally, 1000 questions were
taken from the Spider dataset. As a result of this type of diversity, the models
learn more and gain a greater understanding of the meaning of the questions.
Furthermore, most other datasets have a single database within a single domain.
SIGMA has 160 different databases across 107 different domains. Comparing to
the Spider dataset, SIGMA does not duplicate any domain in the training and
testing datasets. While the dataset is not designed for the Text-to-SQL task,
it contains similar query types as most other Text-to-SQL datasets, including
SELECT, WHERE, GROUPBY, and ORDERBY as well as 40 other statistical
analysis patterns.

Table 2. Comparisons of SIGMA dataset with popular text-to-SQL datasets.

Dataset # Q # labels # DBs # Domains # patterns # annotators

ATIS 5,280 947 1 1 4 Crowd-sourced
Scholar 817 193 1 1 6 Crowd-sourced

Academic 196 185 1 1 6 Crowd-sourced
GeoQuery 877 247 1 1 6 Crowd-sourced
WikiSQL 80,654 77,840 26,521 - 3 Crowd-sourced

Spider 10,181 5,693 200 138 9 11 annotators

SIGMA 6,000 4,180 160 107 44 12 <annotators

3.4 Built-in Python Executor

The built-in executor is written in the Python language. It includes an imple-
mentation of all 44 patterns in our dataset including Distribution, Plot, Numeric,
and Query types. By using the executor, users will be able to extract informa-
tion from the tables and columns in a similar manner as the SQL programming
queries the database. The SQL query “SELECT age FROM Student” is equiv-
alent to the Python code labels, where main-kind is query, sub-kinds is select,
table is Student, column is age, and extra-param is empty. We have created a
web page to execute all the Python code labels at research.mehaimeed.com.

SIGMA: Text-to-Code dataset 7

4 Task Definition
Given the user questions and schema tables, we need to generate a Python code
snippet that will be inserted later into a Python function in our built-in executor.
In order to make this dataset more realistic and more representative of databases
in the real world, we define the following three rules: Cross-domain, Structure
Match, and Synonyms Awareness. The first two challenges are similar to those
presented in the Spider [23] paper.

4.1 Cross-Domain.

Most of the previous semantic parsing datasets have been based on single datasets
from one domain, such as Academic [10] and ATIS [14]. The reason for the mod-
els performing well may be that they remember some repetitive words in the
questions or because they are overfitting the data, which can adversely affect
their performance when being applied to other domains. For this reason, we
ensure that the training and testing datasets have different databases. There-
fore, models will make correct predictions based on comprehending the semantic
context of questions.

4.2 Structure Match

In our Text-to-Code task, models are not required to predict the five Python
code components correctly with their values. Because in real-world scenarios,
people may be aware of the values that they are looking for, but they do not
know how to write a programming language code in order to retrieve the data
from a database. Additionally, due to the complex nature of the values in some
databases or knowledge bases, a prior understanding of the domain is required.
There are many models that are good at predicting the structure of the samples.
However, they are wrong about the values inside those samples. Therefore, we
have included the structure match rule, where the models are required to predict
only the five Python code components without values.

4.3 Synonyms Awareness

Some models may give accurate prediction results when being trained on a large
dataset, because they can recognize repetitive tokens between inputs and out-
puts. The problem with only remembering tokens’ value and position is that it
may lead to overfitting to the data, which causes the models to perform well only
on that dataset. Hence, we should take into account the context and meaning
of the sentence. In order to address this issue, 20% of all dataset questions have
many synonyms words, which help us indicate whether the model understands
the meaning of the words or not. Additionally, in the testing dataset, 10% of the
questions have synonyms words for all patterns, tables, and columns, allowing
us to determine which model performs better.

8 S. Almohaimeed et al.

4.4 Multi-Patterns
The model should predict the sub-kinds (patterns) in the second Python code
components. Our dataset has 40 statistical patterns. For the distribution and
plot statistical questions, the model is only required to figure out one pattern.
However, in real-world situations, users may request multiple statistical patterns
at a time, such as “Calculate the most common value and median of the student
ages.” This question is answered using the mode and median statistical patterns.
Additionally, predicting one pattern for each question is not that difficult for the
models. Therefore, in order to increase the difficulty of the task, we define the
multi-patterns rule. For the statistical numeric type, the question can be asked
for up to three patterns at the same time. This will increase the difficulty of
this task and allow us to measure the robustness of the model in distinguishing
between 21 statistical numeric patterns.

5 Evaluation Metrics

We have used multiple metrics to measure the models performance on this
dataset: execution accuracy, structure matching, and synonyms accuracy. For
the execution accuracy, the majority of previous research in the semantic pars-
ing field, such as research in the text-to-SQL [5] [7] [10] [14] [22] [23] [24] [25]
and the question-answering tasks [1] [8] [16] [19] , use this evaluation metric,
which requires the prediction of samples with values. In the SIGMA dataset,
only 1444 questions require the prediction of 5 Python code component labels
along with the values. Those questions are only related to four different patterns,
i.e., where, percentile, trimmed mean, and confidence intervals.

Structure matching measures the percentage of model predictions that ex-
actly match the ground truth Python code component labels. However, there
are some values in the fifth extra-param label not included in this metric, which
are related to the following four patterns, where, percentile, trimmed mean, and
confidence intervals. We do not include them because their values vary depend-
ing on the users’ inputs. For instance, if the question is “find the 70% percentile
of doctors wages”, the value of 70% may vary from question to question, based
on the users needs.

Synonyms accuracy measures the robustness of the model in terms of un-
derstanding the meaning of the question. In the testing dataset, 10% of the
questions have synonym words for their patterns, tables, and columns. Suppose
that the patterns is standard normal, the table is shop, and column is product
price. In this case, the question may be phrased as “show me the z-distribution
for the costs of all products in the store”.

6 Methods

This section shows experiments with three models that were evaluated on our
Text-to-Code task. Questions and schemas will be the inputs to the models,

SIGMA: Text-to-Code dataset 9

which will then predict the five Python code components. We test our dataset
on three models (LGESQL [3], SLSQL [9], and SmBoP [17]), which are popular
models in the Spider [23] dataset competition.

LGESQL [3] consists of three parts, i.e., input, hidden, and output modules. An
initial embedding of the graph nodes and edges is provided by the input module.
The representation of these embeddings is obtained using either word embedding
Glove [13] or pre-training language models such as BERT [6] and ELECTRA [4].
The second (hidden) module uses graph neural networks to encode and capture
the relational structure between the initially generated node embeddings. In the
last and output module, a grammar-based syntactic neural decoder is applied,
which will construct the abstract syntax tree (AST) of the predicted query.
Our modification is primarily focused on generating the desired AST. All 44
patterns have been included in the grammar rules. The major changes involve
converting the five Python code components into an AST in the model inputs,
then unparsing the AST into five Python code labels in the model outputs.

SLSQL. We use a simple base model of SLSQL [9], which is composed of two
parts: encoder and decoder. The encoder will concatenate the input question
and schema items, passing them to the BERT transformer to generate word
embeddings. After that, in a two-step decoding process, the decoder first con-
structs the query without aggregation function and then uses the GRU network
to get the final query with aggregation function. As for our dataset, the main
modification was made to the input sequence generated by the SLSQL during
the preprocessing phase. The input sequence represents the five Python code
labels that correspond to each question during the training phase. Furthermore,
the SLSQ implemented some constraints during the decoding process, which will
ensure that the generated SQL query can be executed. We have also created con-
straints, in the same manner, to ensure that the five Python code labels obtained
can be executed.

SmBoP and T5. SmBop [17] model uses a bottom-up method to solve this
problem by constructing the top-K sub-trees of depth ≤ t at decoding step t
during beam search phase. At step t+1, new trees with more depth are con-
structed from the top-K sub-trees at step t and only K best results will be saved
for step t+1 as well. The bottom-up method helps solve an issue from top-down
method that before finishing constructing the whole tree, a partial tree cannot
provide clear semantic meaning. For the encoder part, SmBop model inherits
from RATSQL+GRAPPA [18] [21] encoder. Similar as other models, SmBop
uses grammar rules to generate results. However, the results we get by using
new grammar rules for SmBop are not good. To fully utilize the ability of Sm-
Bop model, we use WHERE clauses for sub-kinds to predict instead of using new
rules. To help further increase the accuracy of the results, we treat the problem
as a text summarization problem. A T5 [15] model is trained in the summary
mode with the natural language question as the text and concatenation of sub-

10 S. Almohaimeed et al.

kind names and extra-param as the summary. Then the results from T5 model
area used to replace partial results from the previous model.

7 Experimental Results

Table 3. The Structure and Execution Accuracy on the prediction of five Python
code components with different patterns types. “Statistical” refers to the accuracy
of numeric, distribution, and plot types combined. “Synonyms” refers to the testing
questions with synonyms words for the table, columns and patterns types.

Structure Accuracy

Categorical Results

Models Numeric Distribution Plot Query Statistical Synonyms All

SLSQL 53.33% 60.56% 59.68% 41.81% 55.58% 33.75% 48.75%
SmBoP + GraPPa + T5 63.33% 69.01% 79.03% 87.40% 66.75% 37.50% 77.00%

LGESQL + Glove 67.28% 71.83% 65.08% 71.36% 67.74% 42.50% 69.75%
LGESQL + BERT 78.00% 85.92% 80.95% 84.67% 79.85% 65.00% 82.50%

LGESQL + ELECTRA 78.00% 85.92% 82.54% 86.18% 80.09% 73.75% 83.37%

Execution Accuracy

SmBoP + GraPPa + T5 63.33% 69.01% 79.03% 86.14% 66.75% 37.50% 76.38%

The structure accuracy and execution accuracy were used to evaluate the
model’s accuracy between ground truth and predicted Python labels. A com-
parison of the performance of the three models can be found in Table 3. The
SLSQL performs the lowest at 48.75%, due to the fact that the SLSQL base
model does not well solve the issue of schema linking. The accuracy of LGESQL
with word vectors Glove [13], LGESQL with PLM BERT [6], and LGESQL [3]
with PLM ELECTRA [4] is 69.75%, 82.50%, and 83.37%, respectively. There
is a problem with Glove in that it does not take into account the context of
each word, which explains its lower performance. The PLM ELECTRA outper-
forms the PLM BERT. This is due to BERT’s replacement of some input tokens
with [MASK], which has prevented the model from learning from all inputs.
In contrast to BERT, ELECTRA uses Replaced Token Detection to learn from
all inputs and determine if each word in the input is substituted, based on its
context.

Since the SmBoP model [17] relies on the PLM GraPPa [21], which has been
pre-trained on synthetic question-SQL pairs, the results were not satisfactory.
However, this issue has been resolved after we use the T5 model [15] to predict
the sub-kinds and extra-params. The model achieves 77% for structure matching
and 76.38% for execution accuracy. The results of execution accuracy indicate
that it performs well, but there are still improvement space to be made. Despite

SIGMA: Text-to-Code dataset 11

the fact that LGESQL + ELECTRA achieve the highest accuracy in structure
match, the percentage of synonyms’ accuracy is 73.75%. As a result, it is evident
that there is a need to improve the model in order to handle synonyms words.
It is important to note that the prediction of the five Python labels codes with
values requires that the model has a prior knowledge of the domain. However,
we are more concerned about structure matching, which does not require the
prediction of Python labels with values, that is why we have used 3 models for
structure matching and one model for execution accuracy.

8 Conclusions

We introduce SIGMA, a dataset for Text-to-Code semantic parsing with statis-
tical analysis, which contains 6,000 questions with corresponding Python code
over 160 databases. In SIGMA, 44 patterns are covered in our dataset, where 40
of them are used for statistical analysis. With our built-in Python executor, a
user can execute the generated Python code. There are three models used in the
experiment: LGESQL, SLSQL, and SmBoP. T5 model is used to help improve
the accuracy for sub-kinds and extra-params in the SmBoP model. To the best
of our knowledge, this is the first dataset for the Text-to-Code task that utilizes
Python programming language to retrieve information and perform statistical
analysis.

References
1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from

question-answer pairs. In: Proceedings of the 2013 conference on empirical methods
in natural language processing. pp. 1533–1544 (2013)

2. Bruce, P., Bruce, A., Gedeck, P.: Practical statistics for data scientists: 50+ essen-
tial concepts using R and Python. O’Reilly Media (2020)

3. Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., Yu, K.: Lgesql: line graph en-
hanced text-to-sql model with mixed local and non-local relations. arXiv preprint
arXiv:2106.01093 (2021)

4. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: Pre-training text en-
coders as discriminators rather than generators. arXiv preprint arXiv:2003.10555
(2020)

5. Dahl, D.A., Bates, M., Brown, M.K., Fisher, W.M., Hunicke-Smith, K., Pallett,
D.S., Pao, C., Rudnicky, A., Shriberg, E.: Expanding the scope of the atis task:
The atis-3 corpus. In: Human Language Technology: Proceedings of a Workshop
held at Plainsboro, New Jersey, March 8-11, 1994 (1994)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

Citation: S. Almohaimeed, S. Liu, M. Alsofyani, S. Almohaimeed and L. Wang,
"SIGMA: A Dataset for Text-to-Code Semantic Parsing with Statistical Analysis,"
2023 International Conference on Machine Learning and Applications (ICMLA),
Jacksonville, FL, USA, 2023, pp. 851-857, doi: 10.1109/ICMLA58977.2023.00125.
IEEE Xplore link: https://ieeexplore.ieee.org/abstract/document/10459845

12 S. Almohaimeed et al.

7. Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer, L.: Learning a
neural semantic parser from user feedback. arXiv preprint arXiv:1704.08760 (2017)

8. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: Triviaqa: A large scale dis-
tantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551 (2017)

9. Lei, W., Wang, W., Ma, Z., Gan, T., Lu, W., Kan, M.Y., Chua, T.S.: Re-examining
the role of schema linking in text-to-sql. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP). pp. 6943–6954
(2020)

10. Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for
relational databases. Proceedings of the VLDB Endowment 8(1), 73–84 (2014)

11. Ling, W., Grefenstette, E., Hermann, K.M., Kočiskỳ, T., Senior, A., Wang,
F., Blunsom, P.: Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744 (2016)

12. Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., Nakamura, S.:
Learning to generate pseudo-code from source code using statistical machine trans-
lation. In: 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 574–584. IEEE (2015)

13. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

14. Price, P.: Evaluation of spoken language systems: The atis domain. In: Speech and
Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylva-
nia, June 24-27, 1990 (1990)

15. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research 21(1), 5485–5551 (2020)

16. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822 (2018)

17. Rubin, O., Berant, J.: Smbop: Semi-autoregressive bottom-up semantic parsing.
arXiv preprint arXiv:2010.12412 (2020)

18. Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: Rat-sql: Relation-
aware schema encoding and linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942 (2019)

19. Welbl, J., Stenetorp, P., Riedel, S.: Constructing datasets for multi-hop reading
comprehension across documents. Transactions of the Association for Computa-
tional Linguistics 6, 287–302 (2018)

20. Yin, P., Deng, B., Chen, E., Vasilescu, B., Neubig, G.: Learning to mine aligned
code and natural language pairs from stack overflow. In: Proceedings of the 15th
International Conference on Mining Software Repositories. pp. 476–486 (2018)

21. Yu, T., Wu, C.S., Lin, X.V., Wang, B., Tan, Y.C., Yang, X., Radev, D., Socher, R.,
Xiong, C.: Grappa: Grammar-augmented pre-training for table semantic parsing.
arXiv preprint arXiv:2009.13845 (2020)

22. Yu, T., Zhang, R., Er, H.Y., Li, S., Xue, E., Pang, B., Lin, X.V., Tan, Y.C., Shi, T.,
Li, Z., et al.: Cosql: A conversational text-to-sql challenge towards cross-domain
natural language interfaces to databases. arXiv preprint arXiv:1909.05378 (2019)

23. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li,
I., Yao, Q., Roman, S., et al.: Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. arXiv preprint
arXiv:1809.08887 (2018)

SIGMA: Text-to-Code dataset 13

24. Yu, T., Zhang, R., Yasunaga, M., Tan, Y.C., Lin, X.V., Li, S., Er, H., Li, I.,
Pang, B., Chen, T., et al.: Sparc: Cross-domain semantic parsing in context. arXiv
preprint arXiv:1906.02285 (2019)

25. Zhong, V., Xiong, C., Socher, R.: Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103
(2017)

	SIGMA: A Dataset for Text-to-Code Semantic Parsing with Statistical Analysis

