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ABSTRACT

Boolean logic is fundamental to solving various computational problems, such
as Boolean satisfiability (SAT) and model counting, but existing machine learn-
ing (ML) approaches for automating algorithm design are computationally expen-
sive and data-intensive. We propose the first foundation model for Boolean logic,
leveraging a multi-task dataset of one million instances spanning sixteen tasks
and using graph neural networks (GNNs). We evaluated the generalization of the
foundation models on held-out tasks; we found that models fine-tuned from the
foundation model were substantially more sample efficient and converged much
faster than models trained from scratch. We identified a number of crucial design
components for training these models, in particular the choice of normalization
layer. We showed that a hybrid of different normalization techniques across lay-
ers is much more effective than any single normalization layer.

1 INTRODUCTION

Boolean logic—binary operations ∧ (AND), ∨ (OR), and ¬ (NOT) over Boolean variables—is a
fundamental mathematical language for describing many real-world settings. There are a variety of
computational problems over logical formulae commonly solved in practice:

• Boolean Satisfiability (SAT): Determining if there exists a satisfying assignment. Example:
Finding valid channel assignments for TV stations in spectrum auctions (Fréchette et al.,
2016).

• Model Counting (#SAT): Calculating the number of satisfying assignments. Example: De-
termining the probability that a sequence of actions achieves a goal in probabilistic planning
(Domshlak & Hoffmann, 2006).

• Unsatisfiable Core Extraction (unsat core): Identifying the smallest set of variables that
prove no satisfying assignment exists. Example: Finding the minimal conflict in circuit
configurations to aid system debugging (Sülflow et al., 2008).

Despite their computational hardness, efficient heuristic algorithms have been developed over
decades of empirically driven research to solve these problems at scale. The performance of dif-
ferent algorithms often depends on the specific structure of problem instances, leading to designs
tailored for “typical-case” scenarios. This creates a data-dependent algorithm design challenge:
how can we design efficient algorithms for particular distributions of problems? Manual approaches
are limited and time intensive, naturally steering us toward machine learning to leverage the rich
structure of formulae. Just as machine learning has surpassed human capabilities in tasks like im-
age recognition by identifying complex patterns, it can similarly be employed to discover effective
algorithms for Boolean logic.

Traditionally, leveraging machine learning for algorithm design has relied on computing hand-
crafted instance features based on expert domain knowledge. For example, practitioners build al-
gorithm selector models that use such features to make a per-instance choie among a portfolio of
off-the-shelf algorithms, leveraging their complementary strengths. Features used in Boolean logic
range from simple metrics like problem size to complex ones like the diameter of the variable-clause
graph or statistics from short probing runs of local-search and CDCL solvers (Xu et al., 2008). While
powerful, such features can be expensive to compute and difficult to transfer to new domains.

Recent work has demonstrated the promise of leveraging modern “end-to-end” ML techniques to
learn features directly from data. To give some examples of approaches that achieved state-of-the-
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art performance in given settings, Selsam & Bjørner (2019) predicted unsatisfiable cores to guide
branching decisions, Wang et al. (2021) predicted the polarity of backbone variables to choose vari-
able assignments in tree search, and Cameron et al. (2024) learned branching policies via reinforce-
ment learning to minimize downstream decisions. A key idea unifying all of these approaches is a
reliance on message-passing architectures, such as graph neural networks (GNNs) (Scarselli et al.,
2008) and exchangeable nets (Hartford et al., 2018). Such architectures impose a helpful inductive
bias, corresponding to the invariances of Boolean logic in conjunctive normal form (CNF): (1) logi-
cal equivalence under reordering of clauses and literals, and (2) variability in the number of literals
and clauses.

The downside of these approaches is that they are extremely data hungry. For example, all of the
approaches described above required many CPU years of computation to generate training data. To
achieve strong performance, practitioners must gather huge datasets for specific prediction tasks,
where the offline computation costs can be prohibitive. In other fields, large pretrained models
trained on massive, multi-task datasets—known as foundation models—can be fine-tuned to specific
applications to massively decrease training costs. (Betker et al., 2023; Achiam et al., 2023). These
models leverage shared information across multiple tasks to learn richer and more generalizable
representations.

For the first time, we developed foundation models for Boolean logic, demonstrating strong fine-
tuning performance on held-out tasks. We compiled a massive dataset of one million small in-
stances encompassing ten different categories (sixteen tasks in total) of Boolean logic-based tasks:
four well-known computational problems (satisfiability, backbone, unsat core, and model counting),
a linear programming relaxation, a branch prediction task based on reinforcement learning, three
that are statistics of probing runs from SAT solvers (DPLL, local search, and survey propagation),
and one predicting graph structure. Notably, some tasks are only applicable to either satisfiable or
unsatisfiable instances—backbones are defined solely for satisfiable instances, while unsatisfiable
cores apply exclusively to unsatisfiable ones. We trained ten different Graph Neural Network (GNN)
foundation models, each with a distinct held-out task. Foundation models were consistently more
data efficient and converged faster when fine-tuned on the same held-out tasks relative to models
trained from scratch.

The major challenge of building a foundation model is to find one architecture that works well
across many diverse kinds of tasks. We found that architectures that performed well on one task
can perform poorly on another. A major contribution of this work was finding an architecture that
performed well across all tasks. First, we found that all commonly used normalization layers (i.e,
layer norm, batch norm, graph norm) had some failure cases. Layer norm was unable to learn
graph-level tasks at all and for batch and graph norm we observed erratic training behaviour, which
we attributed to the high-variance batch statistics. We found that using a hybrid norm—batch norm
for GNN layers and layer norm for the feed-forward model— substantially improved performance
and training efficiency. We provided some empirical evidence that the success of hybrid norm is
in its ability to avoid both the numerical instability that can occur with batch norm as well as the
over-smoothing of node embeddings we observed with layer norm. The success of this hybrid norm
approach could be of significant interest to the GNN community more broadly. We also found
that both dropout and mean pooling often substantially degraded performance and we observed
consistent performance improvement by adding self-attention over node embeddings between GNN
layers. We found using sum pooling and turning off dropout was the best configuration for all tasks.

We used a hydrid GNN transformer models based on GPS++ (Masters et al., 2022), which is among
the state-of-the-art models for standard graph benchmarks. Our final foundation model had eight
layers and 122 million parameters, with each layer comprising a GPS message-passing component
followed by self-attention over node embeddings. We add a feed-forward head for each of the
sixteen total tasks: seven graph-level (one classification, six regression) and nine node-level (three
classification, eight regression).

This work serves as a major step towards building foundation models for Boolean logic. We found
an architecture that works well across a wide-variety of tasks which will make future work much
more accessible. We envision a future with large, GPT-like pretrained Boolean logic models with
billions of parameters that can be fine-tuned for a wide range of tasks.
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2 PRELIMINARIES AND RELATED WORK

2.1 HAND-CRAFTED ML

Prior to Selsam et al. (2019)’s first attempt to learn a model to represent Boolean logic, hand-crafted
features were exclusively used for making per-instance predictions (typically predicting solver run-
ning times) and still dominate the research today. For example, algorithm selection is still an active
area of research and it was only until very recently (Zhang et al., 2024; Leeson & Dwyer, 2024) that
GNNs have been applied to that problem. Nudelman et al. (2004) introduced a set of hand-crafted
features that were expanded by Xu et al. (2008), later again by Hutter et al. (2014), and have been
recently upgraded to be more informative (e.g., smartly choosing timeouts on probing runs) (Shavit
& Hoos, 2024). They have been proven to be effective for building empirical hardness models of
algorithms (Hutter et al., 2014) and for algorithm selection (Xu et al., 2008; Lindauer et al., 2015).
These features were derived from various sources: known heuristics (e.g., the ratio of positive to
negative clause occurrences and per-variable statistics), tractable subclasses (such as the proximity
to Horn formulae), graph-based features (like properties extracted from the clause-variable inci-
dence graph), and other proxies for problem complexity (including statistics about the progress of
SAT solvers and linear programming relaxations of the SAT problem). The computational complex-
ity of these features spans a wide range, from trivial calculations (like determining the size of the
problem) to more computationally intensive tasks (such as computing LP relaxations or extracting
specific graph-based features, which can be roughly cubic in complexity). Many other combinatorial
problems like MIP and TSP (Hutter et al., 2014) have relied on similar hand-crafted features.

2.2 GNNS

The ML for Boolean logic community has converged on representing logical formulae as graphs and
using GNNs. Selsam et al. (2019) pioneered this by encoding CNF SAT formulae as graphs with
variables, clauses, and true/false literals as nodes, connecting variables and clauses if a variable par-
ticipates in a clause, and linking literals to their variables. Their approach used two message-passing
operations—between clauses and variables, and between variables and literals—achieving high ac-
curacy in predicting satisfiability and deriving solutions for small random SAT problems. Cameron
et al. (2020) instead represent CNF as an exchangeable matrix, using an architecture equivalent to a
bipartite variable-clause graph (Hartford et al., 2018). For broader insights on representing combi-
natorial problems as graphs, see Boisvert et al. (2024).

GNNs have been used to predict unsatisfiable cores (Selsam & Bjørner, 2019), predict satisfiability
(Cameron et al., 2020), predict branching variables (Kurin et al., 2019; Cameron et al., 2024), and
for algorithm selection (Zhang et al., 2024; Leeson & Dwyer, 2024). Perhaps the closest work to
our own is on predicting backbones, where Wang et al. (2021) first pretrained on a large dataset
of backbones from small instances and fine-tuned on larger instances. Also relevant is the recent
work of Li et al. (2023) who compiled a large benchmark of instances and tasks to benchmark GNN
performance in Boolean logic.

2.3 MULTI-TASK LEARNING AND FOUNDATION MODELS

The advent of foundation models—large-scale pretrained models capable of being fine-tuned for a
multitude of downstream tasks—has revolutionized fields like natural language processing (Brown,
2020) and computer vision (Betker et al., 2023). Typically, the multi-task aspect of foundation mod-
els in vision and language is implicit. For example, Large Language Models (LLMs) like GPT are
primarily framed to predict the next word in a sequence; this objective inherently requires solving a
variety of implicit tasks depending on the context provided within the input text. Multi-task learning
(MTL) explicitly defines and optimizes multiple tasks simultaneously for a given input (Yu et al.,
2024). In contrast to foundation models where tasks are inferred from context, MTL frameworks
require distinct task definitions integrated into the model architecture. Typically, this involves de-
signing models with shared layers that learn a common representation, alongside task-specific heads
that handle individual objectives. As one notable example, Beaini et al. (2023) built a multitask
foundation model over a variety of molecule prediction tasks and datasets. Our implementation is
based off their graphium package.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Our foundation model architecture. One-hot encoded SAT instance goes into feed-forward
pre-NN encoders followed by a sequence of hybrid MPNN+transformer layers. GNN output then
goes through a global pooling and concat operation across nodes, and feed into feed-forward task
heads for different tasks.

3 METHODS: END-TO-END BOOLEAN LOGIC MODELLING

Given a set of k tasks T = {T1, ..., Tk} and instance distribution P, our goal is to learn a function
ϕ∗ that minimizes the mean over |T | loss functions

L(ϕ;P) = 1

|T |

|T |∑
i=1

Li(Ti, ϕ).

We define losses for each task based on its category: mean squared loss for regression tasks and
cross-entropy loss for classification tasks, averaged over nodes if it is predicting per node metrics.
For detailed description of the losses, see Appendix B.

Instances in our case are Boolean logical formulae in conjunctive normal form (CNF). We represent
CNFs with the well-known and lossless clause-variable bipartite graph, allowing us to model ϕ as
a GNN which takes a graphical representation directly as input. We one-hot encode the intut CNF
and pass the encoded node and edge embedding matrices X0 and E0 as inputs to the model. For a
detailed description of how we encoded the CNF, see Appendix C.

GNNs involve a sequence of message-passing operations over nodes/edges, where a given node/edge
representation is updated by aggregating (i.e., any commutative function) over its neighbouring
nodes/edge representations and sending the aggregation through a multi-layer perceptron (MLP).
Our GNN instantiation is adapted from GPS++ (Masters et al., 2022). Our network takes as input a
graph (X0,E0, g0), where g is a graph embedding that is represented as a “virtual” node connected
to every other node. Our network consists of (1) a pre-GNN node and edge encoder that learns
an embedding for each node/edge type followed by (2) a sequence of message-passing layers that
iteratively update node and edge embeddings, (3) a shared-embedding layer that pools and concats
graph and node level embeddings and (4) |T | task heads that map the node embedding representation
down to the target shape of the task. See figure 1 for a visualization of our end-to-end model
architecture and Appendix D for a detailed description of each layer.

4 EXPERIMENT SETUP

4.1 DATASET

We built a dataset of one million uniform-random 3SAT instances at the solubility phase transition
(Cheeseman et al., 1991), each with 100 variables. This allowed us to generate an arbitrary number
of challenging training examples. The computing cost of gathering target labels can scale exponen-
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tially with instance size, and model training resources scale linearly in both memory and time with
the size of the formulae. By training our foundation model on smaller formulae, we were able to
train much larger models and we were able to collect much more training data.

We compiled sixteen prediction tasks spanning ten different categories, all of which have been previ-
ously studied in the context of machine learning for Boolean logic. Four of these tasks—unsat core,
backbone, RL branching, and model counting—have been used to directly improve SAT solver per-
formance by informing branching decisions during tree search. One task, satisfiability, has been
extensively studied as a testbed for end-to-end learning on Boolean formulae. The remaining five
tasks have been employed as computationally inexpensive features for meta-algorithmic approaches
to solving SAT, such as algorithm selection. Below, we describe for each task (1) its prior use in
machine learning for Boolean logic and (2) how we computed its ground truth labels. For formal
definitions of each task, please refer to Appendix A.

Predicting satisfiability Selsam et al. (2019) were the first to demonstrate how GNNs could be
used for end-to-end learning for Boolean logic by predicting satisfiability. Cameron et al. (2020)
later showed how GNNs could beat expert hand-engineered features for SAT prediction and there
have been several later follow up works (Chang et al., 2022; Li et al., 2023). We used the model
counting computation below to identify satisfiability. If the model count was zero, the instance is
usatisfiable, otherwise it is satisfiable.

Model counting Vaezipoor et al. (2021) train a neural network to make branching decisions to solve
model counting. We used the Sharpsat (Thurley, 2006) solver to compute model counts.

Backbone Wang et al. (2022) predicted backbones which they used to assign polarity to branch-
ing variables in CDCL solvers. We used the Cadiback (Biere et al., 2023) solver to compute
backbones. Only defined for satisfiable instances.

Unsatisfiable Core Selsam & Bjørner (2019) learned a GNN model to predict unsatisfiable cores
which they then used to make branching decisions in CDCL solvers (i.e., branch of the variable pre-
dicted to be most likely to belong to smallest core); they acheived state-of-the-art performance. We
used the z3 program (De Moura & Bjørner, 2008) to compute approximately minimal unsatisfiable
cores. Only defined for unsatisfiable instances.

RL-based branching Cameron et al. (2024) used an RL procedure to learn a model to estimate the
relative effectiveness of branching on each variable (which they then used as a branching policy to
improve SAT solvers). We ran MCFS at the root of the tree for 100,000 lookaheads with identical
settings to Cameron et al. (2024) and measured variable counts and tree-size estimates. Only defined
for unsatisfiable instances.

Instance-level properties Leyton-Brown et al. (2003); Xu et al. (2008); Hutter et al. (2014) devel-
oped a number of features for representing Boolean logic that have been used to build prediction
models to predict solver running times (Hutter et al., 2014), select amongst a set of algorithms Xu
et al. (2012), and to configure SAT solvers (Hutter et al., 2011). We partitioned these features into
five tasks: graphical structure, linear programming relaxation, and statistics from probing runs of
three types of SAT solvers (local search, dpll probing, survey propagation). We use the feature
generation script from (Hutter et al., 2014).

Variable/Clause properties The features from (Hutter et al., 2014) are on the intance level and
many are aggregations across variables or clause statistics. We developed finer-grained variations of
these features at the level of variables and clauses as well as other features that don’t make sense at
an instance level (e.g., number of times variable is flipped in local search).

We computed the ground truth for each task on every instance, except for tasks that are defined only
for satisfiable/unsatisfiable instances. We used 2.40 GHz 2 x AMD Rome 7532 CPUs with 8GB of
RAM. The dataset required 20 CPU years in total to label. We divided our dataset into an 80:10:10
train, validation, and test split.

We will make this dataset publicly available on hugging face to help facilitate further research. We
believe that this dataset can serve as an excellent test bed for evaluating various GNN approaches in
the context of Boolean logic.

5
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4.2 WITHIN DISTRIBUTION TASK GENERALIZATION

We evaluated our foundation model first on how effectively we could fine-tune to new tasks. We
evaluated how (1) data-efficient and (2) training-time efficient fine-tuning was relative to training
from scratch. We then evaluated whether efficiency gains from fine-tuning were a consequence of
the diversity of pretraining tasks. We compared fine-tuning from foundation model vs fine-tuning
from pretrainged models from single tasks.

Data Efficiency We trained ten foundation models with each task category held out on the all one
million instances. We then randomly subsampled the training set at 100, 1000, 10000, and 100000
instances. For each dataset size and task category, we trained two models with identical architecture:
(1) fine-tuning from corresponding foundation model for held-out task and (2) training from scratch.

Faster Convergence For each task category, we evaluated fine-tuning against training from scratch
on the full dataset. We ran two variants of finetuning in each case. One where we fine-tuned all of
the parameters, and another where we froze the shared architecture and only trained the task head.
This latter setting is much less demanding on GPU resources, especially for much larger Boolean
logical formulae we might encounter in practice. We measured validation performance at regular
intervals and compared training-time efficiency.

Finetuning from single-task pretraining For five different tasks (SAT, #SAT, bakcbone, unsat
core and RL branching), we built pretrained single-task models. We fine-tuned each task from each
pretrained model and compared performance relative to fine-tuning from the foundation model. We
froze the shared architecture in each fine-tuning experiment.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION

We fine-tuned on evaluation to seven new distributions, three of which are non random. The non-
random distributions are small-world graph colouring Hutter et al. (2014), quasi group completion
Hutter et al. (2014), and spectrum repacking Fréchette et al. (2016). The other are uniform random
4SAT, uniform random 5SAT, and controlled and minimal backbone which are random instance with
controlled backbone. We also fine-tune on eight larger size-datasets from the same distribution on
variable 150-600 at intervals of 50 variables.

4.4 MODEL TRAINING

We pretrained the model using a two-layer MLP for edge and node encoding, followed by eight
message-passing layers and a two-layer MLP for each dataset-specific head. Each dataset was as-
signed a unique MLP head appended to the shared message-passing layers. The network used leaky
ReLU activations and maintained 64-dimensional embeddings for nodes and edges. Optimization
employed the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001, batch normal-
ization (used with batching during validation to reduce high variance) in GNN layers, and layer
normalization in MLP layers. Training used a batch size of 20 (80,000 nodes + edges), with batches
sampled uniformly at random. Losses were masked for undefined or missing tasks (e.g., backbone
loss on unsat instances). Pretraining, fine-tuning, and frozen fine-tuning runs were allocated 24, 6,
and 2 hours, respectively. Performance was evaluated on a validation set per epoch, with the best
model tested on a held-out test set. Experiments ran on A100 GPUs.

5 RESULTS

5.1 WITHIN DISTRIBUTION TASK GENERALIZATION

Table 1 shows the improvement in fine-tuning on each hold-out task on the pretraining instance
distribution on a small subset of the training set (1000 examples). Except when performance did not
exceed the trivial baseline for both approaches (DPLL Probing, Var LP, Local Search), fine-tuning
performed at least as well as training from scratch. This is most prominent for the four tasks that
correspond to NP-hard computational problems. Fine-tuning had 10%, 8%, and 1% better accuracy
in predicting satisfiability, backbone variables, and unsat core, respectively. It also performed three
times better in terms of r2 value for predicting model counting. Performance tended to be poor
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on tasks from probing runs of SAT solvers (DPLL, Local Search). We suspect that these tasks are
fundamentally difficult to predict. For a homogeneous distribution like uniform random, differences
in these probing statistics across instances are likely to be dominated by noise. We also note the
improvement in the RL-for-branching task (4% better accuracy in predicting a variable in the top
10). The loss differential appears minimal but in fact is a substantial difference. The target is the
distribution of Q values across the actions (variables) in an RL procedure, which tends to be very
close to uniform because it takes a lot of samples to pull apart the actions. Small differences in
Q-value predictions are meaningful but not captured well by the magnitude of the cross entropy
loss.

Held-out Task Type Metric Fine-tuning From Scratch
Loss Metric Loss Metric

SAT Graph Classification Accuracy 0.538 0.738 0.632 0.644

Backbone Node Classification Accuracy 0.832 0.619 0.953 0.535
Unsat Core 0.134 0.902 0.14 0.895

RL Branching Node Selection Top-10 Accuracy 4.6084 0.396 4.6086 0.359

Var Structural

Node Regression R2 Score

0.990 0.099 0.989 0.099
Clause Structural 0.431 0.972 0.434 0.971
Var Local Search 1.771 0.057 1.800 0.041
Clause Local Search 0.494 0.705 0.612 0.634
Var LP 0.146 -0.001 0.146 0.004
Clause LP 0.088 0.796 0.171 0.602

#SAT

Graph Regression R2 Score

1.168 0.327 1.551 0.107
Local Search 2.878 -16.749 11.155 -67.792
LP 1.086 0.044 1.128 0.007
DPLL Probing 0.993 -0.134 0.886 -0.011
Survey Propagation 0.369 0.274 0.424 0.166
Graph Structural 0.529 0.147 0.622 -0.003

Table 1: Performance comparison between fine-tuning and training from scratch on each task held
out for a subsampled training set of 1000 examples.

It is very common in practice to have just a few hundred or thousand instances to train from (e.g.
Bischl et al. (2016)) so performance at these dataset sizes is much more indicative of real-world
performance. Figure 2a shows the complete results of the data efficiency experiments at the four
orders of magnitude of dataset size. The base of the y-axis represents performance of the trivial
baseline (random guessing for classification and predicting the mean for regression). In many cases,
fine-tuning was an order of magnitude more data efficient, achieving better performance at 1000
examples than training from scratch achieved with 10,0000 examples. Satisfiability prediction was
the most striking; fine-tuning from 100 examples outperformed training from scratch on 100,000
examples. In almost all cases, training from scratch eventually reached fine-tuning performance
with a sufficiently large training set; datasets of this size are unlikely to be readily available for
particular downstream applications.

We now show that fine-tuning performance also tended to converge much faster. Figure 2b shows
validation performance over training runs comparing fine-tuning and training from scratch on the
full dataset. For all four of the NP-hard computational tasks, fine-tuning is more than an order
of magnitude faster; performance of fine-tuning after 1000 steps exceeded performance of training
from scratch after 10,000 steps. The plot also shows performance of fine-tuning with the shared
parameters frozen and just the task-head parameters are learnable. In many cases, this frozen model
exceeds the performance of training all parameters from scratch before 10,000 steps.

Next, we evaluated whether fine-tuning from single-task pretrained models could achieve similar
results to pretraining on all tasks. We found that in general that is not the case suggesting that the
combination of pretraining tasks is leading to a more generalizable representation. See Table 2 for
results. The left-most column lists the pretrained models and each column represents the tasks we
are fine-tuning to. In every case, the foundation model trained on all but the fine-tuning task achieved
best performance.
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Figure 2: Performance of fine-tuning and training from scratch on each held-out task.

We also observed a clear distinction between tasks trained only on unsatisfiable instances (unsat
core, RL branching) and the others. SAT, model counting, and backbone were mutually comple-
mentary but models trained on these tasks tended to fine-tune poorly to tasks on unsatisfiable tasks
and vice versa. This is evidence that predictive features are very different between satisfiable and
unsatisfiable instances.

Held-out Tasks

Model SAT # SAT Backbone Unsat Core RL Branching
Acc R2 Acc Acc Top-10 Acc

Foundation 0.743 0.432 0.614 0.894 0.408
Sat 0.362 0.586 0.889 0.388
Model Counting 0.727 0.592 0.872 0.385
Backbone 0.721 0.346 0.886 0.363
Unsat Core 0.685 0.208 0.552 0.406
RL Branching 0.630 0.091 0.522 0.890

Table 2: Performance for finetuning task heads with frozen graph layers on six models (one foun-
dation model trained on all but one task and five models trained on single tasks) and five held-out
tasks. Colors are normalized by the max (green) and min (red) metric of each task. Foundation
model outperformed all single task models.

5.2 OUT-OF-DISTRIBUTION GENERALIZATION

Table 3 shows out-of-distribution fine-tuning performance for 15 different settings. Finetuning con-
sistently showed better performance. In the three nonrandom distributions, fine-tuning achieved 0.3
(vs. 0.11) r2 for model counting (QGC), 0.992 (vs 0.986) auroc for unsat core (SATFC), and 0.09
(vs -0.07) r2 for model counting (SWGC) . We also showed a consistent fine-tuning improvement
for upward-size scaling for SAT prediction. For example, for 550 variables, fine-tuning achieved
85% accuracy compared 71% from training from scratch.

5.3 NORMALIZATION

We found that the performance of the foundation model was sensitive to the choice of specific combi-
nations of normalization layers. We evaluated the performance of the foundation model for different
normalization techniques: batch normalization (Ioffe & Szegedy, 2015) , layer normalization (Ba
et al., 2016) and what we call hybrid normalization, which uses batch normalization in GNN and
layer normalization in feed-forward head networks. We show in Table 4 that hybrid normalization
outperformed all other normalization techniques for most Boolean logic tasks when training from
scratch.
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Distribution Mean #Var Task Metric Type Foundation From Scratch
Loss Metric Loss Metric

Uniform Random 3SAT

150

SAT Accuracy

0.492 0.759 0.600 0.660
200 0.436 0.793 0.594 0.662
250 0.451 0.788 0.591 0.682
300 0.439 0.802 0.577 0.694
350 0.416 0.823 0.566 0.698
400 0.448 0.784 0.582 0.666
550 0.411 0.854 0.572 0.711
600 0.394 0.829 0.555 0.712

Uniform Random 4SAT 90 Backbone Accuracy 0.676 0.727 0.731 0.713
#SAT R2 score 0.508 0.407 0.635 0.258

Uniform Random 5SAT 65 #SAT R2 score 0.201 0.368 0.191 0.399

Backbone Minimal Subinstance 100 Backbone Accuracy 1.001 0.504 1.006 0.509
#SAT R2 score 2.698 0.209 3.452 -0.011

Controlled Backbone Size 100 Backbone Accuracy 0.798 0.633 0.856 0.596
#SAT R2 score 0.967 0.329 1.304 0.095

Quasi Group Completion (QGC) 1299 #SAT R2 score 1.188 0.315 1.539 0.112

Spectrum Repacking Problem (SATFC) 782 Unsat Core AUROC 0.116 0.992 0.128 0.986

Small-world Graph Colouring (SWGC) 1332 #SAT R2 score 1.884 0.093 2.231 -0.074

Table 3: Out-of-distribution finetuning on seven new distributions and eight upward-size generaliza-
tion datasets of the same pretraining distribution.

Normalization SAT # SAT Backbone Unsat Core RL Branching
Acc R2 Acc Acc Loss*

Batch 0.646 0.130 0.535 0.867 0.0460878
Layer 0.651 0.137 0.537 0.877 0.0460876
Hybrid 0.756 0.448 0.634 0.904 0.0460860

Table 4: Foundation model performance (val loss) for each normalization layer type: batch normal-
ization, layer normalization, and hybrid normalization (batch norm for GNN layers + layer norm for
feed-forward heads). * Had issue with RL branching metric; We will have it for camera ready.

Batch normalization and layer normalization are two widely adopted normalization techniques in
deep learning models and we observed significant limitations in both. For batch normalization,
we observed high variance for graph embeddings of the same random chosen graph throughout
training, which caused stability issues during optimization. For layer norm, it struggled to learn
in most graph-level tasks which we hypothesize is related to the oversmoothing effect described in
Zhao & Akoglu (2020) and Cai & Wang (2020). We proposed hybrid normalization to address both
issues. We found that (1) unlike layer normalization, hybrid normalization maintains high separation
between node embeddings throughout training, while (2) variance of node embedding for a given
graph across batches is much more controlled compared to batch normalization.

We monitored two key metrics during foundation model training for each of the 3 choices of nor-
malization techniques.

(1) Cosine similarity between neighboring training steps of the node embeddings for the same graph.
Let Ht ∈ Rn×d be the embedding matrix for a chosen graph at training step t, Ht,i ∈ Rd be the
node embedding for node i, the metric is defined as

cosine similarity(Ht, Ht−1) =

∑
i Ht,iHt−1,i√∑

i H
2
t,i

√∑
i H

2
t−1,i

(1)

This measures how much the graph embedding of a given graph changes during training.
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(2) Pairwise distances between node embeddings from the output of GNN layers. (“row-diff” mea-
sure from (Zhao & Akoglu, 2020) Let H ∈ Rn×d be the embedding matrix output by GNN layers,
hi ∈ Rd be the i-th row of H , then row-diff is defined as the average of all pairwise distances
between node embeddings:

pairwise dist(H) =
1

n2

∑
i,j∈[n]

∥hi − hj∥2. (2)

This is an indicator of how well the GNN can separate node embeddings from each other.

As shown in Figures 3a and 3b, batch norm showed high separability of nodes, however, the cosine
similarity of graph embeddings changes drastically during training, which is indicative of unstable
learning.In contrast, layer normalization maintained a consistent rate of change for the cosine sim-
ilarity measure after training stabilized but exhibited lower and narrower node separability, which
could be linked to the over-smoothing phenomenon. Hybrid normalization maintained relatively
high node separability across training while the variance of cosine similarity appears to be much
more controlled than batch normalization.

(a) Pairwise distances in node embeddings
over batches throughout training.

(b) Cosine similarity between graph embeddings from
neighboring training steps.

Figure 3: Pairwise node embedding distance and Cosine similarity for different norms.

6 DISCUSSION, LIMITATIONS AND FUTURE DIRECTIONS

Our work demonstrates the promise of foundation models for Boolean logic but is currently lim-
ited to small-scale problems, far smaller than typical industrial cases. Working with large instances
becomes difficult in multiple ways, it is computationally hard to acquire large enough datasets and
the large size of the instances constrains the amount of memory available for an expressive enough
network. However, our fine-tuning results suggest that there might be a way to circumvent both of
these obstacles. Our results on generalization to unseen tasks with more efficient training suggest
that generalizing to unseen problem sizes might also not require massive new datasets. Furthermore,
our results using frozen shared representations suggest that fine-tuning only a smaller head network
might be sufficient for achieving good performance alleviating the need for massive memory inten-
sive networks at training time.

By solving the hurdles of generalizing to larger problem sizes, we would also expand the diversity
of instances we would be able to study. Incorporating a richer class of problem instances could also
provide a yet richer shared representation, which could benefit performance even in the regime we
currently study. We restricted ourselves to small instance distributions so we could evaluate very
large GNN architectures; distributions of small instances, which are difficult across the variety of
tasks we study are limited.

Further investigation into the hybrid normalization architecture is potentially exciting. We have em-
pirically demonstrated that hybrid normalization outperforms other normalization techniques when
used in isolation, and we have provided a hypothesis to explain these results. It would be interesting
to evaluate this method on other graph datasets and to explore the theoretical foundations behind its
success.
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A TASK DETAILS

We hereby give the detailed definitions of each task use in model training and evaluation. First,
we define a SAT formula S as a set of clauses C = {c1, . . . , cm} over a set of variables V =
{v1, . . . , vn}. Each clause consists of a set of Boolean literals, defined as either a variable vi or its
negation ¬vi. The set of literals in a clause are joined by OR operators and the set of clauses are
joined by AND operators.

A.1 MODEL COUNTING

For a given SAT formula S, its model count is defined as the number of distinct truth assignments
to variables for which the formula evaluates to true. Formally:

ModelCount(S) = |{t ∈ {True, False}n | S(t) = True}|
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Graph-Level Regression Tasks
Task Description Output Shape
Model Counting Predicting the number of satisfying

assignments for the SAT instance.
ϕMC(S) ∈ R

Instance-wise Structural Features
– Graph Features Basic graph statistics (e.g., average

degree, clustering coefficient).
ϕGF(S) ∈ R48

– Linear Programming Relaxation Features from LP relaxation of the
SAT problem.

ϕLP(S) ∈ R6

– Local Search Probing Summary stats of probes of saps
and gsat solvers.

ϕLS(S) ∈ R22

– DPLL Probing Propagation/depth of dpll probes. ϕDP(S) ∈ R5

– Survey Propagation Probing Summary stats from probes of a
survey propagation algorithm.

ϕSP(S) ∈ R18

Graph-Level Classification Tasks
Predicting Satisfiability Determining whether the SAT in-

stance is satisfiable or unsatisfiable.
ϕSAT(S) ∈ R

Node-Level Regression Tasks
Variable Features

– Graph Features Node-specific statistics (e.g., node
degree, betweenness centrality).

ϕGFV(S) ∈ Rn×13

– Linear Programming Relaxation Variable assignments for optimal
solution.

ϕNSF(S) ∈ Rn

– Local Search Probing Stats of variable flip counts/weights
in local search probes.

ϕLSV(S) ∈ Rn×10

Clause Features
– Graph Features Clause node-specific statistics (e.g.,

node degree, betweenness central-
ity).

ϕGFC(S) ∈ Rn×10

– Linear Programming Relaxation Constraint slacks ϕNSF(S) ∈ Rn

– Local Search Probing clause penalties and frequency sat-
isfied

ϕLSC(S) ∈ Rn×4

Node-Level Classification Tasks

Backbone Prediction Predicting the backbone status
(non-backbone, true, false) of each
variable.

ϕBB(S) ∈ Rn×3

Unsatisfiable Core Detection Predicting probability of variable
belonging to unsat core

ϕUC(S) ∈ Rn

RL Branching Predicting MCTS-related proper-
ties for each node (visit counts,
value estimates).

ϕMCTS(S) ∈ Rn×2

Table 5: Categorization of task into graph and node-level regression and classification along with
brief descriptions and output shape of each corresponding task head.

A.2 INSTANCE-WISE GRAPH FEATURES

From Hutter et al. (2014). A SAT problem can be represented as different graph representations.
First, a variable-clause graph is a bipartite graph where the two disjoint sets of nodes correspond
to variables and clauses. An edge connects a variable node to a clause node if the variable appears
(positively or negatively) in the clause. Second, a variable graph have each node corresponds to a
variable, and an edge exists between two nodes if the corresponding variables appear in the same
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Graph representation Metrics
variable-clause graph variable node degree, clause node degree
variable graph node degree, diameter
clause graph node degree, clustering coefficient

Table 6: Graph metrics

clause. Third, a clause graph have each node corresponds to a clause, and an edge is drawn between
two nodes if the corresponding clauses share at least one variable.

We collect different graph metrics in Table 6 from each graph representation, and for each metric
compute its mean, variation coefficient, min, max and entropy.

A.3 INSTANCE-WISE LINEAR PROGRAMMING RELAXATION

SAT instance can also be represented as linear programming problem.

Variables:

xj ∈ [0, 1], ∀j ∈ {1, . . . , n}
si ≥ 0, ∀i ∈ {1, . . . ,m}

where xj is the boolean variable, si is the slack variable for clause Ci, measuring the degree of
under-satisfaction of the clause.

Objective: As a constraint satisfaction problem, there’s no objective.

Constraints: For each clause Ci, the following inequality must hold:∑
j∈Pos(i)

xj +
∑

j∈Neg(i)

(1− xj) + si ≥ 1, si ≥ 0, ∀i ∈ {1, . . . ,m}

where Pos(i) is the set of variables that appear positively in clause Ci, Neg(i) is the set of variables
that appear negatively in clause Ci.

We compute the mean, variation coefficient, min, and max for the Integer slack vector of the LP
problem, along with ratio of integer vars in LP solution and objective value of LP solution.

A.4 INSTANCE-WISE LOCAL SEARCH PROBING

SAPS Hutter et al. (2002) is a dynamic local search algorithm for SAT solving. We run 2 seconds
of the solver on the sat instance and record:

• Number of steps to the best local minimum in a run

• Average improvement per step to best local minimum in a run

• Fraction of overall improvement due to first local minimum

• Best solution

A.5 INSTANCE-WISE DPLL PROBING

From Hutter et al. (2014). DPLL is a fundamental algorithm for SAT solving. A sequence of variable
assignments are made until a contradiction is encountered. After each assignment, unit propagation
is called, which means literals in a clause by themselves are assigned to true. We make random
probes of depth 1, 4, 16, 64 and 256 and measure the number of unit propagations. We also take a
number of random probes until a contradiction is encountered and measure average depth.
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A.6 SURVEY PROPAGATION PROBING

From Hutter et al. (2014). Run a survey propagation algorithm Braunstein et al. (2005). Then for
each variable, compute the higher of P(true)/P(false) or P(false)/P(true). Then compute statistics
across variables: mean, variation coefficient, min, max, 10%, 25%, 50%, 75%, and 90% quantiles.

A.7 PREDICTING SATISFIABILITY

A Boolean formula S is satisfiable if there exists an assignment V ∈ {True,False}n to the variables
V = {v1, . . . , vn}, such that the formula S evaluates to True. Formally:

Satisfiable(S) ⇐⇒ ∃t ∈ {True,False}n s.t.S(t) = True.

A.8 BACKBONE PREDICTION

The backbone of a satisfiable formula S is the set of variables that are true in all satisfying assign-
ments of S. Formally:

Backbone(S) = {v | variable v = True ∀t ∈ {True,False}n s.t.S(t) = True}.

A.9 MINIMAL UNSATISFIABLE CORE

Given an unsatisfiable SAT formula represented in CNF form, a minimal UNSAT core of S is the
smallest subset of its clauses Ccore ⊆ C such that Score is unsatisfiable. Formally:

argmin
Ccore

|Ccore| s.t. Ccore ⊆ C, Score =
∧

c∈Ccore

c s.t. Satisfiable(Score) = False

A.10 RL BRANCHING

MCFS Cameron et al. (2024) is a Monte Carlo Tree Search based algorithm aims to find the optimal
branching policy (i.e choosing which variable to search next) for SAT solving. After an offline
search and rollouts for SAT instance S, we get two measurements from the search tree: variable
counts and tree-size estimates. variable counts ∈ Rn measures how many times each variable was
chosen during the search. tree-size ∈ Rn measures the estimated size of the search tree for each
variable.

B LOSS

For each task Ti, the loss Li is defined based on the task type τ(Ti) ∈ {node, graph} and category
ℓ(Ti) ∈ {regression, classification}. τ(Ti) defines whether the model makes predictions for every
node or a global prediction of entire graph and category ℓ(Ti) ∈ {regression, classification} defines
whether we use mean-squared error or cross entropy loss

Li(Ti, ϕ) =



ES∼P
[
(Ti(S)− ϕi(S))

2
]

if τ(Ti) = graph, ℓ(Ti) = regression,

ES∼P

[
−

C∑
c=1

Ti(S)c log ϕi(S)c

]
if τ(Ti) = graph, ℓ(Ti) = classif,

ES∼P

 1

N

N∑
j=1

(Ti(vj)− ϕi(vj))
2

 if τ(Ti) = node, ℓ(Ti) = regression,

ES∼P

 1

N

N∑
j=1

(
−

C∑
c=1

Ti(vj)c log ϕi(vj)c

) if τ(Ti) = node, ℓ(Ti) = classif.
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Ti(S) is the ground truth result for task Ti on instance S, Ti(x)c is an indicator if class c is the true
class, ϕi is the task head for task i, ϕi(x

′)c is the predicted probability of class c where x′ could be
a logical formula S or a variable vj ∈ S. We would like to learn some ϕ that takes S or a lossless
representation of S directly as input.

C SAT ENCODING

A CNF SAT instance S is defined by a set of clauses C = {c1, . . . , cm} over a set of variables
V = {v1, . . . , vn}. Each clause consists of a set of Boolean literals, defined as either a variable
vi or its negation ¬vi. The set of literals in a clause are joined by OR operators and the set of
clauses are joined by AND operators. We represented a CNF SAT instance with n clauses and m
variables as an n×m bipartite graph, where each node and edge is represented as a d-dimensional
trainable embedding. Variable and clause nodes are represented with embedding vectors v0 and c0

respectively and each edge (i, j) is represented with embedding et if the true literal for variable i
appears in clause j and ef if the false literal for variable i appears in clause j.

D MODEL ARCHITECTURE

Pre-GNN encoder We first map each node and edge embedding with a MLP:
∀x : x1 = MLPpre-node(x

0), ∀u, v : e1u,v = MLPpre-edge(e
0
u,v), g

1 = MLPpre-global(g
0).

Message-passing layers We take in (Xℓ,Eℓ, gℓ) and output (Xℓ+1,Eℓ+1, gℓ+1) as follows:

∀u, v : ēℓu,v = MLPedge([x
ℓ
u|xℓ

v|eℓu,v|gℓ])

∀i : x̄ℓ
i = MLPnode

xℓ
i

∣∣∣∣∣∑
u,i

[ēℓu,i|xℓ
u]

∣∣∣∣∣∑
i,v

[ēℓi,v|xℓ
v]

∣∣∣∣∣gℓ


gℓ+1 = MLPglobal

gℓ

∣∣∣∣∣∑
j

x̄ℓ
j

∣∣∣∣∣∑
u,v

ēℓu,v


X̄ℓ = SelfAttention(X̄ℓ)

∀u, v : eℓ+1
u,v = eℓu,v + ēℓu,v

∀i : xℓ+1
i = xℓ

i + x̄ℓ
i ,

where | denotes the concatenation of vectors.
Shared-embedding layer We take the node embedding output of k Message-passing layers Xk,
pass through a row-wise sum pooling layer to get the graph level embedding

embgraph =

m∑
i=1

Xk
i,:

scatter across rows
S = 1ms

and concat back to the node embedding Xk

embshared = Xk |S
where 1m ∈ Rm denotes a column vector of 1s and | denotes the concatenation of vectors.
Head networks We have a head network for each task in the foundation model and a single head
for finetuning and single task training. We first describe the head networks according to task type

• Graph-level tasks: The final prediction is a global sum pooling of all node representa-
tions followed by an MLP that maps to output shape according to the specific task: ȳ =
Dropoutp(MLPhead(

∑
i xi)).

• Node-level tasks: The final prediction is an MLP that maps each node embedding to output
shape according to the specific task: ȳi = Dropoutp(MLPhead(xi)), where Dropoutp masks
each parameter with probability p.

Table 5 in the appendix describes the output space for each of the sixteen task heads.
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E EXPANDED RESULTS

103 104

Step

5.2 × 10 1

5.4 × 10 1

5.6 × 10 1

5.8 × 10 1

6 × 10 1

6.2 × 10 1

6.4 × 10 1

6.6 × 10 1

Lo
ss

SAT

103 104

Step

1.00

1.1 × 100

1.2 × 100

1.3 × 100

1.4 × 100

1.5 × 100

1.6 × 100

#SAT

103 104

Step

1.00

8.5 × 10 1

9 × 10 1

9.5 × 10 1

Backbone

103 104

Step

1.35 × 10 1

1.4 × 10 1

1.45 × 10 1

1.5 × 10 1

1.55 × 10 1

1.6 × 10 1

1.65 × 10 1

1.7 × 10 1

Unsat Core

103 104

Step

4.6086 × 100

4.6088 × 100

4.609 × 100

4.6092 × 100

4.6094 × 100

4.6096 × 100

4.6098 × 100

RL Branching

Foundation
Pretrain-SAT

Pretrain-#SAT
Pretrain-Backbone

Pretrain-Unsat Core
Pretrain-RL Branching

Figure 4: Validation performance over a training run for finetuning from different pretrained models
with parameters from the shared architecture frozen.
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