
Informing climate risk analysis using textual information –
A research agenda

Andreas Dimmelmeier‡,1, Hendrik Christian Doll‡,2, Malte Schierholz‡,1,
Emily Kormanyos2,3, Maurice Fehr2, Bolei Ma1,4, Jacob Beck1,4,

Alexander Fraser4,5, Frauke Kreuter 1,4,6

1Ludwig-Maximilians-University Munich, 2Deutsche Bundesbank,
3Goethe University Frankfurt, 4Munich Center for Machine Learning (MCML),

5Technical University of Munich, 6University of Maryland, College Park
‡ These authors contributed equally.

Correspondence: A.Dimmelmeier@stat.uni-muenchen.de

Abstract

We present a research agenda focused on effi-
ciently extracting, assuring quality, and consol-
idating textual company sustainability informa-
tion to address urgent climate change decision-
making needs. Starting from the goal to create
integrated FAIR (Findable, Accessible, Inter-
operable, Reusable) climate-related data, we
identify research needs pertaining to the tech-
nical aspects of information extraction as well
as to the design of the integrated sustainability
datasets that we seek to compile. Regarding
extraction, we leverage technological advance-
ments, particularly in large language models
(LLMs) and Retrieval-Augmented Generation
(RAG) pipelines, to unlock the underutilized
potential of unstructured textual information
contained in corporate sustainability reports. In
applying these techniques, we review key chal-
lenges, which include the retrieval and extrac-
tion of CO2 emission values from PDF docu-
ments, especially from unstructured tables and
graphs therein, and the validation of automati-
cally extracted data through comparisons with
human-annotated values. We also review how
existing use cases and practices in climate risk
analytics relate to choices of what textual infor-
mation should be extracted and how it could be
linked to existing structured data.

1 Introduction

In light of the climate crisis, there is an increas-
ing call to integrate climate risk with the decision-
making of companies, banks and regulators. Cli-
mate risks for companies and, by extension, finan-
cial institutions have been grouped into two types:
transition risks and physical risks (Carney, 2015).
Transition risks arise from the transition of the
economy towards carbon neutrality and can ma-
terialize, e.g., in the form of higher-than-expected
carbon prices, stricter regulation, or changes in

technology and consumer preferences. These risks
affect companies and sectors with high (expected)
carbon emissions. Physical risks, on the other hand,
denote the direct adverse effects of a changing
global climate, such as sea level rise or increases in
storms and floods, droughts, and other natural dis-
asters (IPCC, 2022). Unlike transition risks, phys-
ical risks do not depend primarily on companies’
carbon footprint, but on the vulnerability of their
assets and business operations to physical damage
based on their geographic location.

Besides the companies themselves, climate risks
are relevant to the financial institutions which are
exposed to the affected companies through finan-
cial instruments such as loans or bonds. A bottle-
neck in climate risk analysis is the availability of
reliable data (NGFS, 2022). Items that can help
measure companies’ physical or transition risk pro-
files, such as carbon emissions and transition plans,
are scarcely available. As a consequence, institu-
tions like the European System of Central Banks
(ESCB) have thus far relied on proprietary datasets
from private data providers (Deutsche Bundesbank,
2022). These commercial providers often source
their climate risk data from corporate (sustainabil-
ity) reports through manual annotation. Whenever
reported data is not available or deemed insuffi-
ciently reliable, these data providers estimate num-
bers. Often, however, neither the reported nor the
estimated data is replicable, since the providers do
not disclose their estimation methods, and human
annotators can be prone to errors. Despite recent
regulatory efforts which have led to an uptick in
company sustainability disclosures, the data is most
often provided in relatively unstructured sustain-
ability reports. Within these reports, important in-
formation is not usually presented in consistent and
numeric formats (e.g., in structured tables), but can
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Figure 1: Integration of textual information into existing sustainability data can drive novel use cases and allows
enhanced climate risk analysis. Source: Own depiction.

be presented in any form of text and even graphics.
Beyond corporate sustainability reports, unstruc-

tured textual sustainability information on climate
risks is also available in the form of newspaper ar-
ticles, social media comments, and other dispersed
sources. The left panel of Figure 1 presents an
overview of existing structured and unstructured
sources of climate information. In this landscape,
recent technological progress in natural language
processing (NLP) opens up a range of new oppor-
tunities in efficiently extracting relevant data from
unstructured textual information, which then can
be linked to other data sources. Within the possible
sources of textual information, companies’ sustain-
ability reports are arguably the most relevant docu-
ment type for climate risk analysis since some form
of sustainability disclosure tends to be mandatory.
The information contained in such reports is mostly
related to transition risks. This stems from the fact
that, while sustainability reports could conceivably
also include information on physical risks, the fo-
cus (beyond marketing considerations) usually lies
on the companies’ ecological footprint. Therefore,
when referring to climate risks in the context of this
paper, we focus on extracting information related
to transition risks unless explicitly stated otherwise.
For physical risks, unstructured information also
exists largely in the form of images, e.g., satel-
lite imagery or street view. In this domain, recent
research also aims to convert unstructured infor-
mation from images into usable data (Rossi et al.,
2024; Alonso-Robisco et al., 2024). Our goal is
thus to leverage sustainability reports in order to
validate existing data sets, close data gaps by mak-
ing new variables available, increase the coverage
of company-level data, and improve the accessibil-

ity of information.
The remainder of this paper develops a research

agenda that leverages NLP methods to condense
the disparate sources of unstructured information
into a structured, comprehensive, accessible, and
trustworthy database. We develop this proposal
across three sections: The first section discusses the
latest research and use cases of NLP in the context
of textual sustainability information in general and
corporate sustainability reports in particular. The
second section further explores the specifications
and challenges related to LLM-based extraction
pipelines by reporting the results from three initial
experiments aimed at extracting emission values
from 39 sustainability reports. The third section
addresses the questions of (i) how data extraction
should be organized, (ii) what information should
be prioritized for extraction, and (iii) how data link-
age and post-processing should be undertaken in
order to create an integrated data infrastructure.
The fourth section concludes the paper.

2 Background on NLP for sustainability
data

Recent innovations in NLP, especially LLMs, such
as Bidirectional Encoder Representations from
Transformers (BERT) and Generative Pre-trained
Transformers (GPT), have enabled major advances
in the availability of research and web-based tools
for analyzing documents. Company sustainability
and financial reports contain a wealth of data in
unstructured, multi-modal (e.g., as tables, graphs,
and text), and only partially standardized formats.
As such, they provide a strong use case for the ap-
plication of this new generation of NLP approaches.
Their potential is illustrated by the fact that freely



available online tools for the analysis of texts have
mushroomed recently. Next to general-purpose
chat bots including OpenAI’s ChatGPT and similar
(at times derivative) products such as ChatPDF and
PDF.ai, there are also products with an exclusive
focus on sustainability. Examples of these tools
include the Sustainable Development Goals (SDG)
Prospector (Jacouton et al., 2022), which highlights
all SDG-related paragraphs in the uploaded docu-
ments, or ChatClimate, which targets the analysis
corporate sustainability reports.

These solutions, however, generally focus on
interactive chat bots with Graphical User Interfaces
(GUIs). Similar in design and usability to OpenAI’s
ChatGPT, they target human, ad-hoc, infrequent
users who can profit from a more time-efficient
extraction of specific relevant information from
sustainability disclosure – essentially, users who
do not wish to read complete documents to find
specific types or single pieces of information.

Apart from chat bots, academics from a variety
of disciplines leverage NLP methods to systemati-
cally gather and evaluate sustainability information
from large text corpora. In the field of corporate
sustainability research, earlier bag-of-words ap-
proaches that relied on word-frequency have been
increasingly replaced by more sophisticated meth-
ods that take the context of textual documents into
account and can be leveraged for the extraction and
analysis of various types of information. In this
context, one strand of research has developed dif-
ferent extensions to BERT models to perform text
classification of sustainability-related information,
such as FINBERT-ESG (Huang et al., 2023), Cli-
mateBERT (Leippold et al., 2022), and ClimateQA
(Luccioni et al., 2020).

This class of domain-specific language mod-
els expands the general BERT model through a
pre-training and a fine-tuning stage: During pre-
training, the model is augmented with domain-
specific texts. In the context of corporate sustain-
ability research, corporate financial and sustainabil-
ity reports, financial analyst reports, earning call
transcripts, (keyword-filtered) news, and scientific
abstracts have been used as pre-training data (cf.
Leippold et al. 2022, Huang et al. 2023, Luccioni
et al. 2020). In the fine-tuning stage, the model
is provided with a set of human-annotated texts
which have been assigned to a specific outcome
category. Such annotation efforts have been under-
taken inter alia to the concept of Environmental,
Social and Governance (ESG) issues (Huang et al.,

2023), each of its subdomains or pillars (i.e., E,
S and G separately; cf. Schimanski et al. 2024),
companies’ “environmental claims” (Stammbach
et al., 2022), and particular sustainability disclosure
frameworks, i.e., the Taskforce on Climate-Related
Financial Disclosures (TCFD, Luccioni et al., 2020;
Bingler et al., 2022).

Domain-specific models have been applied to a
variety of tasks including text classification, senti-
ment analysis, and “fact-checking”. These models
have also been found to outperform generic lan-
guage models with regards to the accuracy of text
classification (Luccioni et al., 2020; Bingler et al.,
2022; Leippold et al., 2022; Huang et al., 2023;
Leippold et al., 2024). In addition, first proposals
suggest that these models could be applied for text
classification tasks related to the identification of
“greenwashing” (Moodaley and Telukdarie, 2023;
Koch et al., 2023; Bingler et al., 2024), i.e., the pro-
mulgation of unsubstantiated environmental claims
(European Commission, 2024).

While domain-specific models have generally
focused on the classification of textual data, a sec-
ond strand of research has applied language mod-
els to find and extract numerical as well as tex-
tual data. To this end researchers have deployed
so called Retrieval-Augmented Generation (RAG)
pipelines that add domain-specific context to an
LLM prompt. In the field of sustainability research,
applications of RAG include the GPT-4 based Chat-
Climate (Vaghefi et al., 2023) that extracts informa-
tion from the Intergovernmental Panel on Climate
Change (IPCC) AR 6 based on user prompts and
ChatReport (Ni et al., 2023), which extracts infor-
mation from corporate sustainability reports and
checks the alignment of the extracted information
with TCFD disclosure rules. Another RAG applica-
tion for extracting sustainability data from compa-
nies’ sustainability reports is explored by Bronzini
et al. (2023), who use a Llama-2 model for a fine-
grained assessment of companies’ sustainability-
linked topics and actions. In addition, Zou et al.
(2023) have tested the performance of different lan-
guage models in processing sustainability reports,
by adopting a RAG pipeline that extracts the numer-
ical and textual indicators that are defined in the
Global Reporting Initiative (GRI) and Sustainabil-
ity Accounting Standards Board (SASB) disclosure
standards from pre-processed company reports.

More recently, a similar workflow has been
adopted by the Innovation Hub of the Bank for
International Settlement’s (BISIH) “Project GAIA”



(BIS Innovation Hub, 2024), which develops an
application that uses GPT-4 in a RAG setting and
a module that integrates indicator definitions from
legislative texts to extract numerical and categorical
Key Performance Indicators (KPIs) from sustain-
ability reports.

These examples from the prior literature under-
score the immense potential of novel NLP methods
to facilitate the efficient extraction of sustainability-
related information from corporate disclosure doc-
uments and – once implemented – to do so at a
relatively low cost. Their achievements notwith-
standing, there are arguably still important chal-
lenges that limit the usefulness of such methods for
systematic analysis of climate risks and related is-
sues. First, concerning the technical specifications
there remain open questions with respect to the vali-
dation of the extracted values as well as to cost and
time-efficient set-ups of the extraction pipelines.
Second, so far there has been comparatively lit-
tle discussion on how the obtained values can be
meaningfully integrated into existing practices of
data analysis in the context of climate risk assess-
ments. In light of these challenges, in the following
sections we delve further into both technical and
user-related issues and propose first steps in a re-
search agenda that tackles these various challenges
together.

3 Preliminary results

From a technical point of view, the automa-
tized extraction of information from sustainabil-
ity reports faces various challenges. With RAG-
based pipelines these challenges include the pre-
processing of PDFs and the text therein (i.e., the
conversion of PDF files into a machine-readable
format), cost-efficient procedures for large numbers
of PDF documents, and the validation of the ex-
tracted values against benchmarks (BIS Innovation
Hub 2024, Bronzini et al. 2023). Especially with
regards to validation, the absence of gold-standard
benchmarking data has proved to be challenging as
existing datasets on corporate sustainability indica-
tors tend to be proprietary, intransparent, and values
vary substantially among commercial providers (cf.
Berg et al. 2022).

To get a clear overview of the challenges and
potential trade-offs along the extraction pipeline,
we set up a first experiment that enables us to com-
pare different technical specifications of the model
but also focuses on the potential pitfalls of human

labelled benchmark data. The first step in this ex-
periment was to annotate 39 sustainability reports
from large companies from the years 2010 to 2021.
These are randomly sampled from the universe of
MSCI World firms that published English language
reports. The list of selected reports is presented in
Table 2 in the Appendix.

We chose to extract the values for Greenhouse
Gas (GHG) emissions in our experiment. Com-
pared to other indicators, GHG emissions disclo-
sures are more frequent and less variable as most
companies report according to the GHG Protocol
(GHGP) standard (WBCSD, 2004). First intro-
duced in 2004 by the World Resource Institute and
the World Business Council for Sustainable De-
velopment, the GHGP has since been adopted by
most large companies and been integrated into reg-
ulatory requirements across the world (Jia et al.,
2022). The GHGP standardizes emission disclo-
sures through three categories of emissions, so
called "Scopes", that reflect the operational con-
trol of the company over the released GHG. Ac-
cordingly, "Scope 1" emissions denote GHG re-
leases from sources that are directly controlled and
operated by the company. "Scope 2" emissions,
meanwhile, refer to emissions from that were gen-
erated from the generation of electricity that the
company purchased. Finally, "Scope 3" emissions
refer to other indirect emissions that occur in the
company’s value chain such as the extraction and
production of purchased materials or the use of
sold products and services.

Five human annotators extracted Scope 1, 2, and
3 GHG emissions. Annotators were asked to open
the .pdf file, search for the term “Scope 1” (respec-
tively “Scope 2” or “Scope 3”) and a predefined list
of synonyms including "direct / indirect emissions"
and extract (if found) the resulting value, unit, vari-
able name, year, page number, and origin (one of
“table”, “text”, or “graphic”) into a spreadsheet (see
Appendix C).

Among the pitfalls that were encountered by hu-
man annotators, missing information is among the
most prominent. We found that eleven reports, or
28 percent of the sample, do not report any emis-
sion values. The problem of missing information
becomes even more accentuated for Scope 2 and 3
emissions, which are often not contained in older
reports. A second pitfall concerns unclear and vary-
ing concept definitions. For instance, some reports
only report employee travel under their Scope 3
GHG emissions, whereas others use this concept to



refer to total upstream and downstream emissions.
Thirdly, we encountered different ways of dissemi-
nating information including text, tables and info-
graphics. A final pitfall is the presence of differ-
ent measurement units for GHG emissions. While
some of these are easy to convert (e.g., tCO2eq
vs kgCO2eq), other units such as emission inten-
sities as opposed to absolute emissions, or CO2

equivalents as opposed to separate depiction of sin-
gle greenhouse gases are more problematic in this
regard.

The next step was to set up an automatic data
extraction pipeline. We use an LLM to convert
raw text from PDFs into a structured, tabular for-
mat. Since sustainability reports can be rather long,
we first need to search for the most relevant con-
tent (e.g., pages, tables) before passing it to the
LLM. This coupling of search, typically done via
embeddings, with LLMs is a common architec-
tural pattern to enhance LLM capabilities, known
as naive Retrieval Augmented Generation (Naive
RAG) (Gao et al., 2024). Three approaches were
tried to extract all Scope 1/2/3 GHG emissions for
each year from each report:

First, we search for relevant pages and pass the
raw text of the so-found pages to an LLM. Specif-
ically, we embed the search query "What are the
total CO2 emissions in different years? Include
Scope 1, Scope 2, and Scope 3 emissions if avail-
able." using openai’s text embedding model ada-
002 and compare it with the embedding of each
page from the pdf report. The two most relevant
pages from this search are kept, concatenated, and
submitted in a single query to openai’s flagship
LLM, GPT-4-Turbo. Based on the raw text from
these two pages, the LLM is prompted to answer
a list of 48 questions (16 years × 3 scopes): "1.
What are the Scope 1 emissions in 2010: <value>
<unit> 2. What are the Scope 1 emissions in 2011:
<value> <unit>", and so on, for all possible com-
binations of year (2010 - 2025) and Scope (1-3).
The search query and the complete LLM prompt
are provided in appendix B. The output from the
LLM is typically well structured, meaning that it
can be parsed using regular expressions to insert
the extracted (value, unit)-tuples into a data frame.

The second approach is very similar: The gen-
eral pipeline, the models, and the queries remain
the same. We only change the selection of pages
and their handling. We now keep the three most
relevant pages from the search, along with each
page’s preceding and subsequent page. This gives

us at most nine pages per report in total. We do not
concatenate the pages as in approach 1, but send
each page in separate queries to the LLM, because
we found during preliminary testing that GPT-4-
Turbo overlooks relevant values more often if pages
were concatenated. The output from each query
gets parsed separately implying that for a single
Scope-Year combination from a single report we
may extract more than one value as the LLM may
extract different values from different pages.

Third, again following the same pipeline, we
adopt a table-only approach. Since the CO2 emis-
sion Scopes are predominantly presented in ta-
bles within sustainability reports, we leverage the
Python package pdfplumber1, which enables table
extraction from PDF files. After extracting the ta-
bles, we apply a similar pipeline as in our second
experiment keeping the ten most relevant tables
from the search and feeding them into the LLM.
We present the results of the three preliminary ex-
periments in Table 1.

Extraction result E1 E2 E3

Correct result: No CO2 emissions found 11 11 11
Correct result: All CO2 emissions extracted 4 1 0
Correct values but wrong units extracted 4 3 0
Retrieval failure: Incomplete text passed to LLM 10 4 NA
LLM extracts information from wrong page 0 5 NA
LLM fails to find ANY correct values 6 3 25
LLM fails to find ALL correct values 4 12 3

Total (N) 39 39 39

Table 1: Short summary of results in preliminary experi-
mentation. E1-3 denotes the experiment 1,2,3. The num-
bers in the columns are the numbers of reports. Since
most reports contain more than one true value (different
Scopes/different years), we distinguish whether ANY
correct value was correctly extracted, or if ALL cor-
rect values were correctly extracted. NA means that the
respective metric is not straightforward to calculate in
experiment E3.

From the results, we notice that, among the 39
reports, all of the applied approaches still struggle
to achieve optimal performance on the annotated
data. On the positive side, nothing ever gets re-
turned from eleven reports that do not report GHG
emission values. The first approach (E1) correctly
outputs all the desired values from eight reports.
We include four reports in this tally, where the
units are not spelled exactly the same way as it was
spelled by the human annotator; a harmonization
challenge that should be solvable with little effort.

1https://pypi.org/project/pdfplumber/

https://pypi.org/project/pdfplumber/


The main drawback of E1 is, however, its retrieval
strategy: For ten reports we would have liked the
algorithm to extract values from specific pages that
were not found during our search and were there-
fore not passed to the LLM. Our second approach
(E2) was designed to alleviate this problem: As we
widen the search, we reduce the tally of retrieval
failures to just four. This success, unfortunately, is
not reflected in the number of correctly extracted
values (1+3 reports), because the LLM frequently
extracts wrong values (five reports) or, in reverse,
does not extract values that should have been ex-
tracted (3+12 reports). While the performance is
not yet satisfactory, these results suggest that future
work is needed in three areas: retrieval, usage of
LLMs for extraction tasks, and unit harmonization.

The third approach (E3) yields even poorer re-
sults for the task. This indicates the inadequacy of
only relying on tables for content extraction, even
though based on human annotation we would ex-
pect that emission values are usually summarized
in tables in the reports.

4 Discussion and Research Agenda

As outlined in section 1, the goal of applying NLP
techniques to unstructured corporate sustainability
information is to extract high-quality data. Notably,
this includes a large coverage to enable compar-
ative assessments of transition risks and related
use cases by academics, financial supervisors and
other public and private institutions. Based on our
analysis of the literature and first findings from ex-
periments with a RAG pipeline, we segment the
challenges and research gaps for creating a high-
quality, accessible database on corporate sustain-
ability into two how and one what questions.

The first how question relates to the design of the
RAG pipeline and covers issues like the the set-up
of human annotation, prompt engineering, and the
extraction of different presentation formats within
the sustainability reports (e.g., tables, graphs). The
what question, in turn, asks which variables should
be contained in the structured database. Answering
this question, notably, requires domain-specific ex-
pertise as it not only relates to the indicators such as
GHG emissions that should be extracted, but also to
contextual information that could help users to as-
sess the credibility of the reported data. The second
how question, finally, refers to the post-processing
of the extracted values through data science tech-
niques. These operations can include the creation

of new indicators pertaining to the reliability of the
company disclosed data as well as to the linkage of
the extracted values with other datasets.

4.1 How to apply NLP and LLMs to
structured data generation?

Annotation. In the absence of transparent and
high-quality datasets on companies’ sustainability
disclosures, the creation of human-annotated vali-
dation data becomes a crucial precondition for the
evaluation of automatized information extraction
pipelines. To serve as a gold-standard for evaluat-
ing a model’s performance, the quality of human
annotation needs to be ensured. Past research mak-
ing use of human annotations has addressed this
aspect by focusing on annotator training and agree-
ment rates (Stammbach et al., 2022).

Apart from its function in validation, systemat-
ically comparing between human annotated and
automatically extracted information can, however,
also deliver insights about the different error types
of humans and machines. Regarding the compar-
ison of error types, we note that although annota-
tions generated by LLMs certainly include errors,
human annotators are likewise prone to sources of
error such as cognitive biases or fatigue. Thus, both
types of annotators are imperfect and are likely to
reach their maximum potential when complement-
ing each other.

Beyond looking at annotator errors and negligi-
ble deviations between automated and human an-
notations, comparisons can also point to frequent
and major errors made by the automatic extraction
algorithm, e.g., values that are part of a background
image or diagram might not get extracted because
the algorithm only uses text. This could be im-
proved with better versions of the algorithm. The
most interesting part from a research and policy
perspective will, however, be the detection of im-
precision and ambiguities in the sustainability re-
ports, like when a report is self-contradictory and
mentions different numbers for what should be the
same entity, or if a car manufacturer provides the
total emissions for its car manufacturing business
but does not clarify if this is the same as the com-
pany’s total emissions. These types of problems let
us learn more about the quality of the published sus-
tainability reports and have potential implications
for regulatory and standard-setting authorities.

To address both the validation and the research-
informing dimensions of annotation, we plan on
creating a small-scale gold-standard dataset of



emission annotations. We aim to assure a par-
ticularly high level of data quality by creating
the dataset from LLM annotations that are subse-
quently evaluated by human annotators and eventu-
ally adjudicated by domain experts. In this process
we will additionally gain a better understanding
of how the complementary annotation process of
humans and LLMs can work. Moreover, we aim to
document typical sources of error by the LLM and
reasons for disagreement between the LLM and the
human annotator. In addition, the gold-standard
nature of the dataset allows for further evaluations
of annotation quality, e.g., through experimental
research. The learnings from this small-scale anno-
tation exercise will then also serve as a cornerstone
to eventually derive a scalable annotation approach,
which will be needed to deploy reliable tools for
automated information extraction.

LLM-based Information Extraction. Next to
validation and annotation issues, the set-up of an in-
formation extraction pipeline also involves a range
of technical specifications that need to be systemat-
ically addressed. While we have been using GPT-4
within a RAG pipeline, we have found that this
process is not straightforward. There are many
different choices that can be made and it is often
unclear what works best within this setting. When
we extracted the raw text from PDF documents
(see experiments E1 & E2 in Section 3), any infor-
mation about the layout of pages and tables and
the position of characters within the table got lost.
This is clearly not optimal and as a resort we tried
table extraction from PDF documents (E3). Yet
another possibility to maintain the layout would
be to convert PDF files/pages to images for further
processing. For retrieval, the challenges include
choosing between different embedding models to
search for relevant text chunks (e.g., pages), set-
ting appropriate parameters to define the size and
overlap between text chunks, and the number of
text chunks passed to the LLM. Prompt engineer-
ing to make optimal use of LLMs is another big
task: the exact wording of prompts matters. One
might try prompts that make use of examples (few-
shot learning), ask for a single emission value of,
e.g., Scope 1 in the year 20xx or query the LLM
more generally for all available emission values of
different Scope-Year combinations. Getting even
more complex, LLM agents as formalized by Wang
et al. (2024) could orchestrate diverse, multi-step
workflows where multiple LLMs in various roles
and using external tools work together to solve a

task.
LLM output can be structured by requiring

JSON output formats or by using function calling if
one wants to avoid parsing the textual output from
the LLM with regular expressions. Since LLM
outputs can differ (depending on another parame-
ter, the temperature), it may be worth querying the
LLM repeatedly with identical prompts. Finally,
we can ask the LLM for an indicator of certainty,
or we can obtain log probabilities for each output
token; both of these methods are potentially useful
to decide whether we can trust the LLM output or
if we should run a different query. Setting up a
well-designed study to find out about how to best
configure such a data extraction pipeline would be
extremely helpful.

In terms of structured content extraction like ta-
ble extraction from the reports, another difficulty
we are always encountering lies in the diverse and
non-standardized formats of certain content. For
example, a table could have different shapes and
styles and some are even incorporated into other
content types like graphs. This makes a rigidly
structured automatic extraction approach difficult.
A possible approach is to train a model on a good
number of domain-specific annotated data which
could capture the variations of tables and then to
deploy this model for the desired use case. How-
ever, this approach demands significant annotation
efforts and training costs. Alternatively, one could
engage a subject matter expert to devise a coding
scheme covering all table variations. Subsequently,
these variations could be used as prompts for an
LLM with contextual learning capabilities to per-
form few-shot table extraction, as suggested by
Choksi et al. (2024) in content extraction using
LLMs with the help of subject matter experts.

As the understanding and interpretation of ta-
bles typically depend on other, relevant informa-
tion from the document – so-called contextualized
information –, such table-related content could also
be helpful for the extraction task (Gemelli et al.,
2023). In our initial experiments conducted on
Scope extraction based on table-only content (de-
tailed in Section 3), a notable challenge arises: the
potential absence of crucial contextual information
during the extraction phase. Therefore, a future
research direction could be to conduct the Scope
extraction based on the tables along with their con-
textualized information. Leveraging this combined
information, the RAG technique of LLMs could be
employed to extract the required Scopes or other ta-



ble contents more effectively. Issues that need to be
explored include approaches to extract contextual
information alongside the tables, integrating this
contextual data with the tables, and determining
optimal prompts for the extraction processes.

4.2 What information to include in the
structured database?

The goal in this comprehensive research agenda
is to streamline the automated production of
climate-related data from dispersed and unstruc-
tured sources into unified, FAIR data (Wilkinson
et al., 2016). Findable, because data is in a cen-
tral repository as opposed to the current situation
on dispersed websites. Accessible, because fewer
licensing restrictions arise than in the current situa-
tion characterized by widely used proprietary data.
Interoperable, because information can be com-
pared among reports and linked to other sources.
And Reusable, because information from past un-
structured reports is preserved.

While existing approaches have focused on ex-
tracting indicators prescribed by standard setting
bodies (Bronzini et al., 2023) or financial supervi-
sors (BIS Innovation Hub, 2024), the heterogeneity
in sustainability reporting practices implies that
users would also benefit from additional contextual
information that allows them to judge the quality
and comparability of extracted indicators. Such ad-
ditional contextual information could, for instance,
include information on calculation methodologies
and concept definitions for more ambiguous indi-
cators like Scope 3 emissions. Adding contextual
information would enhance the value of a struc-
tured database, because despite the existence of
standards and protocols to measure and report sus-
tainability performance, a great degree of hetero-
geneity across currently often unknown dimensions
persists in sustainability reporting. Even in the
case of emissions data, which is reported by most
companies according to the Scopes of the GHG
Protocol, great variations across time, methods and
observation units (i.e., companies and their bound-
aries) are possible (see Jia et al., 2022 for a detailed
discussion).

A further data need that can be derived from the
goal to pursue climate risk analysis consists of the
extraction of subsidiary companies and physical
assets (e.g., production facilities) from company
reports. Obtaining such data could help to fill data
gaps for bottom-up and geolocalized assessments
on both physical (Rossi et al., 2024) and forward

looking transition risks (Kruitwagen et al., 2021;
Bingler et al., 2021). Their importance notwith-
standing, asset-level data are – with few sector-
specific exceptions – to date mostly sourced from
commercial providers (Kruitwagen et al., 2021).

Another use case for the application of NLP to
companies’ sustainability reports lies in evaluat-
ing the credibility of the disclosed information. In
this context, the literature that has proposed to in-
vestigate the textual characteristics of sustainabil-
ity documents to detect instances of greenwashing
(Koch et al. 2023, Moodaley and Telukdarie 2023)
could be a starting point. This emerging literature
has drawn attention to generic and vague sentences
or paragraphs as possible indicators of greenwash-
ing. Further developing the classification of such
text snippets could thus contribute to the develop-
ment of indicators that convey information about
the credibility of a sustainability report. In addi-
tion, one could think of attributing measures of
vagueness and generic nature to specific items and
metrics (e.g., CO2 emissions, decarbonisation tar-
gets) to break down credibility assessments to a
more granular level.

4.3 How to link the extracted data and assess
its quality?

The questions of how to organize the data extrac-
tion and what data to extract are also interlinked
with considerations about how the data should be
treated after extraction. Two key issues in this con-
text are data linkage and post-processing through
statistical techniques. Linkage to other structured
company information including financial indica-
tors is relatively straightforward, as this concerns
mostly large global companies, where company
names are relatively standardized and unique iden-
tifiers (often ISINs) prevail.

Another possibility of linkage that would be use-
ful for checking the quality of reported information
would be to link it to external independent sources
such as earth-observation or administrative regis-
ters. This could be especially valuable for sectors
with high (and sometimes under or misreported, cf.
García Vega et al. 2023) emissions profiles such as
oil and gas extraction, which have already been as-
sessed via remote sensing methods (He et al. 2024).
The discrepancies between reported and externally
observed values could then feed into the creation of
new indicators that alert users about potential relia-
bility issues with the company reported values. An-
other potential source of such reliability indicators



would be to compare the consistency of company
reporting over time. By way of example, in the
post-processing stage one could compare compa-
nies’ emission reduction targets over the course of
time, i.e., comparing revisions of emission targets
for the future as the commitment date nears.

Furthermore, insights regarding data quality and
possible inconsistencies can be obtained by link-
ing the extracted information to the offerings of
third-party data providers. Ensuring data quality
and increasing coverage goes in both directions
here: Third-party data providers often draw emis-
sions data from corporate reports too, so the results
should, in theory, be unambigious. In reality, how-
ever, we have observed that different data providers
provide different numbers for the same variable and
company even when they all refer to corporate re-
ports. Data drawn from reports via LLMs can be
used to verify third-party data and the other way
around. Furthermore, third-party providers usually
have an estimation method for undisclosed emis-
sions. This can close data gaps that are left open by
LLMs, whereas LLMs can close data gaps left by
third-party providers due to their lack of interest in
smaller companies or specific jurisdictions.

After linkage, it is necessary to provide users
with an evaluation of trustability of the source and
to resolve conflicts. This post-processing could
consist of taking contextual indicators on the data
quality of the reports into account. In addition, in
line with current market practices, statistics from
the obtained structured database itself (e.g., sector
averages, deviation from past values) could be used
to assess the plausibility of the reported informa-
tion.

5 Outlook and conclusion

As companies and other stakeholders produce an
ever increasing volume of climate and sustainabil-
ity information, we are confronted with the para-
doxical situation, where a wealth of data is freely
available, while climate risk analysts simultane-
ously point to data gaps.

Technological progress in LLMs offers an oppor-
tunity to overcome this apparent gulf, by turning
dispersed unstructured information into FAIR data.
Creating integrated FAIR data, however, comes
with technical challenges and domain-specific
choices regarding the data infrastructure, both of
which should be addressed systematically and trans-
parently as part of an integrated research agenda.

Limitations

Throughout the paper we have highlighted vari-
ous research gaps, existing shortcomings, and chal-
lenges that the research community will need to
overcome before high-quality, simple-to-analyze
climate-related data extracted from sustainability
reports will find more widespread acceptance in
fields of research which work more directly on
tackling the climate crisis.

Concerning limitations of our extraction pipeline
approaches, we note that we have not explicitly
addressed questions on the conversion of different
units of measurement (e.g., kg vs ktons of GHG).
In addition, cost aspects have not been incorporated
into our experiments nor in the discussion, although
they will be significant to consider when scaling
up the proposed extraction pipelines. Since we
may need to make over a million LLM requests
to extract different indicators and their respective
contexts from tens of thousands of reports in order
to create an integrated sustainability database, the
cost efficiency and – in relation to this – energy
efficiency of the computing operations need to be
ensured.
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A Annotated reports

Company Year Language

AbbVie 2019 en
Amazon 2020 en
Apple 2021 en
ASML 2016 en
ASML 2018 en
BASF 2015 en
BASF 2018 en
Chevron 2020 en
Cocacola 2016 en
Continental 2013 en
Continental 2021 de
Deutsche Bank 2015 en
Deutsche Bank 2016 en
Deutsche Bank 2017 en
Deutsche Post 2012 en
Eli Lilly 2010 en
E.ON 2010 en
E.ON 2015 en
Exxon Mobil 2014 en
Fresenius medical care 2021 en
Infineon 2014 en
Infineon 2020 en
JP Morgan Chase 2014 en
Mercedes-Benz group 2014 en
Mercedes-Benz group 2021 en
Microsoft 2010 en
Microsoft 2019 en
Novo Nordisk 2019 en
Novo Nordisk 2020 en
Pepsico 2015 en
Pepsico 2019 en
Pfizer 2019 en
Puma 2013 en
Puma 2014 en
Puma 2018 en
RWE 2014 en
Samsung 2018 en
Volkswagen 2019 en
Walmart 2017 en

Table 2: Overview of the 39 annotated sustainability
reports in the preliminary study.



B Prompts used with experiment E1

Search query used with ada-002

What are the total CO2 emissions in different years?
Include Scope 1, Scope 2, and Scope 3 emissions if available.

LLM prompt used with GPT-4-Turbo

Extract key pieces of information from this sustainability report.
If a particular piece of information is not present, output \"Not specified\".
Always include unit of measurement in your answer.

Use the following format:
0. What is the title
1. What are the Scope 1 emissions in 2010
2. What are the Scope 1 emissions in 2011
3. What are the Scope 1 emissions in 2012
4. What are the Scope 1 emissions in 2013
5. What are the Scope 1 emissions in 2014
6. What are the Scope 1 emissions in 2015
7. What are the Scope 1 emissions in 2016
8. What are the Scope 1 emissions in 2017
9. What are the Scope 1 emissions in 2018
10. What are the Scope 1 emissions in 2019
11. What are the Scope 1 emissions in 2020
12. What are the Scope 1 emissions in 2021
13. What are the Scope 1 emissions in 2022
14. What are the Scope 1 emissions in 2023
15. What are the Scope 1 emissions in 2024
16. What are the Scope 1 emissions in 2025
17. What are the Scope 2 emissions in 2010
18. What are the Scope 2 emissions in 2011
19. What are the Scope 2 emissions in 2012
20. What are the Scope 2 emissions in 2013
21. What are the Scope 2 emissions in 2014
22. What are the Scope 2 emissions in 2015
23. What are the Scope 2 emissions in 2016
24. What are the Scope 2 emissions in 2017
25. What are the Scope 2 emissions in 2018
26. What are the Scope 2 emissions in 2019
27. What are the Scope 2 emissions in 2020
28. What are the Scope 2 emissions in 2021
29. What are the Scope 2 emissions in 2022
30. What are the Scope 2 emissions in 2023
31. What are the Scope 2 emissions in 2024
32. What are the Scope 2 emissions in 2025
33. What are the Scope 3 emissions in 2010
34. What are the Scope 3 emissions in 2011
35. What are the Scope 3 emissions in 2012
36. What are the Scope 3 emissions in 2013
37. What are the Scope 3 emissions in 2014
38. What are the Scope 3 emissions in 2015



39. What are the Scope 3 emissions in 2016
40. What are the Scope 3 emissions in 2017
41. What are the Scope 3 emissions in 2018
42. What are the Scope 3 emissions in 2019
43. What are the Scope 3 emissions in 2020
44. What are the Scope 3 emissions in 2021
45. What are the Scope 3 emissions in 2022
46. What are the Scope 3 emissions in 2023
47. What are the Scope 3 emissions in 2024
48. What are the Scope 3 emissions in 2025

For example, answer as follows:
0. What is the title: Our responsibility. Report 2014
1. What are the Scope 1 emissions in 2010: <value> <unit>
2. What are the Scope 1 emissions in 2011: <value> <unit>
Please continue with your answer:

Regular expression used with this LLM prompt
The following regular expression extracts scope,
year, value and unit:

What are the Scope ([123]{1}) emissions in (20[12]\d): ([0-9\.,]+) (.{0,50})

A separate regular expression extracts whether the
LLM outputs "not specified":

What are the Scope ([123]{1}) emissions in (20[12]\d): (Not specified)$



C Annotation Guide for sustainability
reports

Annotators were provided with the company re-
ports in .pdf format alongside with an Excel spread-
sheet for data entry. Annotators were asked to carry
out their task according to the following step-by-
step instructions:

1. Open the Excel file with the list of sustainabil-
ity reports

2. For each line with your name, open the rele-
vant pdf of the sustainability report

3. Open the search field in “Adobe Reader” by
pressing “ctrl+f”/ “strg+f”

4. Find each term “Scope 1”, “Scope 2”, “Scope
3” into the search form.

• Scope 1 can also be called: “direct emis-
sions”, “GHG emissions”.

• Scope 2 can also be called: “indirect
emissions”.

• Scope 3 can also be called: “carbon foot-
print”.

• If no results, fill columns D – I in that
line with “Na” and go to the next line.

5. If step 4 yields results, go through the search
results until a number value with an emission
value shows

• If Scope 1 and Scope 2 are calculated
together, use the Scope 2 row in Excel.

6. Extract the information found by Copy/ Past-
ing the values into columns D – I into the
excel file “daten.xlsx”

• Value (e.g. “260,2”)
– Remove separators for thousands.
– If there are “larger than” operators

(“<” or “>”), include them.
– Do not include relative values (e.g.

“26% lower”).
– If the information is contained in a

Graphic, write “Na”.
• Unit (e.g. “tons CO2 eq”)
• Variable Name (e.g. “Scope 1 CO2

equivalents”)
• Year (e.g. “2010” or “1998-2001”)

– Write down all years that are in the
Report by adding a newline to the
Excel sheet.

• Page number (Take the page number that
is shown in Adobe Reader, where you
found the information)

• Type (one of “Table”, “Text”, or
“Graphic”)
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