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Abstract

Coherence is an essential property of well-001
written texts, that refers to the way textual002
units relate to one another. In the era of gen-003
erative AI, coherence assessment is essential004
for many NLP tasks; summarization, long-005
form question-answering, etc. Current NLP006
approaches for modeling coherence often rely007
on a proxy task, specifically sentence reorder-008
ing. However, such an approach may not cap-009
ture the full range of factors contributing to010
coherence. To bridge this gap, in this work011
we employ the formal linguistic definition of012
Reinhart (1980) of what makes a discourse co-013
herent, consisting of three conditions — co-014
hesion, consistency and relevance – and for-015
malize these conditions as respective computa-016
tional tasks. We hypothesize that (i) a model017
trained on all of these tasks will learn the fea-018
tures required for coherence detection, and that019
(ii) a joint model for all tasks will exceed the020
performance of models trained on each task021
individually. We evaluate this modeling ap-022
proach on two human-rated coherence bench-023
marks: one of automatically-generated stories024
and one of real-world texts. Our experiments025
confirm that jointly training on the proposed026
tasks leads to better performance on each task027
compared with task-specific models, and to bet-028
ter performance on assessing coherence overall,029
compared with strong baselines. Our formal co-030
herence framework paves the way for advanced,031
broad-coverage automatic assessment.032

1 Introduction033

The term coherence refers to the quality of texts034

where sentences and paragraphs flow smoothly and035

are logically connected, creating a clear and under-036

standable progression of ideas. Coherence detec-037

tion is crucial for NLP tasks involving text quality038

measurements such as essay scoring or text quality039

assessment (Somasundaran et al., 2014; Feng et al.,040

2014; Lai and Tetreault, 2018). Its importance is041

further amplified nowadays in the era of large lan- 042

guage models (LLMs). Ensuring coherent LLM 043

outputs is essential for producing meaningful and 044

understandable text for generative tasks as summa- 045

rization and question answering (Guan et al., 2021; 046

Xu et al., 2018; Yi et al., 2019), to name a few. 047

The elusive nature of coherence makes it chal- 048

lenging for NLP systems to assess it effectively. 049

While various linguistic theories of coherence exist 050

(e.g., Halliday and Hasan (1976); Joshi and We- 051

instein (1981); Givon (1995); Hobbs (1979); Dijk 052

(1979); Mann and Thompson (1988)), current ap- 053

proaches often rely on proxy tasks like sentence 054

reordering (Lapata, 2003; Miltsakaki et al., 2000). 055

However, this approach oversimplifies coherence, 056

potentially leading to models that struggle with 057

real-world texts (Laban et al., 2021). Furthermore, 058

coherence is multifaceted, varying across genres, 059

contexts, and styles. Proxy tasks often fail to cap- 060

ture this complexity, leading to models unable to 061

generalize across different domains and real-world 062

settings. On top of that, existing NLP models for 063

coherence, such as Barzilay and Lapata (2008)’s 064

sentence reordering, often lack direct evaluation 065

and are instead assessed on downstream tasks like 066

readability (Guinaudeau and Strube, 2013; Mesgar 067

and Strube, 2016, 2018) or essay scoring (Mes- 068

gar and Strube, 2018; Somasundaran et al., 2014; 069

Tay et al., 2017). This approach can be expensive, 070

biased towards the downstream task, and may over- 071

look core aspects of coherence. 072

This work aims to provide a computationally 073

workable definition of coherence, leveraging Rein- 074

hart (1980)’s theory which defines three conditions: 075

cohesion, consistency, and relevance. Concretely, 076

we propose to instantiate these conditions as com- 077

putational tasks, and train them jointly to create a 078

model that captures these properties. We hypoth- 079

esize that (i) such a model will effectively assess 080

coherence, and (ii) shared information between 081

tasks will improve task-specific performance. 082
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To test our hypotheses, we implement a model083

trained jointly on tasks capturing Reinhart’s condi-084

tions of coherence. The unified model incorporates085

five tasks: sentence reordering (Lapata, 2003), dis-086

course relation detection (Miltsakaki et al., 2004),087

natural language inference (Dagan et al., 2005),088

NP enrichment (Elazar et al., 2022), and irrelevant-089

sentence detection. Despite its relatively simple090

architecture, our model achieves SOTA results on091

most of these tasks. We then evaluate the model’s092

coherence assessment capability on two human-093

annotated benchmarks: the Grammarly Corpus of094

Discourse Coherence (GCDC) (Lai and Tetreault,095

2018) for real-world texts across four domains,096

and CoheSentia (Maimon and Tsarfaty, 2023) for097

artificially-generated stories. These benchmarks098

cover both natural and artificially-generated texts,099

human-rated for their levels of coherence.100

Our empirical findings confirm our hypotheses,101

showing significant accuracy improvements and102

producing new SOTA results on both benchmarks.103

The joint model outperforms standalone models104

for individual tasks. Our significant performance105

improvements demonstrate the model’s efficacy106

in automatic coherence assessment. This frame-107

work paves the way for future models to not only108

identify incoherence, but also analyze its causes.109

Furthermore, integrating this methodology into text110

generation may lead to higher-quality outputs.111

112

2 The Proposal: Coherence à la Reinhart113

This work aims to provide a computationally work-114

able definition of coherence by adopting Reinhart115

(1980)’s formalization, which identifies coherence116

through three criteria: Cohesion, Consistency, and117

Relevance. According to Reinhart, a text is co-118

herent only if it meets all three criteria. Recently,119

Maimon and Tsarfaty (2023) used this framework120

to create a benchmark for coherence scoring of121

GPT-generated text, with human scores for these122

criteria. Here we take a different approach, us-123

ing these conditions as the basis for computational124

modeling, aiming to predict the ingredients of these125

three properties via jointly trained tasks.126

Cohesion The cohesion condition focuses on the127

formal elements that link sentences together.1 Rein-128

1The terms “coherence” and “cohesion” may be confusing
to non-linguists. Cohesion relates to the surface forms used
(e.g., connectors, pronouns), while coherence pertains to the
overall semantics and flow of ideas.

hart states that a text is cohesive if, for every sen- 129

tence pair, at least one of two conditions is met: 130

(1) Referentially linked: A pair of sentences 131

⟨S1, S2⟩ is referentially linked when S2 references 132

an entity mentioned in S1. A simple example is 133

using a pronominal anaphor: 134

“Dan is nice. Even Su likes him.” 135

Here, the underlined entities co-refer. Other types 136

of referential links are prepositional links (Elazar 137

et al., 2022) or bridging anaphora (Hou, 2021). 138

(2) Linked by a semantic sentence connector. 139

A pair of sentences ⟨S1, S2⟩ is connected if a dis- 140

course relation links them. These connectors indi- 141

cate semantic relations like cause and effect, com- 142

parison, contrast, and more (Prasad et al., 2008). 143

An example of linking by a semantic connector is: 144

“It was raining. So, we stayed inside.” 145

The sentences are cohesive due to the existence 146

of the “So” connector. These connectors may be 147

explicit or implicit (Pitler et al., 2009). 148

Consistency The consistency condition pertains 149

to the formal semantic aspects of a text, ensuring 150

logical coherence, which is crucial for interpreting 151

and deriving meaning. Formally, this condition 152

requires that for a set of sentences {Si}n−1
i=0 , the 153

meaning of each sentence Si must be consistent 154

with all previous sentences {Sj}i−1
i=0. This means 155

all sentences can be true within a single world, not 156

violating this worlds assumptions and restrictions. 157

An example of a violation is shown below: 158

“My father is dead now. That’s why he 159

has decided to smoke a pipe” (Freeman 160

and Gathercole, 1966) 161

Despite being cohesive (anaphora & connectors), 162

the passage lacks coherence due to world knowl- 163

edge violations (a deceased cannot decide).2 164

Relevance The relevance condition involves 165

pragmatic aspects, imposing constraints on the rela- 166

tionships of all sentences {Si}N−1
i=0 to the discourse 167

topic and other contextual elements. An example 168

of a violation of this condition is as follows: 169

“I poured some chemical into a beaker. 170

The chemical fell on my hand. The pro- 171

fessor immediately took me to the emer- 172

gency bath. He is a great musician.” 173

2The consistency condition was further explored by Hon-
ovich et al. (2021) to enhance the reliability of automatically
generated texts.
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The last sentence is cohesive and consistent with174

the previous sentences but is irrelevant to the over-175

all context and topic of the story.176

All in all, Reinhart’s theory outlines conditions177

encapsulating the fundamental aspects of coher-178

ence to determine text coherence. We propose de-179

signing NLP tasks to detect these properties.180

3 Research Hypotheses and Tasks181

At the core of our approach is the implementa-182

tion of Reinhart’s coherence conditions as com-183

putational tasks, using a minimal set of NLP tasks184

designed to capture the features of cohesion, consis-185

tency, and relevance. We hypothesize that a model186

trained jointly on all tasks will detect coherence187

effectively, and will outperform models trained on188

each task individually.189

To verify this, we define five tasks reflecting190

these coherence conditions.191

The Sentence Reordering (SRO) Task This192

self-supervised task, proposed by Lapata (2003),193

involves reordering shuffled sentences to restore194

their original coherent form. For example, given195

the following input: “(1) Finally, the parser is eval-196

uated. (2) We develop a useful parser. (3) Then we197

present our parser. (4) We first describe the older198

one.” the correct order is (2)→ (4)→ (3)→ (1).199

Extending prior work on natural sentence order200

and coherence (Lin et al., 2011), a model excelling201

at paragraph reconstruction should capture syntac-202

tic and semantic relationships between sentences,203

reflecting both cohesion and consistency.204

The Discourse-Relation Recognition (DRR)205

Task Given a pair of sentences (discourse units206

- DUs), we aim to predict their discourse relation,207

reflecting notions such as cause and effect, compar-208

ison, and contrast. For example, with the following209

input: “John worked all night. He slept all day210

today.” the model is expected to detect a relation211

marker reflecting contingency (e.g., ‘so’, ‘hence’).212

The discourse relation identification task en-213

hances the model’s ability to connect sentences,214

addressing the second sub-condition of cohesion.215

The NP Enrichment (NPE) Task Introduced by216

Elazar et al. (2022), the NPE task identifies prepo-217

sitional links between noun phrase (NP) entities.218

Given NP pairs , it determines the existence of a219

prepositional relation and identifies the best prepo-220

sition describing it p(NP1NP2). For a paragraph221

with k NP entities, the model outputs the preposi- 222

tional links for all NP pairs where such a relation 223

exists (or NONE otherwise). 224

For example, in the paragraph: “Crown Princess 225

Mary of Denmark gives birth to a male child.” there 226

are 4 NPs and thus 12 NP pairs. Sample outputs 227

for these NP pairs are: (1) in(birth, Denmark) and 228

(2) of(birth, male child). 229

A model trained on this task captures referen- 230

tial links between different parts of the discourse, 231

serving as a proxy for the referential linking sub- 232

condition of cohesion. 233

The Natural Language Inference (NLI) Task 234

The NLI task (Bowman et al., 2015) aims to de- 235

termine the truth value of a hypothesis based on 236

a given premise. For example, given the premise: 237

“John inspects the uniform of a figure in some East 238

Asian country.” and the hypothesis: “John is sleep- 239

ing.” the output will be a contradiction. 240

NLI evaluates NLP models’ ability to capture 241

logical relationships between sentences, serving as 242

a proxy for the consistency condition. 243

The Irrelevant Sentence Recognition (ISR) Task 244

We propose a self-supervised task where the model 245

identifies irrelevant sentences in a coherent para- 246

graph. Given a paragraph with N sentences, includ- 247

ing one irrelevant sentence s, the model detects and 248

outputs the irrelevant sentence. 249

For example, given the following input: “(1) 250

Rick is a helpful kid. (2) He does the dishes. (3) He 251

avoids doing his homework. (4) He helps older 252

people.” The irrelevant sentence is (3). 253

The model is trained to assess sentence relevance 254

to the overall topic and context, acting as a proxy 255

for the relevance condition. 256

Putting It All Together: We propose a Multi- 257

Task Learning (MTL) approach, where a model is 258

jointly trained on these tasks to capture all coher- 259

ence conditions outlined by Reinhart. This method 260

leverages shared information during training, with 261

the goal of enhancing both overall coherence de- 262

tection and individual task performance. To assess 263

coherence, we define two types of tasks: 264

• The Coherence Scoring Task To confirm our 265

hypothesis that the proposed model captures 266

coherence, we evaluate its performance on 267

the coherence scoring task, where given a 268

paragraph P the model predicts the coherence 269

score C as a human reader would. 270
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• The Coherence Reasoning Task To examine271

conditions contributing to incoherence (cohe-272

sion, consistency, relevance) beyond a final273

score, we use the coherence reasoning task274

proposed by Maimon and Tsarfaty (2023).275

Given a paragraph P and a new sentence s, the276

model predicts whether s is cohesive, consis-277

tent, or relevant to P using distinct classifiers.278

We hypothesize that utilizing the MTL-powered279

architecture will improve the results on both coher-280

ence scoring and coherence reasoning.281

4 Coherence Assessment Setup282

Here, we detail the models and experimental setup283

for the coherence assessment tasks we define.284

4.1 The Coherence Scoring Task285

Models: We use two architectures for coherence286

scoring: Classification-Based (BERT (Devlin et al.,287

2019)) and Generation-Based (T5 (Raffel et al.,288

2020)). The model predicts for a given text 3-way289

or 5-way scores, depending on the dataset.290

In the Classification-Based models, the coher-291

ence score C is predicted given the text P using a292

classification head.293

In Generation-Based models, the input includes294

the text with dataset-specific prompts and an output.295

Example prompts and outputs are in Appendix F.296

Further details on experimental settings are in297

Appendix B.298

Datasets and Evaluation: We evaluate our299

model on two datasets: GCDC (Lai and Tetreault,300

2018) and CoheSentia (Maimon and Tsarfaty,301

2023). GCDC includes real-world text from vari-302

ous domains (Clinton emails, Enron emails, Yahoo303

Answers, Yelp reviews) with coherence scores from304

1 (not coherent) to 3 (highly coherent). CoheSentia305

features GPT-3 generated stories (fiction and non-306

fiction) with scores ranging from 1 to 5. We use307

the “incremental final score” for CoheSentia stories.308

Dataset sizes and splits are detailed in Table 1.309

To remain compatible with Lai and Tetreault310

(2018), we use accuracy as the metric for evaluating311

the final coherence score of the text.312

Baselines: To assess the effectiveness of our pro-313

posed model, we compare its performance on each314

dataset to the current SOTA models. For GCDC315

Lai and Tetreault (2018) introduced the ParSeq316

model with three stacked LSTMs for sentence,317

paragraph, and document embeddings, followed by318

a coherence classification layer. The SOTA model 319

for GCDC by Liu et al. (2023) uses a multi-step 320

approach: identifying document graph structures, 321

converting subgraphs, constructing corpus-level 322

graphs based on shared subgraphs, and encoding 323

connections with a GCN. 324

For CoheSentia Maimon and Tsarfaty (2023) 325

created the SOTA model using a prompt-based ap- 326

proach with Flan-T5-large to assess coherence by 327

adding a question at the beginning of each text. 328

4.2 The Coherence Reasoning Task 329

Models: In Classification-Based models, the rea- 330

soning for each coherence attribute given the para- 331

graph P and the new sentence s is predicted using 332

a classification head. 333

In Generation-Based models, the input includes 334

the text with prompts and an output. Prompts and 335

outputs for both datasets are in Appendix F. 336

Datasets and Evaluation: We evaluate our 337

model on the CoheSentia corpus (Maimon and 338

Tsarfaty, 2023), which contains automatically gen- 339

erated stories with human annotations for cohesion, 340

consistency, and relevance. We use precision, re- 341

call, and F1 scores for each property. 342

Baselines: We evaluate our model’s effectiveness 343

on the CoheSentia dataset by comparing it to the 344

current SOTA model by (Maimon and Tsarfaty, 345

2023), which uses a prompt-based approach with 346

Flan-T5-large, adding a question at the beginning 347

of each text to assess coherence. 348

5 Task-Specific Experimental Setup 349

In this section, we elaborate on the modeling of the 350

coherence proxy tasks. For each task, we evalu- 351

ate two model variants: Classification-Based and 352

Generation-Based, as detailed below. Table 2 sum- 353

marizes the datasets, evaluation metrics, and key 354

statistics for each task (see further elaboration in 355

Appendix A). For the Generation-Based models, 356

prompts and outputs are detailed in Appendix F. 357

The Sentence Reordering Models For the 358

Classification-Based models, we adopt the topo- 359

logical sort architecture from Shrimai Prabhumoye 360

(2020). Each paragraph’s sentence pairs are repre- 361

sented as triplets ⟨Si, Ck, Sj⟩, indicating whether 362

Si precedes or follows Sj . The model has two 363

stages: a binary classification head that predicts 364

the pairwise relations and a second stage that pro- 365
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Dataset Split Per Instance
Train Validation Test Max #tokens Avg #tokens Max #sent. Avg #sent.

GCDC 3.6k 800 800 333 156 10 32
CoheSentia 350 75 75 226 150 15 6.5

Table 1: Main Statistics on the Datasets for Coherence Scoring

duces the predicted order using the topological sort366

algorithm (Tarjan, 1976).367

The Generation-Based models use prompts and368

predict the outputs with the final order.369

The Discourse-Relation Recognition Models370

In the Classification-Based models, the input con-371

sists of a pair of DUs: ⟨DU1, DU2⟩. A classifica-372

tion head predicts the discourse relation between373

them.374

In the Generation-Based models, the input is an375

argument pair, and the model employs a chain-of-376

thought (CoT) method (Wei et al., 2023) to pre-377

dict the discourse relation.3 The CoT structure378

is ⟨connector⟩ → ⟨l1 relation⟩ → ⟨l2 relation⟩.379

That is, the model adopts a three-stage approach380

to predicting the L2 relation type. The model first381

infers the implicit connective, then generalizes it to382

a broader relation category.383

The NP Enrichment Models In the384

Classification-Based models, we extend the385

Bi-Affine architecture from Dozat and Manning386

(2017) to predict preposition relations between NP387

pairs instead of syntactic dependency labels. NP388

embeddings are created by pooling tokens repre-389

senting each NP, and the model head predicts the390

preposition using the NP’s anchor and complement391

representations (Figure 4 in Appendix).392

The Generation-Based models predict preposi-393

tional relations for each NP pair independently.394

The input consists of the document text and a395

prompt specifying the NP pair.396

The NL Inference Models Classification-Based397

models predict relations between the premise and398

hypothesis.399

Generation-Based models use prompts and pre-400

dict outputs for premise-hypothesis pairs.401

Irrelevant Sentence Recognition Models The402

Classification-Based models have two stages. Sen-403

tence pairs form triplets ⟨Si, Ck, Sj⟩, where Ck =404

0|1 indicates relevance. A binary classification405

head determines the relation. In the second stage,406

3CoT detection of discourse relations outperformed sim-
pler prompts in our preliminary experiments.

Figure 1: Illustration of the encoder-only model where
the input is a pair of sentences (most tasks) or for NPE
task the input is a document and the token IDs of differ-
ent NPs

the sentence with the lowest combined relations 407

score is deemed irrelevant. 408

Generation-Based models use prompts and pre- 409

dict the irrelevant sentence as the output. 410

The Overall Joint Architecture To test our 411

hypotheses, we implemented both Classification- 412

Based and Generation-Based models, trained to 413

solve all tasks jointly. 414

For the Classification-Based variant, we use 415

MTL (Caruana, 1997) with a BERT encoder shared 416

across tasks, each with a unique classification 417

head. Each head predicts task-specific outputs (see 418

Fig. 1). To address forgetting in MTL (Goodfellow 419

et al., 2014), we implement an interleaved training 420

strategy, alternating tasks in batches, ensuring each 421

batch contains samples from a distinct task, effec- 422

tively mitigating forgetting during MTL training. 423

For the Generation-Based model, we use the T5 424

encoder-decoder model, which allows concurrent 425

fine-tuning of multiple tasks using distinct prompts. 426

The prompt structure remains the same as indi- 427

vidual task fine-tuning, but batches contain sam- 428

ples from specific tasks, distinct from the previous 429

batch. 430
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Task Dataset Metrics Split Per Instance
Train Dev Test Max Avg Max Avg

#toks #toks #sent. #sent.
SRO RocStories PMR (Chen et al., 2016) 68k 14k 14k 135 57 5 5

(Mostafazadeh et al., 2016) Acc (Logeswaran et al., 2017)
ISR RocStories (Mostafazadeh et al., 2016) Accuracy 68k 14k 14k 152 77 6 6
DRR PDTB3 (Prasad et al., 2019) Accuracy 17.5k 1.7k 1.5k 556 30 2 2
NPE TNE (Elazar et al., 2022) F1, Precision & Recall 3.5k 500 500 284 163 15 6.9
NLI MNLI (Williams et al., 2018) Accuracy 393k 7.5k 2.5k (194,70) (20,10) (8,8) (2,2)

Table 2: The datasets and metrics used for each task and the train/dev/test split size with the max and average
number of tokens and sentences. For the NLI task (x,y) refer to the numbers of (premise, hypothesis) respectively

Model GCDC CoheSentia
Lai and Tetreault (2018) 57.5 —
SOTA 61.2 35.3
Ours-None (bert-large) 50.2 34.3
Ours-ALL (bert-large) 72.5 55.7
Ours-None (t5-large) 56.3 34.8
Ours-ALL (t5-large) 76.4 62.3
Controlled-nonCoherence (t5-large) 52.8 36.8

Table 3: Accuracy on Coherence Scoring The SOTA
for GCDC is by Liu et al. (2023) and for CoheSentia is
Maimon and Tsarfaty (2023)

6 Results431

We first aim to test the hypothesis that a model432

jointly trained on tasks reflecting the different co-433

herence conditions will effectively assess coher-434

ence. Table 3 shows the coherence scores of435

our jointly fine-tuned model (Ours-ALL) on the436

GCDC and CoheSentia datasets, compared to cur-437

rent SOTA models on either dataset. Compared to438

these models, our jointly fine-tuned model shows439

significant improvements in coherence scoring, es-440

pecially on CoheSentia. We observe a 15% and441

27% accuracy gain for GCDC and CoheSentia442

respectively, demonstrating that our proposed ap-443

proach and selected tasks effectively contribute to444

capturing fundamental aspects of coherence.445

We further analyze the contribution of the proxy446

tasks (Ours-All) by comparing it to a model with-447

out such fine-tuning (Ours-None) to isolate perfor-448

mance gains. As evident in Table 3 these tasks449

dramatically enhance performances. These results450

are supported by further qualitative analysis in Ap-451

pendix D.452

Next we analyze the MTL model’s success on as-453

sessing the coherence conditions (cohesion, consis-454

tency, relevance), by fine-tuning on the coherence455

reasoning task. We compare the results to SOTA456

from Maimon and Tsarfaty (2023), who fine-tuned457

the Flan-T5 model with a simple prompt, and to our458

model without initial fine-tuning on the coherence459

proxy tasks (Ours-None). Table 4 summarizes the460

coherence reasoning task results for all attributes 461

and metrics. Our model achieves SOTA perfor- 462

mance across all coherence conditions, demonstrat- 463

ing the efficacy of our approach. 464

Finally, We evaluate the task-specific perfor- 465

mance of models trained with either individual or 466

joint fine-tuning on the proxy tasks, using both the 467

Classification-Based and Generation-Based vari- 468

ations. Results are in Table 5, alongside com- 469

parisons to current SOTA on these benchmarks. 470

Our findings consistently show that Generation- 471

Based models outperform Classification-Based 472

ones. More importantly, joint fine-tuning across all 473

tasks consistently surpasses individual fine-tuning, 474

particularly in the SRO, ISR, and DRR tasks, where 475

it leads to significant performance improvements 476

and even surpasses SOTA benchmarks. For the 477

NPE task, joint fine-tuning achieves substantial re- 478

call gains, though precision falls short of SOTA 479

results, offering a more balanced performance. The 480

exception is the NLI task, where our model’s per- 481

formance is lower than SOTA. 482

In summary, our MTL model outperforms single- 483

task models on all tasks, achieving SOTA results 484

except for NLI, in line with our hypothesis on the 485

benefits of the joint architecture. Moreover, our 486

MTL model, jointly trained on coherence proxy 487

tasks, significantly improves performance, enhanc- 488

ing coherence scoring for both datasets and ex- 489

celling in coherence reasoning, in line with the 490

second part of our hypothesis. 491

7 Analysis 492

7.1 The Effect of Different Tasks on 493

Coherence Scoring 494

This section examines how fine-tuning on diverse 495

subsets of coherence proxy tasks affects coherence 496

scoring. We fine-tune models on various combina- 497

tions of these tasks, then perform final fine-tuning 498

and evaluation on the coherence scoring task. 499
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Model Cohesion Consistency Relevance
Precision Recall F1 Precision Recall F1 Precision Recall F1

SOTA 72.4 72.1 72.2 59.6 67.5 63.3 56.4 74.6 59.5
Ours-None (bert-large) 66.4 59.4 62.7 60.4 56.5 59.6 49.2 49.9 49.5
Ours-ALL (bert-large) 74.7 70.5 72.5 70.6 68.2 69.3 59.8 61.1 60.4
Ours-None (t5-large) 81.1 80.3 80.7 60.4 62.6 61.5 48.1 49.6 48.8
Ours-ALL (t5-large) 83.1 83.2 83.1 78.5 80.3 79.4 70.8 76.9 73.7

Table 4: Results for Coherence Reasoning Task. The SOTA is by Maimon and Tsarfaty (2023)

Model SRO ISR DRR NPE NLI
PMR ACC Accuracy Accuracy F1 P R Accuracy

SOTA 81.9 90.8 - 64.7 64.0 80.5 53.1 92.0
Ours-Individual (bert-large) 51.8 69.5 60.4 60.0 53.1 67.1 44.0 87.4
Ours-ALL (bert-large) 67.1 83.2 78.6 65.7 64.4 79.8 54.2 90.2
Ours-Individual (t5-large) 75.7 87.8 80.4 64.8 59.8 68.5 53.1 89.9
Ours-ALL (t5-large) 83.8 92.1 82.2 67.3 76.7 76.7 76.7 91.5

Table 5: Results for all proxy tasks compared to SOTA performances. The SOTA model for SRO is ReBART (Basu
Roy Chowdhury et al., 2021), for DRR is Contrastive Learning (Long and Webber, 2023), for NPE is TNE (Elazar
et al., 2022) and for NLI T5-11B (Raffel et al., 2020)

Figure 2 shows the impact of fine-tuning proxy500

coherence tasks on coherence scoring performance.501

Models fine-tuned on any coherence proxy task502

outperform those without fine-tuning (Ours-None),503

highlighting their effectiveness. Performance gen-504

erally improves with more tasks, especially beyond505

three, indicating cumulative benefits.506

Interestingly, NLI fine-tuning significantly en-507

hances performance, likely due to its role in im-508

proving the model’s ability to capture consistency,509

crucial for coherence assessment. Additionally,510

ISR fine-tuning is more impactful when combined511

with other tasks. These findings underscore the512

importance of task selection and task interaction513

during fine-tuning for optimal coherence scoring.514

7.2 Impact of Non-Coherence Tasks515

Fine-Tuning516

In this Section we aim to empirically refute a pos-517

sible hypothesis that the joint ALL model outper-518

forms the NONE model simply due to its complex-519

ity, regardless of the nature of the tasks used (i.e.,520

tasks reflecting coherence conditions).521

To this end, we compare the performance of our522

fine-tuned on coherence-tasks model (Ours-ALL)523

with a model fine-tuned on three tasks orthogonal524

to coherence, followed by fine-tuning on the coher-525

ence scoring task: (i) Machine Translation (MT):526

We sample 15k instances from the WMT14 dataset527

(Bojar et al., 2014). (ii) Named-Entity Recogni-528

tion (NER): We use the Conll2003 dataset (Tjong529

Kim Sang and De Meulder, 2003) containing an-530

notations for 14k instances. (iii) Part-of-Speech531

(POS), using the same Conll2003 dataset contain-532

ing the POS tags as well.533

Model In these experiments, we used the T5- 534

large model as the basis, employing specific prompt 535

and output designs for each task. For the NER and 536

POS tasks, we adapted the “Sentinel + Tag” archi- 537

tecture by Raman et al. (2022). Detailed prompts 538

and sample outputs are provided in Appendix F. 539

Results Following the same procedure as in our 540

main experiments, fine-tuned models were assessed 541

for coherence scoring using the GCDC and Cohe- 542

Sentia benchmarks (detailed in Table 3). 543

Fine-tuning on tasks orthogonal to coherence 544

yielded minimal to no improvements over the 545

baseline (Ours-None) and significantly underper- 546

formed compared to our final MTL model (Ours- 547

ALL). This highlights the importance of coherence- 548

specific proxy tasks for effective coherence detec- 549

tion, as unrelated tasks can hinder performance. 550

7.3 Cross-Domain Generalization 551

Since GCDC and CoheSentia present different do- 552

mains and writing styles, we evaluate model gen- 553

eralizability by fine-tuning on one dataset and as- 554

sessing coherence on the other. Table 6 presents 555

the results for our MTL model (Ours-ALL) and the 556

non-coherence fine-tuned model (Ours-None) un- 557

der three settings: fine-tuning on CoheSentia only, 558

GCDC only, and both combined. 559

Results demonstrate performance gains across 560

domains, highlighting the generalizability of our 561

method. Combining data improves performance, 562

with Ours-ALL showing a 12% and 14% error re- 563

duction on CoheSentia and GCDC, respectively, 564

compared to in-domain scenarios, underscoring the 565

utility and transferability of the learned features. 566
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Figure 2: Accuracy for Coherence Scoring Task for both GCDC and CoheSentia with different proxy coherence
task-subsets. The labels are tasks IDs (1-SRO, 2-ISR, 3-DRR, 4-NPE, 5-NLI)

Model GCDC CoheSentia
Ours-None-CoheSentia 52.8 34.8
Ours-None-GCDC 56.3 28.5
Ours-None-Both 57.5 35.4
Ours-ALL-CoheSentia 71.8 62.3
Ours-ALL-GCDC 76.4 59.5
Ours-ALL-Both 79.8 66.7

Table 6: Accuracy on coherence scoring on both datasets
when fine-tuned based on T5-model on only one dataset

7.4 Effects of Different Tasks on One Another567

We investigate the impact of fine-tuning on various568

coherence task subsets on individual task perfor-569

mance. The model was trained on different task570

combinations with increasing numbers of tasks and571

evaluated on each task separately.572

Figure 3 shows consistent performance gains573

in the Sentence Reordering (SRO) task for BERT574

models as more tasks are jointly fine-tuned (see575

Appendix E for other tasks). This supports our hy-576

pothesis that shared information among coherence577

tasks enhances individual task performance.578

The impact of specific tasks varies; for instance,579

DRR minimally affects SRO, likely due to limited580

training data. Notably, NLI significantly influences581

the performance of various tasks. The ISR task582

notably improves performance on other tasks, sug-583

gesting its effectiveness in capturing relevance er-584

rors, crucial for coherence assessment. We thus585

emphasize the introduction of this self-supervised586

ISR task and advocate for its exploration in future587

research to enhance coherence assessment.588

The overall performance trends are similar for589

both BERT-base and BERT-large models, indicat-590

ing that the impact of specific tasks is consistent591

regardless of model size.592

Figure 3: Results for SRO task, for different subsets
of coherence tasks fine-tuned upon. The labels are the
number of tasks and in curly brackets which tasks (1 -
SRO, 2 - ISR, 3 - DRR, 4 - NPE, 5 - NLI)

8 Conclusion and Future Work 593

In this paper we propose a new coherence mod- 594

eling method, based on Reinhart (1980)’s theory 595

which defines the conditions needed for coherence: 596

cohesion, consistency, and relevance. We use five 597

key NLP tasks as proxies for these conditions, and 598

train an MTL model on them jointly. Our uni- 599

fied coherence model achieves SOTA results on 600

these individual tasks, and moreover it excels in 601

coherence scoring for both real-world and gener- 602

ated texts. We conjecture that this framework will 603

enhance NLP systems’ ability to quantify and eval- 604

uate text quality automatically. Future follow-up 605

research will focus on using these conditions for 606

improved coherent-text generation, and for detect- 607

ing particular causes of incoherence automatically. 608

Our code and models are publicly available, to en- 609

courage further research on coherence scoring and 610

coherence reasoning. 611
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Limitations612

While this work advances the modeling and auto-613

matic evaluation of coherence, limitations exist that614

suggest promising avenues for future research.615

Dataset Limitations Existing coherence evalua-616

tion datasets like GCDC and CoheSentia, along617

with datasets for our proxy tasks, primarily fo-618

cus on relatively short texts. To address this, we619

analyzed the performance of our MTL models620

(Ours-ALL) and the non-coherence version (Ours-621

None) on GCDC and CoheSentia across various622

text lengths after fine-tuning for coherence scoring623

(see Figure 7 in the Appendix). As expected, for624

both models and datasets, accuracy decreased with625

longer texts, highlighting the increased difficulty of626

assigning coherence scores for complex passages.627

This observation aligns with recent work suggest-628

ing that while LLMs can handle longer texts, their629

reasoning abilities might decline with increasing630

text length (Levy et al., 2024).631

Focus on Short Texts Our current study focused632

on short texts (≤ 512 tokens). The effectiveness633

of our approach on longer documents remains an634

open question for future exploration. We hypothe-635

size that incorporating coherence proxy tasks could636

benefit the model’s performance on longer texts,637

but further investigation is necessary.638
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A Tasks Specific Experimental Settings 915

In this section, we further elaborate on the datasets 916

and evaluation metrics used for each one of the 917

coherence proxy tasks. 918

A.1 The Sentence Reordering Task Setup 919

Topological Sort: A topological sort (Tarjan, 920

1976) linearly orders vertices in a DAG. The al- 921

gorithm is presented in Algo A.1. 922

[t] Input: A digraph G with n vertices 923

Output: A topological ordering v1,v2...vn of G. 924

L← Empty list that will contain the sorted nodes 925

S← Set of all nodes with no incoming edge S is 926

not empty remove a node n from S add n to L each 927

node m with an edge e from n to m remove edge 928

e from the graph m has no other incoming edges 929

insert m into S graph has edges error (graph has at 930

least one cycle) L (a topologically sorted order) 931
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Dataset: We use the ROCStories (Mostafazadeh932

et al., 2016) dataset (Licence ID is CC-BY 4.0.)933

which contains 5-sentence stories. We use the stan-934

dard 85:15 train/test split and randomly select a935

subset of the train for validation.936

Evaluation: We use two common evaluation met-937

rics for the reordering task:4938

• Perfect Match Ratio (PMR): Chen et al. (2016)939

calculate the percentage of samples for which940

the entire sequence was correctly predicted.941

PMR =
1

N

N∑
i=1

1{Ôi = Oi}942

• Sentence Accuracy (Acc): Logeswaran et al.943

(2017) calculate the percentage of sentences944

for which their absolute position was correctly945

predicted.946

Acc =
1

N

N∑
i=1

1

vi

vi∑
j=1

1{Ôi
j = Oi

j}947

A.2 The Discourse-Relation Recognition Task948

Setup949

Dataset: We use the Penn Discourse TreeBank3950

(PDTB3) Level 2 dataset (Miltsakaki et al., 2004;951

Prasad et al., 2008; Liang et al., 2020). We only952

used labels with more than 100 instances, which953

leaves us with 14 senses from L2. The variabil-954

ity of data splits used in the literature is substan-955

tial, therefore, we follow earlier work by Ji and956

Eisenstein (2015); Bai and Zhao (2018); Liu et al.957

(2020); Xiang et al. (2022) using Sections 2-20,958

0-1 and 21-22 for training, validation and testing959

respectively. When multiple annotated labels are960

present, we adopt the approach described by Qin961

et al. (2016) and consider them as distinct instances962

during the training phase. During testing, if a pre-963

diction matches any of the reference labels, it is964

considered correct.965

Evaluation: We use the accuracy metric on the966

number of sentence pairs the model correctly pre-967

dicted the L2 discourse relation:968

Accuracy =
1

N

N∑
i=1

1{R̂i = Ri}969

A.3 The NP Enrichment Task Setup970

Token Classification Head: Figure 4 is an illus-971

tration of the token classification head for the NPE972

task.973
4There are 5 metrics, we used the most common 2.

Dataset: We use the TNE dataset (Elazar et al., 974

2022) (Licence Free) which contains documents 975

and relations between every noun pair in it (with 976

a total number of nouns of 190k and a total num- 977

ber of NP relations of 1M). There are 28 possible 978

relations (including ‘no relation’). This dataset’s 979

advantage is that it contains real-world long para- 980

graphs. As in the original publication split the data 981

at the document level. 982

The distribution of the possible preposition be- 983

tween pair of nouns in TNE dataset is in Figure 5 984

985

Evaluation: We report precision, recall & F1 on 986

NP pairs with prepositional links between them. 987

A.4 The NL Inference (NLI) Task Setup 988

Dataset and Evaluation: We use the MNLI 989

dataset (Williams et al., 2018) (Licence ID CC-BY- 990

3.0). with the accuracy metric on the amount of 991

hypothesis-premise pairs that the model correctly 992

predicts their relation R: 993

Accuracy =
1

N

N∑
i=1

1{R̂i = Ri} 994

A.5 The Irrelevant Sentence Recognition Task 995

Setup 996

Dataset: We again use ROCStories as in sen- 997

tence reordering. Each story within the ROCStories 998

dataset was augmented with a single, randomly in- 999

serted sentence. The irrelevant sentence for each 1000

story was randomly selected from the entire ROC- 1001

Stories dataset, with the sole constraint that it con- 1002

tained entities present in the target story. Both this 1003

and the sentence reordering task leverage the same 1004

benchmark, retaining the same train/dev/test splits. 1005

Evaluation: We use the accuracy metric on the 1006

percentage of paragraphs where the model correctly 1007

detected the irrelevant sentence S: 1008

Accuracy =
1

N

N∑
i=1

1{Ŝi = Si} 1009

A.6 Overall Experimental Settings 1010

We trained each model three times, reporting the 1011

mean performance. Training utilized multiple Tesla 1012

V100 GPUs (up to 4) with 32GB memory each. For 1013

each architecture, the settings are: 1014

1. Classification-Based: BERT (base and large) 1015

served as the encoder with fine-tuning across 1016
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Figure 4: Illustration of the token head which contains
several stages: starting with (1) embedding for each
token in the text, (2) creating an embedding for each
NP when it acts as the complement and the anchor sepa-
rately, (3) a representation for each NP pair and finally
(4) a classification layer

Figure 5: Distribution of the main prepositions in the
NP Enrichment test set

all layers. We used Adam optimizer with a 1017

learning rate of 5e-5 and a dropout of 0.5. For 1018

tasks requiring classification (SRO, ISR, DRR, 1019

NLI), we employed a linear classification head 1020

with 512 hidden dimensions and 0.3 dropouts. 1021

The NPE utilized a different head structure 1022

(details omitted for brevity). Cross-Entropy 1023

loss was used for all datasets. 1024

2. Generation-Based: T5 (base and large) mod- 1025

els were used as the backbone. Training em- 1026

ployed Adam optimizer with a learning rate of 1027

5e-5. Models were trained with task-specific 1028

prompts and corresponding ground truth la- 1029

bels for supervised learning. 1030

Both architectures shared the following hyper- 1031

parameters: fine-tuning for 3 epochs with early 1032

stopping, batch size of 4, and gradient accumula- 1033

tion steps of 2. The hyper-parameters were chosen 1034

using parameters-grid. Our code is based on the 1035

Huggingface library (Wolf et al., 2020). 1036

B Coherence Assessment Experimental 1037

Settings 1038

For each architecture, the settings are: 1039

1. Classification-Based (BERT base and large): 1040

Encoder with fine-tuning across all layers, 1041

Adam optimizer (learning rate 5e-4), dropout 1042

(0.3). Each dataset used a linear classification 1043

head (512 hidden dimensions, 0.1 dropout). 1044

Cross-Entropy loss was used. 1045

2. Generation-Based (T5 base and large): 1046

Encoder-decoder architecture, Adam opti- 1047

mizer (learning rate 2e-5). Inputs included 1048

prompts specific to each dataset (GCDC or 1049

CoheSentia) and the paragraph text. 1050

The models share hyperparameters: 50 epochs 1051

with early stopping (accuracy), batch size of 4, 1052

and gradient accumulation steps of 2. We em- 1053

ployed 10-fold cross-validation on both datasets 1054

(following Lai and Tetreault (2018)) using a sin- 1055

gle Tesla V100 GPU with 32GB memory. The 1056

hyper-parameters were chosen using parameters- 1057

grid. Our code is based on the Huggingface library 1058

(Wolf et al., 2020). 1059

C Text Length vs. Coherence Score 1060

The accuracy of the models on both coherence 1061

datasets based on different lengths is in Figure 7. 1062
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Figure 6: Accuracy For GCDC based on number of
words

Figure 7: Accuracy For CoheSentia based on number
of words

D Qualitative Analysis1063

D.1 Qualitative Analysis1064

To gain qualitative insights, we sampled 50 misclas-1065

sified examples by SOTA models, from CoheSentia1066

and GCDC. We then assessed these examples on1067

various models, including our MTL model (Ours-1068

ALL) and the non-coherence fine-tuning version1069

(Ours-None).1070

For CoheSentia, the previous SOTA models fa-1071

vor extreme scores, likely due to training data im-1072

balance. Our model exhibits greater robustness,1073

predicting a more balanced distribution of scores.1074

Figure 8a and Table 7 present an example of a text1075

from the CoheSentia dataset and the predictions1076

of the models. In this example, the base model1077

(Ours-None) failed on coherence prediction, while1078

our final model (Ours-ALL) succeeded. Figure 8b1079

presents an example of text from GCDC dataset and1080

Table 8 the predictions of different models on the1081

coherence scoring task. This example highlights1082

Model Prediction
Ground Truth Medium

SOTA High
Ours-None (BERT-large) High

Ours-None (T5-large) High
Ours-ALL (BERT-large) Medium

Ours-ALL (T5-large) Medium

Table 7: Predicted Coherence scores for the text in
Figure 8a

Model Prediction
Ground Truth Low

SOTA Medium
Ours-None (BERT-large) Medium

Ours-None (T5-large) Medium
Ours-ALL (BERT-large) Low

Ours-ALL (T5-large) Low

Table 8: Predicted Coherence scores for the text in
Figure 8b

a complex case with cohesion and relevance vio- 1083

lations. Both the baseline and ISR-trained models 1084

missed this issue, while our MTL model achieved 1085

accurate prediction. 1086

E Results for Subsets of Tasks 1087

Figures 9a, 9b, 9c, 10a and 10b visualize the perfor- 1088

mance of coherence proxy tasks across fine-tuning 1089

settings for BERT-base and BERT-large models. It 1090

highlights how subsets of tasks impacts target task 1091

performance. 1092

F T5 Prompts and Outputs for Different 1093

Tasks 1094

In Table 9 we detail the various prompts used for 1095

fine-tuning T5 models on all explored tasks in this 1096

work. 1097

In Table 10 we detail the various outputs used 1098

for fine-tuning T5 models on all explored tasks in 1099

this work. 1100
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(a) CoheSentia

(b) GCDC

Figure 8: Sample Texts for coherence scoring tasks: GCDC & CoheSentia benchmarks

Task Name Dataset Name Prompt
SRO ROCStories “reorder: what is the order of the sentences so that the

paragraph is coherent? sentence 1: ⟨S1⟩ sentence 2: ⟨S2⟩
... ⟨SN ⟩”

ISR ROCStories “relevance: what is the irrelevant sentence in the text?
sentence1: ⟨S1⟩ sentence2: ⟨S2⟩ sentence3: ...⟨SN ⟩”

DRR PDTB3 “discourse relation: what is the discourse relation between
⟨DU1⟩⟨DU2⟩”

NPE TNE “coreference text: what are the preposition relations be-
tween <NPi> and <NPj>? text: <P>”

NLI MNLI “mnli: does this hypothesis contradict, entail, or neutral
with the premise? hypothesis: ⟨H⟩ premise: ⟨P ⟩”

Coherence Scoring GCDC “GCDC coherence: what is the coherence score of the text
(3 - high, 1 - low)? text: ⟨P ⟩”

Coherence Scoring CoheSentia “CoheSentia coherence: what is the coherence score of the
text (5 - high, 1 - low)? title: ⟨T ⟩ text: ⟨P ⟩”

MT WMT14 “Machine Translation: what is the translation of the
next text from language < source_language > to <
target_language >?: text in source language”

NER Conll2003 “NER task: what is the entity recognition tagging of
each token in the next text? < extra_id_0 > token1
< extra_id_1 > token2 ...”

POS Conll2003 “POS task: What is the part of speech tagging of each
token in the next text? < extra_id_0 > token1 <
extra_id_1 > token2 ...”

Cohesion Reasoning CoheSentia “Cohesion reasoning: previous data: <di> new sentence:
<si>. Task: is the new sentence cohesive in regard to the
previous data? give a yes or no answer to each item ”

Consistency Reasoning CoheSentia “Consistency reasoning: previous data: <di> new sentence:
<si>. Task: is the new sentence consistent in regard to the
previous data? give a yes or no answer to each item ”

Relevance Reasoning CoheSentia “Relevance reasoning: previous data: <di> new sentence:
<si>. Task: is the new sentence relevant in regard to the
previous data? give a yes or no answer to each item ”

Table 9: Prompts for all tasks in this paper when using T5 model as the backbone model
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Task Dataset Outputs
SRO ROCStories list of position markers [Y1, Y2, ..., YN ] (Yi-position of the

ith sentence of the corresponding ordered sequence Si in the
shuffled input)

ISR ROCStories the index of the irrelevant sentence in the paragraph
DRR PDTB3 “⟨connector⟩ → ⟨l1 relation⟩ → ⟨l2⟩”
NPE TNE the preposition
NLI MNLI Contradict / Entails / Neutral
Coherence scoring GCDC the score
Coherence scoring CoheSentia the score
MT WMT14 the translated text
NER Conll2003 “< extra_id_0 > ner_tag_token1 < extra_id_2 >

ner_tag_token2 ...”
POS Conll2003 “< extra_id_0 > pos_tag_token1 < extra_id_2 >

pos_tag_token2 ...”
Cohesion reasoning CoheSentia Yes / No
Consistency reasoning CoheSentia Yes / No
Relevance reasoning CoheSentia Yes / No

Table 10: Outputs for all tasks in this paper when using T5 model as the backbone model
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(a) SRO

(b) ISR

(c) DRR

Figure 9: Results for all tasks, for different permutations
of tasks fine-tuned upon. The labels are the number of
tasks and in curly brackets which tasks (1 - SRO, 2 -
ISR, 3 - DRR, 4 - NPE, 5 - NLI)

(a) NPE

(b) NLI

Figure 10: Results for all tasks, for different permuta-
tions of tasks fine-tuned upon. The labels are the number
of tasks and in curly brackets which tasks (1 - SRO, 2 -
ISR, 3 - DRR, 4 - NPE, 5 - NLI)
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