

REINFORCEMENT FINE-TUNING NATURALLY MITIGATES FORGETTING IN CONTINUAL POST-TRAINING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

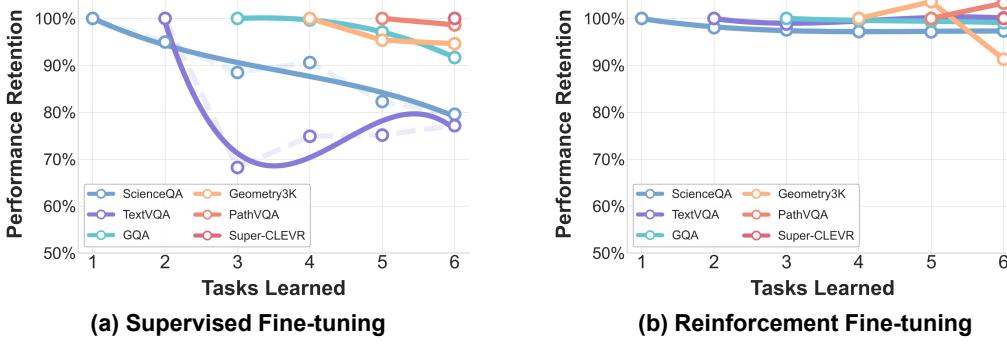


Figure 1: Comparison of performance retention between SFT and RFT in continual post-training. We plot the performance on each task, normalized relative to its initial post-training peak, as the model learns through a sequence of multimodal tasks. **(a)** SFT exhibits classic catastrophic forgetting, where performance on previously learned tasks degrades dramatically as new tasks are introduced. **(b)** By contrast, RFT demonstrates remarkable stability, maintaining high performance on prior tasks throughout the entire sequence. This suggests an inherent forgetting-mitigation property within the RFT paradigm. Further details on the experimental setup can be found in Section 4.

ABSTRACT

Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model’s general knowledge on standard benchmarks (e.g., MMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis reveals that this stability is not primarily due to explicit mechanisms like KL penalty or chain-of-thought reasoning. Instead, we identify an implicit regularization mechanism inherent to RFT as a key contributing factor. Our theoretical analysis suggests that RFT’s gradient updates are naturally scaled by the reward variance, acting as a data-dependent regularizer that inherently protects previously acquired knowledge. Finally, we propose a rollout-based instance filtering algorithm to enhance the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.¹

¹Our code is provided in the supplementary material. An anonymous link for review is: <https://anonymous.4open.science/r/RFTvsSFT-A999>

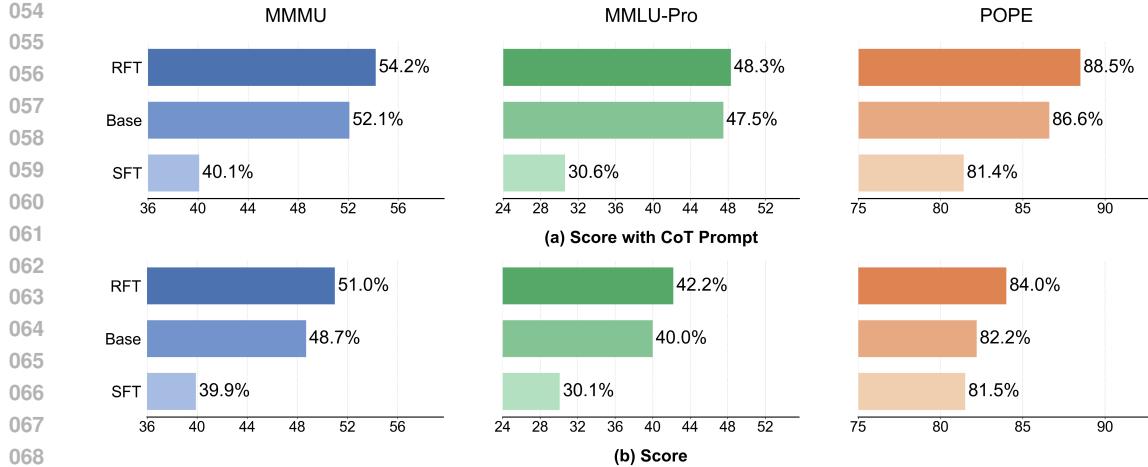


Figure 2: General capability preservation after continual post-training. We evaluate models at the end of learning all downstream tasks on general benchmarks using both CoT and direct prompting. Compared to the base model, SFT (shown in light colors) causes degradation while RFT (shown in darker colors) preserves and even enhances general capabilities.

1 INTRODUCTION

Recent advancements in multimodal large language models (MLLMs) have demonstrated remarkable capabilities in complex world understanding (Achiam et al., 2023; Liu et al., 2024; Wang et al., 2024a). To align with the demands of real-world deployment, MLLMs must adapt to a stream of data and evolving user requirements, incorporating new skills and domain knowledge over time (Zhu et al., 2024). This calls for an efficient and scalable continual post-training (CPT) paradigm. A key challenge in CPT is the well-known phenomenon of catastrophic forgetting (McCloskey & Cohen, 1989), where adapting to a new task leads to a severe degradation of performance on previously learned tasks. To reduce forgetting, recent studies (Guo et al., 2025c) focus on data replay (Maharana et al., 2025; Lee et al., 2025; Wang et al., 2025), model expansion (Zhao et al., 2025; Guo et al., 2025b; Zeng et al., 2024), and explicit regularization (Liu et al., 2025a). Nevertheless, existing methods typically leverage the supervised fine-tuning (SFT) paradigm by default, and the role of the fundamental fine-tuning paradigm in CPT has been overlooked.

Recently, reinforcement fine-tuning (RFT), which optimizes models based on feedback from generated outputs, has significantly advanced foundation model post-training (Chu et al., 2025; Shao et al., 2024; Guo et al., 2025a). To the best of our knowledge, this work presents the first direct comparative investigation into whether SFT or RFT is the more suitable paradigm for CPT, focusing on knowledge preservation for both specific downstream tasks and general capabilities. Experimentally, we continually fine-tune the Qwen2.5-VL-7B-Instruct model (Bai et al., 2025c) on a benchmark comprising diverse multimodal tasks covering various domains. To fully reflect the knowledge preservation ability, we evaluate forgetting on both learned specific tasks and general benchmarks such as MMMU (Yue et al., 2024), MMLU-Pro (Wang et al., 2024b), and POPE (Li et al., 2023a).

The empirical investigation yields two notable findings: (1) As shown in Figure 1, when continually learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks, which is consistent with existing studies (Guo et al., 2025c). In contrast, RFT can inherently protect prior knowledge, maintaining strong performance on old tasks after being adapted to new tasks. Surprisingly, without any data replay, continual post-training with RFT can achieve comparable performance with that of multi-task training, which is not achievable even when equipping SFT with continual learning strategies. (2) As demonstrated in Figure 2, continual training on downstream tasks with SFT severely degrades general model capabilities, which is known as base model degradation (Liu et al., 2025a). For example, the performance drops from 52.1% to 40.1% on MMMU. Fortunately, RFT protects the general performance and enhances the model’s general knowledge (52.1% → 54.2%). These observations highlight the knowledge preservation capability of RFT.

108 To understand how RFT mitigates forgetting during CPT, we conduct additional experiments with
 109 the popular and representative group relative policy optimization (GRPO) framework (Shao et al.,
 110 2024). We analyze the impact of KL divergence penalty and chain-of-thought (CoT) reasoning
 111 (Wei et al., 2022) on forgetting mitigation. Particularly, the KL divergence penalty prevents the
 112 policy from changing too drastically, similar to the well-known knowledge distillation in continual
 113 learning (Li & Hoiem, 2017). However, our analysis indicates that these explicit mechanisms are
 114 not the primary drivers of forgetting mitigation. We instead attribute this phenomenon to an implicit
 115 regularization effect within RFT. We offer a theoretical perspective suggesting that RFT’s updates
 116 are inherently more conservative in parameter subspaces sensitive to prior tasks. This conservatism
 117 is naturally scaled by the variance of the reward signal, creating a data-dependent regularization that
 118 dampens updates on uncertain samples, thus protecting established knowledge. Last but not least,
 119 we observe that the learning process of RFT can be highly inefficient. Thus, we introduce a rollout-
 120 based instance filtering algorithm that enhances the stability of GRPO while still being an excellent
 121 knowledge protector.

122 Our main contributions are threefold:

- 123 1. We present the first comprehensive analysis of the forgetting mitigation effects of SFT and
 124 RFT during continual post-training of MLLMs, demonstrating that RFT naturally preserves
 125 not only the performance of learned downstream tasks but also general model capabilities.
- 126 2. Based on in-depth analyses, we reveal that the implicit regularization introduced by RFT
 127 significantly contributes to the forgetting mitigation, being more important than KL regu-
 128 larization and CoT reasoning.
- 129 3. We propose a rollout-based instance filtering algorithm that enhances the stability and effi-
 130 ciency of RFT while still maintaining previous learned knowledge.

132 2 RELATED WORKS

133 **Continual Post-Training in MLLMs.** Continual learning aims to enable models to learn from
 134 a stream of tasks without catastrophically forgetting previously acquired knowledge (Van de Ven
 135 et al., 2022). For MLLMs, this capability is particularly important for adapting these powerful mod-
 136 els to a diverse range of downstream multimodal tasks. Existing CPT research in MLLMs (Guo
 137 et al., 2025c) has focused on adapting traditional forgetting mitigation strategies such as regulariza-
 138 tion, data replay, and model expansion, within an SFT paradigm. Regarding benchmark, Chen et al.
 139 (2024) introduced a continual instruction tuning benchmark including several specific multimodal
 140 datasets. Zhao et al. (2025) introduces two settings named domain continual learning and ability
 141 continual learning, providing a realistic evaluation for continual post-training of MLLMs. In addi-
 142 tion to these methods, recent efforts to mitigate catastrophic forgetting in MLLMs primarily focus
 143 on parameter-efficient learning and dynamic data selection. For instance, HiDe-LLaVA (Guo et al.,
 144 2025b) employs a hierarchical decoupling framework for task-specific LoRA expansion and general
 145 knowledge fusion. MRLoRA (Zhao et al., 2025) leverages architectural decoupling and a multi-
 146 modal routing mechanism to selectively activate specialized parameters. In terms of data manage-
 147 ment, Adapt-∞ (Maharana et al., 2025) dynamically selects high-impact samples based on gradient
 148 representations and prunes redundant data. These diverse strategies collectively aim to enhance the
 149 ability of MLLMs to continually learn new tasks while preserving previously acquired knowledge.
 150 Recently, Liu et al. (2025a) developed LLaVA-c, which is a simple yet effective CPT framework for
 151 MLLMs, addressing task balancing and catastrophic forgetting through spectral-aware consolidation
 152 and unsupervised inquiry regularization.

153 **Post-Training of Foundation Models.** Post-training is a critical stage for refining the capabili-
 154 ties of pre-trained foundation models (Shao et al., 2024; Chu et al., 2025; Achiam et al., 2023).
 155 SFT on task-specific or instruction-formatted datasets is a common approach to adapt models to
 156 downstream applications (Chung et al., 2024; Zhou et al., 2023). For example, Chung et al. (2024)
 157 demonstrated that by scaling the number of tasks and model size, and incorporating CoT data, SFT
 158 significantly enhances the performance and generalization of various large language models across
 159 diverse benchmarks. Recently, RFT has gained prominence for aligning models with human pref-
 160 erences or improving performance on specific objectives (Liu et al., 2025c; Zhai et al., 2024; Shao
 161 et al., 2024; Luong et al., 2024; Li et al., 2025; 2023c; Ahmadian et al., 2024). Particularly, GRPO

(Shao et al., 2024) largely enhances mathematical reasoning and optimizes memory usage, being a popular method for post-training of large language models. Liu et al. (2025b) revealed inherent biases in the GRPO algorithm, then introduces an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Visual-RFT (Liu et al., 2025c) boosts MLLMs by using reinforcement learning with rule-based visual rewards, making them more data-efficient and better at various visual tasks than traditional SFT. Recently, Chu et al. (2025) demonstrated that reinforcement learning significantly enhances the generalization capabilities of foundation models, while SFT primarily leads to memorization. In this work, we study the comparative effect of SFT and RFT on knowledge retention in MLLMs continual post-training. Recent work by Zhang et al. (2025) investigates SFT and RFT from a data perspective, showing that incorporating reasoning trajectories in SFT can reduce forgetting. Their findings complement our work by highlighting how data format affects SFT’s stability, while we demonstrate that RFT provides inherent forgetting mitigation without reasoning format. Together, these studies provide comprehensive guidance for post-training paradigm selection.

3 PRELIMINARIES

Post-training is a critical phase following large-scale pre-training that adapts foundation models to specific downstream tasks or align them with human preferences (Ouyang et al., 2022; Kumar et al., 2025). We model the MLLM with parameters θ as a policy π_θ . This policy defines a conditional probability distribution $\pi_\theta(a|x)$ over possible text responses a given a multimodal input prompt x , which consists of text and images. We also assume a scalar reward function $r(x, a) \in \mathbb{R}$ that evaluates the quality of a response. Post-training aims to update the parameters θ of a pre-trained base model $\pi_{\theta_{\text{base}}}$ to improve its performance on a downstream task using a training dataset \mathcal{D} , which can be achieved by SFT (Ouyang et al., 2022) or RFT (Lee et al., 2023).

SFT. Given training dataset $\mathcal{D} = \{(x_i, a_i^*)\}_{i=1}^N$ consisting of prompts x_i and their corresponding ground-truth responses a_i^* , SFT maximizes the likelihood of generating the ground-truth responses. This is typically achieved by minimizing the negative log-likelihood loss:

$$\mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{(x, a^*) \sim \mathcal{D}} [\log \pi_\theta(a^*|x)] = -\mathbb{E}_{(x, a^*) \sim \mathcal{D}} \left[\sum_{t=1}^{|a^*|} \log \pi_\theta(a_t^*|x, a_{<t}^*) \right]. \quad (1)$$

RFT. In RFT, the model π_θ is treated as a policy, and generates one or more candidate responses for a given prompt x . The optimization objective is to maximize the expected reward:

$$\mathcal{J}_{\text{RFT}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{a \sim \pi_\theta(\cdot|x)} [r(x, a)]. \quad (2)$$

The gradient of this objective is typically estimated using policy gradient methods. The most basic form is the REINFORCE (Williams, 1992) estimator, which, unfortunately, has high gradient variance. Recent RFT algorithms (Shao et al., 2024; Li et al., 2023c; Ahmadian et al., 2024) address this issue by designing more stable advantage estimators and baselines. We introduce some of the representative methods used in our study below.

For a prompt x , **GRPO** (Shao et al., 2024) generates a group of n responses $\{a_1, \dots, a_n\}$ and computes their rewards $\{r_1, \dots, r_n\}$. The advantage for a response a_i is its normalized reward relative to the group mean: $A(a_i) = (r_i - \bar{r})/\sigma_r$, where \bar{r} and σ_r are the mean and standard deviation of the rewards. The objective is to maximize the expected advantage-weighted log-probability, often with a KL-divergence penalty against a reference policy π_{ref} to stabilize training:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{x, \{a_i\}} \left[\sum_{i=1}^n A(a_i) \log \pi_\theta(a_i|x) \right] - \beta D_{\text{KL}}(\pi_\theta(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x)), \quad (3)$$

where $\beta > 0$. **ReMax** (Li et al., 2023c) use the reward of a greedy decoding response \hat{a} as a baseline. For a single sampled response a , the objective is to maximize:

$$\mathcal{J}_{\text{ReMax}}(\theta) = \mathbb{E}_{x, a \sim \pi_\theta} [(r(x, a) - r(x, \hat{a})) \log \pi_\theta(a|x)]. \quad (4)$$

This adaptive baseline helps to normalize rewards and reduce gradient variance. To further reduce variance, **RLOO** (Ahmadian et al., 2024) generates n samples $\{a_1, \dots, a_n\}$ and uses the average

reward of the other $n - 1$ samples as a baseline for sample a_i :

$$\mathcal{J}_{\text{RLOO}}(\theta) = \mathbb{E}_{x, \{a_i\}} \left[\frac{1}{n} \sum_{i=1}^n \left(r(x, a_i) - \frac{1}{n-1} \sum_{j \neq i} r(x, a_j) \right) \log \pi_\theta(a_i | x) \right]. \quad (5)$$

Continual Post-Training Formulation. In CPT, the model learns from a sequence of T tasks with datasets $\{\mathcal{D}_1, \dots, \mathcal{D}_T\}$. The core challenge is catastrophic forgetting, i.e., a significant drop in performance on previously learned tasks. Following the general continual learning framework, CPT can be formulated as a constrained optimization problem. When learning task t , the objective is:

$$\theta^t = \arg \min_{\theta} \mathcal{L}(\theta; \mathcal{D}_t) \quad \text{s.t. } \mathcal{L}(\theta; \mathcal{D}_i) \leq \mathcal{L}(\theta^i; \mathcal{D}_i), \quad \forall i \in [1, t-1] \quad (6)$$

where $\mathcal{L}(\theta; \mathcal{D}_i)$ is the training objective (e.g., negative log-likelihood for SFT or negative expected reward for RFT) on task i , and θ^i are parameters after learning task i .

4 REINFORCEMENT FINE-TUNING MITIGATES FORGETTING IN CPT

This section presents our comparative results comparing RFT and SFT in a continual post-training scenario. We detail our experimental setup and then present the main findings that highlight the superiority of RFT for knowledge preservation.

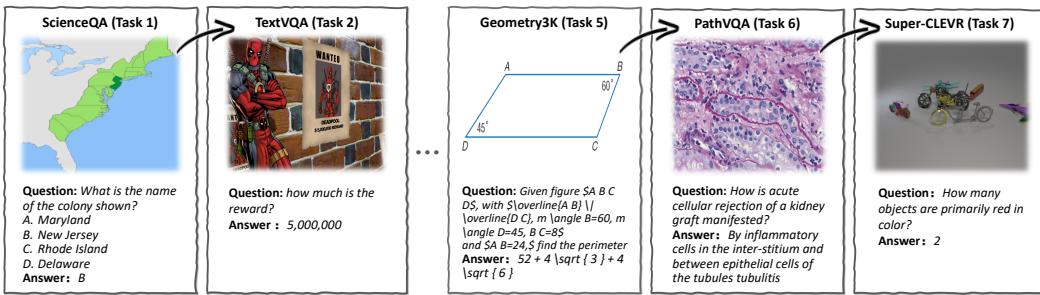


Figure 3: Illustrative examples of continual post-training benchmark.

4.1 EXPERIMENTAL SETUP

Continual Post-Training Model & Datasets. We adopt the open-source Qwen2.5-VL-7B-Instruct (Bai et al., 2025b) as our base model, primarily due to its demonstrated superiority in vision-language comprehension and its favorable resource footprint, which is crucial for practical deployment. We continually fine-tune the model on diverse vision-language datasets (ScienceQA (Saikh et al., 2022), TextVQA (Singh et al., 2019), VizWiz (Gurari et al., 2018), GQA (Hudson & Manning, 2019), Geometry3K (Lu et al., 2021), PathVQA (He et al., 2020), Super-CLEVR (Li et al., 2023b)), covering a wide range of common downstream applications. After the end of CPT, evaluation is performed on the test sets of all previously encountered tasks. Additionally, to fully assess the knowledge preservation ability, we evaluate the model on diverse, general benchmarks at the end of learning all downstream tasks. Specifically, we evaluate the model on three specialized benchmarks: MMMU (Yue et al., 2024), MMLU-Pro (Wang et al., 2024b), and POPE (Li et al., 2023a). Particularly, we include POPE to systematically assess whether CPT induces object hallucination in MLLMs. A detailed description of those datasets is provided in the Appendix A.

Learning Algorithms & Reward. Our experiments encompass a range of fine-tuning algorithms, including standard SFT (Zheng et al., 2024) and several representative RFT algorithms, i.e., GPRO (Shao et al., 2024), ReMax (Li et al., 2023c), and RLOO (Ahmadian et al., 2024). For both SFT and RFT, model outputs are normalized by disregarding extraneous whitespace (e.g., spaces, indentations, newlines) and ignoring case sensitivity to ensure precise assessment. For GRPO, the overall reward r_{overall} is designed with a weighted sum of accuracy reward and format reward:

$$r_{\text{overall}} = 0.9r_{\text{acc}} + 0.1r_{\text{format}}. \quad (7)$$

270 Table 1: Final performance comparison on all tasks after the entire continual learning sequence. The
 271 **best** and second-best results are highlighted. “-” indicates that the metric is not applicable.

Method	SciQA	TextVQA	VizWiz	GQA	Geo.	PathVQA	sCLEVR	AvgAcc	FM
Base	90.5	62.8	45.5	47.2	37.7	21.8	41.1	49.5	-
MTL (SFT)	95.2	69.9	64.5	63.4	18.1	61.6	57.5	62.9	-
SFT	76.1	55.8	46.8	58.5	20.2	62.2	58.2	54.0	-10.4
ReMax	87.6	71.4	<u>51.6</u>	62.4	16.8	33.3	54.1	53.9	-3.8
RLOO	94.0	<u>73.7</u>	48.9	<u>62.7</u>	42.1	40.5	<u>55.3</u>	<u>59.6</u>	-2.1
GRPO	<u>93.0</u>	74.8	51.8	65.9	38.4	41.3	54.2	60.0	<u>-2.3</u>

280
 281 Specifically, the accuracy reward r_{acc} assesses the semantic correctness of the generated content,
 282 which yields a reward of 1 if the generated answer a matches the ground truth answer a^* , and 0
 283 otherwise. The format reward assesses adherence to the expected output structure. It utilized regular
 284 expressions to verify the correct presence and formatting of the CoT reasoning block, delineated
 285 by `<think>` and `</think>` tags, and the final answer encapsulated within a `\boxed{}` environment. A
 286 perfect format match resulted in a score of 1, otherwise 0.

287 **Prompt Template.** Our base model, Qwen-VL-7B-Instruct, utilizes two kinds of input prompt templates,
 288 as illustrated in the Appendix. *NoCoT* (non-chain-of-thought) prompt template adheres to a basic question-
 289 answering format, where the question text is presented directly, and the model is expected to provide the final
 290 answer without intermediate steps. Differently, in *CoT* prompt template, the query’s question text is directly
 291 incorporated into the prompt, followed by an instruction for the model to first engage in a reasoning process.
 292 This *CoT* reasoning is then generated within a dedicated `<think>` and `</think>` block. The final answer is
 293 explicitly distinguished and encapsulated within a `\boxed{}` environment.

294 **Evaluation Metrics.** To quantify the model’s performance during CPT, we adopt two standard metrics.
 295 Let $P_{t,j}$ denote the test accuracy on task j after learning task t . We measure the final overall performance
 296 using **average accuracy (AvgAcc)**, which is the average accuracy across all tasks after training on the final
 297 task T . To measure knowledge retention, we use the **forgetting measure (FM)**, which calculates the average
 298 difference between the final accuracy of a task and the best accuracy achieved for that task throughout the
 299 training sequence. Let $P_i^* = \max_{k \in \{i, \dots, T\}} P_{k,i}$ be the best performance for task i . The above two metrics
 300 are defined as:

$$\text{AvgAcc} = \frac{1}{T} \sum_{i=1}^T P_{T,i}, \quad FM = \frac{1}{T} \sum_{i=1}^T (P_{T,i} - P_i^*). \quad (8)$$

301 A higher AvgAcc indicates better overall performance, while an FM closer to zero signifies less forgetting and
 302 better knowledge preservation.

303 **Implementation Details.** All experiments employ full-parameter fine-tuning for both SFT and RFT to
 304 ensure comprehensive capability assessment. Experiments of SFT are conducted using the *llamafactory* (Zheng
 305 et al., 2024) framework, with a learning rate of $1e-5$ and a batch size of 24. RFT methods (GRPO, ReMax, and
 306 RLOO) are implemented using the *easyRI* (Zheng et al., 2025) framework, building upon *Verl* (Sheng et al.,
 307 2024). A consistent configuration is applied across RFT methods to ensure an equitable comparison: a learning
 308 rate of $1e-6$, a rollout batch size of 512, a sampling temperature of 1.0, with KL-divergence coefficient
 309 $\beta = 0.01$. Specifically, GRPO is implemented adhering to its foundational methodology, with a group size set
 310 to 8. ReMax followed its core algorithm, and RLOO adopted the official Hugging Face algorithm. To ensure
 311 the generality of our findings, we conduct additional experiments across different model architectures, scales,
 312 and task domains, with detailed results provided in Appendix D.

315 316 4.2 FINDING 1: RFT INHERENTLY RESISTS CATASTROPHIC FORGETTING

317 Our primary investigation focuses on the knowledge retention capabilities of SFT and RFT within a continual
 318 learning sequence. The results, summarized in Table 1, reveal a contrast between the two paradigms.

319 **SFT suffers from catastrophic forgetting.** We observe that sequential SFT leads to a severe degra-
 320 dation of performance on previously learned tasks with a forgetting measure (FM) of **-10.4%**. For instance,
 321 performance on ScienceQA drops dramatically ($95.2\% \rightarrow 76.1\%$) after completing the entire task sequence.
 322 The final average accuracy (AvgAcc) of **54.0%** is substantially lower than the multi-task learning of SFT, which
 323 is the upper bound of **62.9%**, confirming that SFT is highly susceptible to forgetting.

324 Table 2: General capabilities evaluation on MMMU, MMLU-Pro, and POPE benchmarks after training
 325 on downstream tasks. The **best** and second-best results are highlighted.

327 Benchmark	328 Eval CoT	329 Base	330 SFT		331 RFT		
			332 SFT	333 MTL (SFT)	334 GRPO	335 RLOO	336 ReMax
337 MMMU	✓	338 52.1	339 40.1 (↓12.0)	340 47.8 (↓4.3)	341 54.2 (↑2.1)	342 53.7 (↑1.6)	343 48.7 (↓3.4)
	✗	340 48.7	341 39.9 (↓8.8)	342 48.1 (↓0.6)	343 51.0 (↑2.3)	344 46.8 (↓1.9)	345 51.6 (↑2.9)
346 MMLU-Pro	✓	347 47.5	348 30.6 (↓16.9)	349 33.2 (↓14.3)	350 48.3 (↑0.8)	351 45.1 (↓2.4)	352 35.4 (↓12.1)
	✗	348 40.0	349 30.1 (↓9.9)	350 32.9 (↓7.1)	351 42.2 (↑2.2)	352 39.7 (↓0.3)	353 41.0 (↑1.0)
354 POPE	✓	355 86.6	356 81.4 (↓5.2)	357 84.9 (↓1.7)	358 88.5 (↑1.9)	359 88.2 (↑1.6)	360 85.2 (↓1.4)
	✗	356 82.2	357 81.5 (↓0.7)	358 84.5 (↑2.3)	359 84.0 (↑1.8)	360 82.0 (↓0.2)	361 87.2 (↑5.0)

335 Table 3: Downstream task performance for ablation models. We investigate the role of the KL term
 336 and CoT through variants of GRPO. [†] indicates that the training process is unstable and requires
 337 multiple restarts from a previous checkpoint to achieve convergence.

339 Method	340 SciQA	341 TextVQA	342 VizWiz	343 GQA	344 Geo.	345 PathVQA	346 sCLEVR	347 AvgAcc
SFT	76.1	55.8	46.8	58.5	20.2	62.2	58.2	54.0
GRPO	93.0	74.8	51.8	65.9	38.4	41.3	54.2	60.0
GRPO w/o KL	93.0	75.0	51.6	65.9	35.6 [†]	40.9 [†]	54.7 [†]	59.5
GRPO w/o CoT	94.7	74.7	63.8	65.9	23.8	38.2	54.4	59.4

348 **RFT preserves task knowledge and achieves MTL performance.** In contrast, all RFT methods
 349 demonstrate remarkable resilience against forgetting. As shown in Table 1, RFT methods exhibit very low
 350 forgetting measures, with GRPO achieving an FM of **-2.3%**. For example, GRPO maintains ScienceQA per-
 351 formance at **93.0%** after learning all tasks, compared to its peak performance of **95.6%**, which is a minimal
 352 drop compared to SFT. Among RFT methods, GRPO performs best, achieving a final AvgAcc of **60.0%**, which
 353 is close to the upper bound of **62.9%**. The model achieves this high performance *without any explicit continual
 354 learning strategies*, suggesting that the RFT paradigm is inherently robust for CPT.

355 4.3 FINDING 2: RFT PROTECTS AND ENHANCES GENERAL CAPABILITIES

356 Beyond task-specific knowledge, an ideal CPT process also requires preserving the model’s foundational,
 357 general-purpose abilities. We evaluated the models on general benchmarks to measure this effect. The re-
 358 sults, presented in Table 2, highlight another critical advantage of RFT.

359 **SFT harms general capabilities in both CL and MTL.** Our experiments reveal that SFT causes
 360 significant *base model degradation* (Liu et al., 2025a). SFT induces a severe performance drop of **↓16.9%** on
 361 the challenging MMLU-Pro benchmark ($47.5\% \rightarrow 30.6\%$). Crucially, this is not merely an artifact of sequential
 362 learning; even multi-task SFT (MTL (SFT)), which trains on all data simultaneously, still causes a severe drop
 363 of **↓14.3%** on the same benchmark. A similar trend is evident on MMMU, where SFT and MTL (SFT) cause
 364 performance to decline by **↓12.0%** and **↓4.3%** respectively. This demonstrates that the SFT paradigm itself
 365 appears harmful to the model’s foundational capabilities.

366 **RFT preserves and enhances general capabilities.** In contrast to the capability decay observed across
 367 all SFT methods, the RFT paradigm effectively safeguards the model’s general abilities. GRPO, in particular,
 368 often *enhances* these abilities. For instance, GRPO improves performance on MMMU by **↑2.1%** ($52.1\% \rightarrow$
 369 **54.2%**). Crucially, RFT also improves model general capabilities, with GRPO improving the POPE score by
 370 **↑1.9%** ($86.6\% \rightarrow 88.5\%$) and reducing the tendency for hallucination. This clear difference highlights that
 371 RFT is a more robust paradigm for continual post-training.

372 5 HOW DOES RFT MITIGATE FORGETTING?

373 To investigate the mechanisms behind RFT’s remarkable stability, this section presents a series of ablation
 374 studies based on the popular and representative GRPO algorithm Shao et al. (2024).

375 5.1 THE ROLES OF CoT AND KL PENALTY

376 We test two primary hypotheses: (1) The KL-divergence penalty, by regularizing policy updates, acts as a
 377 form of knowledge distillation (Li & Hoiem, 2017) that preserves past knowledge. (2) The complex reasoning

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: General capabilities evaluation for ablation models. Each benchmark is evaluated with and without CoT prompts to provide a comprehensive view.

Benchmark	Eval CoT	Base	GRPO	GRPO w/o CoT	GRPO w/o KL
MMMU	✓	52.1	54.2 ($\uparrow 2.1$)	51.8 ($\downarrow 0.3$)	52.2 ($\uparrow 0.1$)
	✗	48.7	51.0 ($\uparrow 2.3$)	51.6 ($\uparrow 2.9$)	49.2 ($\uparrow 0.5$)
MMLU-Pro	✓	47.5	48.3 ($\uparrow 0.8$)	48.9 ($\uparrow 1.4$)	45.2 ($\downarrow 2.3$)
	✗	40.0	42.2 ($\uparrow 2.2$)	41.9 ($\uparrow 1.9$)	42.3 ($\uparrow 2.3$)
POPE	✓	86.6	88.5 ($\uparrow 1.9$)	85.3 ($\downarrow 1.3$)	74.2 ($\downarrow 12.4$)
	✗	82.2	84.0 ($\uparrow 1.8$)	88.7 ($\uparrow 6.5$)	87.6 ($\uparrow 5.4$)

structure of CoT builds more abstract and resilient knowledge representations, protecting them from being overwritten. Thus, we evaluate three GRPO variants against the SFT baseline: *GRPO w/o KL*: trained with CoT prompts but without the KL penalty term. *GRPO w/o CoT*: trained without CoT prompts, using direct question-answering format but retaining the KL penalty.

KL penalty is not the primary factor for preserving task-specific knowledge. As shown in Table 3, removing the KL penalty (*GRPO w/o KL*) causes no degradation in performance on the continual learning sequence. The final average accuracy remains, demonstrating that the KL penalty is *not* the primary mechanism preventing task-specific catastrophic forgetting. However, it is crucial to note that the training process without the KL penalty exhibits significant instability in the later stages of the task sequence. These results are obtained after multiple attempts, re-initializing from the previous task’s checkpoint to achieve a convergent outcome, which suggests KL penalty plays a critical role in stabilizing the RFT process.

CoT is a performance booster, not a forgetting mitigator. Our second hypothesis is also not supported by the data. The model trained without CoT (*GRPO w/o CoT*) still strongly resists forgetting, maintaining a high average accuracy across the task sequence (Table 3). In fact, it outperforms GRPO on VizWiz (63.8% vs. 51.8%). The general capabilities evaluation in Table 4 further confirms this conclusion. The *GRPO w/o CoT* model remains robust, and it achieves the highest score on the POPE benchmark (**88.7%**) when tested in non-CoT format evaluation. This demonstrates that while CoT can enhance performance on certain types of tasks, it is not the mechanism responsible for RFT’s resistance to catastrophic forgetting. Besides, as shown in Table 3, we observe that for *GRPO w/o KL*, using CoT during inference would lead to notable hallucination.

5.2 IMPLICIT REGULARIZATION FROM REWARD VARIANCE

To build intuition for the empirical resilience of RFT, we analyze its gradient dynamics in the context of continual learning. Our analysis suggests that RFT’s forgetting mitigation stems from an *implicit regularization* mechanism, where the learning signal itself modulates the update strength. To explore this intuition, we adopt the concept of *forgetting risk* from continual learning theory (Kirkpatrick et al., 2017), using the Fisher Information Matrix (FIM) as a tool to quantify parameter sensitivity to past tasks. This allows us to conceptually link the structure of RFT’s gradients to knowledge retention.

Definition 5.1 (Forgetting Risk). Let $\mathcal{D}_{1:k-1}$ be the data from all previously learned tasks. The FIM is defined as $F_{k-1} \triangleq \mathbb{E}_{(x, a^*) \sim \mathcal{D}_{1:k-1}} [\nabla_\theta \log \pi_\theta(a^*|x) (\nabla_\theta \log \pi_\theta(a^*|x))^\top]$. The **forgetting risk** of a gradient update g for the current task k is defined as its squared Mahalanobis norm with respect to the FIM of past tasks:

$$\mathcal{R}(g) \triangleq g^\top F_{k-1} g. \quad (9)$$

This risk measures the update’s magnitude in parameter subspaces critical for prior knowledge. Note that F_{k-1} is a theoretical construct for our analysis and is not computed in practice.

For a single data point $(x_k, a_k^*) \in \mathcal{D}_k$, the SFT loss gradient is $g_{\text{SFT}} = -\nabla_\theta \log \pi_\theta(a_k^*|x_k)$. In contrast, the RFT policy gradient for a sampled response $a \sim \pi_\theta(\cdot|x_k)$ is $g_{\text{RFT}}(a) = A(x_k, a) \nabla_\theta \log \pi_\theta(a|x_k)$, where $A(x_k, a)$ is an advantage function ($r(x_k, a) - b(x_k)$).

432 Table 5: Performance and data efficiency comparison of our proposed RIF-RFT.
433

Method	SciQA	TextVQA	VizWiz	GQA	Geo.	PathVQA	sCLEVR	AvgAcc	FM
SFT	76.1	55.8	46.8	58.5	20.2	62.2	58.2	54.0	-10.4
GRPO	93.0	74.8	51.8	65.9	38.4	41.3	54.2	60.0	-2.3
RIF-RFT	92.9	73.7	46.6	63.0	32.3	40.5	53.7	57.5	-4.5
Data Kept	81.4%	45.6%	42.1%	67.6%	37.2%	42.5%	52.3%	-	-

439
440
441 The following proposition establishes a conceptual link between the expected forgetting risk of an RFT update
442 and that of an SFT update, highlighting the central role of reward variance.
443

444 **Proposition 5.2** (RFT’s Implicit Regularization Effect). *Consider a single update on task k at parameters
445 θ_{k-1} . Let the rewards be normalized, $r(x_k, a) \in [0, 1]$. Under the technical assumptions specified in Appendix
446 **B**, the expected forgetting risk of an RFT update is related to the SFT risk by:*

$$447 \mathbb{E}_{a \sim \pi_{\theta_{k-1}}} [\mathcal{R}(g_{RFT}(a))] \approx \text{Var}_{a \sim \pi_{\theta_{k-1}}} [r(x_k, a)] \cdot \mathcal{R}(g_{SFT}), \quad (10)$$

448 where the approximation holds when an error term \mathcal{E} , capturing second-order effects, is small. The term
449 $\text{Var}[r(x_k, a)]$ is bounded by 1/4 for normalized rewards.
450

451 The full proof is provided in Appendix B. Proposition 5.2 offers an intuition: the expected impact of an RFT
452 update on prior knowledge is not fixed but is dynamically scaled by the reward variance. For an uncertain
453 sample where the model generates diverse responses with high reward variance, the update magnitude in sen-
454 sitive directions is naturally dampened, thus protecting established knowledge. Conversely, for samples where
455 the model produces consistently high-reward responses, the update is more aggressive. This inherent, data-
456 dependent regularization mechanism contrasts with SFT’s uniform, high-variance gradients, offering a com-
457 pelling explanation for the stability observed in our experiments and illustrated in Figure 4.
458

459 5.3 RIF-RFT: ENHANCING STABILITY AND EFFICIENCY OF RFT 460

461 Our analysis in Section 5.2 reveals that RFT’s resilience to forgetting is based in a reward-variance-scaled
462 regularization. However, this mechanism’s effectiveness relies on the model’s ability to generate responses
463 that produce a meaningful reward signal. We identify a critical failure mode when the model is faced with
464 incompetent samples: training instances for which the current policy π_θ consistently fails to produce non-zero
465 rewarded outputs. For such samples, the advantage estimates $A(x, a)$ collapse to zero or are dominated by
466 noise, yielding no effective policy gradient. This reduces sample efficiency without contributing to meaningful
467 learning.
468

469 To address this challenge, we propose a simple yet effective method: **Rollout-based Instance Filtering for RFT**
470 (RIF-RFT). The motivation, illustrated in Figure 4, is to prune the training data by identifying and discarding
471 these incompetent samples before the RFT training. By filtering them out, RFT focuses its capacity on instances
472 where it can receive a productive learning signal, stabilizing the regularization effect and improving efficiency.
473 Note that as training progresses, samples that initially yielded zero reward may become learnable. RIF-RFT
474 trades this marginal adaptability for computational savings.
475

476 The mechanism is formalized in Algorithm 1 in Appendix C. For each instance in a new task’s dataset \mathcal{D}_k ,
477 we perform a small number of policy rollouts. If at least one of these rollouts produces a response with a
478 reward greater than a minimal threshold τ , we classify the instance and retain it in $\mathcal{D}_k^{\text{fil}}$. As shown in Table
479 5, while full-data GRPO achieves the best performance, it processes many samples with zero reward variance
480 that yield no effective policy gradients. RIF-RFT addresses this inefficiency by filtering such samples a priori,
481 maintaining strong anti-forgetting properties. This demonstrates a compelling trade-off between efficiency and
482 robustness.
483

484 6 CONCLUSION 485

486 This work presents a comprehensive investigation into the role of the fundamental learning paradigm in con-
487 tinual post-training for MLLMs. Our central finding is that RFT naturally mitigates the catastrophic forgetting
488 that plagues the standard SFT. Through extensive experiments, we demonstrate that while SFT leads to severe
489 degradation of both previously learned task-specific skills and general capabilities, RFT paradigms inherently
490 preserve those knowledge, achieving performance comparable to an offline multi-task learning setting. Our
491 analysis suggests this superiority stems not from explicit mechanisms like CoT or KL regularization, but from
492 an implicit regularization effect inherent to RFT. We provide a theoretical perspective that attributes this stabil-
493 ity to reward-variance-scaled updates, which naturally protect previously acquired knowledge by moderating
494

486 learning on uncertain samples. Finally, we introduce RIF-RFT, an efficient instance filtering method that im-
487 proves the stability and sample efficiency of RFT without compromising its robustness. This research suggests
488 that RFT is not merely an alternative but a fundamentally more suitable paradigm for the continual and lifelong
489 adaptation of foundation models.

490

491 ETHICS STATEMENT

492

493 This research focuses on the fundamental learning paradigms for continual post-training of Multimodal Large
494 Language Models. All experiments were conducted on publicly available and well-established academic bench-
495 marks. Our work did not involve human subjects, private data, or generation of personally identifiable infor-
496 mation.

497

498 REPRODUCIBILITY STATEMENT

499

500 To ensure the reproducibility of our findings, we provide comprehensive details throughout the paper and in
501 the appendix. The source code is available in the supplementary material. Our experiments are based on the
502 publicly available Qwen2.5-VL-7B-Instruct model. All implementation details are documented in Section 4
503 and the Appendix. We use standard public datasets, with detailed descriptions provided in Section 4 and the
Appendix.

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Istabrik Abbes, Gopeshh Raaj Subbaraj, Matthew Riemer, Nizar Islah, Benjamin Therien, Tsuguchika Tabaru,
543 Hiroaki Kingetsu, Sarath Chandar, and Irina Rish. Revisiting replay and gradient alignment for con-
544 tinual pre-training of large language models. *ArXiv*, abs/2508.01908, 2025. URL <https://api.semanticscholar.org/CorpusID:280421220>. 18

545 Jacob Achiam, Benjamin Anthropic, Prafulla Bajaj, Andy Baumli, Tong Cai, Bowen Cheng, Debajyoti
546 Chowdhury, Sreeram DasSarma, Emily Dinan, Jack Gao, et al. Gpt-4 technical report. *arXiv preprint*
547 *arXiv:2303.08774*, 2023. 2, 3

548 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet
549 Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
550 feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024. 3, 4, 5

551 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
552 Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang,
553 Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo
554 Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *ArXiv*, abs/2502.13923, 2025a. URL
555 <https://api.semanticscholar.org/CorpusID:276449796>. 17

556 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
557 Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei
558 Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang,
559 Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025b. URL <https://arxiv.org/abs/2502.13923>. 5

560 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
561 Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025c. 2

562 Cheng Chen, Junchen Zhu, Xu Luo, Heng T Shen, Jingkuan Song, and Lianli Gao. Coin: A benchmark
563 of continual instruction tuning for multimodel large language models. *Advances in Neural Information
564 Processing Systems*, 37:57817–57840, 2024. 3

565 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V Le, Sergey
566 Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation model post-training.
567 *arXiv preprint arXiv:2501.17161*, 2025. 2, 3, 4

568 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang,
569 Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. *Journal of
570 Machine Learning Research*, 25(70):1–53, 2024. 3

571 Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
572 Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve
573 math word problems. *ArXiv*, abs/2110.14168, 2021. URL <https://api.semanticscholar.org/CorpusID:239998651>. 17

574 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
575 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
576 learning. *arXiv preprint arXiv:2501.12948*, 2025a. 2

577 Haiyang Guo, Fanhu Zeng, Ziwei Xiang, Fei Zhu, Da-Han Wang, Xu-Yao Zhang, and Cheng-Lin Liu. Hide-
578 llava: Hierarchical decoupling for continual instruction tuning of multimodal large language model. In *The
579 63rd Annual Meeting of the Association for Computational Linguistics*, 2025b. 2, 3

580 Haiyang Guo, Fanhu Zeng, Fei Zhu, Jiayi Wang, Xukai Wang, Jingang Zhou, Hongbo Zhao, Wenzhuo Liu,
581 Shijie Ma, Xu-Yao Zhang, et al. A comprehensive survey on continual learning in generative models. *arXiv
582 preprint arXiv:2506.13045*, 2025c. 2, 3

583 Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P.
584 Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In *Proceedings of the
585 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018. 5, 15

586 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for medical
587 visual question answering. *arXiv preprint arXiv:2003.10286*, 2020. 5, 15

588 Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning and com-
589 positional question answering, 2019. URL <https://arxiv.org/abs/1902.09506>. 5, 15

594 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does
 595 this patient have? a large-scale open domain question answering dataset from medical exams. *ArXiv*,
 596 abs/2009.13081, 2020. URL <https://api.semanticscholar.org/CorpusID:221970190.17>

597 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
 598 Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
 599 forgetting in neural networks. In *Proceedings of the national academy of sciences*, volume 114(13), pp.
 600 3521–3526. National Acad Sciences, 2017. 8

601 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal, Mubarak Shah,
 602 Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm post-training: A deep dive
 603 into reasoning large language models. *arXiv preprint arXiv:2502.21321*, 2025. 4

604 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
 605 Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement learning from
 606 human feedback with ai feedback. *arXiv preprint arXiv:2309.00267*, 2023. 4

607 Minjae Lee, Minhyuk Seo, Tingyu Qu, Tinne Tuytelaars, and Jonghyun Choi. Oasis: Online sample selection
 608 for continual visual instruction tuning. *arXiv preprint arXiv:2506.02011*, 2025. 2

609 Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao, Yi Wang, and
 610 Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforcement fine-tuning. *arXiv
 611 preprint arXiv:2504.06958*, 2025. 3

612 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination
 613 in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023a. 2, 5, 16

614 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis and
 615 machine intelligence*, 40(12):2935–2947, 2017. 3, 7

616 Zhuowen Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin Van Durme, and
 617 Alan L Yuille. Super-clevr: A virtual benchmark to diagnose domain robustness in visual reasoning. In
 618 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14963–14973,
 619 2023b. 5, 15

620 Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple,
 621 effective, and efficient reinforcement learning method for aligning large language models. *arXiv preprint
 622 arXiv:2310.10505*, 2023c. 3, 4, 5

623 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In
 624 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306,
 625 2024. 2

626 Wenzhuo Liu, Fei Zhu, Haiyang Guo, Longhui Wei, and Cheng-Lin Liu. Llava-c: Continual improved visual
 627 instruction tuning. *arXiv preprint arXiv:2506.08666*, 2025a. 2, 3, 7

628 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
 629 Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*, 2025b. 4

630 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang.
 631 Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025c. 3, 4

632 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu. Inter-
 633 gps: Interpretable geometry problem solving with formal language and symbolic reasoning. *arXiv preprint
 634 arXiv:2105.04165*, 2021. 5, 15

635 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei
 636 Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation
 637 models in visual contexts. In *The Twelfth International Conference on Learning Representations*, 2024.
 638 URL <https://openreview.net/forum?id=KUNzEQMWU7.15>

639 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning with
 640 reinforced fine-tuning. *arXiv preprint arXiv:2401.08967*, 3:2, 2024. 3

641 Adyasha Maharana, Jaehong Yoon, Tianlong Chen, and Mohit Bansal. Adapt-infty: Scalable continual multi-
 642 modal instruction tuning via dynamic data selection. In *The Thirteenth International Conference on Learning
 643 Representations*, 2025. 2, 3

648 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
 649 learning problem. *The psychology of learning and motivation*, 24:109–165, 1989. 2
 650

651 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang,
 652 Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
 653 human feedback. *Advances in Neural Information Processing Systems*, 35:27730–27744, 2022. 4

654 Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa: A novel
 655 resource for question answering on scholarly articles. *International Journal on Digital Libraries*, 23(3):
 656 289–301, 2022. 5, 15

657 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. *arXiv: Learning*,
 658 2015. URL <https://api.semanticscholar.org/CorpusID:13022595>. 18
 659

660 Jing Shao, Kun Li, Wentao Dong, et al. Deepseekmath: A multimodal multitask benchmark for mathematical
 661 reasoning. *arXiv preprint arXiv:2406.01297*, 2024. 2, 3, 4, 5, 7

662 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
 663 and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv: 2409.19256*,
 664 2024. 6

665 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus
 666 Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference on computer*
 667 *vision and pattern recognition*, pp. 8317–8326, 2019. 5, 15

668 Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning. *Nature*
 669 *Machine Intelligence*, 4(12):1185–1197, 2022. 3

670 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
 671 Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution.
 672 *arXiv preprint arXiv:2409.12191*, 2024a. 2

673 Xingjin Wang, Howe Tissue, Lu Wang, Linjing Li, and Daniel Dajun Zeng. Learning dynamics in continual
 674 pre-training for large language models. In *Forty-second International Conference on Machine Learning*,
 675 2025. 2

676 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
 677 Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and
 678 Wenhui Chen. Mmlu-pro: A more robust and challenging multi-task language understanding benchmark,
 679 2024b. URL <https://arxiv.org/abs/2406.01574>. 2, 5, 16

680 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
 681 Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information*
 682 *processing systems*, 35:24824–24837, 2022. 3

683 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
 684 *Machine learning*, 8:229–256, 1992. 4

685 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
 686 Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei,
 687 Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou,
 688 Jingren Zhou, Junyan Lin, Kai Dang, Keqin Bao, Ke-Pei Yang, Le Yu, Li-Chun Deng, Mei Li, Min Xue,
 689 Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shi-Qiang Liu, Shuang Luo, Tianhao
 690 Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan,
 691 Yang Su, Yi-Chao Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang,
 692 Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. *ArXiv*, abs/2505.09388, 2025. URL <https://api.semanticscholar.org/CorpusID:278602855>. 17

693 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
 694 Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 695 Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu,
 696 Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
 697 Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang,
 698 Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 technical report. *ArXiv*, abs/2412.15115, 2024.
 699 URL <https://api.semanticscholar.org/CorpusID:274859421>. 17

702 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
 703 Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng,
 704 Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen. Mmmu: A massive multi-
 705 discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of CVPR*,
 706 2024. 2, 5, 15

707 Fanhu Zeng, Fei Zhu, Haiyang Guo, Xu-Yao Zhang, and Cheng-Lin Liu. Modalprompt: Dual-modality guided
 708 prompt for continual learning of large multimodal models. *arXiv preprint arXiv:2410.05849*, 2024. 2

709 Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun,
 710 Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via reinforcement learn-
 711 ing. *Advances in neural information processing systems*, 37:110935–110971, 2024. 3

712 Zhihao Zhang, Qiaole Dong, Qi Zhang, Jun Zhao, Enyu Zhou, Zhiheng Xi, Senjie Jin, Xiaoran Fan, Yuhao
 713 Zhou, Yanwei Fu, Tao Ji, Tao Gui, and Xuanjing Huang. Why reinforcement fine-tuning enables mllms
 714 preserve prior knowledge better: A data perspective. 2025. URL <https://api.semanticscholar.org/CorpusID:280011393>. 4

715 Hongbo Zhao, Fei Zhu, Rundong Wang, Gaofeng Meng, and Zhaoxiang Zhang. Mllm-cl: Continual learning
 716 for multimodal large language models. *arXiv preprint arXiv:2506.05453*, 2025. 2, 3

717 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and Yongqiang Ma.
 718 Llamafactory: Unified efficient fine-tuning of 100+ language models, 2024. URL <https://arxiv.org/abs/2403.13372>. 5, 6

719 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong. Easyrl: An
 720 efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>,
 721 2025. 6

722 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
 723 Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information Processing Systems*,
 724 36:55006–55021, 2023. 3

725 Fei Zhu, Shijie Ma, Zhen Cheng, Xu-Yao Zhang, Zhaoxiang Zhang, and Cheng-Lin Liu. Open-world machine
 726 learning: A review and new outlooks. *arXiv preprint arXiv:2403.01759*, 2024. 2

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A DATASET INFORMATION
757
758759 **NoCoT Prompt Template**

760
761 Question:
762 <image>What is the probability that a Nile tilapia fish...
763 A. 2/4 B. 3/4 ... E. 4/4
764 You MUST provide the final answer directly.

765 Answer:
766 E

768 **CoT Prompt Template**

769
770 Question:
771 <image>What is the probability that a Nile tilapia fish...
772 A. 2/4 B. 3/4 ... E. 4/4
773 You FIRST think about the reasoning process...
774 The reasoning process MUST BE enclosed within
775 <think> </think> tags.
776 The final answer MUST BE put in \boxed{}.

777 Answer:
778 <think>
779 The Punnett square shows...
780 Therefore, the probability is 4/4. The correct answer is E.
781 </think>
782 \boxed{E}

Figure 5: Example prompt templates w/o and w/ CoT.

782
783
784
785 **Multimodal Datasets for Continual Post-Training and Evaluation.** Our study utilized a diverse
786 suite of vision-language datasets for both model training and comprehensive evaluation of various multimodal
787 capabilities, along with specialized benchmarks to assess knowledge retention and nuanced multimodal chal-
788 lenges. Here is a brief introduction to these datasets:

789 *Multimodal Datasets for Continual Post-Training:*

- 790 • **ScienceQA** (Saikh et al., 2022) presents multimodal science questions requiring complex reasoning
791 over diagrams, text, and general knowledge.
- 792 • **TextVQA** (Singh et al., 2019) focuses on questions that necessitate reading and inferring from text
793 embedded within images.
- 794 • **VizWiz** (Gurari et al., 2018) comprises real-world image-based questions posed by visually impaired
795 individuals, often involving ambiguity.
- 796 • **GQA** (Hudson & Manning, 2019) is designed for compositional question answering over real-world
797 images with a strong emphasis on spatial understanding and object relationships.
- 798 • **Geometry3K** (Lu et al., 2021): This subset of MathVista (Lu et al., 2024) comprises multi-choice
800 geometry problems equipped with dense annotations in formal language for both diagrams and text,
801 specifically designed to evaluate complex geometric reasoning skills.
- 802 • **PathVQA** (He et al., 2020) provides medical visual question answering on pathology images that
803 demand specialized domain knowledge.
- 804 • **Super-CLEVR** (Li et al., 2023b) is a synthetic dataset crafted to rigorously test complex relational
805 and logical reasoning.

806 *Benchmarks for General Knowledge Evaluation:*

- 807 • **MMMU** (Yue et al., 2024) is comprehensive benchmark comprising 11.5K college-level, multi-
808 discipline multimodal tasks with diverse image types, demanding deliberate reasoning.

810 • **MMLU-Pro** (Wang et al., 2024b) is an enhanced benchmark designed for more discriminative eval-
 811 uation of large language models, featuring more challenging and reasoning-focused questions with
 812 ten multiple-choice options, sourced from various academic and STEM fields.
 813 • **POPE** (Li et al., 2023a) is a benchmark introduced to systematically investigate and assess object
 814 hallucination in vision-language large models through an improved polling-based query method.
 815

816 **B PROOF AND TECHNICAL DETAILS FOR PROPOSITION 5.2**

817 We provide the detailed derivation for Proposition 5.2, which establishes the relationship between the forgetting
 818 risks of RFT and SFT.
 819

820 **Proposition 5.2.** *Let the rewards be normalized, $r(x_k, a) \in [0, 1]$. Under Assumption B.2, the expected
 821 forgetting risk of an RFT update is related to the SFT risk by:*

822
$$\mathbb{E}_{a \sim \pi_{\theta_{k-1}}} [\mathcal{R}(g_{\text{RFT}}(a))] = \text{Var}_{a \sim \pi_{\theta_{k-1}}} [r(x_k, a)] \cdot \mathcal{R}(g_{\text{SFT}}) + \mathcal{E}$$

823 where \mathcal{E} is an error term characterized in the proof.

824 **Definition B.1** (Importance-Weighted Score Norm (IWSN)). For a response a , we define its IWSN as the
 825 squared norm of its score function, weighted by the FIM of past tasks:

826
$$I(a) \triangleq (\nabla_{\theta} \log \pi_{\theta}(a|x_k))^{\top} F_{k-1} (\nabla_{\theta} \log \pi_{\theta}(a|x_k))$$

827 **Assumption B.2** (Technical Assumptions). *Our analysis relies on the following two technical assumptions for
 828 a given data point x_k and parameters θ_{k-1} :*

829 1. **Bounded Covariance.** The covariance between the squared advantage and the IWSN is bounded:
 830 $\text{Cov}(A(a)^2, I(a)) = \epsilon_1$, where ϵ_1 is a small error term. This implies that the magnitude of an
 831 advantage signal is not strongly correlated with the gradient's impact on prior tasks.
 832 2. **Centered Policy Expectation.** The expected IWSN under the current policy is close to the IWSN of
 833 the ground-truth response: $\mathbb{E}_{a \sim \pi_{\theta_{k-1}}} [I(a)] - I(a_k^*) = \delta$, where δ is another small error term. This
 834 holds when the policy $\pi_{\theta_{k-1}}$ generates responses that, on average, have a similar gradient geometry
 835 to the ground-truth response with respect to past tasks.

836 **Lemma B.3** (Variance of Advantage). *For policy gradient methods, using the reward baseline $b(x_k) =$
 837 $\mathbb{E}_{a \sim \pi_{\theta}} [r(x_k, a)]$ minimizes the variance of the gradient estimator. With this optimal baseline, the expected
 838 squared advantage equals the reward variance:*

839
$$\mathbb{E}_{a \sim \pi_{\theta}} [A(x_k, a)^2] = \text{Var}_{a \sim \pi_{\theta}} [r(x_k, a)]$$

840 *Proof.* By definition, $A(x_k, a) = r(x_k, a) - b(x_k)$. We have:

841
$$\mathbb{E}[A^2] = \mathbb{E}[(r - b)^2] = \mathbb{E}[r^2] - 2b\mathbb{E}[r] + b^2$$

842 Since $b = \mathbb{E}[r]$, this simplifies to $\mathbb{E}[r^2] - 2(\mathbb{E}[r])^2 + (\mathbb{E}[r])^2 = \mathbb{E}[r^2] - (\mathbb{E}[r])^2 = \text{Var}[r]$ \square

843 *Proof of Proposition 5.2.* Let us analyze the forgetting risks at parameters $\theta = \theta_{k-1}$ for a single data point
 844 (x_k, a_k^*) .

845 The SFT loss gradient is $g_{\text{SFT}} = -\nabla_{\theta} \log \pi_{\theta}(a_k^*|x_k)$. Its forgetting risk is deterministic:

846
$$\mathcal{R}(g_{\text{SFT}}) = g_{\text{SFT}}^{\top} F_{k-1} g_{\text{SFT}} = (\nabla_{\theta} \log \pi_{\theta}(a_k^*|x_k))^{\top} F_{k-1} (\nabla_{\theta} \log \pi_{\theta}(a_k^*|x_k)) = I(a_k^*)$$

847 The RFT gradient for a sampled response $a \sim \pi_{\theta}(\cdot|x_k)$ is $g_{\text{RFT}}(a) = A(x_k, a) \nabla_{\theta} \log \pi_{\theta}(a|x_k)$. We compute
 848 the expectation of its forgetting risk:

849
$$\begin{aligned} \mathbb{E}[\mathcal{R}(g_{\text{RFT}})] &= \mathbb{E}_{a \sim \pi_{\theta}} \left[(g_{\text{RFT}}(a))^{\top} F_{k-1} (g_{\text{RFT}}(a)) \right] \\ &= \mathbb{E}_{a \sim \pi_{\theta}} \left[A(x_k, a)^2 \cdot (\nabla_{\theta} \log \pi_{\theta}(a|x_k))^{\top} F_{k-1} (\nabla_{\theta} \log \pi_{\theta}(a|x_k)) \right] \\ &= \mathbb{E}_{a \sim \pi_{\theta}} [A(x_k, a)^2 \cdot I(a)] \end{aligned} \tag{11}$$

864 We use the covariance identity $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] + \text{Cov}(X, Y)$ to decompose Eq. 11:
 865

$$\begin{aligned}
 866 \mathbb{E}[\mathcal{R}(g_{\text{RFT}})] &= \mathbb{E}[A(a)^2] \cdot \mathbb{E}[I(a)] + \text{Cov}(A(a)^2, I(a)) \\
 867 &= \text{Var}[r(x_k, a)] \cdot \mathbb{E}[I(a)] + \epsilon_1 \quad (\text{from Lemma B.3 and Assumption B.2.1}) \\
 868 &= \text{Var}[r(x_k, a)] \cdot (I(a_k^*) + \delta) + \epsilon_1 \quad (\text{from Assumption B.2.2}) \\
 869 &= \text{Var}[r(x_k, a)] \cdot I(a_k^*) + \text{Var}[r(x_k, a)]\delta + \epsilon_1 \\
 870 &= \text{Var}[r(x_k, a)] \cdot \mathcal{R}(g_{\text{SFT}}) + \underbrace{\text{Var}[r(x_k, a)]\delta + \epsilon_1}_{\mathcal{E}}
 \end{aligned}$$

873 This completes the proof. The error term $\mathcal{E} = \text{Var}[r(x_k, a)]\delta + \epsilon_1$ is small under reasonable conditions.
 874 Specifically, δ is small when the current policy is not drastically different from one that produces the ground-
 875 truth response, a condition met after initial task adaptation. ϵ_1 is small if there is no systematic correlation
 876 between a response's quality (reflected in its advantage) and its gradient's impact on prior tasks, which is a
 877 mild assumption for complex, high-dimensional models. While this analysis provides an approximation rather
 878 than a strict bound, it formalizes the core intuition that reward variance acts as a natural, implicit regularizer,
 879 offering a strong theoretical motivation for the empirical stability of RFT in continual post-training. \square
 880

C PSEUDO CODE OF RIF-RFT

Algorithm 1: Rollout-based Instance Filtering for RFT (RIF-RFT)

884 **Input:** New task training set: $\mathcal{D}_k = \{(x_i, y_i^*)\}_{i=1}^M$; Current model policy: π_θ ; Number of
 885 rollouts per input: N ; Reward threshold: τ
 886 **Initialize** filtered dataset: $\mathcal{D}_k^{\text{filt}} \leftarrow \emptyset$;
 887 **for** each sample $(x_i, y_i^*) \in \mathcal{D}_k$ **do**
 888 Initialize $R_{\text{sum}} \leftarrow 0$;
 889 **for** $j = 1$ **to** N **do**
 890 Sample a response: $y_{ij} \sim \pi_\theta(\cdot \mid x_i)$;
 891 Compute reward: $R(y_{ij})$;
 892 Update: $R_{\text{sum}} \leftarrow R_{\text{sum}} + R(y_{ij})$;
 893 **if** $R_{\text{sum}}/N > \tau$ **then**
 894 Add (x_i, y_i^*) to $\mathcal{D}_k^{\text{filt}}$;
 895 **Perform** standard RFT on the filtered dataset $\mathcal{D}_k^{\text{filt}}$ **to obtain** $\pi_{\theta'}$;
 896 **Output:** Updated model $\pi_{\theta'}$

D ROBUSTNESS AND EFFICIENCY ANALYSIS

901 To validate the generality of our findings beyond the primary Qwen2.5-VL-7B-Instruct model, we conduct
 902 extensive experiments across different architectures, model scales, and task domains. These additional studies
 903 ensure that the observed forgetting mitigation is an intrinsic property of the RFT paradigm rather than an artifact
 904 of a specific model configuration.

D.1 GENERALIZATION ACROSS ARCHITECTURES AND SCALES

D.1.1 TEXT-ONLY TASKS

909 We first evaluate whether RFT's forgetting mitigation extends to text-only domains. We utilize the text-only
 910 Qwen2.5-7B-Instruct (Yang et al., 2024) and evaluate it on two diverse benchmarks: GSM8K (Cobbe et al.,
 911 2021) for mathematical reasoning and USMLE (Jin et al., 2020) for medical knowledge. These tasks provide
 912 clear correctness signals suitable for both SFT and RFT paradigms. As shown in Table 6, RFT consistently
 913 outperforms SFT. For instance, in the GSM8K \rightarrow USMLE sequence, RFT maintains a forgetting measure
 914 (FM) of -1.8%, whereas SFT suffers a significant drop with an FM of -10.4%.

D.1.2 MODEL SCALE ANALYSIS

917 We further evaluate the impact of model scale on forgetting mitigation using Qwen2.5-VL-3B-Instruct (Bai
 918 et al., 2025a) and the larger Qwen3-VL-8B-Instruct (Yang et al., 2025) on a subset of our benchmark tasks

918
919
920 Table 6: Performance evaluation on text-only tasks using Qwen2.5-7B-Instruct.
921
922
923
924
925
926

Method	Task Order	GSM8K	USMLE	AvgAcc	FM
GRPO	GSM8K→USMLE	84.2	62.3	73.3	-1.8
	USMLE→GSM8K	85.1	60.7	72.9	-1.2
SFT	GSM8K→USMLE	71.3	58.2	64.8	-10.4
	USMLE→GSM8K	82.4	49.6	66.0	-8.7

927
928 (sCLEVR, ScienceQA, and TextVQA). The results are summarized in Table 7. We observe that RFT maintains
929 near-zero forgetting across both scales. Notably, the larger 8B model exhibits stronger resilience to catastrophic
930 forgetting under the RFT paradigm compared to the 3B model.931
932 Table 7: Performance comparison across different model scales.
933

Model Size	Method	sCLEVR	SciQA	TextVQA	AvgAcc	FM
3B	GRPO	57.8	92.7	72.8	74.4	-0.4
	SFT	51.5	92.3	67.6	70.5	-4.4
8B	GRPO	57.0	96.3	76.1	76.5	-0.2
	SFT	48.2	91.5	68.9	69.5	-7.1

938
939
940 D.2 COMPARISON WITH CL METHODS941
942 To compare RFT’s performance against established CL techniques, we compare it with Experience Replay
943 (ER) (Schaul et al., 2015), widely considered one of the most effective baselines. We implement ER with a
944 25% replay ratio, which represents the upper range suggested by recent work on LLM continual post-training
945 (Abbes et al., 2025). As detailed in Table 8, while ER improves upon vanilla SFT (FM improves from -
946 4.4% to -2.8%), it still lags behind RFT (-0.4%). Furthermore, ER introduces significant storage overhead
947 and potential negative transfer, whereas RFT achieves superior stability inherently without requiring external
948 memory buffers.949
950 Table 8: Comparison between RFT, SFT, and SFT with ER on Qwen2.5-VL-3B-Instruct.

Method	sCLEVR	SciQA	TextVQA	AvgAcc	FM
SFT	51.5	92.3	67.6	70.5	-4.4
SFT + ER (25%)	53.2	92.1	64.5	69.9	-2.8
GRPO	57.8	92.7	72.8	74.4	-0.4

955
956 D.3 ROBUSTNESS TO TASK ORDERING957
958 Continual learning performance is often sensitive to the task order. We evaluate RFT’s robustness by testing
959 two distinct task orderings on both 3B and 8B models. The results in Table 9 show that the Forgetting Measure
960 remains consistently low (ranging from -0.2% to -0.4%) regardless of the order.961
962 D.4 COMPUTATIONAL EFFICIENCY OF RIF-RFT963 Regarding the computational overhead of our proposed RIF-RFT method, we provide a detailed efficiency
964 analysis in Table 10 on 8×H800 GPUs. The RIF-RFT process consists of a filtering phase (inference only)
965 followed by training on the filtered data. Our analysis reveals that the filtering overhead is negligible (<2%
966 of total time) because it avoids the costly backpropagation step. Crucially, by reducing the dataset size for the
967 subsequent training phase, RIF-RFT achieves a ~44% reduction in total wall-clock time compared to standard
968 GRPO, demonstrating that our method improves both computational and sample efficiency.969
970 D.5 ABLATION ON FILTERING THRESHOLD IN RIF-RFT971 In RIF-RFT, the filtering threshold τ determines which samples are retained for training. We use $\tau = 0$ as
972 default, meaning samples are retained if they achieve any non-zero reward across rollouts. The threshold τ

972
973
974 Table 9: Performance evaluation under different task orderings.
975
976
977
978
979

Model	Task Order	Task 1	Task 2	Task 3	AvgAcc	FM
Qwen2.5-VL-3B	sCLEVR→SciQA→TextVQA	57.8	92.7	72.8	74.4	-0.4
	TextVQA→SciQA→sCLEVR	72.8	92.1	57.8	74.2	-0.3
Qwen3-VL-8B	sCLEVR→SciQA→TextVQA	57.0	96.3	76.1	76.5	-0.2
	TextVQA→SciQA→sCLEVR	76.1	96.8	55.6	76.2	-0.4

980
981 Table 10: Wall-clock time (hours) analysis comparing standard GRPO and RIF-RFT.
982
983

Dataset	GRPO	RIF-RFT (Train)	RIF-RFT (Filter)	RIF-RFT
ScienceQA	6.4	5.2	0.13	5.33
TextVQA	30.9	13.8	0.31	14.11
VizWiz	19.5	8.0	0.20	8.20
GQA	72.6	48.6	0.50	49.10
Geometry3K	2.3	0.6	0.02	0.62
PathVQA	15.4	5.6	0.15	5.75
sCLEVR	6.7	3.4	0.11	3.51
Total	153.8	85.2	1.42	86.62

993 controls a trade-off between data quality and quantity: higher thresholds retain only samples where the model
994 succeeds more consistently, but this reduces the volume of training data. We conduct ablation experiments
995 on the task sequence sCLEVR → ScienceQA → TextVQA using Qwen2.5-VL-3B. Results are presented in
996 Table 11.

997
998 Table 11: Ablation on filtering threshold τ .
999

τ	sCLEVR	SciQA	TextVQA	AvgAcc
0	57.2	92.5	72.1	73.9
0.1	56.8	92.1	71.4	73.4
0.2	55.9	91.6	70.2	72.6

1000 Our default setting achieves the highest overall performance. This suggests that samples where the model has
1001 low but non-zero reward provide effective gradient signals for policy improvement. As τ increases, per-
1002 formance degrades across all tasks due to reduced training data volume. We recommend $\tau = 0$, which maximizes
1003 the retention of informative training instances.

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
E STATEMENT ON THE USE OF LLM

1011 We disclose that LLMs were used to assist with writing. Their role was limited to improving the grammar
1012 and overall readability of the manuscript. The core research ideas, experimental results, and scientific claims
1013 presented are the work of the authors.