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ABSTRACT

Irregular temporal data, characterized by varying recording frequencies, differ-
ing observation durations, and missing values, presents significant challenges
across fields like mobility, healthcare, and environmental science. Existing re-
search communities often overlook or address these challenges in isolation, leading
to fragmented tools and methods. To bridge this gap, we introduce a unified
framework, and the first standardized dataset repository for irregular time series
classification, built on a common array format to enhance interoperability. This
repository comprises 34 datasets on which we benchmark 12 classifier models from
diverse domains and communities. This work aims to centralize research efforts
and enable a more robust evaluation of irregular temporal data analysis methods.

1 INTRODUCTION

High-dimensional temporal data is increasingly accessible to decision-makers, domain experts, and
researchers (Shumway et al., 2000). It is vital in fields like mobility, healthcare, and environmental
science to capture dynamic changes over time. Yet, variations in recording frequencies, durations
across sensors, and occasional failures lead to signals with unequal lengths, gaps, and missing
values (Harvey et al., 1998). These traits make real-world temporal data irregular and hard to manage.

Several research communities address the challenge of irregular temporal data from different per-
spectives, as its analysis depends heavily on the task, application setting, and modeling approach.
As a result, the problem spans multiple fields, including mobility analytics (da Silva et al., 2019),
irregular time series classification (Kidger et al., 2020), forecasting (Weerakody et al., 2021), and
imputation (Luo et al., 2018; Li & Marlin, 2020), to name a few. Due to this vast amount of tasks,
and despite some shared challenges, communities working on irregular temporal data tend to be
separated, each relying on its own set of techniques, such as traditional statistical or data mining
models (Hamilton, 2020), neural networks (Wang et al., 2024), or differential equations (Rubanova
et al., 2019), often resulting in domain-specific tools and libraries. This is not inherently a drawback,
but can lead to fragmented research efforts. The challenges of irregular temporal data are amplified
in supervised learning, where standardized benchmarks are notably lacking. While repositories exist
for regular time series classification (Dau et al., 2019), truly irregular datasets, capturing real-world
missingness and variability, remain scarce. Researchers often resort to artificially manipulated
datasets (Weerakody et al., 2021), introducing assumptions that overlook structural missingness tied
to data collection (Mitra et al., 2023). As a result, and given that many studies rely on a narrow range
of datasets, the generalizability of their methods often remains untested.

We bridge this gap by proposing pyrregular, a unified framework for irregular time series. (1)
We introduce a taxonomy of irregularities and a dataset structure in a common array format that
improves interoperability across libraries while supporting the handling, visualization, and modeling
of irregular time series using existing analysis methods. (2) We introduce the first standardized dataset
repository for irregular time series classification, and (3) we leverage this repository to propose the
first generalized benchmark for state-of-the-art classifiers from different research domains, in an
effort to centralize research on this topic. Specifically, we curate 34 irregular time series datasets and
evaluate 12 time series classifiers. Our goal is to empower users to seamlessly explore and evaluate a
wide range of libraries to address the challenges of irregular temporal data.
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Figure 1: An example of an irregular time series,
X , comprising two signals x1,x2 with indices
t̃1, t̃2, and the combined shared index ˜̃t.

RAGGEDUNEVENLY
SAMPLED

LENGTH SHIFT SAMPLING

PARTIALLY
OBSERVED

Figure 2: Different kinds of irregularity shown
on a multivariate time series with 2 signals and
containing up to 5 timestamps. Missing values
are depicted as faded red if they were expected
to be recorded, while they are omitted if they are
caused by raggedness.

2 ORGANIZING IRREGULARITY

As our first contribution, we propose a systematic taxonomy that clearly distinguishes among different
forms of irregularity. We begin by defining a time series signal.
Definition 2.1 (Time Series Signal). A signal (or channel) is a sequence of τ observations, each
associated to a timestamp, i.e., x = [(x1, t1), . . . , (xτ , tτ )] = [xt1 , . . . , xtτ ] ∈ Ṙτ .

A single signal can be irregular for two reasons: uneven sampling, when at least one interval tk+1−tk
differs from a constant ∆t, and partially observed, when expected values are missing and marked as
NaN. The set of real numbers extended with the NaN symbol is here represented as Ṙ. We denote
with t̃ = [t1, . . . , tτ ] ∈ Rτ , the sorted collection of all timestamps where an observation of signal x
was, or should have been recorded, and with τ = |t̃| the number of observations.

Definition 2.2 (Time Series). A time series is a collection of d signals, X = {x1, . . . ,xd} ∈ Ṙd×T .

Time series timestamps are the sorted union of all signal timestamps, i.e., ˜̃t =
⋃d

j=1 t̃j ∈ RT , with

T = |˜̃t|, as shown in Figure 1. In addition to these intrinsic irregularities, tensor representations
introduce a third, structural type: raggedness, that is the necessity of padding due to length, sampling,
or alignment mismatches between signals. Hence, there are three independent irregularity causes:
uneven sampling, partial observation, and raggedness, as depicted in Figure 2. While these categories
have appeared informally in prior literature, here we show that they are independent: none implies
the others. Unevenly sampled time series do not necessarily imply the presence of partially observed
data, as seen in Figure 2 (left). This commonly happens in trajectory data, where the timestamps are
usually highly uneven, but shared across the latitude and longitude signals. Vice versa, the presence
of unobserved data does not imply uneven timestamps, as an observation may be accidentally missing
from an overall constant sampling. Finally, neither unevenly sampled nor partially observed data
imply raggedness. In particular, the two leftmost time series shown in Figure 2 could be stored in
2× 4 and 2× 5 matrices, respectively, without requiring any padding.

Raggedness arises because of different issues created when storing a multivariate time series in
an array-like structure. As so, a single, univariate signal cannot be ragged by itself. In general,
raggedness arises when at least two signals, a and b, do not share the same timestamps, i.e., t̃a ̸= t̃b.
We identify three independent fundamental reasons for why this can happen. The first is ragged
length, when a and b have a different number of observations: τa ̸= τb. The second is shift, where
at least one signal starts and ends before another: (ta,1 < tb,1) ∧ (ta,τa < tb,τb). The third is
ragged sampling, when at least one element of the sampling intervals differs between two signals,
i.e., ∆ta,k ̸= ∆tb,k for some k, where ∆ta,k = ta,k+1 − ta,k and ∆tb,k = tb,k+1 − tb,k. Again,
none of these, by itself, implies the other, as shown in Figure 2, and, in more detail, in Appendix B.
Combinations of these issues yield highly irregular data, where NaN can indicate either a missing
value in a partially observed time series or padding due to raggedness. Moreover, raggedness can
exist also in a time series dataset, i.e., a collection of n time series, X = {X1, . . . ,Xn} ∈ Ṙn×d×T ,
as all instances share the same sorted timestamps, t =

⋃n
i=1

˜̃ti ∈ RT , with T = |t|. The timestamp
index for the whole dataset is denoted as k = [1, . . . , T ].

Associated with time series datasets are often static attributes, which refer to information linked to
individual instances that remain independent of the time dimension. These attributes can also serve
as targets in supervised tasks. Specifically, we focus on classification, i.e., targets are categorical.
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3 RELATED WORK

Datasets and Benchmarks. There is a significant divide in the literature in the availability of datasets
and benchmarking efforts, between regular and irregular time series data. Supervised learning for
regular time series data is extensively addressed in the literature, with numerous “bake-offs” (Bagnall
et al., 2017; Ruiz et al., 2021; Middlehurst et al., 2024b) benchmarking state-of-the-art classifiers on
hundreds of standard datasets from the UEA and UCR repositories (Dau et al., 2019; Bagnall et al.,
2018). On the contrary, the benchmarking literature on irregular time series remains limited. While
secondary sources, such as (Weerakody et al., 2021; Wang et al., 2024), offer surveys on specific tasks
like ITS imputation, comprehensive benchmarks for downstream tasks like classification are largely
confined to primary studies (Kidger et al., 2020; Shukla & Marlin, 2021; Du et al., 2023). Even within
these studies, evaluations are often performed on a small number of datasets. Moreover, benchmark
datasets are not always inherently irregular; instead, they are commonly derived from regular datasets
through simulation, i.e., dropping valid observations (Weerakody et al., 2021). Although this strategy
can create ITS, introducing missingness is a non-trivial process requiring careful decisions about the
type of missingness to simulate (Rubin, 1976). Adding to these challenges, a recent study (Mitra
et al., 2023) highlighted that most research neglects structural missingness, referring to non-random,
multivariate patterns of missingness within datasets. Such patterns can be faithfully preserved only by
maintaining the original data with minimal modifications, which is the central focus of this proposal.

Libraries. Regarding regular time series data, Python libraries such as sktime (Löning et al., 2019),
aeon (Middlehurst et al., 2024a), and tslearn (Tavenard et al., 2020) provide a wide range of
classifier implementations, along with access to the UEA and UCR repositories, enabling systematic
and reproducible evaluations. Although some of these datasets contain irregularities, the typical
approach involves imputing missing values and discarding timestamps during downstream tasks. The
most prominent Python library for irregular time series analysis is pypots (Du, 2023). pypots
offers several classifiers, a few partially observed time series datasets, and provides an interface for
adding missingness in regular datasets. A limitation of pypots is that it overlooks irregularity from
uneven sampling, ignoring timestamps. It also operates within its own ecosystem, lacking interfaces
for cross-library comparisons. This makes using ITS with libraries like aeon and sktime difficult,
due to incompatible data formats and requirements, hindering standardization efforts. The primary
reason for these challenges is the difficulty in managing ITS due to high dimensionality, missing
values, and timestamps. Most libraries for time series prediction require dense 3D tensors to represent
time series, signals, and identifiers (IDs), often demanding extensive padding and increased memory
usage. To mitigate this, special arrays to represent missing values or variable-length instances are
often used. For example, numpy masked arrays (Harris et al., 2020) indicate valid entries with masks
but are memory-inefficient since they store both data and masks. Alternatives include awkward
arrays (Pivarski et al., 2020), jagged pytorch arrays (Paszke et al., 2017), ragged tensorflow
arrays (Abadi et al., 2015), zarr, pyarrow, or sparse arrays (Abbasi, 2018). Although efficient
in managing varied-sized data, these structures cannot inherently handle timestamps. Forecasting
libraries like nixtla or gluonTS (Alexandrov et al., 2020) typically use a long format, representing
data as tuples (i, j, t, x) with instance and signal IDs, timestamps, and observed values. While
efficient for forecasting, this format requires pivoting for classification tasks, and static variables are
either duplicated or stored separately, causing inefficiencies. Lastly, xarray (Hoyer & Hamman,
2017) supports timestamped multi-dimensional arrays but lacks native support for sparse ITS.

In summary, to the best of our knowledge, no existing array format is capable of representing ITS data
in all their nuances. To address this limitation, we propose a framework that serves as a compatibility
layer based on a unified array format, facilitating comprehensive benchmarking across a wide range
of datasets and methods from diverse time series communities.

4 A UNIFIED FRAMEWORK FOR IRREGULAR TIME SERIES

This work addresses the gap in the literature on irregular time series by introducing an efficient
container specifically designed for such data. This facilitates the integration of methods and datasets
from various research communities into a unified framework. We outline key aspects of this solution.
(i) Ease of Use: the framework supports several stages of the data science workflow, including visual-
ization, preprocessing with classical and temporal slicing, and seamless conversion to dense arrays
used in leading machine learning libraries. (ii) Robustness: the implementation leverages established
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Figure 3: A simplified schema of our framework. (left) Data from different sources is preprocessed
and represented in our proposed array container (center), which combines xarray with an underlying
sparse tensor via a custom accessor and backend. This container can be easily manipulated, plotted,
and stored. (right) Finally, it can also be converted into a more common dense representation, which
can be used for downstream tasks with any standard time series library.

and well-maintained libraries, as there is no point in reinventing the wheel. (iii) Flexibility: the
container supports several types of time series irregularities. (iv) Replicability: to ensure comparable
results, preprocessing is standardized, addressing the variability in ITS. A depiction of the three
steps of pyrregular is shown in Figure 3: preprocessing, where the original ITS is transformed
into our proposed container; handling, where the data can be explored, manipulated, and stored; and
converting, where the data is prepared for downstream tasks. 1

Preprocessing. The first step in our framework involves transforming ITS datasets into the proposed
representation. ITS can be found in a wide variety of sources and formats (Figure 3, left), presenting
unique challenges in terms of preprocessing. Regardless of the original data structure, our framework
requires only a function capable of yielding the data in the standardized long format. In this
representation, each row captures the time series ID, signal ID, timestamp, and observed value:
(i, j, t, x). The core intuition behind our approach is that the long format closely resembles the sparse
coordinate (COO) representation (Duff et al., 2017).

The COO format, as implemented by sparse (Abbasi, 2018), can efficiently encode sparse 3D tensors,
by using indices for the time series, signal, and timestamp, accompanied by an observed value entry,
formally (i, j, k, x). The key distinction between the long format and the COO representation lies in
the handling of the timestamps: while the COO format requires discrete timestamp indices, k, the
long format uses real-valued timestamps, t. An example is reported in Figure 4 (left). This difference,
however, can be easily bridged by mapping the timestamps, t, to discrete positions within the COO
array, k. Formally, given the timestamps vector t = [t1, . . . , tT ], each timestamp can be mapped to its
corresponding position (index), in the COO format as k = [1, . . . , T ] (and vice-versa), as depicted in
Figure 4 (center). With this mapping, converting between the long format and the COO representation
can be easily accomplished, as the time series dataset is read once to construct the mapping and a
second time to incrementally build the COO matrix by yielding each row as it is generated (Figure 4,
right). Practitioners need only to define a custom function that, given their own data, incrementally
produces rows in the long format. Even when the initial dataset is not organized in this manner,
the conversion to the long format is typically straightforward. This process ensures uniformity
across input formats and transparency, as the preprocessing steps are explicitly documented in this
function, and can be reproduced at any time. Though it may be runtime-intensive, this step needs
to be performed only once, after which the library streamlines all subsequent transformations and
processing. The output after preprocessing is a sparse tensor, denoted as X ∈ Ṙn×d×T .

Handling. The COO representation offers advantages over the classical long format. First, it supports
array-like operations with reasonable performance, including reshaping and slicing. Moreover, it
allows for rapid conversion to task-specific array structures, such as other sparse formats like GCXS

1The code is provided in the Supplementary Materials. Examples are available in Appendix H.
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(Shaikh & Hasan, 2015). Compared to classical dense arrays, its primary advantage lies in memory
efficiency, as only the recorded observations are stored. All padding is represented by a fill value
and remains implicit, meaning it is not directly stored but is generated only when the sparse array is
transformed into a dense form. We propose setting such value to NaN to capture raggedness. Further,
the COO format naturally accommodates partially observed data by explicitly storing a fill value. This
allows for distinguishing between the two types of missing data previously discussed. Specifically,
an explicitly stored fill value, i.e., a row (i, j, k,NaN), can indicate a missing entry that should be
present, while implicit NaNs reflect missingness due to data raggedness. In this sense, the COO tensor
by itself is enough to represent both ragged and partially observed time series.

... ...
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Figure 4: Long format to COO tensor conversion process.
Each row of the long format is processed to retrieve the
absolute position k of a given timestamp t. The triplet,
instance ID (i = 1), signal ID (j = 2), and timestamp
index (k = 7), is used to populate the sparse COO tensor.

However, to capture an unevenly sampled
time series, it is also essential to store the
timestamps. To achieve this, we leverage
the timestamp to COO (t to k) mapping
using xarray (Figure 3, center). In par-
ticular, we use xarray (Hoyer & Ham-
man, 2017) to store the timestamps and
extend it to utilize an underlying sparse
COO tensor. These functionalities are pos-
sible through our custom backend and ac-
cessor, which extend the xarray library, to
support sparse arrays. Further, xarray
naturally facilitates the storage of static at-
tributes linked to any dataset dimension,
such as class labels in classification tasks.
Overall, this approach offers significant
storage efficiency, particularly given the typically high data sparsity (see Appendix E), and en-
sures ease of use by supporting all existing xarray functions like timestamp range queries. Further,
our accessor enables plotting, while our backend allows direct saving and loading to a hierarchical
data format, locally or online, eliminating the need to perform the preprocessing step again.

Converting. Despite its advantages, xarray is not directly supported by most libraries for supervised
learning tasks. Therefore, it is crucial to demonstrate how this array structure can be efficiently
prepared for such applications. Specifically, for classification tasks, X ∈ Ṙn×d×T should be
transformed into a dense tensor that minimizes raggedness while preserving the inherent missingness
from partially observed time series and maintaining the order of observations within the same time
series. This conversion is important because, in classification tasks, raggedness is typically irrelevant
to the target and would otherwise result in vast dense arrays filled predominantly with NaNs. For
instance, the specific starting dates of time series, such as a beginning on January 23rd and b on
January 30th, are typically uninformative with respect to the output class, so we generally want to
avoid introducing 7 leading NaNs in time series b to account for the shift. For a COO array, this
transformation corresponds to a dense ranking operation on the timestamp index, k, performed time
series-wise. Formally, for each COO entry (i, j, k, x), we produce (i, j, rank i(k), x), where:

rank i(k) = 1 + |{k′ ∈ [1, Ti] : k
′ < k}|.

This process shifts the timestamp indices within each time series, Xi, into a consecutive sequence
ranging from 1 to its length, Ti. As a result, the tensor X ∈ Ṙn×d×T can be densified into a
more compact, X′ ∈ Ṙn×d×T , where T = maxni (Ti). This ensures minimal raggedness, with the
timestamp dimension set to the maximum number of timestamps in any time series. X′ can be used
by downstream libraries such as sktime (Löning et al., 2019), aeon (Middlehurst et al., 2024a),
tslearn (Tavenard et al., 2020), pypots (Du, 2023) and diffrax (Kidger, 2021).

5 CLASSIFICATION BENCHMARKS

We present a comprehensive benchmark enabled by pyrregular, in which we evaluate 12 classifiers
from a variety of time series libraries on a curated collection of 34 ITS datasets. We assess model per-
formance from multiple perspectives, including dataset characteristics, robustness across irregularity
types, and the potential for performance improvement through fine-tuning.
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Table 1: Datasets used for our benchmarks, divided by irregularity type: unevenly sampled (US),
partially observed (PO), unequal length (UL), shift (SH), ragged sampling (RS).
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US ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
PO ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
UL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗
SH ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
RS ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Table 2: Summary of evaluated classifiers.

Library Model Type Domain

aeon
(Spinnato et al., 2024) BORF dictionary-based transform + LGBM classifier regular, ragged

RIFC interval-based transform + LGBM classifier partially observed

diffrax (Kidger et al., 2020) NCDE neural controlled differential equations unevenly sampled

pypots

(Cao et al., 2018) BRITS bidirectional recurrent imputation network partially observed
(Che et al., 2018) GRU-D gated recurrent unit with decay partially observed
(Zhang et al., 2022) RAINDROP graph neural network partially observed
(Du et al., 2023) SAITS self-attention-based imputation transformer partially observed
(Wu et al., 2022) TIMESNET temporal 2d-variation transformer. partially observed

sktime

(Ke et al., 2017) LGBM gradient boosted tree tabular
(Dempster et al., 2021) ROCKET kernel-based transform + LGBM classifier regular
(Bagheri et al., 2016) SVM support vector machine with distance kernel regular, ragged

tslearn (Sakoe & Chiba, 1978) KNN distance-based with dynamic time warping regular, ragged

Datasets. Following established repositories such as UEA and UCR, we compile a diverse collection
of datasets that vary in size (small to large), length (short to long), and dimensionality (univariate
to multivariate), ensuring broad representativeness. We solely focus on naturally irregular datasets,
without artificially inducing irregularity (Tables 1 and 5). First, our collection contains widely used ITS
classification datasets: PhysioNet 2012 (P12) (Silva et al., 2012), PhysioNet 2019 (P19) (Reyna et al.,
2020), and the MIMIC-III (MI3) clinical database (Johnson et al., 2016) from the medical domain,
as well as Pamap2 (PAM) (Reiss & Stricker, 2012) for physical activity monitoring. Additionally,
we include the 11 variable-length univariate time series classification problems (Guna et al., 2014;
Caputo et al., 2018; Mezari & Maglogiannis, 2018; Gao et al., 2014) from (Bagnall et al., 2020), the
4 partially observed datasets (Ihler et al., 2006; City of Melbourne, 2020) from (Middlehurst et al.,
2024b), and the 7 variable-length multivariate time series classification problems (de Souza, 2018;
Williams et al., 2006; Chen et al., 2014; Kudo et al., 1999; Hammami & Bedda, 2010) from (Ruiz
et al., 2021). We also provide datasets that, to the best of our knowledge, were never used in these
kinds of benchmarks. These include data for trajectory classification of entities such as mammals
(AN)(Ferrero et al., 2018), birds (SE) (Browning et al., 2018), and vehicles like buses and trucks
(VE), taxis (Moreira-Matias et al., 2013) (TA) and combinations of the previous (Zheng et al., 2010)
(GS). Further, we include a small dataset about the productivity prediction for garment employees
(Imran et al., 2021) (PGE), and a human activity recognition dataset (Vidulin et al., 2010) (LPA).
Finally, inspired by the classical Cylinder-Bell-Funnel benchmark (Saito, 1994) for regular time
series classification, we introduce an irregular version called Alembics-Bowls-Flasks (ABF), in which
the class depends on the skewness of the time sampling. Where available, we use the default train/test
split for training and inference, else we set them based on each dataset description and original paper.

Models. The objective of these experiments is to benchmark methods capable of naturally handling
ITS without introducing bias through imputation. For this reason, and to keep the benchmarks to a
reasonable amount, we limit our evaluation to classifiers that inherently support irregular inputs and
are available in the aforementioned libraries (Table 2 and Appendix C). As classical baselines, we
use K-Nearest Neighbors (KNN) with Dynamic Time Warping (Sakoe & Chiba, 1978), a time series
Support Vector Machine (SVM) with a Longest Common Subsequence (LCSS) kernel (Bagheri et al.,
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Figure 5: CD plot for the benchmarked models in
terms of F1. Best models to the right. Connected
models are statistically tied.
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Figure 6: Mean F1 rank against training and in-
ference runtimes for the top 11 models across all
datasets. The best models are on the bottom left.

2016), and a LightGBM classifier (LGBM) trained directly on raw ITS, ignoring temporal dependencies.
For regular time series models, we include the Bag-Of-Receptive-Fields (BORF) (Spinnato et al.,
2024) from aeon, ROCKET (Dempster et al., 2020; 2021) via its MINIROCKET version in sktime,
and a Random Interval Feature Classifier (RIFC). These models transform the data and rely on
downstream classifiers; we use LGBM to handle possible NaNs. For partially observed data, we
benchmark GRU-D (Che et al., 2018), BRITS (Cao et al., 2018), RAINDROP (Zhang et al., 2022), two
transformer models, SAITS (Du et al., 2023) and TIMESNET (Wu et al., 2023), from pypots, and a
Neural Controlled Differential Equation model (NCDE) (Kidger et al., 2020) from diffrax.

Experimental Setup. Following standard practice in similar benchmarking studies (Bagnall et al.,
2017; Middlehurst et al., 2024b), all models are trained using the default hyperparameters provided
by their respective libraries or those recommended in the original papers. The goal of this benchmark,
consistent with prior bake-offs, is to identify the model that best generalizes with a single, reasonable
parameter configuration rather than fine-tuning each model for individual datasets. For this reason,
the results of these benchmarks do not necessarily highlight the best possible model for a given task,
but the model that generalizes best in many. Each model is allocated two weeks (≈ 20000 minutes)
for training and inference on each dataset, with access to 32 cores and 512 GB of memory, and to a
GPU when the model can use it2. Experiments are repeated three times for highly stochastic models,
and the average performance is maintained. We use the F1 score with macro averaging as the primary
performance metric, as it is robust in the presence of unbalanced data (Japkowicz, 2013), which
occurs in some of our datasets. Accuracy results, along with additional metrics and statistical tests,
are reported in Appendix D and are consistent with the following findings.

5.1 RESULTS AND DISCUSSION.

We present a comparative analysis of the aggregate results of the benchmark outcomes. We report a
critical difference (CD) plot in Figure 5, which ranks models in terms of F1. Models are arranged from
right to left, with lower ranks indicating better performance. Models connected by a horizontal bar
are statistically tied under a one-sided Holm-corrected Wilcoxon signed-rank test with a significance
threshold of 0.05. ROCKET emerged as the clear top-performing model, demonstrating consistent
superiority across the datasets. Even if this result aligns with its established reputation as one of
the best models for regular time series classification (Middlehurst et al., 2024b), its efficacy on
irregular data is somewhat surprising, as ROCKET does not exploit any information about said
irregularity. Following ROCKET, a cluster of methods, including BORF, LGBM, RIFC, TIMESNET,
exhibits statistically tied performance. Lower ranks are occupied by RAINDROP, KNN, BRITS,
followed by GRU-D and NCDE, with SVM distinctly identified as the worst-performing model.

Performance vs. Time. Besides predictive performance, runtime is also a significant factor. In
Figure 6, we compare the average F1 rank against training and inference runtimes, discarding SVM
for better readability. The better-performing, faster models appear in the bottom-left region of
the plot. In terms of training, LGBM is the fastest, followed by RIFC and ROCKET, with ROCKET
also being also very fast during inference. For this reason, ROCKET emerges as the best tradeoff
between F1 and runtime. Interestingly, despite being designed for tabular data, LGBM performs

2System: IBM SYSTEM POWER AC922 Compute Nodes with 2 × 16-core 2.7GHz POWER9 CPUs,
512GB of RAM. NVIDIA Tesla V100 32GB GPU
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well. This finding aligns with observations in (Tan et al., 2020), where gradient-boosting trees
showed strong performance in regular time series regression. LGBM is a compelling choice due to its
decent performance and exceptionally fast training time, making it attractive for practitioners needing
solid baselines. Neural network-based methods, though designed for ITS, underperform in these
bake-off-style benchmarks, except for their competitive inference runtime. Similar patterns appear in
regular time series classification (Middlehurst et al., 2024b). We hypothesize that simpler, generalist,
models, like ROCKET, excel in bake-off settings due to their low-variance, high-bias inductive bias,
making them robust across a wide range of tasks, contrary to specialized models, which exhibit strong
performance on specific types of irregularity or dataset characteristics, especially after fine-tuning.

Performance vs. Dimension. Figure 7 (top) shows the mean F1 ranks of all benchmarked models
(lower is better), stratified by dataset size: small (at most 500 instances) and large (more than 500
instances). KNN and RIFC exhibit a noticeable worsening in rank on larger datasets, indicating limited
scalability or reduced robustness as the number of training examples increases. In contrast, LGBM,
and especially TIMESNET, improve significantly in rank, suggesting that more complex models,
particularly transformer-based ones, benefit from greater data availability to better exploit their
capacity. Figure 7 (center) shows the mean F1 ranks for univariate and multivariate time series.
While the best-ranked model is again ROCKET, all neural network-based approaches benefit from
increased dimensionality, making them particularly suitable for multivariate time series. Figure 7
(bottom) reports the mean F1 ranks stratified by time series length: short (at most 360 observations)
and long (more than 360 observations). Here, recurrent models such as GRU-D and BRITS, along with
several other neural architectures, tend to struggle on longer sequences. RAINDROP stands out as
an exception, likely owing to its graph-based design. Meanwhile, models that rely on localized or
interval-based features, such as ROCKET, RIFC, and especially BORF, show improved performance on
longer time series, indicating that in this case, simpler is better (more details available in Appendix C).

Performance vs. Irregularity. In Figure 8, we report the average F1 score of the top-5 performing
models within each irregularity group (higher is better). ROCKET, BORF, and LGBM consistently rank
among the top three across unevenly sampled, unequal length, shifted, and ragged sampling time
series. GRU-D, while generally ranking lower overall, appears among the top five models in three
out of the five groups, showing solid average performance. Partially observed time series exhibit
markedly different behavior: here, models designed to handle missing data, such as SAITS and BRITS,
outperform ROCKET, BORF, and LGBM. This suggests that explicitly modeling missingness can be
highly beneficial, particularly for datasets with structured patterns of missing values.

Performance after Fine-tuning. In Table 3, we present the average performance of the top three
generalist models, ROCKET, BORF, and LGBM, evaluated in terms of area under the Receiver
Operating Characteristic curve (auc) and area under the Precision-Recall curve (aupr) following
hyperparameter tuning. These evaluations follow the same 5-fold cross-validation setup and are
compared against reference results from (Li et al., 2023; Liu et al., 2024; Zheng et al., 2024) on
the two most commonly used irregular medical datasets: P12 (Silva et al., 2012) and P19 (Reyna
et al., 2020). This benchmark aims to assess whether generalist classifiers can also be effectively
fine-tuned for specific tasks, and to compare them with state-of-the-art specialist deep learning
models such as CONTIFORMER (Chen et al., 2024), GRU-D (Che et al., 2018), MTSFORMER (Zheng
et al., 2024), MUSICNET (Liu et al., 2024), and RAINDROP (Zhang et al., 2022). Results indicate that,
when optimally fine-tuned, deep learning-based algorithms outperform simpler regular time series

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of best-performing models from the bake-off, against baseline reference results
(higher is better). Best values in bold, second best underlined.

BORF
CONTI

FORMER
GRU-D LGBM

MTS
FORMER

MUSIC
NET

RAIN
DROP

ROCKET
P
1
2 auc 74.9±0.0 81.2±0.8 81.9±2.1 78.4±0.0 84.9±1.4 86.1±0.4 82.8±1.7 53.4±0.0

aupr 33.4±0.0 43.9±3.0 46.1±4.7 38.1±0.0 51.1±3.7 54.1±2.2 44.0±3.0 15.8±0.0

P
1
9 auc 80.1±0.0 79.2±2.3 83.9±1.7 85.2±0.0 88.8±1.5 86.8±1.4 87.0±2.3 77.3±0.0

aupr 38.1±0.0 35.8±2.3 46.9±2.1 44.1±0.0 57.7±4.4 45.4±2.7 51.8±5.5 35.2±0.0

classifiers. However, except for ROCKET, which underperforms in this test, this advantage is not
always substantial; for instance, LGBM achieves the fourth-best score on P19, outperforming models
like CONTIFORMER and GRU-D. Another advantage of models such as ROCKET, BORF, and LGBM is
that the performance is very stable, with near-zero standard deviation to a single decimal place. This
underscores the value of being able to readily apply standard approaches, as they can offer fast, stable,
and non-trivial baselines. However, deep learning offers more flexibility for optimizing on specific
tasks, with reasonable inference times when aiming for raw performance for deployment purposes.

Performance vs. Trustworthiness. Though not the main focus of this work, we briefly address
model trustworthiness, crucial in high-stakes fields like healthcare, where ITS are common. The most
interpretable models in our benchmark are BORF, which relies on subsequence presence/absence,
and RIFC, which uses simple interval-based features, both followed by a tree-based model. Neural
models can be interpreted with gradient-based methods, though the reliability of their explanations
on ITS is unexplored. The top-performing model, ROCKET, offers little interpretability and depends
on expensive model-agnostic techniques (Theissler et al., 2022). Robustness to random initialization
also matters: models with high variance across seeds hinder reproducibility. Stable methods like
LGBM, BORF, and KNN may be preferable in sensitive settings, even at some cost in performance.

6 CONCLUSION

In this work, we presented pyrregular, a unified framework for addressing the challenges of ITS.
By introducing a standardized repository for ITS classification and structuring the datasets in a
common array format, we provided a cohesive way to work with varying forms of irregularity. Our
extensive empirical evaluation of 12 state-of-the-art classifiers and baseline methods on 34 datasets
emphasizes both the complexity of this domain and the benefits of a shared benchmarking resource.
Results indicate that, with appropriate configuration and tuning, specialist models such as neural
networks still attain state-of-the-art performance. However, extending their applicability across
diverse tasks remains a significant challenge. Interestingly, simple generalist classifiers originally
designed for regular time series data, such as ROCKET, perform remarkably well on irregular time
series in bake-off-style benchmarks, even without leveraging the irregularity itself. This observation
reveals a crucial research gap: the need to develop generalist methods capable of explicitly exploiting
irregularities, such as missingness and timestamp information.

The construction of this extensive set of benchmarks was greatly facilitated by pyrregular, which
abstracts the complexities of ITS across diverse libraries. While we aimed to provide a diverse and
representative selection of baseline models, our choices were also guided by practical considerations
such as library availability and interface compatibility, rather than exhaustive coverage. We acknowl-
edge that several other relevant baselines could further enrich the comparison. Our goal was not to be
fully comprehensive, but to establish a robust and extensible starting point for benchmarking within a
unified framework. Further, we deliberately limited the scope of the benchmarks to classification, as
achieving the same level of detail for other tasks, such as forecasting, anomaly detection, or imputa-
tion, would require an effort comparable in scale to what we present here, and is therefore left for
future work. Nevertheless, because the proposed array format is task-independent and some curated
datasets already include additional target variables, our framework naturally enables exploration
of these tasks (see Appendix G for details). Going forward, pyrregular will be extended to such
additional tasks, integrated with more datasets, and enriched with methods from a broader selection
of time series libraries, increasing its relevance across diverse research domains.
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A SUMMARY OF NOTATION

We have adopted a tensor-like notation inspired by (Kolda & Bader, 2009). The time series dataset is
structured along three dimensions: the instance dimension, which consists of n instances (e.g., Xi

denotes the i-th time series in the dataset X); the signal dimension, which includes d channels (e.g.,
xi,j represents the j-th signal in time series Xi); and the time dimension, spanning T points (e.g.,
xi,j,tk represents the tk observation of j-th signal in time series Xi). We use tildes to specify the
index being referenced (e.g., tk ∈ t corresponds to the k-th timestamp at the dataset’s level, while
tk ∈ ˜̃t corresponds to the k-th timestamp at the time series’s level). For improved readability, indices
are omitted when they are not relevant.

Table 4: Summary of notation.

Notation
X,X, x, x time series dataset, instance, signal, entry
t, ˜̃t, t̃, t timestamps for a time series dataset, instance, signal, entry
k timestamp index
n number of instances in a dataset
d number of signals in a time series
T , T, τ number timestamps in a time series dataset, instance, signal
i, j, k indexes for instances, signals, timestamps

B TAXONOMY OF TIME SERIES IRREGULARITIES

In addition to the well-known missingness taxonomy introduced in (Rubin, 1976) (MCAR, MAR,
and MNAR), Mitra et al. (2023) proposed an additional category: structural missingness (SM). While
Rubin’s framework is typically formulated in terms of univariate patterns, SM highlights situations
where missingness is organized across multiple variables and exhibits systematic structure. Our
primary aim, distinct from previous works, is to preserve such structural patterns of missingness.

Consider, for instance, daily heart rate signals collected by wearables over three months. Data may
be missing completely at random (MCAR) when some days are absent because the device randomly
fails to sync, in which case missingness is unrelated to any variable. It may be missing at random
(MAR) when data are more frequently absent on weekends, particularly for users with low recorded
activity. It may be missing not at random (MNAR) when users remove the device precisely when
feeling unwell, so missingness coincides with unrecorded spikes in heart rate. Finally, it may exhibit
structural missingness (SM) when devices differ in recording frequency, such as once per second
versus once per millisecond, or when a firmware update produces week-long gaps.

In this last case, missingness follows clear temporal patterns tied to device characteristics or design
flaws, rather than to a single variable. Addressing such missingness (or raggedness) should therefore
be an intentional modeling choice by the practitioner, not the result of routine preprocessing. We pro-
vide here formal definitions for each type of time series irregularity and use minimal counterexamples
to show that none of these irregularities implies the others.
Definition B.1 (Uneven Sampling). A signal x = [xt1 , . . . , xtτ ] ∈ Ṙτ is said to be unevenly sampled
if there exists at least one index k ∈ {1, . . . , τ − 1} such that the time interval between successive
observations is not constant, i.e., tk+1 − tk ̸= ∆t for some fixed ∆t ∈ R.

The same definition applies to time series instances and datasets, using their respective indices ˜̃t, t.
Definition B.2 (Partial Observation). A signal x = [xt1 , . . . , xtτ ] ∈ Ṙτ is said to be partially
observed if at least one value xtk is missing and represented by a special symbol NaN, indicating
the absence of an observation at a timestamp where one was expected, i.e., xtk = NaN for some
k ∈ {1, . . . , τ}.

Again, the same definition applies to time series instances and datasets.
Definition B.3 (Raggedness). Raggedness is a structural irregularity that arises in a multivariate time
series X = {x1, . . . ,xd} ∈ Ṙd×T when the component signals do not share a common timestamp
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index. Formally, raggedness is present when there exist at least two signals xa and xb such that
t̃a ̸= t̃b. It manifests in three independent forms:

• (a) Ragged Length: τa ̸= τb.

• (b) Shift: (ta,1 < tb,1) ∧ (ta,τa
< tb,τb

).

• (c) Ragged Sampling: ∆ta,k ̸= ∆tb,k for some k, where ∆tj,k = tj,k+1− tj,k. The index
k ranges from 1 to min(τa, τb)− 1, so only intervals that exist in both signals are compared.

The same definition applies to time series datasets.

We now show that the five forms of time series irregularity are mutually independent: none implies
any of the others. This is shown through minimal examples of time series that satisfy one irregularity
condition while exhibiting none of the others.

B.1 UNEVEN SAMPLING

Let X = {xa,xb} be a time series where both signals share the same timestamp index, ˜̃t = t̃a =
t̃b = [t1, t2, t3], and assume that the sampling intervals are not constant, i.e., t2− t1 ̸= t3− t2. Then
X is unevenly sampled.

UNEVEN SAMPLING ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are
observed (i.e., none are NaN). Then X is unevenly sampled, but not partially observed.

UNEVEN SAMPLING ⇏ RAGGEDNESS. Since t̃a = t̃b, both signals are aligned on the same
timestamps. Therefore, X is not ragged.

B.2 PARTIAL OBSERVATION

Let X = {xa,xb} be a time series where both signals share the same timestamp index, ˜̃t = t̃a =
t̃b = [t1, t2, t3]. Suppose that one observation is missing, e.g., xa,t2 = NaN. Then X is partially
observed.

PARTIAL OBSERVATION ⇏ UNEVEN SAMPLING. Let the timestamps be equally spaced, i.e., t2−t1 =
t3 − t2 = ∆t. Then X is partially observed but evenly sampled.

PARTIAL OBSERVATION ⇏ RAGGEDNESS. Since both signals are defined over the same set of
timestamps, t̃a = t̃b, X is not ragged.

B.3 RAGGED LENGTH

Let X = {xa,xb} be a time series exhibiting ragged length, with t̃a = [t1, t2] and t̃b = [t1, t2, t3].
Then the unified timestamp index is ˜̃t = [t1, t2, t3], and X satisfies τa = 2 ̸= 3 = τb.

RAGGED LENGTH ⇏ UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., t2 − t1 =
t3 − t2 = ∆t. Then X exhibits ragged length, but is evenly sampled.

RAGGED LENGTH ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are
observed (i.e., no NaNs). Then X exhibits ragged length, but is not partially observed.

RAGGED LENGTH ⇏ SHIFT. Although the signals have different lengths, they both start at the same
time, t1. Hence, X is not shifted.

RAGGED LENGTH ⇏ RAGGED SAMPLING. The sampling intervals are identical across both signals,
i.e., ∆t̃a,1 = ∆t̃b,1 = t2 − t1. Therefore, X is not raggedly sampled.

B.4 SHIFT

Let X = {xa,xb} be a time series exhibiting shift, with t̃a = [t1, t2] and t̃b = [t2, t3]. Then the
unified timestamp index is ˜̃t = [t1, t2, t3], and X is shifted, as xa starts and ends before xb.

SHIFT ⇏ UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., t2 − t1 = t3 − t2 = ∆t.
Then X exhibits shift, but is evenly sampled.
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SHIFT ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are observed (i.e., no
NaNs). Then X exhibits shift, but is not partially observed.

SHIFT ⇏ RAGGED LENGTH. Both signals have the same number of observations, i.e., τa = τb = 2.
Hence, X exhibits shift but not ragged length.

SHIFT ⇏ RAGGED SAMPLING. The sampling intervals within each signal are equal, i.e., ∆t̃a,1 =
t2 − t1 = ∆t̃b,1 = t3 − t2. Therefore, X is not raggedly sampled.

B.5 RAGGED SAMPLING

Let X = {xa,xb} be a time series exhibiting ragged sampling, with t̃a = [t1, t2] and t̃b = [t1, t3].
Then the unified timestamp index is ˜̃t = [t1, t2, t3], and the sampling intervals differ across signals:
∆t̃a,1 = t2 − t1 ̸= t3 − t1 = ∆t̃b,1.

RAGGED SAMPLING ⇏ UNEVEN SAMPLING. Let the global timestamps satisfy t2 − t1 = t3 − t2 =
∆t. Then X is raggedly sampled but not unevenly sampled.

RAGGED SAMPLING ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are
observed (i.e., no NaNs). Then X exhibits ragged sampling, but is not partially observed.

RAGGED SAMPLING ⇏ RAGGED LENGTH. Both signals contain the same number of observations,
τa = τb = 2. Thus, X is not ragged in length.

RAGGED SAMPLING ⇏ SHIFT. Both signals start at the same time, t1, and have the same length.
Therefore, X is not shifted.

These examples are minimal and can be easily extended to longer signals and time series. They
suffice to establish that all forms of irregularity discussed, both in the main and raggedness subtypes,
are pairwise independent. None of them implies any other, as illustrated also in Figure 2. To the best
of our knowledge, this taxonomy accounts for all known forms of structural time series irregularity
relevant to data modeling and representation.
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C EXPERIMENTAL DETAILS.

In this section, we summarize experimental details regarding the models and datasets.

C.1 MODELS

The objective of these experiments is to benchmark methods capable of naturally handling irregular
time series without introducing bias through imputation techniques. To achieve this, we limit our
evaluation to classifiers that inherently support missing data in their input and are available in major
time series libraries. Below, we describe the implementation details and hyperparameters for each
method. Parameters that are not mentioned are left to their default in their library implementation.

Bag-of-Receptive-Fields (BORF) The Bag of Receptive Fields (BORF) algorithm (Spinnato et al.,
2024) from the aeon library extracts discretized subsequences and counts their appearance in the time
series, allowing the presence of missing data. A downstream LightGBM classifier with default param-
eters is used to handle transformed features. For the fine-tuned benchmark, the hyperparameter was
on performed on the min_window_to_signal_std_ratio in the interval [0, 0.2] with 0.05 increments.

Bidirectional Recurrent Imputation for Time Series (BRITS) The BRITS algorithm (Cao et al.,
2018), also from the pypots library, employs a bidirectional recurrent network for imputing and
classifying incomplete time series. It uses a hidden layer size of 256 and a batch size of 32. Training
runs for up to 1000 epochs, with early stopping after 50 epochs of no improvement.

Gated Recurrent Unit with Decay (GRU-D) The GRU-D model (Che et al., 2018), available in
the pypots library, extends the Gated Recurrent Unit architecture by introducing decay mechanisms
that account for missing data patterns. The recurrent hidden layer size is set to 256, with a batch size
of 32. Training uses a maximum of 1000 epochs, with early stopping triggered after 50 epochs of no
improvement.

K-Nearest Neighbors with DTW (KNN) This baseline model employs the tslearn K-Nearest
Neighbors algorithm, configured to use the Dynamic Time Warping (DTW) distance measure. DTW
incorporates temporal alignment to handle time series of varying lengths effectively. The distance
computation uses a Sakoe-Chiba band (Sakoe & Chiba, 1978) of 10 points, which limits the warping
window to a fixed radius.

LightGBM (LGBM) LightGBM (Ke et al., 2017) is a gradient-boosting framework optimized for
speed and efficiency, and can naturally handle missing values. In this baseline, it is trained directly
with default parameters on raw time series data transformed into a tabular format using the sktime
Tabularizer. For the fine-tuned benchmark, hyperparameter optimization was conducted over a
predefined search space that included the number of leaves (num_leaves) ∈ {31, 63, 127}, maximum
tree depth (max_depth) ∈ {−1, 7, 10}, (learning_rate) ∈ {0.05, 0.1}, and the minimum number of
samples per leaf (min_data_in_leaf) ∈ {20, 100}.

Neural Controlled Differential Equation (NCDE) The Neural CDE model (Kidger et al., 2020),
implemented via the diffrax library, learns continuous-time representations of time series data
using differential equations. It employs an Euler solver with a maximum of 100 steps, with step size
equal to the minimum time difference between any two adjacent observations, a hidden layer size of
8, and a width size of 32. Training uses a maximum of 1000 iterations, using Adam as optimizer,
with a starting learning rate of 0.01, patience of 200 for early stopping, and a learning rate reduction
factor of 0.5 after 50 stagnant iterations.

Raindrop (RAINDROP) The Raindrop model (Zhang et al., 2022), a graph-based neural network
from pypots, handles irregular time series by sending messages over graphs that are optimized
for capturing time-varying dependencies among sensors. This model uses 2 layers, a feed-forward
network size of 256, 2 attention heads, and a dropout rate of 0.3. Training employs a batch size of 32,
with early stopping after 50 epochs of no improvement.
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Figure 9: Three examples of instances from the (ABF) dataset, from left to right, Alembic, Bowl, and
Flask.

Random Interval Feature Classifier (RIFC) The Random Interval Feature Classifier (RIFC)
leverages the RandomIntervalFeatureExtractor from the sktime library to generate simple
statistical summaries (mean, standard deviation, minimum, maximum, median, skewness, and
kurtosis) from randomly selected intervals within the time series, with the number of intervals being
the logarithm of the time series length. These features are subsequently used by a downstream
LightGBM classifier to perform classification.

Minimally Random Convolutional Kernel Transform (ROCKET) Rocket, in its Minirocket
implementation (Dempster et al., 2021) from the sktime library, employs 10000 fixed con-
volutional kernels to extract features from time series data. This implementation includes
MiniRocketMultivariateVariable, which handles multivariate time series while tolerating
missing data. The transformation could include missing data; therefore, instead of the most
common ridge classifier, LightGBM with default parameters is used. For the fine-tuned bench-
mark, hyperparameter optimization was conducted over the number of kernels, num_kernels ∈
{100, 500, 1000, 5000, 10000, 50000}.

Self-Attention Imputation for Time Series (SAITS) The SAITS model (Du et al., 2023), imple-
mented in the pypots library, employs a transformer-based architecture specifically tailored for time
series imputation. It utilizes a dual self-attention mechanism across temporal dimensions, enabling
it to capture both global and local patterns despite missing values. In this configuration, SAITS is
trained with 2 attention layers, a model dimension of 256, 4 attention heads, and hidden dimensions
dk = 64, dv = 64, and dffn = 128. A dropout rate of 0.1 is used for both the transformer blocks
and attention layers. The model is optimized over a maximum of 1000 epochs, with early stopping
triggered after 50 stagnant epochs. Training is performed with a batch size of 32.

Support Vector Machine with LCSS Kernel (SVM) This method uses the sktime implementation
of a Support Vector Machine, enhanced with the Longest Common Subsequence (LCSS) distance
kernel (Bagheri et al., 2016). LCSS is robust to missing values and temporal distortions, as it matches
time series subsequences with allowable gaps. The kernel uses a Sakoe-Chiba constraint with a
radius of 10. Each time series is standardized using z-score normalization. The model is trained for a
maximum of 1000 iterations.

TimesNet (TIMESNET) TimesNet (Wu et al., 2023) is a modern transformer-based architecture
designed for multivariate time series modeling, emphasizing temporal receptive fields through
learnable convolutional kernels. Its implementation here leverages 2 layers and 3 convolutional
kernels with dynamic top-k temporal selection. The model dimension is set to 64, with a feed-
forward network size of 128. Training is conducted using a batch size of 32 over 1000 epochs, with
early stopping after 50 epochs without validation improvement.

C.2 DATASETS

The repository includes 34 datasets, each briefly described below, along with the data preparation steps
applied. 3 For datasets without a predefined train-test split, we created a stratified, instance-based
70-30% train-test split.

3Data is hosted at link redacted for double-blind review.
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Alembics Bowls Flasks. (ABF) This dataset is inspired by the classical Cylinder-Bell-Funnel (CBF)
benchmark (Saito, 1994) for regular time series classification. Similarly to CBF, there are three
classes, which are Alembics, Bowls, and Flasks. The classes differ by how much the temporal axis
is skewed, i.e., if it has positive (Alembic), negative (Flask), or no skewness (Bowl). For each time
series, 128 values are sampled from a circumference and then standardized. There are 10 instances
for each class in the training set and 300 for each in the test set. An example is presented in Figure 9.

Animals (AN) This dataset, generated during the Starkey project (Ferrero et al., 2018), consists of
trajectories from three animal species—elk, deer, and cattle. The classification task commonly used
in the literature (Ferrero et al., 2018; Landi et al., 2023b;a) involves inferring the species based on
movement patterns. The target classes in the dataset are balanced, with 38 trajectories for the elk, 30
for the deer, and 34 for the cattle.

Geolife (GS) This dataset was collected during the GeoLife Project (Microsoft Research Asia)
from April 2007 to August 2012 (Zheng et al., 2009; 2008; 2010). It contains the trajectories of
182 users and has been preprocessed as detailed in the public User Guide-1.3. One of the most
common supervised machine-learning tasks using this dataset is to identify (a subset) of the 11 means
of transportation. We defined three target variables with a decreasing number of classes. The first
target variable includes all the means of transportation in the dataset: airplane, bike, boat, bus, car,
motorcycle, run, subway, taxi, train, and walk. The second target variable, used in (Ferrero et al.,
2018), groups the transportation modes into six classes: bike, bus/taxi, car, subway, train, and walk.
The third target variable, used in (Landi et al., 2023b), simplifies the classification into two categories:
private (bike, boat, car, motorcycle, run, walk) and public (the remaining modes of transportation).
In Section 5, we benchmark the models against the first target variable. In this setting, each class
accounts for approximately 9.1% of the total instances, but the standard deviation is 12.7%, i.e., the
target variable is highly imbalanced.

GPS Data of Seabirds (SE) This dataset, introduced in (Browning et al., 2018), consists of GPS
data collected from 108 seabirds spanning three species: European shag (15), common guillemot
(31), and razorbill (62). Similar to the Animals dataset, the species has been used to evaluate model
performance in inferring species. The target variable is imbalanced, with the majority class (razorbill)
comprising 62 individuals, while the minority class (European shag) includes only 15.

Localization Data for Person Activity (LPA) Introduced in (Vidulin et al., 2010), this dataset
contains data from 5 individuals performing 11 different actions: falling, lying, lying down, on all
fours, sitting, sitting down, sitting on the ground, standing up from lying, standing up from sitting,
standing up from sitting on the ground, walking. Each action was recorded by tracking the positions
of the body’s right and left ankles, chest, and belt in a 3-dimensional space, resulting in 12 distinct
signals per time series.

MIMIC-III Clinical Database Demo (MI3) Introduced by (Johnson et al., 2016; 2019) on the
Physionet platform (Goldberger et al., 2000), the dataset contains health-related data associated
with 40,000 patients in critical care at the Beth Israel Deaconess Medical Center from 2001 to 2012.
Since the full version is available to credentialed users under strict requirements, we use the publicly
available demo version in our work. We preprocess the data in accordance with (Harutyunyan et al.,
2019). The classification target involves predicting in-hospital mortality.

PAMAP2 Physical Activity Monitoring (PA2) This dataset, introduced in (Reiss & Stricker, 2012),
contains data from 9 subjects (1 female, 8 male) performing 19 different physical activities: ascending
stairs, car driving, computer work, cycling, descending stairs, folding laundry, house cleaning, ironing,
lying, nordic walking, playing soccer, rope jumping, running, sitting, standing, transient, vacuum
cleaning, walking, watching TV. The data includes measurements from 3 inertial measurement units
(IMUs) positioned on the dominant arm, chest, and dominant side’s ankle. Specifically, from each
IMU sensor, the dataset contains information about the temperature, the 3-dimensional acceleration,
gyroscope and magnetometer data, and the sensor orientation. Additionally, heart rate observations
are included. The two types of sensors record data at different sampling rates: 100 Hz for the IMUs
and 9 Hz for the heart rate monitor. We preprocess the data according to the authors’ guidelines when
downloading the dataset. Data from the “transient” activity, i.e., movements between the end of one
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activity and the start of another, was excluded. The remaining 18 activities serve as classification
target classes.

PhysioNet 2012 (P12) Published as data for the “Predicting Mortality of ICU Patients: The
PhysioNet/Computing in Cardiology” challenge in 2012 (Silva et al., 2012), the data contains
information about the patient, like age, gender, height, and weight, and 37 different types of time
series. Similar to the MIMIC-III dataset, the classification target is about predicting in-hospital death.

PhysioNet 2019 (P19) Published as data for the “Early Prediction of Sepsis from Clinical Data:
The PhysioNet/Computing in Cardiology” challenge in 2019 (Reyna et al., 2020), the dataset contains
demographic information about the patients, such as age, gender, height, and weight, alongside 34
other time-series variables for vital signs and laboratory test values. The classification task involves
predicting whether a patient has sepsis or not.

Productivity Prediction of Garment Employees (PGE) Introduced in (Imran et al., 2021), this
dataset contains information about garment manufacturing processing on a per-team level. Addition-
ally, this dataset contains a team productivity performance index, which ranges between 0 and 1. As
suggested by the authors, we use this index as a classification target. Specifically, we defined a team
efficient if the productivity performance index is strictly greater than 0.75.

Taxi (TA) This dataset, introduced as part of the “ECML/PKDD 15: Taxi Trip Time Prediction
(II) Competition” (Moreira-Matias et al., 2013) consists of 121,312 trajectories of Taxis in Porto
(Portugal). The classification task is to predict the type of call that generated the run. The types of
calls could be: A if this trip was dispatched from the central, B if this trip was demanded directly to a
taxi driver on a specific stand C otherwise. The classes are balanced.

Vehicles (VE) GPS trajectories about two different types of vehicles -buses and trucks- moving in
Athens. This dataset is available from download from the Chorochronos Archive (ChoroChronos
Archive).

UEA and UCR Irregular Datasets. The other 22 irregular time-series datasets were downloaded
from the UEA and UCR dataset repository. In particular, we included the following datasets:

• 11 variable-length univariate time series classification problems from (Bagnall et al., 2020):
AllGestureWiimoteX, AllGestureWiimoteY and AllGestureWiimoteZ (GX, GY, GZ) from
(Guna et al., 2014); GestureMidAirD1, GestureMidAirD2, and GestureMidAirD3 (GM1,
GM2, GM3) from (Caputo et al., 2018); GesturePebbleZ1 and GesturePebbleZ2 (GP1, GP2)
from (Mezari & Maglogiannis, 2018); PickupGestureWiimoteZ and ShakeGestureWiimoteZ
(PGZ, SGZ) from (Guna et al., 2014); PLAID (PL) from (Gao et al., 2014);

• 4 fixed length univariate time series with missing values from (Middlehurst et al., 2024b):
DodgerLoopDay, DodgerLoopGame, and DodgerLoopWeekend (DD, DG, DW) from (Ihler
et al., 2006); MelbournePedestrian (MP) (City of Melbourne, 2020) extracted from the City
of Melbourne website;

• 7 variable-length multivariate time series from (Ruiz et al., 2021): AsphaltObstaclesCoor-
dinates, AsphaltPavementTypeCoordinates, and AsphaltRegularityCoordinates (AOC, APT,
ARC) from (de Souza, 2018); CharacterTrajectories (CT) from (Williams et al., 2006); In-
sectWingbeat (IW) from (Chen et al., 2014); JapaneseVowels (JV) from (Kudo et al., 1999);
SpokenArabicDigits (SAD) from (Hammami & Bedda, 2010);

Table 5 contains the full list of curated datasets at the moment of publication on our repository. The
list additionally contains some information about the datasets: the number of instances, #Inst, number
of signals, #Sign, and number of observations, #Obs (maxni (Ti)), the number of target classes #TC
and the standard deviation between the number of instances per class (CU). Additionally, the dataset
contains information about the time series, like the percentage of missing values (MV)-computed
as the ratio between the NaN observations divided by the total number of observations- and the
sampling coefficient of variation (SCV), alongside information on the different kind of irregularity in
the dataset.
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Table 5: Summary of dataset characteristics: the number of instances (#Inst), signals (#Sign), and
observations (#Obs); target classes (#TC) and class imbalance (CU); as well as time-series-specific
metrics like missing values (MV) and sampling coefficient of variation (SCV), and each type of
irregularity, i.e., unevenly sampled (US), partially observed (PO), unequal length (UL), shift (SH),
ragged sampling (RS).

Cat Name Source #Inst #Sign #Obs #TC CU (σ) MV (%) SVC US PO UL SH RS

he
al

th MI3 (Johnson et al., 2016) 57 17 145 2 0.20 0.83 0.60 ✓ ✓ ✓ ✓ ✓
P12 (Silva et al., 2012) 7990 37 203 2 0.36 0.94 0.59 ✓ ✓ ✓ ✓ ✓
P19 (Reyna et al., 2020) 40334 34 334 2 0.43 0.98 0.18 ✓ ✓ ✓ ✓ ✓

hu
m

an
ac

tiv
ity

re
co

gn
iti

on

CT (Williams et al., 2006) 2858 3 182 20 0.01 0.34 0.00 ✗ ✗ ✓ ✗ ✗
GM1 (Caputo et al., 2018) 338 1 360 26 0.00 0.54 0.00 ✗ ✗ ✓ ✗ ✗
GM2 (Caputo et al., 2018) 338 1 360 26 0.00 0.54 0.00 ✗ ✗ ✓ ✗ ✗
GM3 (Caputo et al., 2018) 338 1 360 26 0.00 0.54 0.00 ✗ ✗ ✓ ✗ ✗
GP1 (Mezari & Maglogiannis, 2018) 304 1 455 6 0.01 0.52 0.00 ✗ ✗ ✓ ✗ ✗
GP2 (Mezari & Maglogiannis, 2018) 304 1 455 6 0.01 0.52 0.00 ✗ ✗ ✓ ✗ ✗
GX (Guna et al., 2014) 1000 1 385 10 0.00 0.68 0.00 ✗ ✗ ✓ ✗ ✗
GY (Guna et al., 2014) 1000 1 385 10 0.00 0.68 0.00 ✗ ✗ ✓ ✗ ✗
GZ (Guna et al., 2014) 1000 1 385 10 0.00 0.68 0.00 ✗ ✗ ✓ ✗ ✗
LPA (Vidulin et al., 2010) 273 12 2870 11 0.00 0.95 9.04 ✓ ✗ ✓ ✓ ✓
PAM (Reiss & Stricker, 2012) 124 52 110883 16 0.03 0.82 0.01 ✓ ✓ ✓ ✓ ✓
PGZ (Guna et al., 2014) 100 1 361 10 0.00 0.60 0.00 ✗ ✗ ✓ ✗ ✗
SGZ (Guna et al., 2014) 100 1 385 10 0.00 0.57 0.00 ✗ ✗ ✓ ✗ ✗

m
ob

ili
ty

AN (Ferrero et al., 2018) 102 2 291 3 0.03 0.50 1.21 ✓ ✗ ✓ ✗ ✓
AOC (de Souza, 2018) 781 3 736 4 0.03 0.59 0.00 ✗ ✗ ✓ ✗ ✗
APT (de Souza, 2018) 2111 3 2371 3 0.06 0.83 0.00 ✗ ✗ ✓ ✗ ✗
ARC (de Souza, 2018) 1502 3 4201 2 0.01 0.91 0.00 ✗ ✗ ✓ ✗ ✗
GS (Zheng et al., 2010) 5977 2 96282 11 0.13 0.99 10.27 ✓ ✗ ✓ ✓ ✓
MP (City of Melbourne, 2020) 3633 1 24 10 0.00 0.00 0.01 ✗ ✗ ✓ ✗ ✗
SE (Browning et al., 2018) 108 4 6048 3 0.18 0.60 0.00 ✓ ✗ ✓ ✓ ✓
TA (Moreira-Matias et al., 2013) 121312 2 119 3 0.13 0.61 0.00 ✓ ✗ ✓ ✓ ✓
VE (ChoroChronos Archive) 381 2 1095 2 0.22 0.57 5.29 ✓ ✗ ✓ ✗ ✓

se
ns

or DD (Ihler et al., 2006) 158 1 288 7 0.01 0.01 0.00 ✗ ✓ ✗ ✗ ✗
DG (Ihler et al., 2006) 158 1 288 2 0.02 0.01 0.00 ✗ ✓ ✗ ✗ ✗
DW (Ihler et al., 2006) 158 1 288 2 0.21 0.01 0.00 ✗ ✓ ✗ ✗ ✗

ot
he

r

IW (Chen et al., 2014) 50000 200 22 10 0.00 0.70 0.00 ✗ ✗ ✓ ✗ ✗
JV (Kudo et al., 1999) 640 12 29 9 0.03 0.46 0.00 ✗ ✗ ✓ ✗ ✗
PGE (Imran et al., 2021) 24 9 59 2 0.13 0.19 0.68 ✓ ✗ ✓ ✓ ✓
PL (Gao et al., 2014) 1074 1 1344 11 0.05 0.76 0.00 ✗ ✗ ✓ ✗ ✗
SAD (Hammami & Bedda, 2010) 8798 13 93 10 0.00 0.57 0.00 ✗ ✗ ✓ ✗ ✗

synth ABF new! 930 1 128 3 0.00 0.00 1.95 ✓ ✗ ✗ ✗ ✗

Given yh as the labels vector containing only the h-th class, CU is defined as follows:

CU =

√∑c
h=0(yh − µ)

c
(1)

where µ is the average number of observations. Given ∆t̃ as the vector of differences between
consecutive timestamps of a signal, the SCV is computed as the coefficient of variation (the ratio of
the standard deviation to the mean) for each signal, averaged first across each time series and then
over the entire dataset.

We divided the dataset into 6 categories based on the type of phenomena captured: healthcare, human
activity recognition, mobility (or more generically, geo-temporal motion), sensors, synthetic data, and
others for datasets that don’t fall in any of the previous categories (like the UCR audio and speech
categories).
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D ADDITIONAL RESULTS AND STATISTICAL TESTS

The full result table in terms of F1 is available in Table 7. Further, we provide several other statistical
tests, using a diverse range of metrics, and with respect to different dataset subgroups.

Critical Difference Plots. Figure 10 shows the CD-plots for common performance metrics and
runtimes. F1, accuracy, roc-auc, precision, and recall yield consistent rankings for the top four
models, ROCKET, BORF, LGBM, and RIFC, as well as for the three lowest-performing ones: GRU-D,
NCDE, and SVM. In the mid-range, rankings vary slightly across metrics: for instance, KNN performs
notably worse in terms of F1 compared to accuracy, whereas TIMESNET shows the opposite trend. As
for training time, KNN, being a lazy learner, is the fastest, followed by RIFC and ROCKET. Although
LGBM ranks fourth, the previous results in median runtime (Figure 6) suggest that it may be slightly
slower on smaller datasets but highly efficient on larger ones, which contributes to its overall strong
performance. Neural network-based models generally exhibit longer training times but benefit from
faster inference; nevertheless, ROCKET and LGBM maintain a performance edge across both phases.

F1 CD-plots computed for subsets of datasets with specific characteristics, are shown in Figure 11.
These plots provide additional and complementary insights to those in Figures 7 and 8. Notably,
they reinforce the observation that models explicitly designed for partially observed data tend to
outperform more general-purpose approaches, even though the top rankings remain closely contested
among SAITS, RIFC, LGBM, BRITS, and ROCKET. BRITS and TIMESNET, in particular, show strong
performance on shorter datasets, ranking second and third, respectively, and closely trailing ROCKET.
The remaining plots are similar to those discussed in Section 5.

Multiple Comparison Matrices. While the widely used CD-plot is effective, it has been criticized
in (Ismail-Fawaz et al., 2023) for its susceptibility to manipulation, as the average rank of a model can
be influenced by the performance of other comparators. For this reason, we also propose MCM matrix
for several metrics in Figures 12 to 14. However, in our case, results are consistent with the CD-plots
presented in the previous paragraph, and in the main text, and are presented here in the appendix only
due to space limitations. Again, the top four models are always ROCKET, BORF, LGBM, and RIFC,
and the lowest-performing are GRU-D, NCDE, and SVM, with mid-range models rankings changing
slightly from metric to metric.

Additional Performance vs Runtime Plots. We report in Figures 15 to 19 the performance
rankings across multiple metrics, dataset subsets, and with respect to both training and inference
times. In addition to the insights discussed in the main text, these figures reveal that neural network-
based models tend to cluster together in terms of both runtime and performance, regardless of the
dataset subset or evaluation metric. This suggests that, although their relative rankings may vary,
their overall behavior remains consistent.

Rank Correlation. We report in Figure 20 the F1 rank correlation among models. Models are
hierarchically clustered using average linkage applied to the rank correlation matrix. Positive
correlations indicate that models tend to perform similarly across datasets, reflecting comparable
strengths or weaknesses, while negative correlations suggest divergent performance, highlighting
complementary behaviors or differing inductive biases. Reinforcing the categorization proposed
in the main text, the plot reveals a strong cluster of generalist methods, LGBM, ROCKET, RIFC,
and BORF, which group together at the top hierarchical level. The second major cluster includes
the remaining models, with specialist approaches like BRITS and GRU-D showing high correlation,
which is expected given their shared RNN architecture. Similarly, TIMESNET and SAITS also form a
coherent transformers subgroup. Notable exceptions to the generalist/specialist categorization are
SVM, likely due to its overall poor performance across datasets, and KNN, which we hypothesize
behaves differently due to its lazy learning paradigm based on distances, which could be more prone
to sensitivity to dataset-specific characteristics.

Model Failures and Limitations. From these experiments, several model weaknesses become
apparent, particularly in relation to specific data characteristics. For example, Figure 7 highlights how
RNN-based methods fail to handle long time series effectively, while Table 3 shows that ROCKET
underperformed relative to its baseline results after fine-tuning.
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Additional insights arise from the CD plots in Figure 11. Comparing the general rankings in Figure 11a
with those on specific subsets reveals which models are most sensitive to dataset properties. For
instance, Figure 11g shows that the transformer-based TIMESNET performs worse on smaller datasets,
a point also observerd in Section 5. BORF, despite its strong overall performance, ranks third-to-last
on partially observed data and declines significantly on short time series (Figures 11c and 11i). KNN
also struggles under shift and ragged sampling conditions (Figures 11e and 11f). Notably, KNN was
the weakest model in terms of memory consumption, which explodes with longer series (Table 9).

To provide a more fine-grained view, we report in Table 6 each model’s worst performance in terms
ratio between that worst-case rank and its average rank across all datasets. Higher ratios indicate
greater variability, a phenomenon most pronounced among models that otherwise perform strongly
on average, such as ROCKET, BORF, and LGBM. Several notable cases emerge. ROCKET, for instance,
performs poorly on ABF, a dataset with highly uneven sampling. Similarly, BORF ranks 2.4 times
worse than its average on the Mimic3 dataset, which is also highly irregular. Interestingly, LGBM
performs unexpectedly poorly on the Garment dataset, whose small size would normally favor
tree-based models.

These findings highlight that strong average performance does not necessarily imply robustness
across all dataset types. In particular, models often fail on datasets with structural irregularities or
atypical sampling patterns.

Table 6: Worst-case dataset performance for each model, along with the ratio between its worst rank
and average rank across all datasets. Higher ratios indicate greater variability compared to average
performance.

model worst dataset performance worst-to-average rank ratio

BORF Mimic3 2.4
BRITS AllGestureWiimoteX 1.8
GRU-D CharacterTrajectories 1.6
KNN Physionet2012 1.9
LGBM Garment 2.3
NCDE ShakeGestureWiimoteZ 1.4
RAINDROP InsectWingbeat 1.8
RIFC GeolifeSupervised 2.2
ROCKET Abf 3.0
SAITS Animals 1.5
SVM AllGestureWiimoteY 1.2
TIMESNET DodgerLoopDay 2.0

Impact of irregularity on explanations. As discussed in Section 5, XAI for irregular time series
remains largely unexplored. pyrregular allows researchers to work directly with data while
preserving its irregularities, avoiding the bias introduced by imputation choices, which is fundamental
since explanations are known to be highly sensitive to input variations (Yeh et al., 2019). This,
however, is only a first step. Even when the data retains its irregularity (as in our approach), and
even when models can handle irregular inputs, the explainers themselves typically cannot. In line
with the observations of Cinquini et al. (2023), we argue that this is primarily an implementation
gap on the explainer side. Addressing this limitation would enable our taxonomy of irregularities
to be applied to more fine-grained interpretability. For example, it could help distinguish whether a
model assigns importance to a missing value because of partial observation or because of raggedness,
offering deeper insights into the model’s behavior under irregular conditions.
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Figure 10: Critical Difference plot for the benchmarked models in terms of different metrics, for all
datasets. Best models to the right. The performance of models connected by the bar is statistically
tied, using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.
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Figure 11: Critical Difference plot for the benchmarked models in terms of F1, divided into different
groups. Best models to the right. The performance of models connected by the bar is statistically tied,
using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.
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(b) Accuracy.

Figure 12: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).
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(a) Precision.
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(b) Recall.

Figure 13: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).
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(a) Total Runtime.
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Figure 14: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).
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Figure 15: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.
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Figure 16: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.
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Figure 17: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.
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Figure 18: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.
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Figure 19: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.
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E COMPLEXITY AND PIPELINE COSTS

In this section, we analyze the efficiency of our proposed library and the benchmarked classifiers
in terms of both time and space complexity. The end-to-end cost of the classification pipeline
consists of three components: (i) loading the dataset from disk into memory, (ii) converting it into
a dense representation, and (iii) running the models. The last component is an external cost, since
pyrregular wraps existing state-of-the-art classifiers from other libraries, and is reported separately
in Table 9.

In Table 8 we report instead the internal costs for datasets with a size greater than 10MB. The first
two columns of report the empirical times needed for dataset loading and conversion. Theoretically,
the dominant cost arises when converting the sparse COO representation into dense form, which
requires ranking the timestamps (Section 4). This amounts to sorting within each time series, leading
to a complexity that scales linearly with the number of time series and log-linearly with the number
of non-null observations per series. Thus, in practice, runtimes are efficient: for example, P19 takes
less than 3 seconds end-to-end, while the largest dataset, PA2, is converted in under one minute.

The third and fourth columns of Table 8 compare disk usage of our proposed array format with that
of the raw data. In most cases, the proposed format either matches or substantially reduces disk
requirements. For instance, GS decreases from 0.24GB in raw form to 0.09GB with our approach,
while the reduction is even more pronounced for TA, which shrinks from 1.81GB to only 0.08GB.
These reductions are especially valuable for large-scale datasets where disk I/O is a bottleneck.

The last three columns of Table 8 detail the memory footprint of different representations. The sparse
COO representation incurs a cost of four times the number of non-null observations, accounting
for the storage of coordinates and values. Conversion into a minimally ragged dense format leads
to a worst-case memory complexity of O(n × d × T ), where T = maxni (Ti) is the longest series
length. If the dataset is instead expanded into a fully ragged dense array, the worst-case complexity
becomes O(n × d × T ), which grows quickly with irregularity. Empirical results illustrate these
trends. For example, on PA2, the sparse representation required only 3.93GB, compared to 5.33GB
for a minimally ragged dense format. The largest savings are seen in highly irregular datasets: for
TA, the sparse format used 0.34GB, while the fully ragged dense array would require over 4TB of
memory, an impractical cost.

Table 8: Loading and conversion times (in seconds) for datasets using the proposed array format,
along with disk size consumption (GB) compared to the raw data. Memory usage (GB) of the sparse
representation is also reported relative to dense alternatives.

time (s) disk size (GB) memory (GB)

Loading Conversion ours raw ours
dense w/o
raggedness

dense with
raggedness

ABF 0.03 0.06 ∼0.00 0.01 ∼0.00 ∼0.00 0.81
AOC 0.09 0.12 0.01 ∼0.00 0.02 0.01 0.01
APT 0.30 0.42 0.02 0.02 0.08 0.11 0.11
ARC 0.21 0.28 0.01 0.01 0.05 0.14 0.14
CT 0.12 0.16 0.01 0.01 0.03 0.01 0.01
GS 1.25 3.62 0.09 0.24 0.29 8.58 377.15
IW 6.93 13.01 0.36 0.31 2.00 1.64 1.64
LPA 0.07 0.10 ∼0.00 0.02 0.01 0.07 4.02
MI3 0.13 0.01 ∼0.00 0.04 ∼0.00 ∼0.00 0.03
P12 0.35 0.65 0.01 0.08 0.1 0.45 6.35
P19 0.96 2.08 0.03 0.24 0.31 3.41 3.43
PA2 13.46 21.35 0.83 1.61 3.93 5.33 21.47
PL 0.06 0.07 ∼0.00 ∼0.00 0.01 0.01 0.01
SAD 0.49 0.65 0.02 0.02 0.14 0.08 0.08
SE 0.15 0.17 0.01 0.06 0.03 0.02 0.84
TA 1.49 2.34 0.08 1.81 0.34 0.22 4135.02
VE 0.05 0.08 ∼0.00 0.01 0.01 0.01 0.17
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F ARRAY STRUCTURES

We report a summary of the main formats used to represent regular and irregular time series data in
the literature in Table 10.

Table 10: Overview of the main formats used to represent regular and irregular time series data in the
literature, categorized by tensor type. The table details the underlying data structures (classes), the
software libraries that implement them, their usage across the time series libraries considered in this
study, and their support for timestamps and tensor operations.

Type Format Library Class Usage Timestamps Tensor Ops.

D
en

se

3D Tensor

numpy Array aeon ✗ ✓
numpy Array sktime ✗ ✓
numpy Array tslearn ✗ ✓
numpy MaskedArray - ✗ ✓
jax Array diffrax ✓* ✓
tensorflow Array - ✗ ✓
torch Tensor pypots ✗ ✓

R
ag

ge
d

3D Tensor

awkward AwkwardArray - ✗ ✓
tensorflow RaggedTensor - ✗ ✓
torch NestedTensor - ✗ ✓
zarr RaggedArray - ✗ ✓
pyarrow ListArray - ✗ ✓

Sp
ar

se

3D Tensor
sparse GCXS - ✗ ✓
sparse DOK - ✗ ✓
sparse COO - ✗ ✓

O
th

er

Nested List python List[Array] aeon ✗ ✗
3D tensor** xarray Dataset - ✓ ✓
Long pandas DataFrame sktime ✓ ✗
MultiIndex pandas DataFrame sktime ✓ ✗

* only as a separate channel
** with additional tensors for static variables

G EXTENDING PYRREGULAR TO OTHER TASKS

As noted in Section 6, our framework is designed to extend naturally to several additional tasks
beyond classification. In particular, we highlight regression, forecasting, and anomaly detection,
which are already supported at the representation level and require only minor adjustments to dataset
metadata or the inclusion of auxiliary variables.

Regression. This task involves predicting continuous outcomes and is directly supported by our
framework. Examples include SAPS-I (Simplified Acute Physiology Score) in PhysioNet 2012 or
raw productivity in the Garment dataset.

Forecasting. Here the objective is to predict future values of a time series given its history. We
plan to introduce a static variable with a cutoff point to indicate the train/test split, and to extend the
accessor method to provide users with a straightforward mechanism for performing this split.

Anomaly detection. This task aims to identify unusual or irregular patterns in the data. Since
anomalies may have the same shape as the underlying dataset, they cannot be indicated via static
variables. Instead, leveraging the support for additional data arrays in xarray, we will represent
anomalies using sparse binary masks that flag anomalous regions in the time series.

Model support. We also plan to support a set of representative models for such tasks. A non-
comprehensive list includes recent work introducing dynamic graph networks for medical data (Luo
et al., 2024), image-based transformers for irregular series (Li et al., 2023), channel harmony strategies
(Liu et al., 2025), graph neural flows (Mercatali et al., 2024), temporal graph ODEs (Gravina et al.,
2024), state space models (Gu et al., 2022), and patching graph neural networks for forecasting
(Zhang et al., 2024), to name a few.
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H QUICK GUIDE

Extensive documentation and examples were removed from the Supplementary Materials due to
double-blind constraints. Thus, we provide a quick start guide and simple workflow notebooks below.

pip install pyrregular[models]

H.1 LIST DATASETS

If you want to see all the datasets available, you can use the list_datasets function:

from pyrregular import list_datasets
df = list_datasets()

H.2 LOAD A DATASET

To load a dataset, you can use the load_dataset function. For example, to load the "Garment"
dataset, you can do:

from pyrregular import load_dataset
df = load_dataset("Garment.h5")

H.3 CLASSIFICATION

To use the dataset for classification, you can just "densify" it:

from pyrregular import load_dataset

df = load_dataset("Garment.h5")
X, _ = df.irr.to_dense()
y, split = df.irr.get_task_target_and_split()

X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]

# We have ready-to-go models from various libraries:
from pyrregular.models.rocket import rocket_pipeline

model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)

The dataset can be also easily used in pytorch

from torch.utils.data import DataLoader, TensorDataset
import torch

data = TensorDataset(X, y)
dataloader = DataLoader(data, batch_size=16, shuffle=True)
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Notebook: Basic Workflow

[1]: import xarray as xr

List available datasets

To view available datasets, you can use the list_datasets function.

[2]: from pyrregular import list_datasets

[3]: print(list_datasets())

['Abf.h5', 'AllGestureWiimoteX.h5', 'AllGestureWiimoteY.h5',
'AllGestureWiimoteZ.h5', 'Animals.h5', 'AsphaltObstaclesCoordinates.h5',
'AsphaltPavementTypeCoordinates.h5', 'AsphaltRegularityCoordinates.h5',
'CharacterTrajectories.h5', 'DodgerLoopDay.h5',
'DodgerLoopGame.h5', 'DodgerLoopWeekend.h5', 'Garment.h5',
'GeolifeSupervised.h5', 'GestureMidAirD1.h5', 'GestureMidAirD2.h5',
'GestureMidAirD3.h5', 'GesturePebbleZ1.h5', 'GesturePebbleZ2.h5',
'JapaneseVowels.h5', 'Ldfpa.h5', 'MelbournePedestrian.h5', 'Mimic3.h5',
'PLAID.h5', 'Pamap2.h5', 'Physionet2012.h5', 'Physionet2019.h5',
'PickupGestureWiimoteZ.h5', 'Seabirds.h5', 'ShakeGestureWiimoteZ.h5',
'SpokenArabicDigits.h5', 'Taxi.h5', 'Vehicles.h5']

Loading the dataset from the online repository

Loading a dataset is as from the online repo is as simple as calling the load_dataset function with
the dataset name.

[4]: from pyrregular import load_dataset

[64]: ds = load_dataset("Garment.h5")

The dataset is loaded as an xarray dataset. The dataset is saved in the default os cache directory,
which can be found with:

import pooch
print(pooch.os_cache("pyrregular"))

You can also use xarray to directly load a local file. In this case, you have to specify our backend
as pyrregular in the engine argument.

import xarray as xr
ds = xr.load_dataset("path/to/file.h5", engine="pyrregular")

You can view the underlying DataArray by calling the data variable.

[65]: da = ds.data

[66]: da
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[66]: <xarray.DataArray 'data' (ts_id: 24, signal_id: 9, time_id: 59)> Size: 329kB
<COO: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0 1 1 1 1 1 1 ... 1 1 0 0 0 0 1
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 12 2 3 4 ... 3 4 5 6 7 8 9

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
* ts_id (ts_id) <U12 1kB 'finishing_1' ... 'sweing_9'

Attributes:
_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True
author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]
configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0
source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

[67]: # the shape is (n_time_series, n_channels, n_timestamps)
da.shape

[67]: (24, 9, 59)

[68]: # the array is stored as a sparse array
da.data

[68]: <COO: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>

[69]: # dimensions contain the time series ids, signal ids and timestamps
da.dims

[69]: ('ts_id', 'signal_id', 'time_id')

[70]: # e.g., these are the time series ids
da["ts_id"].data

[70]: array(['finishing_1', 'finishing_10', 'finishing_11', 'finishing_12',
'finishing_2', 'finishing_3', 'finishing_4', 'finishing_5',
'finishing_6', 'finishing_7', 'finishing_8', 'finishing_9',
'sweing_1', 'sweing_10', 'sweing_11', 'sweing_12', 'sweing_2',
'sweing_3', 'sweing_4', 'sweing_5', 'sweing_6', 'sweing_7',
'sweing_8', 'sweing_9'], dtype='<U12')
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[72]: # there are also static variables, such as the class
da["productivity_binary"].data

[72]: array([1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 1], dtype=int32)

[74]: # the train/test split
da["split"].data

[74]: array(['train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'test', 'train', 'train', 'train', 'train', 'test',
'train', 'train', 'train'], dtype='<U5')

[75]: # all the coordinates can be accessed via the `coords` variable
da.coords

[75]: Coordinates:
day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0 1 1 1 1 1 1 ... 1 1 0 0 0 0 1
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 12 2 3 4 ... 3 4 5 6 7 8 9

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
* ts_id (ts_id) <U12 1kB 'finishing_1' ... 'sweing_9'

[76]: # metadata contains informations about the datasets and tasks
da.attrs

[76]: {'_fixed_at': '2024-12-04T21:50:44.408790-12:00',
'_is_fixed': True,
'author': [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed],
'configs': {'default': {'task': 'classification',

'split': 'split',
'target': 'productivity_binary'},

'regression': {'task': 'regression',
'split': 'split',
'target': 'productivity_numerical'}},

'license': 'CC BY 4.0',
'source': 'https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+g

arment+employees',
'title': 'Productivity Prediction of Garment Employees'}
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Data Handling and Plotting

Data can be accessed with standard xarray methods.

[77]: import matplotlib.pyplot as plt
import numpy as np

[78]: # the first time series
da[0]

[78]: <xarray.DataArray 'data' (signal_id: 9, time_id: 59)> Size: 9kB
<COO: shape=(9, 59), dtype=float64, nnz=392, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split <U5 20B 'train'
team int32 4B 1

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
ts_id <U12 48B 'finishing_1'

Attributes:
_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True
author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]
configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0
source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

[79]: # the first channel of the first time series
da[0, 0]

[79]: <xarray.DataArray 'data' (time_id: 59)> Size: 784B
<COO: shape=(59,), dtype=float64, nnz=49, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'
signal_id <U21 84B 'idle_men'
split <U5 20B 'train'
team int32 4B 1
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* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
ts_id <U12 48B 'finishing_1'

Attributes:
_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True
author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]
configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0
source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

[80]: # to access the underlying sparse vector
da[0, 0].data

[80]: <COO: shape=(59,), dtype=float64, nnz=49, fill_value=nan>

[87]: # to access the underlying dense vector
da[0, 4].data.todense()

[87]: array([ 8., 8., 8., 8., 8., 8., 8., 8., 8., 8., 2., 8., 8.,
8., nan, nan, nan, 8., 25., 8., 8., 10., 10., 10., 10., 15.,

19., 19., 10., 10., 12., 10., 10., 10., 12., 12., 12., 12., 8.,
nan, nan, nan, nan, 12., nan, nan, nan, 8., 8., 8., 8., 8.,
8., 8., 8., 8., 8., 8., 8.])

[89]: # this vector contains a lot of nans, which are the padding necessary to have␣
↪→shared timestamps w.r.t. the whole dataset

np.isnan(da[0, 4].data.todense()).sum()

[89]: 10

[90]: plt.plot(da[0, 4]["time_id"], da[0, 4], marker="o")

[90]: [<matplotlib.lines.Line2D at 0x14eb06990>]
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[92]: # using the custom ".irr" accessor, we can filter out the nans to the minimum␣
↪→amount possible due to raggedness

np.isnan(da.irr[0, 4].data.todense()).sum()

[92]: 0

[93]: plt.plot(da.irr[0, 4]["time_id"], da.irr[0, 4], marker="o")

[93]: [<matplotlib.lines.Line2D at 0x14eb6b230>]
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[94]: # the fourth channel first 10 time series of the dataset, as a heatmap
da.irr[:10, 4].plot()

[94]: <matplotlib.collections.QuadMesh at 0x14dcf3680>
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[103]: # plotting some channels
da.irr[0, 2].plot(label=da.coords["signal_id"][2].item())
da.irr[0, 4].plot(label=da.coords["signal_id"][4].item())
da.irr[0, 5].plot(label=da.coords["signal_id"][5].item())
plt.legend()

[103]: <matplotlib.legend.Legend at 0x16ea32870>
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Downstream Tasks

The xarray is nice, but not supported by basically any downstream library. Thus, we can convert
it into a numpy array.

[104]: %%time
# time series data, timestamps
X, T = da.irr.to_dense(

normalize_time=True, # normalize the time index to [0, 1]
)

CPU times: user 2.23 s, sys: 79 ms, total: 2.31 s
Wall time: 2.34 s

[106]: # the shape is (n_time_series, n_channels, n_timestamps), timestamps are␣
↪→returned as a separate channel, for downstream methods that are able to use␣
↪→them

X.shape, T.shape

[106]: ((24, 9, 59), (24, 1, 59))
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[107]: # static variables
Z = da.coords.to_dataset()[["split", "productivity_binary"]].to_pandas()
Z.head()

[107]: split productivity_binary department productivity_class \
ts_id
finishing_1 train 1 finishing high
finishing_10 train 0 finishing low
finishing_11 test 1 finishing high
finishing_12 train 1 finishing high
finishing_2 train 1 finishing high

productivity_numerical team
ts_id
finishing_1 0.812625 1
finishing_10 0.628333 10
finishing_11 0.874028 11
finishing_12 0.922840 12
finishing_2 0.819271 2

[108]: # target and split
y, split = da.irr.get_task_target_and_split()

Train-test split

[111]: X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]
X_train.shape, y_train.shape, X_test.shape, y_test.shape

[111]: ((18, 9, 59), (18,), (6, 9, 59), (6,))

Classification

We have several ready-to-use classifiers in the pyrregular package. Be sure to install the required
dependencies.

[118]: from pyrregular.models.rocket import rocket_pipeline

[119]: %%time
model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)

[119]: 0.6666666666666666
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Notebook: Dataset Conversion

The “Long Format”

The basic format to convert any dataset to our representation is the long format. The long format
is simply a tuple:

(time_series_id, channel_id, timestamp, value, static_var_1, static_var_2, ...).

If your dataset contains rows that are in this format, you are almost good to go. Else, there will be
a little bit of preprocessing to do.

Case 1. (easy) Your dataset is already in the long format

Let’s assume for now your dataset is already in this form. Here is a minimal working example.

[28]: import pandas as pd
import numpy as np

[29]: df = pd.DataFrame(
{

"time_series_id": np.random.choice(["A", "B", "C"], size=100),
"channel_id": np.random.choice(["X", "Y", "Z"], size=100),
"timestamp": pd.date_range("2023-01-01", periods=100, freq="H"),
"value": np.random.randn(100),

}
)
df["labels"] = df["time_series_id"].map(

{"A": 0, "B": 1, "C": 1}
) # let's say we have labels
df.head()

[29]: time_series_id channel_id timestamp value labels
0 B Y 2023-01-01 00:00:00 0.105162 1
1 B Z 2023-01-01 01:00:00 -0.573337 1
2 B X 2023-01-01 02:00:00 -1.973967 1
3 C Y 2023-01-01 03:00:00 0.656065 1
4 A Y 2023-01-01 04:00:00 -0.500246 0

[30]: # Let's save this dataframe to a CSV file
df.to_csv("your_original_dataset.csv", index=False)

[31]: # the csv file can be converted to our format using our interface

from pyrregular.io_utils import read_csv
from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):
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@staticmethod
def read_original_version(verbose=False):

return read_csv(
filenames="your_original_dataset.csv",
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",
dims={

"ts_id": [
"labels"

], # static variable that depends on the time series id
"signal_id": [],
"time_id": [],

},
time_index_as_datetime=False,
verbose=verbose,

)

[32]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, ?it/s]

Reading dataset: 0%| | 0/100 [00:00<?, ?it/s]

[32]: <xarray.DataArray (ts_id: 3, signal_id: 3, time_id: 100)> Size: 3kB
<COO: shape=(3, 3, 100), dtype=float64, nnz=100, fill_value=nan>
Coordinates:

* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
labels (ts_id) int64 24B 0 1 1

* ts_id (ts_id) <U1 12B 'A' 'B' 'C'
* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'

If you don’t know if a variable is static, or to which dimension it depends from, you can check it.

[33]: from pyrregular.data_utils import infer_static_columns

infer_static_columns(df, "time_series_id")

[33]: ['labels']

The dataset can be saved with our custom accessor

[34]: da.irr.to_hdf5("your_dataset.h5")

And then loaded directly with xarray

[35]: import xarray as xr
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[36]: da2 = xr.load_dataset("your_dataset.h5", engine="pyrregular")
da2

[36]: <xarray.Dataset> Size: 11kB
Dimensions: (ts_id: 3, signal_id: 3, time_id: 100)
Coordinates:

labels (ts_id) int32 12B 0 1 1
* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'
* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
* ts_id (ts_id) <U1 12B 'A' 'B' 'C'

Data variables:
data (ts_id, signal_id, time_id) float64 3kB <COO: nnz=100,

fill_value=nan>

Case 2. Your dataset is not in the long format

Let’s say you have a 3d numpy array, containing the time series, and a numpy array containing only
the labels.

[37]: import numpy as np

shape = (10, 2, 100) # 10 time series, 2 channels, 100 timestamps
data = np.full(shape, np.nan)
mask = np.random.rand(*shape) < 0.35
data[mask] = np.random.randn(mask.sum())
labels = np.random.randint(0, 2, shape[0])

np.save("your_more_complex_dataset.npy", data)
np.save("your_more_complex_dataset_labels.npy", labels)

data.shape, labels.shape

[37]: ((10, 2, 100), (10,))

You need only a function that takes the data and the labels, and returns a dataframe in the long
format, yielding it row by row.

[38]: def read_your_dataset(filenames):
data = np.load(filenames["data"])
labels = np.load(filenames["labels"])
ts_ids, signal_ids, timestamps = np.indices(shape)
ts_ids, signal_ids, timestamps = ts_ids.ravel(), signal_ids.ravel(),␣

↪→timestamps.ravel()

for ts_id, signal_id, timestamp in zip(ts_ids, signal_ids, timestamps):
value = data[ts_id, signal_id, timestamp]
if np.isnan(value):

continue
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label = labels[ts_id]
yield dict(

time_series_id=ts_id,
channel_id=signal_id,
timestamp=timestamp,
value=value,
labels=label,

)

[39]: from pyrregular.io_utils import read_csv
from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):
@staticmethod
def read_original_version(verbose=False):

return read_csv(
filenames={

"data": "your_more_complex_dataset.npy",
"labels": "your_more_complex_dataset_labels.npy",

},
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",
dims={

"ts_id": [
"labels"

], # static variable that depends on the time series id
"signal_id": [],
"time_id": [],

},
reader_fun=read_your_dataset,
time_index_as_datetime=False,
verbose=verbose,
attrs={

"authors": "Bond, James Bond", # you can add any attribute you␣
↪→want

}
)

[40]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, ?it/s]

Reading dataset: 0%| | 0/720 [00:00<?, ?it/s]
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[40]: <xarray.DataArray (ts_id: 10, signal_id: 2, time_id: 100)> Size: 23kB
<COO: shape=(10, 2, 100), dtype=float64, nnz=720, fill_value=nan>
Coordinates:

* time_id (time_id) int64 800B 0 1 2 3 4 5 6 7 ... 92 93 94 95 96 97 98 99
labels (ts_id) int64 80B 0 0 0 1 1 1 0 1 1 0

* ts_id (ts_id) <U21 840B '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'
* signal_id (signal_id) <U21 168B '0' '1'

Attributes:
authors: Bond, James Bond
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