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Abstract

Coherence is an essential property of well-
written texts, that refers to the way textual
units relate to one another. In the era of gen-
erative Al, coherence assessment is essential
for many NLP tasks; summarization, long-
form question-answering, etc. Current NLP
approaches for modeling coherence often rely
on a proxy task, specifically sentence reorder-
ing. However, such an approach may not cap-
ture the full range of factors contributing to
coherence. To bridge this gap, in this work
we employ the formal linguistic definition of
Reinhart (1980) of what makes a discourse co-
herent, consisting of three conditions — co-
hesion, consistency and relevance — and for-
malize these conditions as respective computa-
tional tasks. We hypothesize that (i) a model
trained on all of these tasks will learn the fea-
tures required for coherence detection, and that
(i) a joint model for all tasks will exceed the
performance of models trained on each task
individually. We evaluate this modeling ap-
proach on two human-rated coherence bench-
marks: one of automatically-generated stories
and one of real-world texts. Our experiments
confirm that jointly training on the proposed
tasks leads to better performance on each task
compared with task-specific models, and to bet-
ter performance on assessing coherence overall,
compared with strong baselines. Our formal co-
herence framework paves the way for advanced,
broad-coverage automatic assessment.

1 Introduction

The term coherence refers to the quality of texts
where sentences and paragraphs flow smoothly and
are logically connected, creating a clear and under-
standable progression of ideas. Coherence detec-
tion is crucial for NLP tasks involving text quality
measurements such as essay scoring or text quality
assessment (Somasundaran et al., 2014; Feng et al.,
2014; Lai and Tetreault, 2018). Its importance is

further amplified nowadays in the era of large lan-
guage models (LLMs). Ensuring coherent LLM
outputs is essential for producing meaningful and
understandable text for generative tasks as summa-
rization and question answering (Guan et al., 2021;
Xu et al., 2018; Yi et al., 2019), to name a few.

The elusive nature of coherence makes it chal-
lenging for NLP systems to assess it effectively.
While various linguistic theories of coherence exist
(e.g., Halliday and Hasan (1976); Joshi and We-
instein (1981); Givon (1995); Hobbs (1979); Dijk
(1979); Mann and Thompson (1988)), current ap-
proaches often rely on proxy tasks like sentence
reordering (Lapata, 2003; Miltsakaki et al., 2000).
However, this approach oversimplifies coherence,
potentially leading to models that struggle with
real-world texts (Laban et al., 2021). Furthermore,
coherence is multifaceted, varying across genres,
contexts, and styles. Proxy tasks often fail to cap-
ture this complexity, leading to models unable to
generalize across different domains and real-world
settings. On top of that, existing NLP models for
coherence, such as Barzilay and Lapata (2008)’s
sentence reordering, often lack direct evaluation
and are instead assessed on downstream tasks like
readability (Guinaudeau and Strube, 2013; Mesgar
and Strube, 2016, 2018) or essay scoring (Mes-
gar and Strube, 2018; Somasundaran et al., 2014;
Tay et al., 2017). This approach can be expensive,
biased towards the downstream task, and may over-
look core aspects of coherence.

This work aims to provide a computationally
workable definition of coherence, leveraging Rein-
hart (1980)’s theory which defines three conditions:
cohesion, consistency, and relevance. Concretely,
we propose to instantiate these conditions as com-
putational tasks, and train them jointly to create a
model that captures these properties. We hypoth-
esize that (i) such a model will effectively assess
coherence, and (ii) shared information between
tasks will improve task-specific performance.



To test our hypotheses, we implement a model
trained jointly on tasks capturing Reinhart’s condi-
tions of coherence. The unified model incorporates
five tasks: sentence reordering (Lapata, 2003), dis-
course relation detection (Miltsakaki et al., 2004),
natural language inference (Dagan et al., 2005),
NP enrichment (Elazar et al., 2022), and irrelevant-
sentence detection. Despite its relatively simple
architecture, our model achieves SOTA results on
most of these tasks. We then evaluate the model’s
coherence assessment capability on two human-
annotated benchmarks: the Grammarly Corpus of
Discourse Coherence (GCDC) (Lai and Tetreault,
2018) for real-world texts across four domains,
and CoheSentia (Maimon and Tsarfaty, 2023) for
artificially-generated stories. These benchmarks
cover both natural and artificially-generated texts,
human-rated for their levels of coherence.

Our empirical findings confirm our hypotheses,
showing significant accuracy improvements and
producing new SOTA results on both benchmarks.
The joint model outperforms standalone models
for individual tasks. Our significant performance
improvements demonstrate the model’s efficacy
in automatic coherence assessment. This frame-
work paves the way for future models to not only
identify incoherence, but also analyze its causes.
Furthermore, integrating this methodology into text
generation may lead to higher-quality outputs.

2 The Proposal: Coherence a la Reinhart

This work aims to provide a computationally work-
able definition of coherence by adopting Reinhart
(1980)’s formalization, which identifies coherence
through three criteria: Cohesion, Consistency, and
Relevance. According to Reinhart, a text is co-
herent only if it meets all three criteria. Recently,
Maimon and Tsarfaty (2023) used this framework
to create a benchmark for coherence scoring of
GPT-generated text, with human scores for these
criteria. Here we take a different approach, us-
ing these conditions as the basis for computational
modeling, aiming to predict the ingredients of these
three properties via jointly trained tasks.

Cohesion The cohesion condition focuses on the
formal elements that link sentences together.! Rein-

'The terms “coherence” and “cohesion” may be confusing
to non-linguists. Cohesion relates to the surface forms used
(e.g., connectors, pronouns), while coherence pertains to the
overall semantics and flow of ideas.

hart states that a text is cohesive if, for every sen-
tence pair, at least one of two conditions is met:

(1) Referentially linked: A pair of sentences
(S, S2) is referentially linked when Ss references
an entity mentioned in S;. A simple example is
using a pronominal anaphor:

“Dan is nice. Even Su likes him.”

Here, the underlined entities co-refer. Other types
of referential links are prepositional links (Elazar
et al., 2022) or bridging anaphora (Hou, 2021).
(2) Linked by a semantic sentence connector.
A pair of sentences (S1, S2) is connected if a dis-
course relation links them. These connectors indi-
cate semantic relations like cause and effect, com-
parison, contrast, and more (Prasad et al., 2008).
An example of linking by a semantic connector is:

“It was raining. So, we stayed inside.”

The sentences are cohesive due to the existence
of the “So” connector. These connectors may be
explicit or implicit (Pitler et al., 2009).

Consistency The consistency condition pertains
to the formal semantic aspects of a text, ensuring
logical coherence, which is crucial for interpreting
and deriving meaning. Formally, this condition
requires that for a set of sentences {S;}/";, the
meaning of each sentence .S; must be consistent
with all previous sentences {S;}:_}. This means
all sentences can be true within a single world, not
violating this worlds assumptions and restrictions.
An example of a violation is shown below:

“My father is dead now. That’s why he
has decided to smoke a pipe” (Freeman
and Gathercole, 1966)

Despite being cohesive (anaphora & connectors),
the passage lacks coherence due to world knowl-
edge violations (a deceased cannot decide).?

Relevance The relevance condition involves
pragmatic aspects, imposing constraints on the rela-
tionships of all sentences {S;}~ ;! to the discourse
topic and other contextual elements. An example
of a violation of this condition is as follows:

“I poured some chemical into a beaker.
The chemical fell on my hand. The pro-
fessor immediately took me to the emer-
gency bath. He is a great musician.”

The consistency condition was further explored by Hon-

ovich et al. (2021) to enhance the reliability of automatically
generated texts.



The last sentence is cohesive and consistent with
the previous sentences but is irrelevant to the over-
all context and topic of the story.

All in all, Reinhart’s theory outlines conditions
encapsulating the fundamental aspects of coher-
ence to determine text coherence. We propose de-
signing NLP tasks to detect these properties.

3 Research Hypotheses and Tasks

At the core of our approach is the implementa-
tion of Reinhart’s coherence conditions as com-
putational tasks, using a minimal set of NLP tasks
designed to capture the features of cohesion, consis-
tency, and relevance. We hypothesize that a model
trained jointly on all tasks will detect coherence
effectively, and will outperform models trained on
each task individually.

To verify this, we define five tasks reflecting
these coherence conditions.

The Sentence Reordering (SRO) Task This
self-supervised task, proposed by Lapata (2003),
involves reordering shuffled sentences to restore
their original coherent form. For example, given
the following input: “(1) Finally, the parser is eval-
uated. (2) We develop a useful parser. (3) Then we
present our parser. (4) We first describe the older
one.” the correct order is (2) — (4) — (3) — (1).
Extending prior work on natural sentence order
and coherence (Lin et al., 2011), a model excelling
at paragraph reconstruction should capture syntac-
tic and semantic relationships between sentences,
reflecting both cohesion and consistency.

The Discourse-Relation Recognition (DRR)
Task Given a pair of sentences (discourse units
- DUs), we aim to predict their discourse relation,
reflecting notions such as cause and effect, compar-
ison, and contrast. For example, with the following
input: “John worked all night. He slept all day
today.” the model is expected to detect a relation
marker reflecting contingency (e.g., ‘so’, ‘hence’).
The discourse relation identification task en-
hances the model’s ability to connect sentences,
addressing the second sub-condition of cohesion.

The NP Enrichment (NPE) Task Introduced by
Elazar et al. (2022), the NPE task identifies prepo-
sitional links between noun phrase (NP) entities.
Given NP pairs , it determines the existence of a
prepositional relation and identifies the best prepo-
sition describing it p(N P; N P,). For a paragraph

with k& NP entities, the model outputs the preposi-
tional links for all NP pairs where such a relation
exists (or NONE otherwise).

For example, in the paragraph: “Crown Princess
Mary of Denmark gives birth to a male child.” there
are 4 NPs and thus 12 NP pairs. Sample outputs
for these NP pairs are: (1) in(birth, Denmark) and
(2) of(birth, male child).

A model trained on this task captures referen-
tial links between different parts of the discourse,
serving as a proxy for the referential linking sub-
condition of cohesion.

The Natural Language Inference (NLI) Task
The NLI task (Bowman et al., 2015) aims to de-
termine the truth value of a hypothesis based on
a given premise. For example, given the premise:
“John inspects the uniform of a figure in some East
Asian country.” and the hypothesis: “John is sleep-
ing.” the output will be a contradiction.

NLI evaluates NLP models’ ability to capture
logical relationships between sentences, serving as
a proxy for the consistency condition.

The Irrelevant Sentence Recognition (ISR) Task
We propose a self-supervised task where the model
identifies irrelevant sentences in a coherent para-
graph. Given a paragraph with N sentences, includ-
ing one irrelevant sentence s, the model detects and
outputs the irrelevant sentence.

For example, given the following input: “(1)
Rick is a helpful kid. (2) He does the dishes. (3) He
avoids doing his homework. (4) He helps older
people.” The irrelevant sentence is (3).

The model is trained to assess sentence relevance
to the overall topic and context, acting as a proxy
for the relevance condition.

Putting It All Together: We propose a Multi-
Task Learning (MTL) approach, where a model is
jointly trained on these tasks to capture all coher-
ence conditions outlined by Reinhart. This method
leverages shared information during training, with
the goal of enhancing both overall coherence de-
tection and individual task performance. To assess
coherence, we define two types of tasks:

* The Coherence Scoring Task To confirm our
hypothesis that the proposed model captures
coherence, we evaluate its performance on
the coherence scoring task, where given a
paragraph P the model predicts the coherence
score C' as a human reader would.



¢ The Coherence Reasoning Task To examine
conditions contributing to incoherence (cohe-
sion, consistency, relevance) beyond a final
score, we use the coherence reasoning task
proposed by Maimon and Tsarfaty (2023).
Given a paragraph P and a new sentence s, the
model predicts whether s is cohesive, consis-
tent, or relevant to P using distinct classifiers.

We hypothesize that utilizing the MTL-powered
architecture will improve the results on both coher-
ence scoring and coherence reasoning.

4 Coherence Assessment Setup

Here, we detail the models and experimental setup
for the coherence assessment tasks we define.

4.1 The Coherence Scoring Task

Models: We use two architectures for coherence
scoring: Classification-Based (BERT (Devlin et al.,
2019)) and Generation-Based (TS5 (Raffel et al.,
2020)). The model predicts for a given text 3-way
or 5-way scores, depending on the dataset.

In the Classification-Based models, the coher-
ence score C is predicted given the text P using a
classification head.

In Generation-Based models, the input includes
the text with dataset-specific prompts and an output.
Example prompts and outputs are in Appendix F.

Further details on experimental settings are in
Appendix B.

Datasets and Evaluation: We evaluate our
model on two datasets: GCDC (Lai and Tetreault,
2018) and CoheSentia (Maimon and Tsarfaty,
2023). GCDC includes real-world text from vari-
ous domains (Clinton emails, Enron emails, Yahoo
Answers, Yelp reviews) with coherence scores from
1 (not coherent) to 3 (highly coherent). CoheSentia
features GPT-3 generated stories (fiction and non-
fiction) with scores ranging from 1 to 5. We use
the “incremental final score” for CoheSentia stories.
Dataset sizes and splits are detailed in Table 1.

To remain compatible with Lai and Tetreault
(2018), we use accuracy as the metric for evaluating
the final coherence score of the text.

Baselines: To assess the effectiveness of our pro-
posed model, we compare its performance on each
dataset to the current SOTA models. For GCDC
Lai and Tetreault (2018) introduced the ParSeq
model with three stacked LSTMs for sentence,
paragraph, and document embeddings, followed by

a coherence classification layer. The SOTA model
for GCDC by Liu et al. (2023) uses a multi-step
approach: identifying document graph structures,
converting subgraphs, constructing corpus-level
graphs based on shared subgraphs, and encoding
connections with a GCN.

For CoheSentia Maimon and Tsarfaty (2023)
created the SOTA model using a prompt-based ap-
proach with Flan-T5-large to assess coherence by
adding a question at the beginning of each text.

4.2 The Coherence Reasoning Task

Models: In Classification-Based models, the rea-
soning for each coherence attribute given the para-
graph P and the new sentence s is predicted using
a classification head.

In Generation-Based models, the input includes
the text with prompts and an output. Prompts and
outputs for both datasets are in Appendix F.

Datasets and Evaluation: We evaluate our
model on the CoheSentia corpus (Maimon and
Tsarfaty, 2023), which contains automatically gen-
erated stories with human annotations for cohesion,
consistency, and relevance. We use precision, re-
call, and F1 scores for each property.

Baselines: We evaluate our model’s effectiveness
on the CoheSentia dataset by comparing it to the
current SOTA model by (Maimon and Tsarfaty,
2023), which uses a prompt-based approach with
Flan-T5-large, adding a question at the beginning
of each text to assess coherence.

5 Task-Specific Experimental Setup

In this section, we elaborate on the modeling of the
coherence proxy tasks. For each task, we evalu-
ate two model variants: Classification-Based and
Generation-Based, as detailed below. Table 2 sum-
marizes the datasets, evaluation metrics, and key
statistics for each task (see further elaboration in
Appendix A). For the Generation-Based models,
prompts and outputs are detailed in Appendix F.

The Sentence Reordering Models For the
Classification-Based models, we adopt the topo-
logical sort architecture from Shrimai Prabhumoye
(2020). Each paragraph’s sentence pairs are repre-
sented as triplets (S;, C, S;), indicating whether
S; precedes or follows S;. The model has two
stages: a binary classification head that predicts
the pairwise relations and a second stage that pro-



Dataset Split Per Instance
Train | Validation | Test || Max #tokens | Avg #tokens | Max #sent. | Avg #sent.
GCDC 3.6k 800 800 333 156 10 32
CoheSentia 350 75 75 226 150 15 6.5
Table 1: Main Statistics on the Datasets for Coherence Scoring
duces the predicted order using the topological sort Order Irrelevance
algorithm (Tarjan, 1976). Sentence
The Generation-Based models use prompts and T T
predict the outputs with the final order. - -
The Discourse-Relation Recognition Models T T
. . . Who came Are they L2 discourse : Which
In the Classification-Based models, the input con- first related relation NLIvelation o esition

sists of a pair of DUs: (DUj, DUs). A classifica-
tion head predicts the discourse relation between
them.

In the Generation-Based models, the input is an
argument pair, and the model employs a chain-of-
thought (CoT) method (Wei et al., 2023) to pre-
dict the discourse relation.> The CoT structure
is (connector) — (I relation) — (ly relation).
That is, the model adopts a three-stage approach
to predicting the Lo relation type. The model first
infers the implicit connective, then generalizes it to
a broader relation category.

The NP Enrichment Models In the
Classification-Based models, we extend the
Bi-Affine architecture from Dozat and Manning
(2017) to predict preposition relations between NP
pairs instead of syntactic dependency labels. NP
embeddings are created by pooling tokens repre-
senting each NP, and the model head predicts the
preposition using the NP’s anchor and complement
representations (Figure 4 in Appendix).

The Generation-Based models predict preposi-
tional relations for each NP pair independently.
The input consists of the document text and a
prompt specifying the NP pair.

The NL Inference Models Classification-Based
models predict relations between the premise and
hypothesis.

Generation-Based models use prompts and pre-
dict outputs for premise-hypothesis pairs.

Irrelevant Sentence Recognition Models The
Classification-Based models have two stages. Sen-
tence pairs form triplets (S;, Cy, S;j), where C}, =
0|1 indicates relevance. A binary classification
head determines the relation. In the second stage,

3CoT detection of discourse relations outperformed sim-
pler prompts in our preliminary experiments.

! !

T !

Sentences Document
pair Text

Figure 1: Illustration of the encoder-only model where
the input is a pair of sentences (most tasks) or for NPE
task the input is a document and the token IDs of differ-
ent NPs

the sentence with the lowest combined relations
score is deemed irrelevant.

Generation-Based models use prompts and pre-
dict the irrelevant sentence as the output.

The Overall Joint Architecture To test our
hypotheses, we implemented both Classification-
Based and Generation-Based models, trained to
solve all tasks jointly.

For the Classification-Based variant, we use
MTL (Caruana, 1997) with a BERT encoder shared
across tasks, each with a unique classification
head. Each head predicts task-specific outputs (see
Fig. 1). To address forgetting in MTL (Goodfellow
et al., 2014), we implement an interleaved training
strategy, alternating tasks in batches, ensuring each
batch contains samples from a distinct task, effec-
tively mitigating forgetting during MTL training.

For the Generation-Based model, we use the TS
encoder-decoder model, which allows concurrent
fine-tuning of multiple tasks using distinct prompts.
The prompt structure remains the same as indi-
vidual task fine-tuning, but batches contain sam-
ples from specific tasks, distinct from the previous
batch.

T

fokens
D




Task Dataset Metrics Split Per Instance

Train | Dev | Test Max Avg Max Avg

#toks #toks | #sent. | #sent.
SRO RocStories PMR (Chen et al., 2016) 68k 14k | 14k 135 57 5 5
(Mostafazadeh et al., 2016) Acc (Logeswaran et al., 2017)

ISR RocStories (Mostafazadeh et al., 2016) Accuracy 68k 14k | 14k 152 77 6 6
DRR PDTB3 (Prasad et al., 2019) Accuracy 17.5k | 1.7k | 1.5k 556 30 2 2
NPE TNE (Elazar et al., 2022) F1, Precision & Recall 3.5k | 500 | 500 284 163 15 6.9
NLI MNLI (Williams et al., 2018) Accuracy 393k | 7.5k | 2.5k || (194,70) | (20,10) | (8,8) | (2,2)

Table 2: The datasets and metrics used for each task and the train/dev/test split size with the max and average
number of tokens and sentences. For the NLI task (x,y) refer to the numbers of (premise, hypothesis) respectively

[ Model [ GCDC | CoheSentia |
Lai and Tetreault (2018) 57.5 —
SOTA 61.2 353
Ours-None (bert-large) 50.2 34.3
Ours-ALL (bert-large) 72.5 55.7
Ours-None (t5-large) 56.3 34.8
Ours-ALL (t5-large) 76.4 62.3

‘ Controlled-nonCoherence (t5-large) H 52.8 ‘ 36.8 ‘

Table 3: Accuracy on Coherence Scoring The SOTA
for GCDC is by Liu et al. (2023) and for CoheSentia is
Maimon and Tsarfaty (2023)

6 Results

We first aim to test the hypothesis that a model
jointly trained on tasks reflecting the different co-
herence conditions will effectively assess coher-
ence. Table 3 shows the coherence scores of
our jointly fine-tuned model (Ours-ALL) on the
GCDC and CoheSentia datasets, compared to cur-
rent SOTA models on either dataset. Compared to
these models, our jointly fine-tuned model shows
significant improvements in coherence scoring, es-
pecially on CoheSentia. We observe a 15% and
27% accuracy gain for GCDC and CoheSentia
respectively, demonstrating that our proposed ap-
proach and selected tasks effectively contribute to
capturing fundamental aspects of coherence.

We further analyze the contribution of the proxy
tasks (Ours-All) by comparing it to a model with-
out such fine-tuning (Ours-None) to isolate perfor-
mance gains. As evident in Table 3 these tasks
dramatically enhance performances. These results
are supported by further qualitative analysis in Ap-
pendix D.

Next we analyze the MTL model’s success on as-
sessing the coherence conditions (cohesion, consis-
tency, relevance), by fine-tuning on the coherence
reasoning task. We compare the results to SOTA
from Maimon and Tsarfaty (2023), who fine-tuned
the Flan-T5 model with a simple prompt, and to our
model without initial fine-tuning on the coherence
proxy tasks (Ours-None). Table 4 summarizes the

coherence reasoning task results for all attributes
and metrics. Our model achieves SOTA perfor-
mance across all coherence conditions, demonstrat-
ing the efficacy of our approach.

Finally, We evaluate the task-specific perfor-
mance of models trained with either individual or
joint fine-tuning on the proxy tasks, using both the
Classification-Based and Generation-Based vari-
ations. Results are in Table 5, alongside com-
parisons to current SOTA on these benchmarks.
Our findings consistently show that Generation-
Based models outperform Classification-Based
ones. More importantly, joint fine-tuning across all
tasks consistently surpasses individual fine-tuning,
particularly in the SRO, ISR, and DRR tasks, where
it leads to significant performance improvements
and even surpasses SOTA benchmarks. For the
NPE task, joint fine-tuning achieves substantial re-
call gains, though precision falls short of SOTA
results, offering a more balanced performance. The
exception is the NLI task, where our model’s per-
formance is lower than SOTA.

In summary, our MTL model outperforms single-
task models on all tasks, achieving SOTA results
except for NLI, in line with our hypothesis on the
benefits of the joint architecture. Moreover, our
MTL model, jointly trained on coherence proxy
tasks, significantly improves performance, enhanc-
ing coherence scoring for both datasets and ex-
celling in coherence reasoning, in line with the
second part of our hypothesis.

7 Analysis

7.1 The Effect of Different Tasks on
Coherence Scoring

This section examines how fine-tuning on diverse
subsets of coherence proxy tasks affects coherence
scoring. We fine-tune models on various combina-
tions of these tasks, then perform final fine-tuning
and evaluation on the coherence scoring task.




Model Cohesion Consistency Relevance
Precision ‘ Recall ‘ F1 || Precision ‘ Recall ‘ F1 Precision ‘ Recall ‘ Fl1
SOTA [ 724 ] 721 [722] 596 | 675 [633] 564 [ 746 [595
Ours-None (bert-large) 66.4 59.4 | 62.7 60.4 56.5 | 59.6 49.2 499 | 495
Ours-ALL (bert-large) 74.7 70.5 | 72.5 70.6 682 | 69.3 59.8 61.1 | 60.4
Ours-None (t5-large) 81.1 80.3 | 80.7 60.4 62.6 | 61.5 48.1 49.6 | 48.8
Ours-ALL (t5-large) 83.1 83.2 | 83.1 78.5 80.3 | 794 70.8 76.9 | 73.7

Table 4: Results for Coherence Reasoning Task. The SOTA is by Maimon and Tsarfaty (2023)

Model SRO ISR DRR NPE NLI
PMR | ACC || Accuracy || Accuracy || F1 | P | R || Accuracy
SOTA [819]9%38[ - [ 647 [640[80.5][531] 920 |
Ours-Individual (bert-large) || 51.8 | 69.5 60.4 600 [[531]67.1]440] 874
Ours-ALL (bert-large) 67.1 | 83.2 78.6 65.7 64.4 | 79.8 | 54.2 90.2
Ours-Individual (t5-large) 757 | 87.8 80.4 648 |/ 598 685531 899
Ours-ALL (t5-large) 83.8 | 92.1 82.2 67.3 76.7 | 76.7 | 76.7 91.5

Table 5: Results for all proxy tasks compared to SOTA performances. The SOTA model for SRO is ReBART (Basu
Roy Chowdhury et al., 2021), for DRR is Contrastive Learning (Long and Webber, 2023), for NPE is TNE (Elazar

et al., 2022) and for NLI T5-11B (Raffel et al., 2020)

Figure 2 shows the impact of fine-tuning proxy
coherence tasks on coherence scoring performance.
Models fine-tuned on any coherence proxy task
outperform those without fine-tuning (Ours-None),
highlighting their effectiveness. Performance gen-
erally improves with more tasks, especially beyond
three, indicating cumulative benefits.

Interestingly, NLI fine-tuning significantly en-
hances performance, likely due to its role in im-
proving the model’s ability to capture consistency,
crucial for coherence assessment. Additionally,
ISR fine-tuning is more impactful when combined
with other tasks. These findings underscore the
importance of task selection and task interaction
during fine-tuning for optimal coherence scoring.

7.2 Impact of Non-Coherence Tasks
Fine-Tuning

In this Section we aim to empirically refute a pos-
sible hypothesis that the joint ALL model outper-
forms the NONE model simply due to its complex-
ity, regardless of the nature of the tasks used (i.e.,
tasks reflecting coherence conditions).

To this end, we compare the performance of our
fine-tuned on coherence-tasks model (Ours-ALL)
with a model fine-tuned on three tasks orthogonal
to coherence, followed by fine-tuning on the coher-
ence scoring task: (i) Machine Translation (MT):
We sample 15k instances from the WMT14 dataset
(Bojar et al., 2014). (ii) Named-Entity Recogni-
tion (NER): We use the Conll2003 dataset (Tjong
Kim Sang and De Meulder, 2003) containing an-
notations for 14k instances. (iii) Part-of-Speech
(POS), using the same Conll2003 dataset contain-
ing the POS tags as well.

Model In these experiments, we used the T5-
large model as the basis, employing specific prompt
and output designs for each task. For the NER and
POS tasks, we adapted the “Sentinel + Tag” archi-
tecture by Raman et al. (2022). Detailed prompts
and sample outputs are provided in Appendix F.

Results Following the same procedure as in our
main experiments, fine-tuned models were assessed
for coherence scoring using the GCDC and Cohe-
Sentia benchmarks (detailed in Table 3).
Fine-tuning on tasks orthogonal to coherence
yielded minimal to no improvements over the
baseline (Ours-None) and significantly underper-
formed compared to our final MTL model (Ours-
ALL). This highlights the importance of coherence-
specific proxy tasks for effective coherence detec-
tion, as unrelated tasks can hinder performance.

7.3 Cross-Domain Generalization

Since GCDC and CoheSentia present different do-
mains and writing styles, we evaluate model gen-
eralizability by fine-tuning on one dataset and as-
sessing coherence on the other. Table 6 presents
the results for our MTL model (Ours-ALL) and the
non-coherence fine-tuned model (Ours-None) un-
der three settings: fine-tuning on CoheSentia only,
GCDC only, and both combined.

Results demonstrate performance gains across
domains, highlighting the generalizability of our
method. Combining data improves performance,
with Ours-ALL showing a 12% and 14% error re-
duction on CoheSentia and GCDC, respectively,
compared to in-domain scenarios, underscoring the
utility and transferability of the learned features.
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Figure 2: Accuracy for Coherence Scoring Task for both GCDC and CoheSentia with different proxy coherence
task-subsets. The labels are tasks IDs (1-SRO, 2-ISR, 3-DRR, 4-NPE, 5-NLI)

[ Model | GCDC [ CoheSentia |
Ours-None-CoheSentia 52.8 34.8
Ours-None-GCDC 56.3 28.5
Ours-None-Both 57.5 35.4
Ours-ALL-CoheSentia 71.8 62.3
Ours-ALL-GCDC 76.4 59.5
Ours-ALL-Both 79.8 66.7

Table 6: Accuracy on coherence scoring on both datasets
when fine-tuned based on T5-model on only one dataset

7.4 Effects of Different Tasks on One Another

We investigate the impact of fine-tuning on various
coherence task subsets on individual task perfor-
mance. The model was trained on different task
combinations with increasing numbers of tasks and
evaluated on each task separately.

Figure 3 shows consistent performance gains
in the Sentence Reordering (SRO) task for BERT
models as more tasks are jointly fine-tuned (see
Appendix E for other tasks). This supports our hy-
pothesis that shared information among coherence
tasks enhances individual task performance.

The impact of specific tasks varies; for instance,
DRR minimally affects SRO, likely due to limited
training data. Notably, NLI significantly influences
the performance of various tasks. The ISR task
notably improves performance on other tasks, sug-
gesting its effectiveness in capturing relevance er-
rors, crucial for coherence assessment. We thus
emphasize the introduction of this self-supervised
ISR task and advocate for its exploration in future
research to enhance coherence assessment.

The overall performance trends are similar for
both BERT-base and BERT-large models, indicat-
ing that the impact of specific tasks is consistent
regardless of model size.

Score
a
&

3 3 3 4 4 5
{123} {124} {135} {1345} {1235} {12345}
Tasks Permutations

1 2 2 2
) @4y @2y 3

> PMR - BERT BASE
> PMR - BERT LARGE

® ACC - BERT BASE
® ACC - BERT LARGE

Figure 3: Results for SRO task, for different subsets
of coherence tasks fine-tuned upon. The labels are the
number of tasks and in curly brackets which tasks (1 -
SRO, 2 - ISR, 3 - DRR, 4 - NPE, 5 - NLI)

8 Conclusion and Future Work

In this paper we propose a new coherence mod-
eling method, based on Reinhart (1980)’s theory
which defines the conditions needed for coherence:
cohesion, consistency, and relevance. We use five
key NLP tasks as proxies for these conditions, and
train an MTL model on them jointly. Our uni-
fied coherence model achieves SOTA results on
these individual tasks, and moreover it excels in
coherence scoring for both real-world and gener-
ated texts. We conjecture that this framework will
enhance NLP systems’ ability to quantify and eval-
uate text quality automatically. Future follow-up
research will focus on using these conditions for
improved coherent-text generation, and for detect-
ing particular causes of incoherence automatically.
Our code and models are publicly available, to en-
courage further research on coherence scoring and
coherence reasoning.



Limitations

While this work advances the modeling and auto-
matic evaluation of coherence, limitations exist that
suggest promising avenues for future research.

Dataset Limitations Existing coherence evalua-
tion datasets like GCDC and CoheSentia, along
with datasets for our proxy tasks, primarily fo-
cus on relatively short texts. To address this, we
analyzed the performance of our MTL models
(Ours-ALL) and the non-coherence version (Ours-
None) on GCDC and CoheSentia across various
text lengths after fine-tuning for coherence scoring
(see Figure 7 in the Appendix). As expected, for
both models and datasets, accuracy decreased with
longer texts, highlighting the increased difficulty of
assigning coherence scores for complex passages.
This observation aligns with recent work suggest-
ing that while LLMs can handle longer texts, their
reasoning abilities might decline with increasing
text length (Levy et al., 2024).

Focus on Short Texts Our current study focused
on short texts (< 512 tokens). The effectiveness
of our approach on longer documents remains an
open question for future exploration. We hypothe-
size that incorporating coherence proxy tasks could
benefit the model’s performance on longer texts,
but further investigation is necessary.
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A Tasks Specific Experimental Settings

In this section, we further elaborate on the datasets
and evaluation metrics used for each one of the
coherence proxy tasks.

A.1 The Sentence Reordering Task Setup

Topological Sort: A topological sort (Tarjan,
1976) linearly orders vertices in a DAG. The al-
gorithm is presented in Algo A.1.

[t] Input: A digraph G with n vertices

Output: A topological ordering v1,v2...vn of G.
L < Empty list that will contain the sorted nodes
S <— Set of all nodes with no incoming edge S is
not empty remove a node n from S add n to L each
node m with an edge e from n to m remove edge
e from the graph m has no other incoming edges
insert m into S graph has edges error (graph has at
least one cycle) L (a topologically sorted order)
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Dataset: We use the ROCStories (Mostafazadeh
et al., 2016) dataset (Licence ID is CC-BY 4.0.)
which contains 5-sentence stories. We use the stan-
dard 85:15 train/test split and randomly select a
subset of the train for validation.

Evaluation: We use two common evaluation met-
rics for the reordering task:*

¢ Perfect Match Ratio (PMR): Chen et al. (2016)
calculate the percentage of samples for which
the entire sequence was correctly predicted.

Zl{oz_

* Sentence Accuracy (Acc): Logeswaran et al.
(2017) calculate the percentage of sentences
for which their absolute position was correctly
predicted.

PMR = 0"}

Acc = Z Z 1{Ol = OZ
A.2 The Discourse-Relation Recognition Task
Setup

Dataset: We use the Penn Discourse TreeBank3
(PDTB3) Level 2 dataset (Miltsakaki et al., 2004;
Prasad et al., 2008; Liang et al., 2020). We only
used labels with more than 100 instances, which
leaves us with 14 senses from Ls. The variabil-
ity of data splits used in the literature is substan-
tial, therefore, we follow earlier work by Ji and
Eisenstein (2015); Bai and Zhao (2018); Liu et al.
(2020); Xiang et al. (2022) using Sections 2-20,
0-1 and 21-22 for training, validation and testing
respectively. When multiple annotated labels are
present, we adopt the approach described by Qin
et al. (2016) and consider them as distinct instances
during the training phase. During testing, if a pre-
diction matches any of the reference labels, it is
considered correct.

Evaluation: We use the accuracy metric on the
number of sentence pairs the model correctly pre-
dicted the L4 discourse relation:

Z {R' = R}

A.3 The NP Enrichment Task Setup

Token Classification Head: Figure 4 is an illus-
tration of the token classification head for the NPE
task.

Accuracy =

“There are 5 metrics, we used the most common 2.
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Dataset: We use the TNE dataset (Elazar et al.,
2022) (Licence Free) which contains documents
and relations between every noun pair in it (with
a total number of nouns of 190k and a total num-
ber of NP relations of 1M). There are 28 possible
relations (including ‘no relation’). This dataset’s
advantage is that it contains real-world long para-
graphs. As in the original publication split the data
at the document level.

The distribution of the possible preposition be-
tween pair of nouns in TNE dataset is in Figure 5

Evaluation: We report precision, recall & F1 on
NP pairs with prepositional links between them.

A.4 The NL Inference (NLI) Task Setup

Dataset and Evaluation: We use the MNLI
dataset (Williams et al., 2018) (Licence ID CC-BY-
3.0). with the accuracy metric on the amount of
hypothesis-premise pairs that the model correctly
predicts their relation R:

RZ

Accuracy =

Z R =

A.5 The Irrelevant Sentence Recognition Task
Setup

Dataset: We again use ROCStories as in sen-
tence reordering. Each story within the ROCStories
dataset was augmented with a single, randomly in-
serted sentence. The irrelevant sentence for each
story was randomly selected from the entire ROC-
Stories dataset, with the sole constraint that it con-
tained entities present in the target story. Both this
and the sentence reordering task leverage the same
benchmark, retaining the same train/dev/test splits.

Evaluation: We use the accuracy metric on the
percentage of paragraphs where the model correctly
detected the irrelevant sentence S:

21{51

A.6 Overall Experimental Settings

SZ

Accuracy =

We trained each model three times, reporting the
mean performance. Training utilized multiple Tesla
V100 GPUs (up to 4) with 32GB memory each. For
each architecture, the settings are:

1. Classification-Based: BERT (base and large)
served as the encoder with fine-tuning across
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Figure 5: Distribution of the main prepositions in the
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all layers. We used Adam optimizer with a
learning rate of 5e-5 and a dropout of 0.5. For
tasks requiring classification (SRO, ISR, DRR,
NLI), we employed a linear classification head
with 512 hidden dimensions and 0.3 dropouts.
The NPE utilized a different head structure
(details omitted for brevity). Cross-Entropy
loss was used for all datasets.

Generation-Based: T5 (base and large) mod-
els were used as the backbone. Training em-
ployed Adam optimizer with a learning rate of
Se-5. Models were trained with task-specific
prompts and corresponding ground truth la-
bels for supervised learning.

Both architectures shared the following hyper-
parameters: fine-tuning for 3 epochs with early
stopping, batch size of 4, and gradient accumula-
tion steps of 2. The hyper-parameters were chosen
using parameters-grid. Our code is based on the
Huggingface library (Wolf et al., 2020).

B Coherence Assessment Experimental
Settings

For each architecture, the settings are:

1. Classification-Based (BERT base and large):
Encoder with fine-tuning across all layers,
Adam optimizer (learning rate 5e-4), dropout
(0.3). Each dataset used a linear classification
head (512 hidden dimensions, 0.1 dropout).
Cross-Entropy loss was used.

Generation-Based (T5 base and large):
Encoder-decoder architecture, Adam opti-
mizer (learning rate 2e-5). Inputs included
prompts specific to each dataset (GCDC or
CoheSentia) and the paragraph text.

The models share hyperparameters: 50 epochs
with early stopping (accuracy), batch size of 4,
and gradient accumulation steps of 2. We em-
ployed 10-fold cross-validation on both datasets
(following Lai and Tetreault (2018)) using a sin-
gle Tesla V100 GPU with 32GB memory. The
hyper-parameters were chosen using parameters-
grid. Our code is based on the Huggingface library
(Wolf et al., 2020).

C Text Length vs. Coherence Score

The accuracy of the models on both coherence
datasets based on different lengths is in Figure 7.
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D Qualitative Analysis

D.1 Qualitative Analysis

To gain qualitative insights, we sampled 50 misclas-
sified examples by SOTA models, from CoheSentia
and GCDC. We then assessed these examples on
various models, including our MTL model (Ours-
ALL) and the non-coherence fine-tuning version
(Ours-None).

For CoheSentia, the previous SOTA models fa-
vor extreme scores, likely due to training data im-
balance. Our model exhibits greater robustness,
predicting a more balanced distribution of scores.
Figure 8a and Table 7 present an example of a text
from the CoheSentia dataset and the predictions
of the models. In this example, the base model
(Ours-None) failed on coherence prediction, while
our final model (Ours-ALL) succeeded. Figure 8b
presents an example of text from GCDC dataset and
Table 8 the predictions of different models on the
coherence scoring task. This example highlights
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Model Prediction
Ground Truth Medium
SOTA High
Ours-None (BERT-large) High
Ours-None (T5-large) High
Ours-ALL (BERT-large) | Medium
Ours-ALL (T5-large) Medium

Table 7: Predicted Coherence scores for the text in

Figure 8a

Model Prediction

Ground Truth Low
SOTA Medium
Ours-None (BERT-large) | Medium
Ours-None (T5-large) Medium

Ours-ALL (BERT-large) Low

Ours-ALL (T5-large) Low

Table 8: Predicted Coherence scores for the text in
Figure 8b

a complex case with cohesion and relevance vio-
lations. Both the baseline and ISR-trained models
missed this issue, while our MTL model achieved
accurate prediction.

E Results for Subsets of Tasks

Figures 9a, 9b, 9c, 10a and 10b visualize the perfor-
mance of coherence proxy tasks across fine-tuning
settings for BERT-base and BERT-large models. It
highlights how subsets of tasks impacts target task
performance.

F TS5 Prompts and Outputs for Different
Tasks

In Table 9 we detail the various prompts used for
fine-tuning TS5 models on all explored tasks in this
work.

In Table 10 we detail the various outputs used
for fine-tuning TS models on all explored tasks in
this work.



'Shed been a widow for over two years and was starting to lose hope of ever seeing her husband again. One day, she received an

email from him asking if he could come out for fun at her funeral. She skeptically agreed but soon found herself enjoying his company

more than she could have imagined. As they went around the Neapolitan town where she belonged, it quickly became clear that their

bond was even stronger then before- they laughed and danced together like teenagers on celebrated days like this one. It seemed

equitable that he should be there too- as long as he didnt mind being the man in attendance at her burial pyre.”

(a) CoheSentia

"Guy from Mexico is in NY and is cooperating. Discussions with him continue this am. Since he is cooperating, no move to court or to

presentment scheduled yet.\n\nMexican support has been excellent throughout. Alice has call sheet for Espinosa — call can take

place whenever its convenient for you later this morning (Espinosa is apparently out on West Coast, but Ops could confirm time

difference).

Holding off for now on other calls that rest of us would make (Saudis, et aly, pending further developments in NY.

Will let you know as soon as we have more."

(b) GCDC

Figure 8: Sample Texts for coherence scoring tasks: GCDC & CoheSentia benchmarks

Task Name

Dataset Name ‘ ‘

Prompt

SRO

ROCStories

“reorder: what is the order of the sentences so that the
paragraph is coherent? sentence 1: (S1) sentence 2: (Sa)

o (Sy)”

ISR

ROCStories

“relevance: what is the irrelevant sentence in the text?
sentencel: (S7) sentence2: (Ss) sentence3: ...(Sn)”

DRR

PDTB3

“discourse relation: what is the discourse relation between
(DU ){(DUs)”

NPE

TNE

“coreference text: what are the preposition relations be-
tween <N P;> and <N P;>? text: <P>”

NLI

MNLI

“mnli: does this hypothesis contradict, entail, or neutral
with the premise? hypothesis: (H) premise: (P)”

Coherence Scoring

GCDC

“GCDC coherence: what is the coherence score of the text
(3 - high, 1 - low)? text: (P)”

Coherence Scoring

CoheSentia

“CoheSentia coherence: what is the coherence score of the
text (5 - high, 1 - low)? title: (T') text: (P)”

MT

WMT14

“Machine Translation: what is the translation of the
next text from language < source_language > to <
target_language >?: text in source language”

NER

Conll2003

“NER task: what is the entity recognition tagging of
each token in the next text? < extra_id_0 > tokenl
< extra_id_1 > token2 ..”

POS

Conll2003

“POS task: What is the part of speech tagging of each
token in the next text? < extra_id_0 > tokenl <
extra_id_1 > token2 ...

Cohesion Reasoning

CoheSentia

“Cohesion reasoning: previous data: <d;> new sentence:
<si>. Task: is the new sentence cohesive in regard to the
previous data? give a yes or no answer to each item ”

Consistency Reasoning

CoheSentia

“Consistency reasoning: previous data: <d;>new sentence:
<s1>. Task: is the new sentence consistent in regard to the
previous data? give a yes or no answer to each item ”

Relevance Reasoning

CoheSentia

“Relevance reasoning: previous data: <d;> new sentence:
<si>. Task: is the new sentence relevant in regard to the
previous data? give a yes or no answer to each item ”

Table 9: Prompts for all tasks in this paper when using T5 model as the backbone model
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Task Dataset H Outputs ‘

SRO ROCStories || list of position markers [Y7, Ya, ..., Y] (Y;-position of the
isr, sentence of the corresponding ordered sequence .S; in the
shuffled input)

ISR ROCStories || the index of the irrelevant sentence in the paragraph

DRR PDTB3 “(connector) — (I; relation) — (l2)”

NPE TNE the preposition

NLI MNLI Contradict / Entails / Neutral

Coherence scoring GCDC the score

Coherence scoring CoheSentia || the score

MT WMT14 the translated text

NER Conll2003 “< extra_id_0 > ner_tag_tokenl < extra_id_2 >
ner_tag_token2 ..”

POS Conll2003 “< extra_id_0 > pos_tag_tokenl < extra_id_2 >
pos_tag_token2 ..”

Cohesion reasoning CoheSentia || Yes/No

Consistency reasoning | CoheSentia || Yes/No

Relevance reasoning CoheSentia || Yes/No

Table 10: Outputs for all tasks in this paper when using T5 model as the backbone model
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Figure 9: Results for all tasks, for different permutations
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