
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PYRREGULAR: A UNIFIED FRAMEWORK
FOR IRREGULAR TIME SERIES,
WITH CLASSIFICATION BENCHMARKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Irregular temporal data, characterized by varying recording frequencies, differ-
ing observation durations, and missing values, presents significant challenges
across fields like mobility, healthcare, and environmental science. Existing re-
search communities often overlook or address these challenges in isolation, leading
to fragmented tools and methods. To bridge this gap, we introduce a unified
framework, and the first standardized dataset repository for irregular time series
classification, built on a common array format to enhance interoperability. This
repository comprises 34 datasets on which we benchmark 12 classifier models from
diverse domains and communities. This work aims to centralize research efforts
and enable a more robust evaluation of irregular temporal data analysis methods.

1 INTRODUCTION

High-dimensional temporal data is increasingly accessible to decision-makers, domain experts, and
researchers (Shumway et al., 2000). It is vital in fields like mobility, healthcare, and environmental
science to capture dynamic changes over time. Yet, variations in recording frequencies, durations
across sensors, and occasional failures lead to signals with unequal lengths, gaps, and missing
values (Harvey et al., 1998). These traits make real-world temporal data irregular and hard to manage.

Several research communities address the challenge of irregular temporal data from different per-
spectives, as its analysis depends heavily on the task, application setting, and modeling approach.
As a result, the problem spans multiple fields, including mobility analytics (da Silva et al., 2019),
irregular time series classification (Kidger et al., 2020), forecasting (Weerakody et al., 2021), and
imputation (Luo et al., 2018; Li & Marlin, 2020), to name a few. Due to this vast amount of tasks,
and despite some shared challenges, communities working on irregular temporal data tend to be
separated, each relying on its own set of techniques, such as traditional statistical or data mining
models (Hamilton, 2020), neural networks (Wang et al., 2024), or differential equations (Rubanova
et al., 2019), often resulting in domain-specific tools and libraries. This is not inherently a drawback,
but can lead to fragmented research efforts. The challenges of irregular temporal data are amplified
in supervised learning, where standardized benchmarks are notably lacking. While repositories exist
for regular time series classification (Dau et al., 2019), truly irregular datasets, capturing real-world
missingness and variability, remain scarce. Researchers often resort to artificially manipulated
datasets (Weerakody et al., 2021), introducing assumptions that overlook structural missingness tied
to data collection (Mitra et al., 2023). As a result, and given that many studies rely on a narrow range
of datasets, the generalizability of their methods often remains untested.

We bridge this gap by proposing pyrregular, a unified framework for irregular time series. (1)
We introduce a taxonomy of irregularities and a dataset structure in a common array format that
improves interoperability across libraries while supporting the handling, visualization, and modeling
of irregular time series using existing analysis methods. (2) We introduce the first standardized dataset
repository for irregular time series classification, and (3) we leverage this repository to propose the
first generalized benchmark for state-of-the-art classifiers from different research domains, in an
effort to centralize research on this topic. Specifically, we curate 34 irregular time series datasets and
evaluate 12 time series classifiers. Our goal is to empower users to seamlessly explore and evaluate a
wide range of libraries to address the challenges of irregular temporal data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An example of an irregular time series,
X , comprising two signals x1,x2 with indices
t̃1, t̃2, and the combined shared index ˜̃t.

RAGGEDUNEVENLY
SAMPLED

LENGTH SHIFT SAMPLING

PARTIALLY
OBSERVED

Figure 2: Different kinds of irregularity shown
on a multivariate time series with 2 signals and
containing up to 5 timestamps. Missing values
are depicted as faded red if they were expected
to be recorded, while they are omitted if they are
caused by raggedness.

2 ORGANIZING IRREGULARITY

As our first contribution, we propose a systematic taxonomy that clearly distinguishes among different
forms of irregularity. We begin by defining a time series signal.
Definition 2.1 (Time Series Signal). A signal (or channel) is a sequence of τ observations, each
associated to a timestamp, i.e., x = [(x1, t1), . . . , (xτ , tτ)] = [xt1 , . . . , xtτ] ∈ Ṙτ .

A single signal can be irregular for two reasons: uneven sampling, when at least one interval tk+1−tk
differs from a constant ∆t, and partially observed, when expected values are missing and marked as
NaN. The set of real numbers extended with the NaN symbol is here represented as Ṙ. We denote
with t̃ = [t1, . . . , tτ] ∈ Rτ , the sorted collection of all timestamps where an observation of signal x
was, or should have been recorded, and with τ = |t̃| the number of observations.

Definition 2.2 (Time Series). A time series is a collection of d signals, X = {x1, . . . ,xd} ∈ Ṙd×T .

Time series timestamps are the sorted union of all signal timestamps, i.e., ˜̃t =
⋃d

j=1 t̃j ∈ RT , with

T = |˜̃t|, as shown in Figure 1. In addition to these intrinsic irregularities, tensor representations
introduce a third, structural type: raggedness, that is the necessity of padding due to length, sampling,
or alignment mismatches between signals. Hence, there are three independent irregularity causes:
uneven sampling, partial observation, and raggedness, as depicted in Figure 2. While these categories
have appeared informally in prior literature, here we show that they are independent: none implies
the others. Unevenly sampled time series do not necessarily imply the presence of partially observed
data, as seen in Figure 2 (left). This commonly happens in trajectory data, where the timestamps are
usually highly uneven, but shared across the latitude and longitude signals. Vice versa, the presence
of unobserved data does not imply uneven timestamps, as an observation may be accidentally missing
from an overall constant sampling. Finally, neither unevenly sampled nor partially observed data
imply raggedness. In particular, the two leftmost time series shown in Figure 2 could be stored in
2× 4 and 2× 5 matrices, respectively, without requiring any padding.

Raggedness arises because of different issues created when storing a multivariate time series in
an array-like structure. As so, a single, univariate signal cannot be ragged by itself. In general,
raggedness arises when at least two signals, a and b, do not share the same timestamps, i.e., t̃a ̸= t̃b.
We identify three independent fundamental reasons for why this can happen. The first is ragged
length, when a and b have a different number of observations: τa ̸= τb. The second is shift, where
at least one signal starts and ends before another: (ta,1 < tb,1) ∧ (ta,τa < tb,τb). The third is
ragged sampling, when at least one element of the sampling intervals differs between two signals,
i.e., ∆ta,k ̸= ∆tb,k for some k, where ∆ta,k = ta,k+1 − ta,k and ∆tb,k = tb,k+1 − tb,k. Again,
none of these, by itself, implies the other, as shown in Figure 2, and, in more detail, in Appendix B.
Combinations of these issues yield highly irregular data, where NaN can indicate either a missing
value in a partially observed time series or padding due to raggedness. Moreover, raggedness can
exist also in a time series dataset, i.e., a collection of n time series, X = {X1, . . . ,Xn} ∈ Ṙn×d×T ,
as all instances share the same sorted timestamps, t =

⋃n
i=1

˜̃ti ∈ RT , with T = |t|. The timestamp
index for the whole dataset is denoted as k = [1, . . . , T].

Associated with time series datasets are often static attributes, which refer to information linked to
individual instances that remain independent of the time dimension. These attributes can also serve
as targets in supervised tasks. Specifically, we focus on classification, i.e., targets are categorical.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 RELATED WORK

Datasets and Benchmarks. There is a significant divide in the literature in the availability of datasets
and benchmarking efforts, between regular and irregular time series data. Supervised learning for
regular time series data is extensively addressed in the literature, with numerous “bake-offs” (Bagnall
et al., 2017; Ruiz et al., 2021; Middlehurst et al., 2024b) benchmarking state-of-the-art classifiers on
hundreds of standard datasets from the UEA and UCR repositories (Dau et al., 2019; Bagnall et al.,
2018). On the contrary, the benchmarking literature on irregular time series remains limited. While
secondary sources, such as (Weerakody et al., 2021; Wang et al., 2024), offer surveys on specific tasks
like ITS imputation, comprehensive benchmarks for downstream tasks like classification are largely
confined to primary studies (Kidger et al., 2020; Shukla & Marlin, 2021; Du et al., 2023). Even within
these studies, evaluations are often performed on a small number of datasets. Moreover, benchmark
datasets are not always inherently irregular; instead, they are commonly derived from regular datasets
through simulation, i.e., dropping valid observations (Weerakody et al., 2021). Although this strategy
can create ITS, introducing missingness is a non-trivial process requiring careful decisions about the
type of missingness to simulate (Rubin, 1976). Adding to these challenges, a recent study (Mitra
et al., 2023) highlighted that most research neglects structural missingness, referring to non-random,
multivariate patterns of missingness within datasets. Such patterns can be faithfully preserved only by
maintaining the original data with minimal modifications, which is the central focus of this proposal.

Libraries. Regarding regular time series data, Python libraries such as sktime (Löning et al., 2019),
aeon (Middlehurst et al., 2024a), and tslearn (Tavenard et al., 2020) provide a wide range of
classifier implementations, along with access to the UEA and UCR repositories, enabling systematic
and reproducible evaluations. Although some of these datasets contain irregularities, the typical
approach involves imputing missing values and discarding timestamps during downstream tasks. The
most prominent Python library for irregular time series analysis is pypots (Du, 2023). pypots
offers several classifiers, a few partially observed time series datasets, and provides an interface for
adding missingness in regular datasets. A limitation of pypots is that it overlooks irregularity from
uneven sampling, ignoring timestamps. It also operates within its own ecosystem, lacking interfaces
for cross-library comparisons. This makes using ITS with libraries like aeon and sktime difficult,
due to incompatible data formats and requirements, hindering standardization efforts. The primary
reason for these challenges is the difficulty in managing ITS due to high dimensionality, missing
values, and timestamps. Most libraries for time series prediction require dense 3D tensors to represent
time series, signals, and identifiers (IDs), often demanding extensive padding and increased memory
usage. To mitigate this, special arrays to represent missing values or variable-length instances are
often used. For example, numpy masked arrays (Harris et al., 2020) indicate valid entries with masks
but are memory-inefficient since they store both data and masks. Alternatives include awkward
arrays (Pivarski et al., 2020), jagged pytorch arrays (Paszke et al., 2017), ragged tensorflow
arrays (Abadi et al., 2015), zarr, pyarrow, or sparse arrays (Abbasi, 2018). Although efficient
in managing varied-sized data, these structures cannot inherently handle timestamps. Forecasting
libraries like nixtla or gluonTS (Alexandrov et al., 2020) typically use a long format, representing
data as tuples (i, j, t, x) with instance and signal IDs, timestamps, and observed values. While
efficient for forecasting, this format requires pivoting for classification tasks, and static variables are
either duplicated or stored separately, causing inefficiencies. Lastly, xarray (Hoyer & Hamman,
2017) supports timestamped multi-dimensional arrays but lacks native support for sparse ITS.

In summary, to the best of our knowledge, no existing array format is capable of representing ITS data
in all their nuances. To address this limitation, we propose a framework that serves as a compatibility
layer based on a unified array format, facilitating comprehensive benchmarking across a wide range
of datasets and methods from diverse time series communities.

4 A UNIFIED FRAMEWORK FOR IRREGULAR TIME SERIES

This work addresses the gap in the literature on irregular time series by introducing an efficient
container specifically designed for such data. This facilitates the integration of methods and datasets
from various research communities into a unified framework. We outline key aspects of this solution.
(i) Ease of Use: the framework supports several stages of the data science workflow, including visual-
ization, preprocessing with classical and temporal slicing, and seamless conversion to dense arrays
used in leading machine learning libraries. (ii) Robustness: the implementation leverages established

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MODELARCHIVE

CONVERTING

sparse

xarray

numpy

PLOT

matplotlib

custom accessor & backend

pooch

hdf5

time series libraries

tslearndiffrax

pypots aeonsktime

.csv
.xls

.txt

.json

.sql

.xml

.h5

.pkl

.zarr

.npz

.npy

.db
.nc

.yml

.tar
seaborn

HANDLINGPREPROCESSING

torch

Figure 3: A simplified schema of our framework. (left) Data from different sources is preprocessed
and represented in our proposed array container (center), which combines xarray with an underlying
sparse tensor via a custom accessor and backend. This container can be easily manipulated, plotted,
and stored. (right) Finally, it can also be converted into a more common dense representation, which
can be used for downstream tasks with any standard time series library.

and well-maintained libraries, as there is no point in reinventing the wheel. (iii) Flexibility: the
container supports several types of time series irregularities. (iv) Replicability: to ensure comparable
results, preprocessing is standardized, addressing the variability in ITS. A depiction of the three
steps of pyrregular is shown in Figure 3: preprocessing, where the original ITS is transformed
into our proposed container; handling, where the data can be explored, manipulated, and stored; and
converting, where the data is prepared for downstream tasks. 1

Preprocessing. The first step in our framework involves transforming ITS datasets into the proposed
representation. ITS can be found in a wide variety of sources and formats (Figure 3, left), presenting
unique challenges in terms of preprocessing. Regardless of the original data structure, our framework
requires only a function capable of yielding the data in the standardized long format. In this
representation, each row captures the time series ID, signal ID, timestamp, and observed value:
(i, j, t, x). The core intuition behind our approach is that the long format closely resembles the sparse
coordinate (COO) representation (Duff et al., 2017).

The COO format, as implemented by sparse (Abbasi, 2018), can efficiently encode sparse 3D tensors,
by using indices for the time series, signal, and timestamp, accompanied by an observed value entry,
formally (i, j, k, x). The key distinction between the long format and the COO representation lies in
the handling of the timestamps: while the COO format requires discrete timestamp indices, k, the
long format uses real-valued timestamps, t. An example is reported in Figure 4 (left). This difference,
however, can be easily bridged by mapping the timestamps, t, to discrete positions within the COO
array, k. Formally, given the timestamps vector t = [t1, . . . , tT], each timestamp can be mapped to its
corresponding position (index), in the COO format as k = [1, . . . , T] (and vice-versa), as depicted in
Figure 4 (center). With this mapping, converting between the long format and the COO representation
can be easily accomplished, as the time series dataset is read once to construct the mapping and a
second time to incrementally build the COO matrix by yielding each row as it is generated (Figure 4,
right). Practitioners need only to define a custom function that, given their own data, incrementally
produces rows in the long format. Even when the initial dataset is not organized in this manner,
the conversion to the long format is typically straightforward. This process ensures uniformity
across input formats and transparency, as the preprocessing steps are explicitly documented in this
function, and can be reproduced at any time. Though it may be runtime-intensive, this step needs
to be performed only once, after which the library streamlines all subsequent transformations and
processing. The output after preprocessing is a sparse tensor, denoted as X ∈ Ṙn×d×T .

Handling. The COO representation offers advantages over the classical long format. First, it supports
array-like operations with reasonable performance, including reshaping and slicing. Moreover, it
allows for rapid conversion to task-specific array structures, such as other sparse formats like GCXS

1The code is provided in the Supplementary Materials. Examples are available in Appendix H.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(Shaikh & Hasan, 2015). Compared to classical dense arrays, its primary advantage lies in memory
efficiency, as only the recorded observations are stored. All padding is represented by a fill value
and remains implicit, meaning it is not directly stored but is generated only when the sparse array is
transformed into a dense form. We propose setting such value to NaN to capture raggedness. Further,
the COO format naturally accommodates partially observed data by explicitly storing a fill value. This
allows for distinguishing between the two types of missing data previously discussed. Specifically,
an explicitly stored fill value, i.e., a row (i, j, k,NaN), can indicate a missing entry that should be
present, while implicit NaNs reflect missingness due to data raggedness. In this sense, the COO tensor
by itself is enough to represent both ragged and partially observed time series.

... ...

.........

...

1 2 12/01/2025

1 1 13/01/2025

1 2 05/01/2025

2 1 31/12/2024

......

603/01/2025

kt

07/01/2025 9

806/01/2025

05/01/2025 7

Long Format Mapping COO Tensor

in
st

an
ce

s (
i)

sig
nals

 (j)

time (k)
1 2 7

i j t

i j k

Figure 4: Long format to COO tensor conversion process.
Each row of the long format is processed to retrieve the
absolute position k of a given timestamp t. The triplet,
instance ID (i = 1), signal ID (j = 2), and timestamp
index (k = 7), is used to populate the sparse COO tensor.

However, to capture an unevenly sampled
time series, it is also essential to store the
timestamps. To achieve this, we leverage
the timestamp to COO (t to k) mapping
using xarray (Figure 3, center). In par-
ticular, we use xarray (Hoyer & Ham-
man, 2017) to store the timestamps and
extend it to utilize an underlying sparse
COO tensor. These functionalities are pos-
sible through our custom backend and ac-
cessor, which extend the xarray library, to
support sparse arrays. Further, xarray
naturally facilitates the storage of static at-
tributes linked to any dataset dimension,
such as class labels in classification tasks.
Overall, this approach offers significant
storage efficiency, particularly given the typically high data sparsity (see Appendix E), and en-
sures ease of use by supporting all existing xarray functions like timestamp range queries. Further,
our accessor enables plotting, while our backend allows direct saving and loading to a hierarchical
data format, locally or online, eliminating the need to perform the preprocessing step again.

Converting. Despite its advantages, xarray is not directly supported by most libraries for supervised
learning tasks. Therefore, it is crucial to demonstrate how this array structure can be efficiently
prepared for such applications. Specifically, for classification tasks, X ∈ Ṙn×d×T should be
transformed into a dense tensor that minimizes raggedness while preserving the inherent missingness
from partially observed time series and maintaining the order of observations within the same time
series. This conversion is important because, in classification tasks, raggedness is typically irrelevant
to the target and would otherwise result in vast dense arrays filled predominantly with NaNs. For
instance, the specific starting dates of time series, such as a beginning on January 23rd and b on
January 30th, are typically uninformative with respect to the output class, so we generally want to
avoid introducing 7 leading NaNs in time series b to account for the shift. For a COO array, this
transformation corresponds to a dense ranking operation on the timestamp index, k, performed time
series-wise. Formally, for each COO entry (i, j, k, x), we produce (i, j, rank i(k), x), where:

rank i(k) = 1 + |{k′ ∈ [1, Ti] : k
′ < k}|.

This process shifts the timestamp indices within each time series, Xi, into a consecutive sequence
ranging from 1 to its length, Ti. As a result, the tensor X ∈ Ṙn×d×T can be densified into a
more compact, X′ ∈ Ṙn×d×T , where T = maxni (Ti). This ensures minimal raggedness, with the
timestamp dimension set to the maximum number of timestamps in any time series. X′ can be used
by downstream libraries such as sktime (Löning et al., 2019), aeon (Middlehurst et al., 2024a),
tslearn (Tavenard et al., 2020), pypots (Du, 2023) and diffrax (Kidger, 2021).

5 CLASSIFICATION BENCHMARKS

We present a comprehensive benchmark enabled by pyrregular, in which we evaluate 12 classifiers
from a variety of time series libraries on a curated collection of 34 ITS datasets. We assess model per-
formance from multiple perspectives, including dataset characteristics, robustness across irregularity
types, and the potential for performance improvement through fine-tuning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Datasets used for our benchmarks, divided by irregularity type: unevenly sampled (US),
partially observed (PO), unequal length (UL), shift (SH), ragged sampling (RS).

health human activity recognition mobility sensor other synth

M
I
3

P
1
2

P
1
9

C
T

G
M
1

G
M
2

G
M
3

G
P
1

G
P
2

G
X

G
Y

G
Z

L
P
A

P
A
M

P
G
Z

S
G
Z

A
N

A
O
C

A
P
T

A
R
C

G
S

M
P

S
E

T
A

V
E

D
D

D
G

D
W

I
W

J
V

P
G
E

P
L

S
A
D

A
B
F

US ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
PO ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
UL ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗
SH ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
RS ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Table 2: Summary of evaluated classifiers.

Library Model Type Domain

aeon
(Spinnato et al., 2024) BORF dictionary-based transform + LGBM classifier regular, ragged

RIFC interval-based transform + LGBM classifier partially observed

diffrax (Kidger et al., 2020) NCDE neural controlled differential equations unevenly sampled

pypots

(Cao et al., 2018) BRITS bidirectional recurrent imputation network partially observed
(Che et al., 2018) GRU-D gated recurrent unit with decay partially observed
(Zhang et al., 2022) RAINDROP graph neural network partially observed
(Du et al., 2023) SAITS self-attention-based imputation transformer partially observed
(Wu et al., 2022) TIMESNET temporal 2d-variation transformer. partially observed

sktime

(Ke et al., 2017) LGBM gradient boosted tree tabular
(Dempster et al., 2021) ROCKET kernel-based transform + LGBM classifier regular
(Bagheri et al., 2016) SVM support vector machine with distance kernel regular, ragged

tslearn (Sakoe & Chiba, 1978) KNN distance-based with dynamic time warping regular, ragged

Datasets. Following established repositories such as UEA and UCR, we compile a diverse collection
of datasets that vary in size (small to large), length (short to long), and dimensionality (univariate
to multivariate), ensuring broad representativeness. We solely focus on naturally irregular datasets,
without artificially inducing irregularity (Tables 1 and 5). First, our collection contains widely used ITS
classification datasets: PhysioNet 2012 (P12) (Silva et al., 2012), PhysioNet 2019 (P19) (Reyna et al.,
2020), and the MIMIC-III (MI3) clinical database (Johnson et al., 2016) from the medical domain,
as well as Pamap2 (PAM) (Reiss & Stricker, 2012) for physical activity monitoring. Additionally,
we include the 11 variable-length univariate time series classification problems (Guna et al., 2014;
Caputo et al., 2018; Mezari & Maglogiannis, 2018; Gao et al., 2014) from (Bagnall et al., 2020), the
4 partially observed datasets (Ihler et al., 2006; City of Melbourne, 2020) from (Middlehurst et al.,
2024b), and the 7 variable-length multivariate time series classification problems (de Souza, 2018;
Williams et al., 2006; Chen et al., 2014; Kudo et al., 1999; Hammami & Bedda, 2010) from (Ruiz
et al., 2021). We also provide datasets that, to the best of our knowledge, were never used in these
kinds of benchmarks. These include data for trajectory classification of entities such as mammals
(AN)(Ferrero et al., 2018), birds (SE) (Browning et al., 2018), and vehicles like buses and trucks
(VE), taxis (Moreira-Matias et al., 2013) (TA) and combinations of the previous (Zheng et al., 2010)
(GS). Further, we include a small dataset about the productivity prediction for garment employees
(Imran et al., 2021) (PGE), and a human activity recognition dataset (Vidulin et al., 2010) (LPA).
Finally, inspired by the classical Cylinder-Bell-Funnel benchmark (Saito, 1994) for regular time
series classification, we introduce an irregular version called Alembics-Bowls-Flasks (ABF), in which
the class depends on the skewness of the time sampling. Where available, we use the default train/test
split for training and inference, else we set them based on each dataset description and original paper.

Models. The objective of these experiments is to benchmark methods capable of naturally handling
ITS without introducing bias through imputation. For this reason, and to keep the benchmarks to a
reasonable amount, we limit our evaluation to classifiers that inherently support irregular inputs and
are available in the aforementioned libraries (Table 2 and Appendix C). As classical baselines, we
use K-Nearest Neighbors (KNN) with Dynamic Time Warping (Sakoe & Chiba, 1978), a time series
Support Vector Machine (SVM) with a Longest Common Subsequence (LCSS) kernel (Bagheri et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

123456789101112

ROCKET3.4706

BORF4.8676

LGBM5.0735

RIFC5.5294

TIMESNET6.0588

RAINDROP6.4118KNN 6.4559
BRITS 6.7059
SAITS 6.7206

GRU-D 7.7059
NCDE 8.5588

SVM 10.4412

f1

Figure 5: CD plot for the benchmarked models in
terms of F1. Best models to the right. Connected
models are statistically tied.

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

m
ea

n
F1

 ra
nk

BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS
GRU-D

KNN

LGBM

NCDE

RAINDROPRIFC

ROCKET

SAITS

TIMESNET

Figure 6: Mean F1 rank against training and in-
ference runtimes for the top 11 models across all
datasets. The best models are on the bottom left.

2016), and a LightGBM classifier (LGBM) trained directly on raw ITS, ignoring temporal dependencies.
For regular time series models, we include the Bag-Of-Receptive-Fields (BORF) (Spinnato et al.,
2024) from aeon, ROCKET (Dempster et al., 2020; 2021) via its MINIROCKET version in sktime,
and a Random Interval Feature Classifier (RIFC). These models transform the data and rely on
downstream classifiers; we use LGBM to handle possible NaNs. For partially observed data, we
benchmark GRU-D (Che et al., 2018), BRITS (Cao et al., 2018), RAINDROP (Zhang et al., 2022), two
transformer models, SAITS (Du et al., 2023) and TIMESNET (Wu et al., 2023), from pypots, and a
Neural Controlled Differential Equation model (NCDE) (Kidger et al., 2020) from diffrax.

Experimental Setup. Following standard practice in similar benchmarking studies (Bagnall et al.,
2017; Middlehurst et al., 2024b), all models are trained using the default hyperparameters provided
by their respective libraries or those recommended in the original papers. The goal of this benchmark,
consistent with prior bake-offs, is to identify the model that best generalizes with a single, reasonable
parameter configuration rather than fine-tuning each model for individual datasets. For this reason,
the results of these benchmarks do not necessarily highlight the best possible model for a given task,
but the model that generalizes best in many. Each model is allocated two weeks (≈ 20000 minutes)
for training and inference on each dataset, with access to 32 cores and 512 GB of memory, and to a
GPU when the model can use it2. Experiments are repeated three times for highly stochastic models,
and the average performance is maintained. We use the F1 score with macro averaging as the primary
performance metric, as it is robust in the presence of unbalanced data (Japkowicz, 2013), which
occurs in some of our datasets. Accuracy results, along with additional metrics and statistical tests,
are reported in Appendix D and are consistent with the following findings.

5.1 RESULTS AND DISCUSSION.

We present a comparative analysis of the aggregate results of the benchmark outcomes. We report a
critical difference (CD) plot in Figure 5, which ranks models in terms of F1. Models are arranged from
right to left, with lower ranks indicating better performance. Models connected by a horizontal bar
are statistically tied under a one-sided Holm-corrected Wilcoxon signed-rank test with a significance
threshold of 0.05. ROCKET emerged as the clear top-performing model, demonstrating consistent
superiority across the datasets. Even if this result aligns with its established reputation as one of
the best models for regular time series classification (Middlehurst et al., 2024b), its efficacy on
irregular data is somewhat surprising, as ROCKET does not exploit any information about said
irregularity. Following ROCKET, a cluster of methods, including BORF, LGBM, RIFC, TIMESNET,
exhibits statistically tied performance. Lower ranks are occupied by RAINDROP, KNN, BRITS,
followed by GRU-D and NCDE, with SVM distinctly identified as the worst-performing model.

Performance vs. Time. Besides predictive performance, runtime is also a significant factor. In
Figure 6, we compare the average F1 rank against training and inference runtimes, discarding SVM
for better readability. The better-performing, faster models appear in the bottom-left region of
the plot. In terms of training, LGBM is the fastest, followed by RIFC and ROCKET, with ROCKET
also being also very fast during inference. For this reason, ROCKET emerges as the best tradeoff
between F1 and runtime. Interestingly, despite being designed for tabular data, LGBM performs

2System: IBM SYSTEM POWER AC922 Compute Nodes with 2 × 16-core 2.7GHz POWER9 CPUs,
512GB of RAM. NVIDIA Tesla V100 32GB GPU

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

BO
RF

BRITS
GRU-D KN

N
LG

BM
NCDE

RA
INDROP

RIFC

ROCKE
T

SA
ITS SV

M

TIM
ES

NET
sm

al
l

bi
gSi

ze 4.9 6.6 7.5 5.9 5.6 8.8 6.3 4.9 3.6 6.8 10.0 7.2
4.9 6.8 7.9 7.0 4.6 8.3 6.5 6.2 3.4 6.6 10.9 4.9

BO
RF

BRITS
GRU-D KN

N
LG

BM
NCDE

RA
INDROP

RIFC

ROCKE
T

SA
ITS SV

M

TIM
ES

NET

un
i

m
ul

ti
Si

gn
al

s 4.6 7.3 8.5 4.7 5.4 9.1 6.4 6.0 2.9 7.1 9.9 6.2
5.1 6.2 7.0 8.0 4.8 8.1 6.4 5.2 4.0 6.4 10.9 5.9

BO
RF

BRITS
GRU-D KN

N
LG

BM
NCDE

RA
INDROP

RIFC

ROCKE
T

SA
ITS SV

M

TIM
ES

NET

sh
or

t
lo

ngLe
ng

th 6.8 4.9 6.2 6.8 5.6 8.7 6.4 6.6 4.9 6.5 9.7 5.0
2.8 8.7 9.4 6.0 4.6 8.4 6.4 4.4 1.9 7.0 11.2 7.2

Figure 7: Mean F1 rank (lower is better) against
dataset size in terms of instances (top), number of
signals (center), and time series length (bottom).

US PO UL SH RS
0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
F1

Figure 8: Mean F1 (higher is better) of the 5 best-
performing models for each type of irregularity.

well. This finding aligns with observations in (Tan et al., 2020), where gradient-boosting trees
showed strong performance in regular time series regression. LGBM is a compelling choice due to its
decent performance and exceptionally fast training time, making it attractive for practitioners needing
solid baselines. Neural network-based methods, though designed for ITS, underperform in these
bake-off-style benchmarks, except for their competitive inference runtime. Similar patterns appear in
regular time series classification (Middlehurst et al., 2024b). We hypothesize that simpler, generalist,
models, like ROCKET, excel in bake-off settings due to their low-variance, high-bias inductive bias,
making them robust across a wide range of tasks, contrary to specialized models, which exhibit strong
performance on specific types of irregularity or dataset characteristics, especially after fine-tuning.

Performance vs. Dimension. Figure 7 (top) shows the mean F1 ranks of all benchmarked models
(lower is better), stratified by dataset size: small (at most 500 instances) and large (more than 500
instances). KNN and RIFC exhibit a noticeable worsening in rank on larger datasets, indicating limited
scalability or reduced robustness as the number of training examples increases. In contrast, LGBM,
and especially TIMESNET, improve significantly in rank, suggesting that more complex models,
particularly transformer-based ones, benefit from greater data availability to better exploit their
capacity. Figure 7 (center) shows the mean F1 ranks for univariate and multivariate time series.
While the best-ranked model is again ROCKET, all neural network-based approaches benefit from
increased dimensionality, making them particularly suitable for multivariate time series. Figure 7
(bottom) reports the mean F1 ranks stratified by time series length: short (at most 360 observations)
and long (more than 360 observations). Here, recurrent models such as GRU-D and BRITS, along with
several other neural architectures, tend to struggle on longer sequences. RAINDROP stands out as
an exception, likely owing to its graph-based design. Meanwhile, models that rely on localized or
interval-based features, such as ROCKET, RIFC, and especially BORF, show improved performance on
longer time series, indicating that in this case, simpler is better (more details available in Appendix C).

Performance vs. Irregularity. In Figure 8, we report the average F1 score of the top-5 performing
models within each irregularity group (higher is better). ROCKET, BORF, and LGBM consistently rank
among the top three across unevenly sampled, unequal length, shifted, and ragged sampling time
series. GRU-D, while generally ranking lower overall, appears among the top five models in three
out of the five groups, showing solid average performance. Partially observed time series exhibit
markedly different behavior: here, models designed to handle missing data, such as SAITS and BRITS,
outperform ROCKET, BORF, and LGBM. This suggests that explicitly modeling missingness can be
highly beneficial, particularly for datasets with structured patterns of missing values.

Performance after Fine-tuning. In Table 3, we present the average performance of the top three
generalist models, ROCKET, BORF, and LGBM, evaluated in terms of area under the Receiver
Operating Characteristic curve (auc) and area under the Precision-Recall curve (aupr) following
hyperparameter tuning. These evaluations follow the same 5-fold cross-validation setup and are
compared against reference results from (Li et al., 2023; Liu et al., 2024; Zheng et al., 2024) on
the two most commonly used irregular medical datasets: P12 (Silva et al., 2012) and P19 (Reyna
et al., 2020). This benchmark aims to assess whether generalist classifiers can also be effectively
fine-tuned for specific tasks, and to compare them with state-of-the-art specialist deep learning
models such as CONTIFORMER (Chen et al., 2024), GRU-D (Che et al., 2018), MTSFORMER (Zheng
et al., 2024), MUSICNET (Liu et al., 2024), and RAINDROP (Zhang et al., 2022). Results indicate that,
when optimally fine-tuned, deep learning-based algorithms outperform simpler regular time series

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of best-performing models from the bake-off, against baseline reference results
(higher is better). Best values in bold, second best underlined.

BORF
CONTI

FORMER
GRU-D LGBM

MTS
FORMER

MUSIC
NET

RAIN
DROP

ROCKET
P
1
2 auc 74.9±0.0 81.2±0.8 81.9±2.1 78.4±0.0 84.9±1.4 86.1±0.4 82.8±1.7 53.4±0.0

aupr 33.4±0.0 43.9±3.0 46.1±4.7 38.1±0.0 51.1±3.7 54.1±2.2 44.0±3.0 15.8±0.0

P
1
9 auc 80.1±0.0 79.2±2.3 83.9±1.7 85.2±0.0 88.8±1.5 86.8±1.4 87.0±2.3 77.3±0.0

aupr 38.1±0.0 35.8±2.3 46.9±2.1 44.1±0.0 57.7±4.4 45.4±2.7 51.8±5.5 35.2±0.0

classifiers. However, except for ROCKET, which underperforms in this test, this advantage is not
always substantial; for instance, LGBM achieves the fourth-best score on P19, outperforming models
like CONTIFORMER and GRU-D. Another advantage of models such as ROCKET, BORF, and LGBM is
that the performance is very stable, with near-zero standard deviation to a single decimal place. This
underscores the value of being able to readily apply standard approaches, as they can offer fast, stable,
and non-trivial baselines. However, deep learning offers more flexibility for optimizing on specific
tasks, with reasonable inference times when aiming for raw performance for deployment purposes.

Performance vs. Trustworthiness. Though not the main focus of this work, we briefly address
model trustworthiness, crucial in high-stakes fields like healthcare, where ITS are common. The most
interpretable models in our benchmark are BORF, which relies on subsequence presence/absence,
and RIFC, which uses simple interval-based features, both followed by a tree-based model. Neural
models can be interpreted with gradient-based methods, though the reliability of their explanations
on ITS is unexplored. The top-performing model, ROCKET, offers little interpretability and depends
on expensive model-agnostic techniques (Theissler et al., 2022). Robustness to random initialization
also matters: models with high variance across seeds hinder reproducibility. Stable methods like
LGBM, BORF, and KNN may be preferable in sensitive settings, even at some cost in performance.

6 CONCLUSION

In this work, we presented pyrregular, a unified framework for addressing the challenges of ITS.
By introducing a standardized repository for ITS classification and structuring the datasets in a
common array format, we provided a cohesive way to work with varying forms of irregularity. Our
extensive empirical evaluation of 12 state-of-the-art classifiers and baseline methods on 34 datasets
emphasizes both the complexity of this domain and the benefits of a shared benchmarking resource.
Results indicate that, with appropriate configuration and tuning, specialist models such as neural
networks still attain state-of-the-art performance. However, extending their applicability across
diverse tasks remains a significant challenge. Interestingly, simple generalist classifiers originally
designed for regular time series data, such as ROCKET, perform remarkably well on irregular time
series in bake-off-style benchmarks, even without leveraging the irregularity itself. This observation
reveals a crucial research gap: the need to develop generalist methods capable of explicitly exploiting
irregularities, such as missingness and timestamp information.

The construction of this extensive set of benchmarks was greatly facilitated by pyrregular, which
abstracts the complexities of ITS across diverse libraries. While we aimed to provide a diverse and
representative selection of baseline models, our choices were also guided by practical considerations
such as library availability and interface compatibility, rather than exhaustive coverage. We acknowl-
edge that several other relevant baselines could further enrich the comparison. Our goal was not to be
fully comprehensive, but to establish a robust and extensible starting point for benchmarking within a
unified framework. Further, we deliberately limited the scope of the benchmarks to classification, as
achieving the same level of detail for other tasks, such as forecasting, anomaly detection, or imputa-
tion, would require an effort comparable in scale to what we present here, and is therefore left for
future work. Nevertheless, because the proposed array format is task-independent and some curated
datasets already include additional target variables, our framework naturally enables exploration
of these tasks (see Appendix G for details). Going forward, pyrregular will be extended to such
additional tasks, integrated with more datasets, and enriched with methods from a broader selection
of time series libraries, increasing its relevance across diverse research domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.

Hameer Abbasi. Sparse: A more modern sparse array library. In SciPy, pp. 65–68, 2018.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural
Time Series Modeling in Python. Journal of Machine Learning Research, 21(116):1–6, 2020. URL
http://jmlr.org/papers/v21/19-820.html.

Mohammad Ali Bagheri, Qigang Gao, and Sergio Escalera. Support vector machines with time series
distance kernels for action classification. In 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1–7. IEEE, 2016.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time
series classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data mining and knowledge discovery, 31:606–660, 2017.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Anthony Bagnall, Michael Flynn, James Large, Jason Lines, and Matthew Middlehurst. On the usage
and performance of the hierarchical vote collective of transformation-based ensembles version
1.0 (hive-cote v1. 0). In Advanced Analytics and Learning on Temporal Data: 5th ECML PKDD
Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020, Revised Selected Papers 6, pp.
3–18. Springer, 2020.

Ella Browning, Mark Bolton, Ellie Owen, Akiko Shoji, Tim Guilford, and Robin Freeman. Predicting
animal behaviour using deep learning: Gps data alone accurately predict diving in seabirds.
Methods in Ecology and Evolution, 9(3):681–692, 2018.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

Fabio Marco Caputo, Pietro Prebianca, Alessandro Carcangiu, Lucio Davide Spano, and Andrea
Giachetti. Comparing 3d trajectories for simple mid-air gesture recognition. Comput. Graph., 73:
17–25, 2018.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

Yanping Chen, Adena Why, Gustavo Batista, Agenor Mafra-Neto, and Eamonn Keogh. Flying insect
classification with inexpensive sensors. Journal of insect behavior, 27:657–677, 2014.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. Advances in Neural Information
Processing Systems, 36, 2024.

ChoroChronos Archive. Trucks dataset - dataset and algorithms | chorochronos.org. http://www.
chorochronos.org/. Accessed: 2025-01-23.

Martina Cinquini, Fosca Giannotti, Riccardo Guidotti, and Andrea Mattei. Handling missing values
in local post-hoc explainability. In World Conference on Explainable Artificial Intelligence, pp.
256–278. Springer, 2023.

10

http://jmlr.org/papers/v21/19-820.html
http://www.chorochronos.org/
http://www.chorochronos.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

City of Melbourne. Pedestrian counting system. http://www.pedestrian.melbourne.
vic.gov.au, 2020. Accessed: 2025-01-23.

Camila Leite da Silva, Lucas May Petry, and Vania Bogorny. A survey and comparison of trajectory
classification methods. In 2019 8th Brazilian conference on intelligent systems (BRACIS), pp.
788–793. IEEE, 2019.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Vinícius M. A. de Souza. Asphalt pavement classification using smartphone accelerometer and
complexity invariant distance. Eng. Appl. Artif. Intell., 74:198–211, 2018.

Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454–1495, 2020.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. Minirocket: A very fast (almost)
deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, pp. 248–257, 2021.

Wenjie Du. Pypots: A python toolbox for data mining on partially-observed time series. arXiv
preprint arXiv:2305.18811, 2023.

Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert
Systems with Applications, 219:119619, 2023.

Iain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods for sparse matrices. Oxford
University Press, 2017.

Carlos Andres Ferrero, Luis Otavio Alvares, Willian Zalewski, and Vania Bogorny. Movelets:
Exploring relevant subtrajectories for robust trajectory classification. In Proceedings of the 33rd
Annual ACM symposium on applied computing, pp. 849–856, 2018.

Jingkun Gao, Suman Giri, Emre Can Kara, and Mario Berges. PLAID: a public dataset of high-
resoultion electrical appliance measurements for load identification research: demo abstract. In
BuildSys, pp. 198–199. ACM, 2014.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

Alessio Gravina, Daniele Zambon, Davide Bacciu, and Cesare Alippi. Temporal graph odes for
irregularly-sampled time series. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, pp. 4025–4034, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=uYLFoz1vlAC.

Joze Guna, Grega Jakus, Matevz Pogacnik, Saso Tomazic, and Jaka Sodnik. An analysis of the
precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.
Sensors, 14(2):3702–3720, 2014.

James D Hamilton. Time series analysis. Princeton university press, 2020.

Nacereddine Hammami and Mouldi Bedda. Improved tree model for arabic speech recognition. In
2010 3rd international conference on computer science and information technology, volume 5, pp.
521–526. IEEE, 2010.

11

http://www.pedestrian.melbourne.vic.gov.au
http://www.pedestrian.melbourne.vic.gov.au
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Mul-
titask learning and benchmarking with clinical time series data. Scientific Data, 6(1):96, 2019.
ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9. URL https://doi.org/10.1038/
s41597-019-0103-9.

Andrew Harvey, Siem Jan Koopman, and Jeremy Penzer. Messy time series: a unified approach.
Advances in econometrics, 13:103–144, 1998.

Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets in python. Journal of Open
Research Software, 5(1):10–10, 2017.

Alexander Ihler, Jon Hutchins, and Padhraic Smyth. Adaptive event detection with time-varying
poisson processes. In KDD, pp. 207–216. ACM, 2006.

Abdullah Al Imran, Md Shamsur Rahim, and Tanvir Ahmed. Mining the productivity data of the
garment industry. Int. J. Bus. Intell. Data Min., 19(3):319–342, 2021.

Ali Ismail-Fawaz, Angus Dempster, Chang Wei Tan, Matthieu Herrmann, Lynn Miller, Daniel F
Schmidt, Stefano Berretti, Jonathan Weber, Maxime Devanne, Germain Forestier, et al. An
approach to multiple comparison benchmark evaluations that is stable under manipulation of the
comparate set. arXiv preprint arXiv:2305.11921, 2023.

Nathalie Japkowicz. Assessment metrics for imbalanced learning. Imbalanced learning: Foundations,
algorithms, and applications, pp. 187–206, 2013.

Alistair Johnson, Tom Pollard, and Roger Mark. Mimic-iii clinical database demo (version 1.4).
PhysioNet, 10:C2HM2Q, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707,
2020.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Multidimensional curve classification using
passing-through regions. Pattern Recognit. Lett., 20(11-13):1103–1111, 1999.

Cristiano Landi, Riccardo Guidotti, Mirco Nanni, and Anna Monreale. The trajectory interval forest
classifier for trajectory classification. In SIGSPATIAL/GIS, pp. 67:1–67:4. ACM, 2023a.

Cristiano Landi, Francesco Spinnato, Riccardo Guidotti, Anna Monreale, and Mirco Nanni. Geolet:
An interpretable model for trajectory classification. In IDA, volume 13876 of Lecture Notes in
Computer Science, pp. 236–248. Springer, 2023b.

12

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41597-019-0103-9
https://doi.org/10.1038/s41597-019-0103-9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Steven Cheng-Xian Li and Benjamin Marlin. Learning from irregularly-sampled time series: A
missing data perspective. In International Conference on Machine Learning, pp. 5937–5946.
PMLR, 2020.

Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for irregularly
sampled time series. Advances in Neural Information Processing Systems, 36:49187–49204, 2023.

Jiexi Liu, Meng Cao, and Songcan Chen. Musicnet: A gradual coarse-to-fine framework for
irregularly sampled multivariate time series analysis. arXiv preprint arXiv:2412.01063, 2024.

Jiexi Liu, Meng Cao, and Songcan Chen. Timecheat: A channel harmony strategy for irregularly
sampled multivariate time series analysis. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 18861–18869, 2025.

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, and Franz J
Király. sktime: A unified interface for machine learning with time series. arXiv preprint
arXiv:1909.07872, 2019.

Yicheng Luo, Zhen Liu, Linghao Wang, Binquan Wu, Junhao Zheng, and Qianli Ma. Knowledge-
empowered dynamic graph network for irregularly sampled medical time series. Advances in
Neural Information Processing Systems, 37:67172–67199, 2024.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with
generative adversarial networks. Advances in neural information processing systems, 31, 2018.

Giangiacomo Mercatali, Andre Freitas, and Jie Chen. Graph neural flows for unveiling systemic
interactions among irregularly sampled time series. Advances in Neural Information Processing
Systems, 37:57183–57206, 2024.

Antigoni Mezari and Ilias Maglogiannis. An easily customized gesture recognizer for assisted living
using commodity mobile devices. Journal of Healthcare Engineering, 2018(1):3180652, 2018.

Matthew Middlehurst, Ali Ismail-Fawaz, Antoine Guillaume, Christopher Holder, David Guijo-Rubio,
Guzal Bulatova, Leonidas Tsaprounis, Lukasz Mentel, Martin Walter, Patrick Schäfer, et al. aeon:
a python toolkit for learning from time series. Journal of Machine Learning Research, 25(289):
1–10, 2024a.

Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: a review and exper-
imental evaluation of recent time series classification algorithms. Data Mining and Knowledge
Discovery, pp. 1–74, 2024b.

Robin Mitra, Sarah F McGough, Tapabrata Chakraborti, Chris Holmes, Ryan Copping, Niels Hagen-
buch, Stefanie Biedermann, Jack Noonan, Brieuc Lehmann, Aditi Shenvi, et al. Learning from
data with structured missingness. Nature Machine Intelligence, 5(1):13–23, 2023.

Luis Moreira-Matias, Michel Ferreira, Joao Mendes-Moreira, L. L., and J. J. Taxi Service Trajectory
- Prediction Challenge, ECML PKDD 2015. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C55W25.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jim Pivarski, Peter Elmer, and David Lange. Awkward arrays in python, c++, and numba. In EPJ
Web of Conferences, volume 245, pp. 05023. EDP Sciences, 2020.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In
2012 16th international symposium on wearable computers, pp. 108–109. IEEE, 2012.

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from clinical data:
the physionet/computing in cardiology challenge 2019. Critical care medicine, 48(2):210–217,
2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and Anthony Bagnall.
The great multivariate time series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery, 35(2):401–449, 2021.

Naoki Saito. Local feature extraction and its applications using a library of bases. Yale University,
1994.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

Md Abu Hanif Shaikh and KM Azharul Hasan. Efficient storage scheme for n-dimensional sparse
array: Gcrs/gccs. In 2015 International Conference on High Performance Computing & Simulation
(HPCS), pp. 137–142. IEEE, 2015.

Satya Narayan Shukla and Benjamin M. Marlin. Multi-time attention networks for irregularly
sampled time series. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=4c0J6lwQ4_.

Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its applications,
volume 3. Springer, 2000.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012
computing in cardiology, pp. 245–248. IEEE, 2012.

Francesco Spinnato, Riccardo Guidotti, Anna Monreale, and Mirco Nanni. Fast, interpretable and
deterministic time series classification with a bag-of-receptive-fields. IEEE Access, 2024.

Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb. Monash university,
uea, ucr time series extrinsic regression archive. arXiv preprint arXiv:2006.10996, 2020.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz,
Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, and Eli Woods. Tslearn, a machine
learning toolkit for time series data. Journal of Machine Learning Research, 21(118):1–6, 2020.
URL http://jmlr.org/papers/v21/20-091.html.

Andreas Theissler, Francesco Spinnato, Udo Schlegel, and Riccardo Guidotti. Explainable ai for time
series classification: a review, taxonomy and research directions. Ieee Access, 10:100700–100724,
2022.

V Vidulin, M Lustrek, B Kaluza, R Piltaver, and J Krivec. Localization data for person activity. UCI
Machine Learning Repository, 2010.

Jun Wang, Wenjie Du, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, and Qingsong Wen. Deep
learning for multivariate time series imputation: A survey. arXiv preprint arXiv:2402.04059, 2024.

Philip B Weerakody, Kok Wai Wong, Guanjin Wang, and Wendell Ela. A review of irregular time
series data handling with gated recurrent neural networks. Neurocomputing, 441:161–178, 2021.

Ben H. Williams, Marc Toussaint, and Amos J. Storkey. Extracting motion primitives from natural
handwriting data. In ICANN (2), volume 4132 of Lecture Notes in Computer Science, pp. 634–643.
Springer, 2006.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

14

https://openreview.net/forum?id=4c0J6lwQ4_
https://openreview.net/forum?id=4c0J6lwQ4_
http://jmlr.org/papers/v21/20-091.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=ju_Uqw384Oq.

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K Ravikumar. On the
(in) fidelity and sensitivity of explanations. Advances in neural information processing systems,
32, 2019.

Weijia Zhang, Chenlong Yin, Hao Liu, Xiaofang Zhou, and Hui Xiong. Irregular multivariate
time series forecasting: A transformable patching graph neural networks approach. In Forty-first
International Conference on Machine Learning, 2024.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network for
irregularly sampled multivariate time series. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=Kwm8I7dU-l5.

Liangwei Nathan Zheng, Zhengyang Li, Chang George Dong, Wei Emma Zhang, Lin Yue, Miao Xu,
Olaf Maennel, and Weitong Chen. Irregularity-informed time series analysis: Adaptive modelling
of spatial and temporal dynamics. In Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management, pp. 3405–3414, 2024.

Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding mobility based
on GPS data. In UbiComp, volume 344 of ACM International Conference Proceeding Series, pp.
312–321. ACM, 2008.

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations and travel
sequences from gps trajectories. In Proceedings of the 18th international conference on World
wide web, pp. 791–800, 2009.

Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

15

https://openreview.net/forum?id=ju_Uqw384Oq
https://openreview.net/forum?id=Kwm8I7dU-l5

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A SUMMARY OF NOTATION

We have adopted a tensor-like notation inspired by (Kolda & Bader, 2009). The time series dataset is
structured along three dimensions: the instance dimension, which consists of n instances (e.g., Xi

denotes the i-th time series in the dataset X); the signal dimension, which includes d channels (e.g.,
xi,j represents the j-th signal in time series Xi); and the time dimension, spanning T points (e.g.,
xi,j,tk represents the tk observation of j-th signal in time series Xi). We use tildes to specify the
index being referenced (e.g., tk ∈ t corresponds to the k-th timestamp at the dataset’s level, while
tk ∈ ˜̃t corresponds to the k-th timestamp at the time series’s level). For improved readability, indices
are omitted when they are not relevant.

Table 4: Summary of notation.

Notation
X,X, x, x time series dataset, instance, signal, entry
t, ˜̃t, t̃, t timestamps for a time series dataset, instance, signal, entry
k timestamp index
n number of instances in a dataset
d number of signals in a time series
T , T, τ number timestamps in a time series dataset, instance, signal
i, j, k indexes for instances, signals, timestamps

B TAXONOMY OF TIME SERIES IRREGULARITIES

In addition to the well-known missingness taxonomy introduced in (Rubin, 1976) (MCAR, MAR,
and MNAR), Mitra et al. (2023) proposed an additional category: structural missingness (SM). While
Rubin’s framework is typically formulated in terms of univariate patterns, SM highlights situations
where missingness is organized across multiple variables and exhibits systematic structure. Our
primary aim, distinct from previous works, is to preserve such structural patterns of missingness.

Consider, for instance, daily heart rate signals collected by wearables over three months. Data may
be missing completely at random (MCAR) when some days are absent because the device randomly
fails to sync, in which case missingness is unrelated to any variable. It may be missing at random
(MAR) when data are more frequently absent on weekends, particularly for users with low recorded
activity. It may be missing not at random (MNAR) when users remove the device precisely when
feeling unwell, so missingness coincides with unrecorded spikes in heart rate. Finally, it may exhibit
structural missingness (SM) when devices differ in recording frequency, such as once per second
versus once per millisecond, or when a firmware update produces week-long gaps.

In this last case, missingness follows clear temporal patterns tied to device characteristics or design
flaws, rather than to a single variable. Addressing such missingness (or raggedness) should therefore
be an intentional modeling choice by the practitioner, not the result of routine preprocessing. We pro-
vide here formal definitions for each type of time series irregularity and use minimal counterexamples
to show that none of these irregularities implies the others.
Definition B.1 (Uneven Sampling). A signal x = [xt1 , . . . , xtτ] ∈ Ṙτ is said to be unevenly sampled
if there exists at least one index k ∈ {1, . . . , τ − 1} such that the time interval between successive
observations is not constant, i.e., tk+1 − tk ̸= ∆t for some fixed ∆t ∈ R.

The same definition applies to time series instances and datasets, using their respective indices ˜̃t, t.
Definition B.2 (Partial Observation). A signal x = [xt1 , . . . , xtτ] ∈ Ṙτ is said to be partially
observed if at least one value xtk is missing and represented by a special symbol NaN, indicating
the absence of an observation at a timestamp where one was expected, i.e., xtk = NaN for some
k ∈ {1, . . . , τ}.

Again, the same definition applies to time series instances and datasets.
Definition B.3 (Raggedness). Raggedness is a structural irregularity that arises in a multivariate time
series X = {x1, . . . ,xd} ∈ Ṙd×T when the component signals do not share a common timestamp

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

index. Formally, raggedness is present when there exist at least two signals xa and xb such that
t̃a ̸= t̃b. It manifests in three independent forms:

• (a) Ragged Length: τa ̸= τb.

• (b) Shift: (ta,1 < tb,1) ∧ (ta,τa
< tb,τb

).

• (c) Ragged Sampling: ∆ta,k ̸= ∆tb,k for some k, where ∆tj,k = tj,k+1− tj,k. The index
k ranges from 1 to min(τa, τb)− 1, so only intervals that exist in both signals are compared.

The same definition applies to time series datasets.

We now show that the five forms of time series irregularity are mutually independent: none implies
any of the others. This is shown through minimal examples of time series that satisfy one irregularity
condition while exhibiting none of the others.

B.1 UNEVEN SAMPLING

Let X = {xa,xb} be a time series where both signals share the same timestamp index, ˜̃t = t̃a =
t̃b = [t1, t2, t3], and assume that the sampling intervals are not constant, i.e., t2− t1 ̸= t3− t2. Then
X is unevenly sampled.

UNEVEN SAMPLING ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are
observed (i.e., none are NaN). Then X is unevenly sampled, but not partially observed.

UNEVEN SAMPLING ⇏ RAGGEDNESS. Since t̃a = t̃b, both signals are aligned on the same
timestamps. Therefore, X is not ragged.

B.2 PARTIAL OBSERVATION

Let X = {xa,xb} be a time series where both signals share the same timestamp index, ˜̃t = t̃a =
t̃b = [t1, t2, t3]. Suppose that one observation is missing, e.g., xa,t2 = NaN. Then X is partially
observed.

PARTIAL OBSERVATION ⇏ UNEVEN SAMPLING. Let the timestamps be equally spaced, i.e., t2−t1 =
t3 − t2 = ∆t. Then X is partially observed but evenly sampled.

PARTIAL OBSERVATION ⇏ RAGGEDNESS. Since both signals are defined over the same set of
timestamps, t̃a = t̃b, X is not ragged.

B.3 RAGGED LENGTH

Let X = {xa,xb} be a time series exhibiting ragged length, with t̃a = [t1, t2] and t̃b = [t1, t2, t3].
Then the unified timestamp index is ˜̃t = [t1, t2, t3], and X satisfies τa = 2 ̸= 3 = τb.

RAGGED LENGTH ⇏ UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., t2 − t1 =
t3 − t2 = ∆t. Then X exhibits ragged length, but is evenly sampled.

RAGGED LENGTH ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are
observed (i.e., no NaNs). Then X exhibits ragged length, but is not partially observed.

RAGGED LENGTH ⇏ SHIFT. Although the signals have different lengths, they both start at the same
time, t1. Hence, X is not shifted.

RAGGED LENGTH ⇏ RAGGED SAMPLING. The sampling intervals are identical across both signals,
i.e., ∆t̃a,1 = ∆t̃b,1 = t2 − t1. Therefore, X is not raggedly sampled.

B.4 SHIFT

Let X = {xa,xb} be a time series exhibiting shift, with t̃a = [t1, t2] and t̃b = [t2, t3]. Then the
unified timestamp index is ˜̃t = [t1, t2, t3], and X is shifted, as xa starts and ends before xb.

SHIFT ⇏ UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., t2 − t1 = t3 − t2 = ∆t.
Then X exhibits shift, but is evenly sampled.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

SHIFT ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are observed (i.e., no
NaNs). Then X exhibits shift, but is not partially observed.

SHIFT ⇏ RAGGED LENGTH. Both signals have the same number of observations, i.e., τa = τb = 2.
Hence, X exhibits shift but not ragged length.

SHIFT ⇏ RAGGED SAMPLING. The sampling intervals within each signal are equal, i.e., ∆t̃a,1 =
t2 − t1 = ∆t̃b,1 = t3 − t2. Therefore, X is not raggedly sampled.

B.5 RAGGED SAMPLING

Let X = {xa,xb} be a time series exhibiting ragged sampling, with t̃a = [t1, t2] and t̃b = [t1, t3].
Then the unified timestamp index is ˜̃t = [t1, t2, t3], and the sampling intervals differ across signals:
∆t̃a,1 = t2 − t1 ̸= t3 − t1 = ∆t̃b,1.

RAGGED SAMPLING ⇏ UNEVEN SAMPLING. Let the global timestamps satisfy t2 − t1 = t3 − t2 =
∆t. Then X is raggedly sampled but not unevenly sampled.

RAGGED SAMPLING ⇏ PARTIAL OBSERVATION. Suppose that all values in both xa and xb are
observed (i.e., no NaNs). Then X exhibits ragged sampling, but is not partially observed.

RAGGED SAMPLING ⇏ RAGGED LENGTH. Both signals contain the same number of observations,
τa = τb = 2. Thus, X is not ragged in length.

RAGGED SAMPLING ⇏ SHIFT. Both signals start at the same time, t1, and have the same length.
Therefore, X is not shifted.

These examples are minimal and can be easily extended to longer signals and time series. They
suffice to establish that all forms of irregularity discussed, both in the main and raggedness subtypes,
are pairwise independent. None of them implies any other, as illustrated also in Figure 2. To the best
of our knowledge, this taxonomy accounts for all known forms of structural time series irregularity
relevant to data modeling and representation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS.

In this section, we summarize experimental details regarding the models and datasets.

C.1 MODELS

The objective of these experiments is to benchmark methods capable of naturally handling irregular
time series without introducing bias through imputation techniques. To achieve this, we limit our
evaluation to classifiers that inherently support missing data in their input and are available in major
time series libraries. Below, we describe the implementation details and hyperparameters for each
method. Parameters that are not mentioned are left to their default in their library implementation.

Bag-of-Receptive-Fields (BORF) The Bag of Receptive Fields (BORF) algorithm (Spinnato et al.,
2024) from the aeon library extracts discretized subsequences and counts their appearance in the time
series, allowing the presence of missing data. A downstream LightGBM classifier with default param-
eters is used to handle transformed features. For the fine-tuned benchmark, the hyperparameter was
on performed on the min_window_to_signal_std_ratio in the interval [0, 0.2] with 0.05 increments.

Bidirectional Recurrent Imputation for Time Series (BRITS) The BRITS algorithm (Cao et al.,
2018), also from the pypots library, employs a bidirectional recurrent network for imputing and
classifying incomplete time series. It uses a hidden layer size of 256 and a batch size of 32. Training
runs for up to 1000 epochs, with early stopping after 50 epochs of no improvement.

Gated Recurrent Unit with Decay (GRU-D) The GRU-D model (Che et al., 2018), available in
the pypots library, extends the Gated Recurrent Unit architecture by introducing decay mechanisms
that account for missing data patterns. The recurrent hidden layer size is set to 256, with a batch size
of 32. Training uses a maximum of 1000 epochs, with early stopping triggered after 50 epochs of no
improvement.

K-Nearest Neighbors with DTW (KNN) This baseline model employs the tslearn K-Nearest
Neighbors algorithm, configured to use the Dynamic Time Warping (DTW) distance measure. DTW
incorporates temporal alignment to handle time series of varying lengths effectively. The distance
computation uses a Sakoe-Chiba band (Sakoe & Chiba, 1978) of 10 points, which limits the warping
window to a fixed radius.

LightGBM (LGBM) LightGBM (Ke et al., 2017) is a gradient-boosting framework optimized for
speed and efficiency, and can naturally handle missing values. In this baseline, it is trained directly
with default parameters on raw time series data transformed into a tabular format using the sktime
Tabularizer. For the fine-tuned benchmark, hyperparameter optimization was conducted over a
predefined search space that included the number of leaves (num_leaves) ∈ {31, 63, 127}, maximum
tree depth (max_depth) ∈ {−1, 7, 10}, (learning_rate) ∈ {0.05, 0.1}, and the minimum number of
samples per leaf (min_data_in_leaf) ∈ {20, 100}.

Neural Controlled Differential Equation (NCDE) The Neural CDE model (Kidger et al., 2020),
implemented via the diffrax library, learns continuous-time representations of time series data
using differential equations. It employs an Euler solver with a maximum of 100 steps, with step size
equal to the minimum time difference between any two adjacent observations, a hidden layer size of
8, and a width size of 32. Training uses a maximum of 1000 iterations, using Adam as optimizer,
with a starting learning rate of 0.01, patience of 200 for early stopping, and a learning rate reduction
factor of 0.5 after 50 stagnant iterations.

Raindrop (RAINDROP) The Raindrop model (Zhang et al., 2022), a graph-based neural network
from pypots, handles irregular time series by sending messages over graphs that are optimized
for capturing time-varying dependencies among sensors. This model uses 2 layers, a feed-forward
network size of 256, 2 attention heads, and a dropout rate of 0.3. Training employs a batch size of 32,
with early stopping after 50 epochs of no improvement.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

Alembic

0.0 0.2 0.4 0.6 0.8 1.0

Bowl

0.0 0.2 0.4 0.6 0.8 1.0

Flask

Figure 9: Three examples of instances from the (ABF) dataset, from left to right, Alembic, Bowl, and
Flask.

Random Interval Feature Classifier (RIFC) The Random Interval Feature Classifier (RIFC)
leverages the RandomIntervalFeatureExtractor from the sktime library to generate simple
statistical summaries (mean, standard deviation, minimum, maximum, median, skewness, and
kurtosis) from randomly selected intervals within the time series, with the number of intervals being
the logarithm of the time series length. These features are subsequently used by a downstream
LightGBM classifier to perform classification.

Minimally Random Convolutional Kernel Transform (ROCKET) Rocket, in its Minirocket
implementation (Dempster et al., 2021) from the sktime library, employs 10000 fixed con-
volutional kernels to extract features from time series data. This implementation includes
MiniRocketMultivariateVariable, which handles multivariate time series while tolerating
missing data. The transformation could include missing data; therefore, instead of the most
common ridge classifier, LightGBM with default parameters is used. For the fine-tuned bench-
mark, hyperparameter optimization was conducted over the number of kernels, num_kernels ∈
{100, 500, 1000, 5000, 10000, 50000}.

Self-Attention Imputation for Time Series (SAITS) The SAITS model (Du et al., 2023), imple-
mented in the pypots library, employs a transformer-based architecture specifically tailored for time
series imputation. It utilizes a dual self-attention mechanism across temporal dimensions, enabling
it to capture both global and local patterns despite missing values. In this configuration, SAITS is
trained with 2 attention layers, a model dimension of 256, 4 attention heads, and hidden dimensions
dk = 64, dv = 64, and dffn = 128. A dropout rate of 0.1 is used for both the transformer blocks
and attention layers. The model is optimized over a maximum of 1000 epochs, with early stopping
triggered after 50 stagnant epochs. Training is performed with a batch size of 32.

Support Vector Machine with LCSS Kernel (SVM) This method uses the sktime implementation
of a Support Vector Machine, enhanced with the Longest Common Subsequence (LCSS) distance
kernel (Bagheri et al., 2016). LCSS is robust to missing values and temporal distortions, as it matches
time series subsequences with allowable gaps. The kernel uses a Sakoe-Chiba constraint with a
radius of 10. Each time series is standardized using z-score normalization. The model is trained for a
maximum of 1000 iterations.

TimesNet (TIMESNET) TimesNet (Wu et al., 2023) is a modern transformer-based architecture
designed for multivariate time series modeling, emphasizing temporal receptive fields through
learnable convolutional kernels. Its implementation here leverages 2 layers and 3 convolutional
kernels with dynamic top-k temporal selection. The model dimension is set to 64, with a feed-
forward network size of 128. Training is conducted using a batch size of 32 over 1000 epochs, with
early stopping after 50 epochs without validation improvement.

C.2 DATASETS

The repository includes 34 datasets, each briefly described below, along with the data preparation steps
applied. 3 For datasets without a predefined train-test split, we created a stratified, instance-based
70-30% train-test split.

3Data is hosted at link redacted for double-blind review.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Alembics Bowls Flasks. (ABF) This dataset is inspired by the classical Cylinder-Bell-Funnel (CBF)
benchmark (Saito, 1994) for regular time series classification. Similarly to CBF, there are three
classes, which are Alembics, Bowls, and Flasks. The classes differ by how much the temporal axis
is skewed, i.e., if it has positive (Alembic), negative (Flask), or no skewness (Bowl). For each time
series, 128 values are sampled from a circumference and then standardized. There are 10 instances
for each class in the training set and 300 for each in the test set. An example is presented in Figure 9.

Animals (AN) This dataset, generated during the Starkey project (Ferrero et al., 2018), consists of
trajectories from three animal species—elk, deer, and cattle. The classification task commonly used
in the literature (Ferrero et al., 2018; Landi et al., 2023b;a) involves inferring the species based on
movement patterns. The target classes in the dataset are balanced, with 38 trajectories for the elk, 30
for the deer, and 34 for the cattle.

Geolife (GS) This dataset was collected during the GeoLife Project (Microsoft Research Asia)
from April 2007 to August 2012 (Zheng et al., 2009; 2008; 2010). It contains the trajectories of
182 users and has been preprocessed as detailed in the public User Guide-1.3. One of the most
common supervised machine-learning tasks using this dataset is to identify (a subset) of the 11 means
of transportation. We defined three target variables with a decreasing number of classes. The first
target variable includes all the means of transportation in the dataset: airplane, bike, boat, bus, car,
motorcycle, run, subway, taxi, train, and walk. The second target variable, used in (Ferrero et al.,
2018), groups the transportation modes into six classes: bike, bus/taxi, car, subway, train, and walk.
The third target variable, used in (Landi et al., 2023b), simplifies the classification into two categories:
private (bike, boat, car, motorcycle, run, walk) and public (the remaining modes of transportation).
In Section 5, we benchmark the models against the first target variable. In this setting, each class
accounts for approximately 9.1% of the total instances, but the standard deviation is 12.7%, i.e., the
target variable is highly imbalanced.

GPS Data of Seabirds (SE) This dataset, introduced in (Browning et al., 2018), consists of GPS
data collected from 108 seabirds spanning three species: European shag (15), common guillemot
(31), and razorbill (62). Similar to the Animals dataset, the species has been used to evaluate model
performance in inferring species. The target variable is imbalanced, with the majority class (razorbill)
comprising 62 individuals, while the minority class (European shag) includes only 15.

Localization Data for Person Activity (LPA) Introduced in (Vidulin et al., 2010), this dataset
contains data from 5 individuals performing 11 different actions: falling, lying, lying down, on all
fours, sitting, sitting down, sitting on the ground, standing up from lying, standing up from sitting,
standing up from sitting on the ground, walking. Each action was recorded by tracking the positions
of the body’s right and left ankles, chest, and belt in a 3-dimensional space, resulting in 12 distinct
signals per time series.

MIMIC-III Clinical Database Demo (MI3) Introduced by (Johnson et al., 2016; 2019) on the
Physionet platform (Goldberger et al., 2000), the dataset contains health-related data associated
with 40,000 patients in critical care at the Beth Israel Deaconess Medical Center from 2001 to 2012.
Since the full version is available to credentialed users under strict requirements, we use the publicly
available demo version in our work. We preprocess the data in accordance with (Harutyunyan et al.,
2019). The classification target involves predicting in-hospital mortality.

PAMAP2 Physical Activity Monitoring (PA2) This dataset, introduced in (Reiss & Stricker, 2012),
contains data from 9 subjects (1 female, 8 male) performing 19 different physical activities: ascending
stairs, car driving, computer work, cycling, descending stairs, folding laundry, house cleaning, ironing,
lying, nordic walking, playing soccer, rope jumping, running, sitting, standing, transient, vacuum
cleaning, walking, watching TV. The data includes measurements from 3 inertial measurement units
(IMUs) positioned on the dominant arm, chest, and dominant side’s ankle. Specifically, from each
IMU sensor, the dataset contains information about the temperature, the 3-dimensional acceleration,
gyroscope and magnetometer data, and the sensor orientation. Additionally, heart rate observations
are included. The two types of sensors record data at different sampling rates: 100 Hz for the IMUs
and 9 Hz for the heart rate monitor. We preprocess the data according to the authors’ guidelines when
downloading the dataset. Data from the “transient” activity, i.e., movements between the end of one

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

activity and the start of another, was excluded. The remaining 18 activities serve as classification
target classes.

PhysioNet 2012 (P12) Published as data for the “Predicting Mortality of ICU Patients: The
PhysioNet/Computing in Cardiology” challenge in 2012 (Silva et al., 2012), the data contains
information about the patient, like age, gender, height, and weight, and 37 different types of time
series. Similar to the MIMIC-III dataset, the classification target is about predicting in-hospital death.

PhysioNet 2019 (P19) Published as data for the “Early Prediction of Sepsis from Clinical Data:
The PhysioNet/Computing in Cardiology” challenge in 2019 (Reyna et al., 2020), the dataset contains
demographic information about the patients, such as age, gender, height, and weight, alongside 34
other time-series variables for vital signs and laboratory test values. The classification task involves
predicting whether a patient has sepsis or not.

Productivity Prediction of Garment Employees (PGE) Introduced in (Imran et al., 2021), this
dataset contains information about garment manufacturing processing on a per-team level. Addition-
ally, this dataset contains a team productivity performance index, which ranges between 0 and 1. As
suggested by the authors, we use this index as a classification target. Specifically, we defined a team
efficient if the productivity performance index is strictly greater than 0.75.

Taxi (TA) This dataset, introduced as part of the “ECML/PKDD 15: Taxi Trip Time Prediction
(II) Competition” (Moreira-Matias et al., 2013) consists of 121,312 trajectories of Taxis in Porto
(Portugal). The classification task is to predict the type of call that generated the run. The types of
calls could be: A if this trip was dispatched from the central, B if this trip was demanded directly to a
taxi driver on a specific stand C otherwise. The classes are balanced.

Vehicles (VE) GPS trajectories about two different types of vehicles -buses and trucks- moving in
Athens. This dataset is available from download from the Chorochronos Archive (ChoroChronos
Archive).

UEA and UCR Irregular Datasets. The other 22 irregular time-series datasets were downloaded
from the UEA and UCR dataset repository. In particular, we included the following datasets:

• 11 variable-length univariate time series classification problems from (Bagnall et al., 2020):
AllGestureWiimoteX, AllGestureWiimoteY and AllGestureWiimoteZ (GX, GY, GZ) from
(Guna et al., 2014); GestureMidAirD1, GestureMidAirD2, and GestureMidAirD3 (GM1,
GM2, GM3) from (Caputo et al., 2018); GesturePebbleZ1 and GesturePebbleZ2 (GP1, GP2)
from (Mezari & Maglogiannis, 2018); PickupGestureWiimoteZ and ShakeGestureWiimoteZ
(PGZ, SGZ) from (Guna et al., 2014); PLAID (PL) from (Gao et al., 2014);

• 4 fixed length univariate time series with missing values from (Middlehurst et al., 2024b):
DodgerLoopDay, DodgerLoopGame, and DodgerLoopWeekend (DD, DG, DW) from (Ihler
et al., 2006); MelbournePedestrian (MP) (City of Melbourne, 2020) extracted from the City
of Melbourne website;

• 7 variable-length multivariate time series from (Ruiz et al., 2021): AsphaltObstaclesCoor-
dinates, AsphaltPavementTypeCoordinates, and AsphaltRegularityCoordinates (AOC, APT,
ARC) from (de Souza, 2018); CharacterTrajectories (CT) from (Williams et al., 2006); In-
sectWingbeat (IW) from (Chen et al., 2014); JapaneseVowels (JV) from (Kudo et al., 1999);
SpokenArabicDigits (SAD) from (Hammami & Bedda, 2010);

Table 5 contains the full list of curated datasets at the moment of publication on our repository. The
list additionally contains some information about the datasets: the number of instances, #Inst, number
of signals, #Sign, and number of observations, #Obs (maxni (Ti)), the number of target classes #TC
and the standard deviation between the number of instances per class (CU). Additionally, the dataset
contains information about the time series, like the percentage of missing values (MV)-computed
as the ratio between the NaN observations divided by the total number of observations- and the
sampling coefficient of variation (SCV), alongside information on the different kind of irregularity in
the dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Summary of dataset characteristics: the number of instances (#Inst), signals (#Sign), and
observations (#Obs); target classes (#TC) and class imbalance (CU); as well as time-series-specific
metrics like missing values (MV) and sampling coefficient of variation (SCV), and each type of
irregularity, i.e., unevenly sampled (US), partially observed (PO), unequal length (UL), shift (SH),
ragged sampling (RS).

Cat Name Source #Inst #Sign #Obs #TC CU (σ) MV (%) SVC US PO UL SH RS

he
al

th MI3 (Johnson et al., 2016) 57 17 145 2 0.20 0.83 0.60 ✓ ✓ ✓ ✓ ✓
P12 (Silva et al., 2012) 7990 37 203 2 0.36 0.94 0.59 ✓ ✓ ✓ ✓ ✓
P19 (Reyna et al., 2020) 40334 34 334 2 0.43 0.98 0.18 ✓ ✓ ✓ ✓ ✓

hu
m

an
ac

tiv
ity

re
co

gn
iti

on

CT (Williams et al., 2006) 2858 3 182 20 0.01 0.34 0.00 ✗ ✗ ✓ ✗ ✗
GM1 (Caputo et al., 2018) 338 1 360 26 0.00 0.54 0.00 ✗ ✗ ✓ ✗ ✗
GM2 (Caputo et al., 2018) 338 1 360 26 0.00 0.54 0.00 ✗ ✗ ✓ ✗ ✗
GM3 (Caputo et al., 2018) 338 1 360 26 0.00 0.54 0.00 ✗ ✗ ✓ ✗ ✗
GP1 (Mezari & Maglogiannis, 2018) 304 1 455 6 0.01 0.52 0.00 ✗ ✗ ✓ ✗ ✗
GP2 (Mezari & Maglogiannis, 2018) 304 1 455 6 0.01 0.52 0.00 ✗ ✗ ✓ ✗ ✗
GX (Guna et al., 2014) 1000 1 385 10 0.00 0.68 0.00 ✗ ✗ ✓ ✗ ✗
GY (Guna et al., 2014) 1000 1 385 10 0.00 0.68 0.00 ✗ ✗ ✓ ✗ ✗
GZ (Guna et al., 2014) 1000 1 385 10 0.00 0.68 0.00 ✗ ✗ ✓ ✗ ✗
LPA (Vidulin et al., 2010) 273 12 2870 11 0.00 0.95 9.04 ✓ ✗ ✓ ✓ ✓
PAM (Reiss & Stricker, 2012) 124 52 110883 16 0.03 0.82 0.01 ✓ ✓ ✓ ✓ ✓
PGZ (Guna et al., 2014) 100 1 361 10 0.00 0.60 0.00 ✗ ✗ ✓ ✗ ✗
SGZ (Guna et al., 2014) 100 1 385 10 0.00 0.57 0.00 ✗ ✗ ✓ ✗ ✗

m
ob

ili
ty

AN (Ferrero et al., 2018) 102 2 291 3 0.03 0.50 1.21 ✓ ✗ ✓ ✗ ✓
AOC (de Souza, 2018) 781 3 736 4 0.03 0.59 0.00 ✗ ✗ ✓ ✗ ✗
APT (de Souza, 2018) 2111 3 2371 3 0.06 0.83 0.00 ✗ ✗ ✓ ✗ ✗
ARC (de Souza, 2018) 1502 3 4201 2 0.01 0.91 0.00 ✗ ✗ ✓ ✗ ✗
GS (Zheng et al., 2010) 5977 2 96282 11 0.13 0.99 10.27 ✓ ✗ ✓ ✓ ✓
MP (City of Melbourne, 2020) 3633 1 24 10 0.00 0.00 0.01 ✗ ✗ ✓ ✗ ✗
SE (Browning et al., 2018) 108 4 6048 3 0.18 0.60 0.00 ✓ ✗ ✓ ✓ ✓
TA (Moreira-Matias et al., 2013) 121312 2 119 3 0.13 0.61 0.00 ✓ ✗ ✓ ✓ ✓
VE (ChoroChronos Archive) 381 2 1095 2 0.22 0.57 5.29 ✓ ✗ ✓ ✗ ✓

se
ns

or DD (Ihler et al., 2006) 158 1 288 7 0.01 0.01 0.00 ✗ ✓ ✗ ✗ ✗
DG (Ihler et al., 2006) 158 1 288 2 0.02 0.01 0.00 ✗ ✓ ✗ ✗ ✗
DW (Ihler et al., 2006) 158 1 288 2 0.21 0.01 0.00 ✗ ✓ ✗ ✗ ✗

ot
he

r

IW (Chen et al., 2014) 50000 200 22 10 0.00 0.70 0.00 ✗ ✗ ✓ ✗ ✗
JV (Kudo et al., 1999) 640 12 29 9 0.03 0.46 0.00 ✗ ✗ ✓ ✗ ✗
PGE (Imran et al., 2021) 24 9 59 2 0.13 0.19 0.68 ✓ ✗ ✓ ✓ ✓
PL (Gao et al., 2014) 1074 1 1344 11 0.05 0.76 0.00 ✗ ✗ ✓ ✗ ✗
SAD (Hammami & Bedda, 2010) 8798 13 93 10 0.00 0.57 0.00 ✗ ✗ ✓ ✗ ✗

synth ABF new! 930 1 128 3 0.00 0.00 1.95 ✓ ✗ ✗ ✗ ✗

Given yh as the labels vector containing only the h-th class, CU is defined as follows:

CU =

√∑c
h=0(yh − µ)

c
(1)

where µ is the average number of observations. Given ∆t̃ as the vector of differences between
consecutive timestamps of a signal, the SCV is computed as the coefficient of variation (the ratio of
the standard deviation to the mean) for each signal, averaged first across each time series and then
over the entire dataset.

We divided the dataset into 6 categories based on the type of phenomena captured: healthcare, human
activity recognition, mobility (or more generically, geo-temporal motion), sensors, synthetic data, and
others for datasets that don’t fall in any of the previous categories (like the UCR audio and speech
categories).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS AND STATISTICAL TESTS

The full result table in terms of F1 is available in Table 7. Further, we provide several other statistical
tests, using a diverse range of metrics, and with respect to different dataset subgroups.

Critical Difference Plots. Figure 10 shows the CD-plots for common performance metrics and
runtimes. F1, accuracy, roc-auc, precision, and recall yield consistent rankings for the top four
models, ROCKET, BORF, LGBM, and RIFC, as well as for the three lowest-performing ones: GRU-D,
NCDE, and SVM. In the mid-range, rankings vary slightly across metrics: for instance, KNN performs
notably worse in terms of F1 compared to accuracy, whereas TIMESNET shows the opposite trend. As
for training time, KNN, being a lazy learner, is the fastest, followed by RIFC and ROCKET. Although
LGBM ranks fourth, the previous results in median runtime (Figure 6) suggest that it may be slightly
slower on smaller datasets but highly efficient on larger ones, which contributes to its overall strong
performance. Neural network-based models generally exhibit longer training times but benefit from
faster inference; nevertheless, ROCKET and LGBM maintain a performance edge across both phases.

F1 CD-plots computed for subsets of datasets with specific characteristics, are shown in Figure 11.
These plots provide additional and complementary insights to those in Figures 7 and 8. Notably,
they reinforce the observation that models explicitly designed for partially observed data tend to
outperform more general-purpose approaches, even though the top rankings remain closely contested
among SAITS, RIFC, LGBM, BRITS, and ROCKET. BRITS and TIMESNET, in particular, show strong
performance on shorter datasets, ranking second and third, respectively, and closely trailing ROCKET.
The remaining plots are similar to those discussed in Section 5.

Multiple Comparison Matrices. While the widely used CD-plot is effective, it has been criticized
in (Ismail-Fawaz et al., 2023) for its susceptibility to manipulation, as the average rank of a model can
be influenced by the performance of other comparators. For this reason, we also propose MCM matrix
for several metrics in Figures 12 to 14. However, in our case, results are consistent with the CD-plots
presented in the previous paragraph, and in the main text, and are presented here in the appendix only
due to space limitations. Again, the top four models are always ROCKET, BORF, LGBM, and RIFC,
and the lowest-performing are GRU-D, NCDE, and SVM, with mid-range models rankings changing
slightly from metric to metric.

Additional Performance vs Runtime Plots. We report in Figures 15 to 19 the performance
rankings across multiple metrics, dataset subsets, and with respect to both training and inference
times. In addition to the insights discussed in the main text, these figures reveal that neural network-
based models tend to cluster together in terms of both runtime and performance, regardless of the
dataset subset or evaluation metric. This suggests that, although their relative rankings may vary,
their overall behavior remains consistent.

Rank Correlation. We report in Figure 20 the F1 rank correlation among models. Models are
hierarchically clustered using average linkage applied to the rank correlation matrix. Positive
correlations indicate that models tend to perform similarly across datasets, reflecting comparable
strengths or weaknesses, while negative correlations suggest divergent performance, highlighting
complementary behaviors or differing inductive biases. Reinforcing the categorization proposed
in the main text, the plot reveals a strong cluster of generalist methods, LGBM, ROCKET, RIFC,
and BORF, which group together at the top hierarchical level. The second major cluster includes
the remaining models, with specialist approaches like BRITS and GRU-D showing high correlation,
which is expected given their shared RNN architecture. Similarly, TIMESNET and SAITS also form a
coherent transformers subgroup. Notable exceptions to the generalist/specialist categorization are
SVM, likely due to its overall poor performance across datasets, and KNN, which we hypothesize
behaves differently due to its lazy learning paradigm based on distances, which could be more prone
to sensitivity to dataset-specific characteristics.

Model Failures and Limitations. From these experiments, several model weaknesses become
apparent, particularly in relation to specific data characteristics. For example, Figure 7 highlights how
RNN-based methods fail to handle long time series effectively, while Table 3 shows that ROCKET
underperformed relative to its baseline results after fine-tuning.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Additional insights arise from the CD plots in Figure 11. Comparing the general rankings in Figure 11a
with those on specific subsets reveals which models are most sensitive to dataset properties. For
instance, Figure 11g shows that the transformer-based TIMESNET performs worse on smaller datasets,
a point also observerd in Section 5. BORF, despite its strong overall performance, ranks third-to-last
on partially observed data and declines significantly on short time series (Figures 11c and 11i). KNN
also struggles under shift and ragged sampling conditions (Figures 11e and 11f). Notably, KNN was
the weakest model in terms of memory consumption, which explodes with longer series (Table 9).

To provide a more fine-grained view, we report in Table 6 each model’s worst performance in terms
ratio between that worst-case rank and its average rank across all datasets. Higher ratios indicate
greater variability, a phenomenon most pronounced among models that otherwise perform strongly
on average, such as ROCKET, BORF, and LGBM. Several notable cases emerge. ROCKET, for instance,
performs poorly on ABF, a dataset with highly uneven sampling. Similarly, BORF ranks 2.4 times
worse than its average on the Mimic3 dataset, which is also highly irregular. Interestingly, LGBM
performs unexpectedly poorly on the Garment dataset, whose small size would normally favor
tree-based models.

These findings highlight that strong average performance does not necessarily imply robustness
across all dataset types. In particular, models often fail on datasets with structural irregularities or
atypical sampling patterns.

Table 6: Worst-case dataset performance for each model, along with the ratio between its worst rank
and average rank across all datasets. Higher ratios indicate greater variability compared to average
performance.

model worst dataset performance worst-to-average rank ratio

BORF Mimic3 2.4
BRITS AllGestureWiimoteX 1.8
GRU-D CharacterTrajectories 1.6
KNN Physionet2012 1.9
LGBM Garment 2.3
NCDE ShakeGestureWiimoteZ 1.4
RAINDROP InsectWingbeat 1.8
RIFC GeolifeSupervised 2.2
ROCKET Abf 3.0
SAITS Animals 1.5
SVM AllGestureWiimoteY 1.2
TIMESNET DodgerLoopDay 2.0

Impact of irregularity on explanations. As discussed in Section 5, XAI for irregular time series
remains largely unexplored. pyrregular allows researchers to work directly with data while
preserving its irregularities, avoiding the bias introduced by imputation choices, which is fundamental
since explanations are known to be highly sensitive to input variations (Yeh et al., 2019). This,
however, is only a first step. Even when the data retains its irregularity (as in our approach), and
even when models can handle irregular inputs, the explainers themselves typically cannot. In line
with the observations of Cinquini et al. (2023), we argue that this is primarily an implementation
gap on the explainer side. Addressing this limitation would enable our taxonomy of irregularities
to be applied to more fine-grained interpretability. For example, it could help distinguish whether a
model assigns importance to a missing value because of partial observation or because of raggedness,
offering deeper insights into the model’s behavior under irregular conditions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

123456789101112

ROCKET3.4706

BORF4.8676

LGBM5.0735

RIFC5.5294

TIMESNET6.0588

RAINDROP6.4118KNN 6.4559
BRITS 6.7059
SAITS 6.7206

GRU-D 7.7059
NCDE 8.5588

SVM 10.4412

f1

(a) F1.

123456789101112

ROCKET3.1176

BORF4.4559

LGBM4.7794

RIFC5.0882

KNN6.3529

RAINDROP6.5000BRITS 6.6618
TIMESNET 6.9412

SAITS 7.2206
GRU-D 7.6324
NCDE 8.9118

SVM 10.3382

accuracy

(b) Accuracy.

123456789101112

ROCKET3.5294

BORF4.7500

LGBM4.9559

RIFC5.5147

KNN6.2206

TIMESNET6.2353RAINDROP 6.4706
BRITS 6.7059
SAITS 6.7794

GRU-D 7.8676
NCDE 8.7353

SVM 10.2353

precision

(c) Precision.

123456789101112

ROCKET3.3824

BORF4.6618

LGBM5.0588

RIFC5.3824

KNN6.3235

TIMESNET6.3529RAINDROP 6.3676
SAITS 6.8529
BRITS 6.9853

GRU-D 7.4559
NCDE 8.6471

SVM 10.5294

recall

(d) Recall.

123456789101112

ROCKET3.2500

BORF4.4559

LGBM4.5441

RIFC5.5735

KNN6.5294

BRITS6.5735TIMESNET 6.6912
RAINDROP 6.8529

SAITS 7.0441
GRU-D 7.3676
NCDE 8.4412

SVM 10.6765

roc_auc

(e) ROC-AUC.

123456789101112

ROCKET1.9118

RIFC2.1765

LGBM4.2647

BORF4.5882

NCDE6.2353

RAINDROP6.6324KNN 6.7206
SVM 6.7941

GRU-D 7.6324
TIMESNET 9.2206

SAITS 10.3971
BRITS 11.4265

total_time

(f) Total Runtime.

123456789101112

KNN2.2794

RIFC2.6471

ROCKET2.7941

LGBM5.0882

BORF5.1471

SVM6.4118NCDE 6.9706
RAINDROP 7.2206

GRU-D 8.0735
TIMESNET 9.4559

SAITS 10.4853
BRITS 11.4265

fit_time

(g) Train Runtime.

123456789101112

ROCKET1.7647

LGBM2.2059

NCDE4.7353

RIFC5.1176

RAINDROP5.2500

GRU-D5.7206SAITS 6.5147
TIMESNET 6.9559

BORF 8.5000
BRITS 9.3971

SVM 10.5294
KNN 11.3088

predict_time

(h) Inference Runtime.

Figure 10: Critical Difference plot for the benchmarked models in terms of different metrics, for all
datasets. Best models to the right. The performance of models connected by the bar is statistically
tied, using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

123456789101112

ROCKET3.4706

BORF4.8676

LGBM5.0735

RIFC5.5294

TIMESNET6.0588

RAINDROP6.4118KNN 6.4559
BRITS 6.7059
SAITS 6.7206

GRU-D 7.7059
NCDE 8.5588

SVM 10.4412

f1

(a) All datasets.

123456789101112

RIFC4.3333

LGBM4.6250

ROCKET4.9167

BORF5.3750

RAINDROP6.5417

SAITS6.7083NCDE 6.7500
BRITS 6.8333

GRU-D 6.9167
TIMESNET 7.0833

KNN 8.0417
SVM 9.8750

f1:US

(b) Unequal sampling.

123456789101112

SAITS5.2143

RIFC5.4286

LGBM5.5714

BRITS5.7857

ROCKET6.0000

RAINDROP6.0714GRU-D 6.5000
TIMESNET 6.7143

KNN 7.2143
BORF 7.2857
SVM 7.5000

NCDE 8.7143

f1:PO

(c) Partially observed.

123456789101112

ROCKET2.8500

BORF4.3333

LGBM4.6000

RIFC5.0500

TIMESNET5.8000

RAINDROP6.4000KNN 6.8167
SAITS 6.8167
BRITS 7.2333

GRU-D 7.9333
NCDE 8.9333

SVM 11.2333

f1:UL

(d) Unequal length.

123456789101112

RIFC3.9444

LGBM4.3333

ROCKET5.0556

BORF5.3333

RAINDROP6.2778

SAITS6.2778GRU-D 6.7778
BRITS 6.8889
NCDE 6.8889

TIMESNET 6.8889
KNN 9.1667
SVM 10.1667

f1:SH

(e) Shift.

123456789101112

RIFC3.7727

LGBM4.0909

ROCKET4.4091

BORF4.9091

RAINDROP6.4091

SAITS6.7727GRU-D 6.9091
BRITS 7.2727
NCDE 7.2727

TIMESNET 7.3636
KNN 8.3182
SVM 10.5000

f1:RS

(f) Ragged sampling.

123456789101112

ROCKET3.5882

BORF4.8529

RIFC4.8824

LGBM5.5588

KNN5.8824

RAINDROP6.3235BRITS 6.6471
SAITS 6.7941

TIMESNET 7.1765
GRU-D 7.5294
NCDE 8.7941

SVM 9.9706

f1:SMALL

(g) Small (≤ 500 instances).

123456789101112

ROCKET3.3824

LGBM4.6176

BORF4.9118

TIMESNET4.9412

RIFC6.2059

RAINDROP6.5000SAITS 6.6471
BRITS 6.7647

KNN 7.0000
GRU-D 7.8529
NCDE 8.3235

SVM 10.8529

f1:BIG

(h) Big (> 500 instances).

123456789101112

ROCKET4.8611

BRITS4.9167

TIMESNET5.0278

LGBM5.5556

GRU-D6.1667

RAINDROP6.4167SAITS 6.5000
RIFC 6.5833

BORF 6.7778
KNN 6.8333

NCDE 8.6944
SVM 9.6667

f1:SHORT

(i) Short (≤ 360 observations).

123456789101112

ROCKET1.9375

BORF2.7500

RIFC4.3750

LGBM4.5625

KNN6.0000

RAINDROP6.4062SAITS 6.9688
TIMESNET 7.2188

NCDE 8.4062
BRITS 8.7188

GRU-D 9.4062
SVM 11.2500

f1:LONG

(j) Long (> 360 observations).

Figure 11: Critical Difference plot for the benchmarked models in terms of F1, divided into different
groups. Best models to the right. The performance of models connected by the bar is statistically tied,
using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

ROCKET
0.669

BORF
0.625

LGBM
0.606

RIFC
0.571

TIMESNET
0.525

RAINDROP
0.520

SAITS
0.518

KNN
0.507

BRITS
0.482

GRU-D
0.435

NCDE
0.396

SVM
0.245

ROCKET
0.669

BORF
0.625

LGBM
0.606

RIFC
0.571

TIMESNET
0.525

RAINDROP
0.520

SAITS
0.518

KNN
0.507

BRITS
0.482

GRU-D
0.435

NCDE
0.396

SVM
0.245

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.044
24 / 3 / 7

0.001

0.063
24 / 3 / 7

0.003

0.098
26 / 4 / 4
 1e-03

0.144
24 / 0 / 10
 1e-03

0.149
26 / 0 / 8
 1e-03

0.151
25 / 0 / 9

0.001

0.162
28 / 0 / 6
 1e-03

0.187
25 / 0 / 9

0.001

0.234
25 / 0 / 9
 1e-03

0.273
27 / 0 / 7
 1e-03

0.424
31 / 0 / 3
 1e-03

-0.044
7 / 3 / 24

0.999
-

0.019
19 / 4 / 11

0.084

0.054
22 / 3 / 9

0.015

0.100
20 / 0 / 14

0.008

0.105
25 / 0 / 9

0.002

0.107
23 / 0 / 11

0.009

0.118
20 / 0 / 14

0.024

0.143
21 / 0 / 13

0.006

0.190
23 / 0 / 11

0.001

0.229
28 / 0 / 6
 1e-03

0.380
29 / 1 / 4
 1e-03

-0.063
7 / 3 / 24

0.997

-0.019
11 / 4 / 19

0.916
-

0.035
18 / 3 / 13

0.114

0.081
20 / 0 / 14

0.007

0.086
23 / 0 / 11

0.002

0.088
23 / 0 / 11

0.008

0.099
21 / 0 / 13

0.054

0.124
23 / 0 / 11

0.003

0.170
25 / 0 / 9
 1e-03

0.210
29 / 0 / 5
 1e-03

0.361
30 / 1 / 3
 1e-03

-0.098
4 / 4 / 26

1.000

-0.054
9 / 3 / 22

0.985

-0.035
13 / 3 / 18

0.886
-

0.046
20 / 0 / 14

0.114

0.051
21 / 0 / 13

0.035

0.053
22 / 0 / 12

0.039

0.064
21 / 0 / 13

0.098

0.089
23 / 0 / 11

0.019

0.136
25 / 0 / 9

0.002

0.175
26 / 0 / 8
 1e-03

0.326
31 / 0 / 3
 1e-03

-0.144
10 / 0 / 24

1.000

-0.100
14 / 0 / 20

0.992

-0.081
14 / 0 / 20

0.994

-0.046
14 / 0 / 20

0.889
-

0.005
16 / 2 / 16

0.634

0.007
19 / 2 / 13

0.316

0.018
15 / 2 / 17

0.575

0.043
20 / 3 / 11

0.053

0.090
23 / 2 / 9

0.004

0.129
23 / 1 / 10

0.001

0.280
27 / 2 / 5
 1e-03

-0.149
8 / 0 / 26

1.000

-0.105
9 / 0 / 25

0.998

-0.086
11 / 0 / 23

0.998

-0.051
13 / 0 / 21

0.967

-0.005
16 / 2 / 16

0.366
-

0.002
20 / 2 / 12

0.269

0.013
16 / 2 / 16

0.595

0.038
16 / 2 / 16

0.152

0.085
20 / 2 / 12

0.014

0.124
26 / 1 / 7
 1e-03

0.275
28 / 3 / 3
 1e-03

-0.151
9 / 0 / 25

0.999

-0.107
11 / 0 / 23

0.992

-0.088
11 / 0 / 23

0.992

-0.053
12 / 0 / 22

0.962

-0.007
13 / 2 / 19

0.684

-0.002
12 / 2 / 20

0.731
-

0.011
12 / 2 / 20

0.714

0.036
17 / 2 / 15

0.196

0.082
20 / 2 / 12

0.022

0.122
27 / 1 / 6
 1e-03

0.273
29 / 2 / 3
 1e-03

-0.162
6 / 0 / 28

1.000

-0.118
14 / 0 / 20

0.977

-0.099
13 / 0 / 21

0.948

-0.064
13 / 0 / 21

0.905

-0.018
17 / 2 / 15

0.425

-0.013
16 / 2 / 16

0.405

-0.011
20 / 2 / 12

0.286
-

0.025
14 / 3 / 17

0.422

0.071
18 / 3 / 13

0.101

0.111
23 / 2 / 9

0.016

0.262
25 / 5 / 4
 1e-03

-0.187
9 / 0 / 25

0.999

-0.143
13 / 0 / 21

0.994

-0.124
11 / 0 / 23

0.997

-0.089
11 / 0 / 23

0.982

-0.043
11 / 3 / 20

0.947

-0.038
16 / 2 / 16

0.848

-0.036
15 / 2 / 17

0.804

-0.025
17 / 3 / 14

0.578
-

0.047
19 / 4 / 11

0.032

0.086
22 / 1 / 11

0.004

0.237
27 / 3 / 4
 1e-03

-0.234
9 / 0 / 25

1.000

-0.190
11 / 0 / 23

1.000

-0.170
9 / 0 / 25

1.000

-0.136
9 / 0 / 25

0.998

-0.090
9 / 2 / 23

0.996

-0.085
12 / 2 / 20

0.986

-0.082
12 / 2 / 20

0.978

-0.071
13 / 3 / 18

0.899

-0.047
11 / 4 / 19

0.968
-

0.039
16 / 1 / 17

0.182

0.190
27 / 2 / 5
 1e-03

-0.273
7 / 0 / 27

1.000

-0.229
6 / 0 / 28

1.000

-0.210
5 / 0 / 29

1.000

-0.175
8 / 0 / 26

1.000

-0.129
10 / 1 / 23

0.999

-0.124
7 / 1 / 26

1.000

-0.122
6 / 1 / 27

1.000

-0.111
9 / 2 / 23

0.984

-0.086
11 / 1 / 22

0.996

-0.039
17 / 1 / 16

0.818
-

0.151
27 / 1 / 6
 1e-03

-0.424
3 / 0 / 31

1.000

-0.380
4 / 1 / 29

1.000

-0.361
3 / 1 / 30

1.000

-0.326
3 / 0 / 31

1.000

-0.280
5 / 2 / 27

1.000

-0.275
3 / 3 / 28

1.000

-0.273
3 / 2 / 29

1.000

-0.262
4 / 5 / 25

1.000

-0.237
4 / 3 / 27

1.000

-0.190
5 / 2 / 27

1.000

-0.151
6 / 1 / 27

1.000
If in bold, then
p-value < 0.05

Mean-f1

0.4

0.2

0.0

0.2

0.4

M
ea

n-
Di

ffe
re

nc
e

(a) F1 score.
ROCKET
0.742

BORF
0.700

LGBM
0.674

RIFC
0.644

RAINDROP
0.581

TIMESNET
0.576

SAITS
0.568

BRITS
0.554

KNN
0.542

GRU-D
0.508

NCDE
0.456

SVM
0.300

ROCKET
0.742

BORF
0.700

LGBM
0.674

RIFC
0.644

RAINDROP
0.581

TIMESNET
0.576

SAITS
0.568

BRITS
0.554

KNN
0.542

GRU-D
0.508

NCDE
0.456

SVM
0.300

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.042
24 / 3 / 7

0.001

0.068
25 / 3 / 6

0.001

0.098
25 / 4 / 5
 1e-03

0.161
29 / 0 / 5
 1e-03

0.166
29 / 0 / 5
 1e-03

0.174
28 / 0 / 6
 1e-03

0.188
25 / 0 / 9
 1e-03

0.200
27 / 1 / 6
 1e-03

0.234
25 / 1 / 8
 1e-03

0.286
29 / 0 / 5
 1e-03

0.442
29 / 2 / 3
 1e-03

-0.042
7 / 3 / 24

0.999
-

0.026
18 / 7 / 9

0.052

0.056
21 / 3 / 10

0.012

0.119
25 / 0 / 9
 1e-03

0.124
26 / 0 / 8

0.001

0.132
25 / 0 / 9

0.001

0.146
21 / 0 / 13

0.008

0.158
20 / 1 / 13

0.014

0.192
25 / 0 / 9
 1e-03

0.244
31 / 0 / 3
 1e-03

0.400
30 / 1 / 3
 1e-03

-0.068
6 / 3 / 25

0.999

-0.026
9 / 7 / 18

0.948
-

0.030
19 / 3 / 12

0.098

0.094
25 / 0 / 9
 1e-03

0.098
25 / 0 / 9
 1e-03

0.106
24 / 0 / 10

0.001

0.120
24 / 0 / 10

0.001

0.132
20 / 1 / 13

0.041

0.166
26 / 0 / 8
 1e-03

0.218
30 / 0 / 4
 1e-03

0.375
30 / 1 / 3
 1e-03

-0.098
5 / 4 / 25

1.000

-0.056
10 / 3 / 21

0.988

-0.030
12 / 3 / 19

0.902
-

0.064
24 / 0 / 10

0.012

0.069
25 / 0 / 9

0.007

0.076
24 / 1 / 9

0.005

0.091
24 / 0 / 10

0.011

0.103
21 / 0 / 13

0.045

0.137
26 / 0 / 8
 1e-03

0.188
27 / 0 / 7
 1e-03

0.345
31 / 1 / 2
 1e-03

-0.161
5 / 0 / 29

1.000

-0.119
9 / 0 / 25

1.000

-0.094
9 / 0 / 25

1.000

-0.064
10 / 0 / 24

0.988
-

0.005
18 / 2 / 14

0.252

0.012
21 / 2 / 11

0.114

0.027
18 / 2 / 14

0.226

0.039
15 / 3 / 16

0.537

0.073
20 / 2 / 12

0.021

0.124
28 / 1 / 5
 1e-03

0.281
27 / 2 / 5
 1e-03

-0.166
5 / 0 / 29

1.000

-0.124
8 / 0 / 26

0.999

-0.098
9 / 0 / 25

1.000

-0.069
9 / 0 / 25

0.994

-0.005
14 / 2 / 18

0.748
-

0.007
18 / 4 / 12

0.255

0.022
17 / 4 / 13

0.198

0.034
14 / 2 / 18

0.614

0.068
22 / 2 / 10

0.016

0.120
22 / 2 / 10

0.002

0.276
25 / 2 / 7
 1e-03

-0.174
6 / 0 / 28

1.000

-0.132
9 / 0 / 25

0.999

-0.106
10 / 0 / 24

0.999

-0.076
9 / 1 / 24

0.995

-0.012
11 / 2 / 21

0.886

-0.007
12 / 4 / 18

0.745
-

0.015
14 / 3 / 17

0.591

0.027
12 / 2 / 20

0.684

0.061
18 / 2 / 14

0.071

0.112
25 / 1 / 8

0.001

0.269
28 / 2 / 4
 1e-03

-0.188
9 / 0 / 25

1.000

-0.146
13 / 0 / 21

0.992

-0.120
10 / 0 / 24

0.999

-0.091
10 / 0 / 24

0.989

-0.027
14 / 2 / 18

0.774

-0.022
13 / 4 / 17

0.802

-0.015
17 / 3 / 14

0.409
-

0.012
16 / 3 / 15

0.510

0.046
19 / 4 / 11

0.023

0.098
22 / 2 / 10

0.004

0.254
28 / 3 / 3
 1e-03

-0.200
6 / 1 / 27

1.000

-0.158
13 / 1 / 20

0.986

-0.132
13 / 1 / 20

0.959

-0.103
13 / 0 / 21

0.956

-0.039
16 / 3 / 15

0.463

-0.034
18 / 2 / 14

0.386

-0.027
20 / 2 / 12

0.316

-0.012
15 / 3 / 16

0.490
-

0.034
17 / 4 / 13

0.158

0.086
23 / 2 / 9

0.028

0.242
26 / 5 / 3
 1e-03

-0.234
8 / 1 / 25

1.000

-0.192
9 / 0 / 25

1.000

-0.166
8 / 0 / 26

1.000

-0.137
8 / 0 / 26

1.000

-0.073
12 / 2 / 20

0.979

-0.068
10 / 2 / 22

0.984

-0.061
14 / 2 / 18

0.929

-0.046
11 / 4 / 19

0.977

-0.034
13 / 4 / 17

0.842
-

0.052
19 / 1 / 14

0.112

0.208
27 / 3 / 4
 1e-03

-0.286
5 / 0 / 29

1.000

-0.244
3 / 0 / 31

1.000

-0.218
4 / 0 / 30

1.000

-0.188
7 / 0 / 27

1.000

-0.124
5 / 1 / 28

1.000

-0.120
10 / 2 / 22

0.998

-0.112
8 / 1 / 25

0.999

-0.098
10 / 2 / 22

0.996

-0.086
9 / 2 / 23

0.972

-0.052
14 / 1 / 19

0.888
-

0.157
25 / 1 / 8
 1e-03

-0.442
3 / 2 / 29

1.000

-0.400
3 / 1 / 30

1.000

-0.375
3 / 1 / 30

1.000

-0.345
2 / 1 / 31

1.000

-0.281
5 / 2 / 27

1.000

-0.276
7 / 2 / 25

1.000

-0.269
4 / 2 / 28

1.000

-0.254
3 / 3 / 28

1.000

-0.242
3 / 5 / 26

1.000

-0.208
4 / 3 / 27

1.000

-0.157
8 / 1 / 25

1.000
If in bold, then
p-value < 0.05

Mean-accuracy

0.4

0.2

0.0

0.2

0.4

M
ea

n-
Di

ffe
re

nc
e

(b) Accuracy.

Figure 12: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

ROCKET
0.677

BORF
0.650

LGBM
0.619

RIFC
0.600

TIMESNET
0.550

SAITS
0.548

KNN
0.548

RAINDROP
0.543

BRITS
0.507

GRU-D
0.464

NCDE
0.415

SVM
0.269

ROCKET
0.677

BORF
0.650

LGBM
0.619

RIFC
0.600

TIMESNET
0.550

SAITS
0.548

KNN
0.548

RAINDROP
0.543

BRITS
0.507

GRU-D
0.464

NCDE
0.415

SVM
0.269

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.027
24 / 3 / 7

0.002

0.058
24 / 3 / 7

0.006

0.077
26 / 4 / 4

0.001

0.127
24 / 0 / 10

0.002

0.128
26 / 0 / 8

0.005

0.128
27 / 1 / 6

0.001

0.133
26 / 0 / 8

0.001

0.169
25 / 0 / 9

0.002

0.213
24 / 1 / 9

0.001

0.261
26 / 0 / 8
 1e-03

0.408
29 / 2 / 3
 1e-03

-0.027
7 / 3 / 24

0.998
-

0.031
19 / 4 / 11

0.074

0.050
20 / 3 / 11

0.024

0.099
22 / 0 / 12

0.016

0.101
24 / 0 / 10

0.014

0.101
21 / 0 / 13

0.047

0.106
24 / 0 / 10

0.005

0.142
22 / 0 / 12

0.008

0.186
25 / 0 / 9

0.001

0.234
28 / 0 / 6
 1e-03

0.381
29 / 1 / 4
 1e-03

-0.058
7 / 3 / 24

0.994

-0.031
11 / 4 / 19

0.926
-

0.019
19 / 3 / 12

0.104

0.069
21 / 0 / 13

0.005

0.071
23 / 0 / 11

0.014

0.071
21 / 0 / 13

0.081

0.076
23 / 0 / 11

0.005

0.112
24 / 0 / 10

0.005

0.155
26 / 0 / 8

0.001

0.204
29 / 0 / 5
 1e-03

0.350
30 / 1 / 3
 1e-03

-0.077
4 / 4 / 26

0.999

-0.050
11 / 3 / 20

0.976

-0.019
12 / 3 / 19

0.896
-

0.050
19 / 0 / 15

0.107

0.051
22 / 0 / 12

0.045

0.051
21 / 0 / 13

0.176

0.056
23 / 0 / 11

0.032

0.092
22 / 0 / 12

0.024

0.136
25 / 0 / 9

0.002

0.184
27 / 0 / 7

0.001

0.331
29 / 1 / 4
 1e-03

-0.127
10 / 0 / 24

0.998

-0.099
12 / 0 / 22

0.985

-0.069
13 / 0 / 21

0.995

-0.050
15 / 0 / 19

0.896
-

0.002
19 / 2 / 13

0.316

0.002
14 / 2 / 18

0.684

0.007
13 / 2 / 19

0.684

0.043
19 / 3 / 12

0.095

0.087
22 / 2 / 10

0.015

0.135
23 / 1 / 10

0.001

0.281
29 / 2 / 3
 1e-03

-0.128
8 / 0 / 26

0.995

-0.101
10 / 0 / 24

0.986

-0.071
11 / 0 / 23

0.987

-0.051
12 / 0 / 22

0.956

-0.002
13 / 2 / 19

0.684
-

0.000
12 / 2 / 20

0.748

0.005
13 / 2 / 19

0.608

0.041
16 / 2 / 16

0.201

0.085
19 / 2 / 13

0.029

0.133
28 / 1 / 5
 1e-03

0.279
29 / 2 / 3
 1e-03

-0.128
6 / 1 / 27

0.999

-0.101
13 / 0 / 21

0.955

-0.071
13 / 0 / 21

0.921

-0.051
13 / 0 / 21

0.829

-0.002
18 / 2 / 14

0.316

-0.000
20 / 2 / 12

0.252
-

0.005
18 / 2 / 14

0.236

0.041
16 / 3 / 15

0.278

0.085
20 / 4 / 10

0.037

0.133
23 / 2 / 9

0.008

0.279
26 / 5 / 3
 1e-03

-0.133
8 / 0 / 26

0.999

-0.106
10 / 0 / 24

0.995

-0.076
11 / 0 / 23

0.995

-0.056
11 / 0 / 23

0.969

-0.007
19 / 2 / 13

0.316

-0.005
19 / 2 / 13

0.392

-0.005
14 / 2 / 18

0.764
-

0.036
15 / 2 / 17

0.211

0.080
20 / 2 / 12

0.018

0.128
26 / 1 / 7
 1e-03

0.274
28 / 3 / 3
 1e-03

-0.169
9 / 0 / 25

0.998

-0.142
12 / 0 / 22

0.992

-0.112
10 / 0 / 24

0.995

-0.092
12 / 0 / 22

0.977

-0.043
12 / 3 / 19

0.905

-0.041
16 / 2 / 16

0.799

-0.041
15 / 3 / 16

0.722

-0.036
17 / 2 / 15

0.789
-

0.044
20 / 4 / 10

0.059

0.092
23 / 1 / 10

0.004

0.238
25 / 3 / 6
 1e-03

-0.213
9 / 1 / 24

0.999

-0.186
9 / 0 / 25

0.999

-0.155
8 / 0 / 26

0.999

-0.136
9 / 0 / 25

0.998

-0.087
10 / 2 / 22

0.985

-0.085
13 / 2 / 19

0.971

-0.085
10 / 4 / 20

0.963

-0.080
12 / 2 / 20

0.982

-0.044
10 / 4 / 20

0.941
-

0.048
17 / 1 / 16

0.137

0.195
24 / 3 / 7
 1e-03

-0.261
8 / 0 / 26

1.000

-0.234
6 / 0 / 28

1.000

-0.204
5 / 0 / 29

1.000

-0.184
7 / 0 / 27

0.999

-0.135
10 / 1 / 23

0.999

-0.133
5 / 1 / 28

1.000

-0.133
9 / 2 / 23

0.992

-0.128
7 / 1 / 26

1.000

-0.092
10 / 1 / 23

0.996

-0.048
16 / 1 / 17

0.863
-

0.146
24 / 1 / 9

0.001

-0.408
3 / 2 / 29

1.000

-0.381
4 / 1 / 29

1.000

-0.350
3 / 1 / 30

1.000

-0.331
4 / 1 / 29

1.000

-0.281
3 / 2 / 29

1.000

-0.279
3 / 2 / 29

1.000

-0.279
3 / 5 / 26

1.000

-0.274
3 / 3 / 28

1.000

-0.238
6 / 3 / 25

1.000

-0.195
7 / 3 / 24

1.000

-0.146
9 / 1 / 24

0.999
If in bold, then
p-value < 0.05

Mean-precision

0.4

0.2

0.0

0.2

0.4

M
ea

n-
Di

ffe
re

nc
e

(a) Precision.
ROCKET
0.691

BORF
0.645

LGBM
0.625

RIFC
0.591

TIMESNET
0.540

RAINDROP
0.538

KNN
0.535

SAITS
0.533

BRITS
0.506

GRU-D
0.466

NCDE
0.423

SVM
0.283

ROCKET
0.691

BORF
0.645

LGBM
0.625

RIFC
0.591

TIMESNET
0.540

RAINDROP
0.538

KNN
0.535

SAITS
0.533

BRITS
0.506

GRU-D
0.466

NCDE
0.423

SVM
0.283

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.047
22 / 4 / 8

0.001

0.067
24 / 4 / 6

0.001

0.100
26 / 4 / 4
 1e-03

0.151
25 / 1 / 8
 1e-03

0.153
27 / 1 / 6
 1e-03

0.156
27 / 1 / 6
 1e-03

0.158
26 / 0 / 8
 1e-03

0.186
26 / 0 / 8
 1e-03

0.226
24 / 1 / 9
 1e-03

0.268
27 / 0 / 7
 1e-03

0.409
30 / 2 / 2
 1e-03

-0.047
8 / 4 / 22

0.999
-

0.020
19 / 4 / 11

0.074

0.053
22 / 4 / 8

0.013

0.104
22 / 1 / 11

0.004

0.106
24 / 1 / 9

0.001

0.110
20 / 0 / 14

0.026

0.111
24 / 0 / 10

0.003

0.139
22 / 0 / 12

0.006

0.179
23 / 0 / 11
 1e-03

0.221
28 / 0 / 6
 1e-03

0.362
30 / 1 / 3
 1e-03

-0.067
6 / 4 / 24

0.999

-0.020
11 / 4 / 19

0.926
-

0.033
19 / 4 / 11

0.072

0.085
21 / 1 / 12

0.002

0.087
23 / 1 / 10

0.001

0.090
19 / 1 / 14

0.071

0.092
22 / 0 / 12

0.004

0.119
24 / 0 / 10

0.001

0.159
24 / 0 / 10
 1e-03

0.202
29 / 0 / 5
 1e-03

0.342
30 / 1 / 3
 1e-03

-0.100
4 / 4 / 26

1.000

-0.053
8 / 4 / 22

0.987

-0.033
11 / 4 / 19

0.928
-

0.051
22 / 1 / 11

0.044

0.053
22 / 1 / 11

0.026

0.056
21 / 0 / 13

0.098

0.058
23 / 1 / 10

0.020

0.086
24 / 0 / 10

0.012

0.125
25 / 0 / 9

0.001

0.168
26 / 0 / 8
 1e-03

0.309
31 / 1 / 2
 1e-03

-0.151
8 / 1 / 25

1.000

-0.104
11 / 1 / 22

0.996

-0.085
12 / 1 / 21

0.998

-0.051
11 / 1 / 22

0.956
-

0.002
15 / 3 / 16

0.585

0.005
14 / 2 / 18

0.678

0.007
19 / 2 / 13

0.252

0.034
21 / 3 / 10

0.065

0.074
22 / 2 / 10

0.012

0.117
23 / 1 / 10

0.001

0.257
26 / 3 / 5
 1e-03

-0.153
6 / 1 / 27

1.000

-0.106
9 / 1 / 24

0.999

-0.087
10 / 1 / 23

0.999

-0.053
11 / 1 / 22

0.974

-0.002
16 / 3 / 15

0.415
-

0.003
16 / 2 / 16

0.640

0.005
21 / 2 / 11

0.231

0.032
19 / 2 / 13

0.148

0.072
20 / 2 / 12

0.016

0.115
26 / 1 / 7
 1e-03

0.255
28 / 3 / 3
 1e-03

-0.156
6 / 1 / 27

1.000

-0.110
14 / 0 / 20

0.975

-0.090
14 / 1 / 19

0.929

-0.056
13 / 0 / 21

0.905

-0.005
18 / 2 / 14

0.322

-0.003
16 / 2 / 16

0.360
-

0.002
19 / 2 / 13

0.269

0.029
15 / 4 / 15

0.356

0.069
17 / 4 / 13

0.095

0.112
23 / 2 / 9

0.011

0.252
26 / 6 / 2
 1e-03

-0.158
8 / 0 / 26

1.000

-0.111
10 / 0 / 24

0.997

-0.092
12 / 0 / 22

0.996

-0.058
10 / 1 / 23

0.980

-0.007
13 / 2 / 19

0.748

-0.005
11 / 2 / 21

0.769

-0.002
13 / 2 / 19

0.731
-

0.027
16 / 2 / 16

0.280

0.067
19 / 2 / 13

0.039

0.110
27 / 1 / 6
 1e-03

0.250
29 / 2 / 3
 1e-03

-0.186
8 / 0 / 26

1.000

-0.139
12 / 0 / 22

0.994

-0.119
10 / 0 / 24

0.999

-0.086
10 / 0 / 24

0.988

-0.034
10 / 3 / 21

0.935

-0.032
13 / 2 / 19

0.852

-0.029
15 / 4 / 15

0.644

-0.027
16 / 2 / 16

0.720
-

0.040
17 / 4 / 13

0.082

0.083
23 / 1 / 10

0.005

0.223
27 / 3 / 4
 1e-03

-0.226
9 / 1 / 24

1.000

-0.179
11 / 0 / 23

1.000

-0.159
10 / 0 / 24

1.000

-0.125
9 / 0 / 25

0.999

-0.074
10 / 2 / 22

0.988

-0.072
12 / 2 / 20

0.984

-0.069
13 / 4 / 17

0.905

-0.067
13 / 2 / 19

0.961

-0.040
13 / 4 / 17

0.918
-

0.043
18 / 1 / 15

0.137

0.183
27 / 3 / 4
 1e-03

-0.268
7 / 0 / 27

1.000

-0.221
6 / 0 / 28

1.000

-0.202
5 / 0 / 29

1.000

-0.168
8 / 0 / 26

1.000

-0.117
10 / 1 / 23

0.999

-0.115
7 / 1 / 26

1.000

-0.112
9 / 2 / 23

0.989

-0.110
6 / 1 / 27

1.000

-0.083
10 / 1 / 23

0.995

-0.043
15 / 1 / 18

0.863
-

0.140
27 / 1 / 6
 1e-03

-0.409
2 / 2 / 30

1.000

-0.362
3 / 1 / 30

1.000

-0.342
3 / 1 / 30

1.000

-0.309
2 / 1 / 31

1.000

-0.257
5 / 3 / 26

1.000

-0.255
3 / 3 / 28

1.000

-0.252
2 / 6 / 26

1.000

-0.250
3 / 2 / 29

1.000

-0.223
4 / 3 / 27

1.000

-0.183
4 / 3 / 27

1.000

-0.140
6 / 1 / 27

1.000
If in bold, then
p-value < 0.05

Mean-recall

0.4

0.2

0.0

0.2

0.4

M
ea

n-
Di

ffe
re

nc
e

(b) Recall.

Figure 13: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

LGBM
472.791

ROCKET
1485.083

RIFC
1656.918

BORF
5298.659

NCDE
6877.340

GRU-D
9351.653

TIMESNET
12925.685

KNN
16523.164

RAINDROP
18921.227

SVM
21772.918

SAITS
30426.722

BRITS
60025.019

LGBM
472.791

ROCKET
1485.083

RIFC
1656.918

BORF
5298.659

NCDE
6877.340

GRU-D
9351.653

TIMESNET
12925.685

KNN
16523.164

RAINDROP
18921.227

SVM
21772.918

SAITS
30426.722

BRITS
60025.019

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

-1012.291
29 / 0 / 5
 1e-03

-1184.127
22 / 0 / 12

0.058

-4825.868
14 / 0 / 20

0.845

-6404.549
13 / 0 / 21

0.902

-8878.861
3 / 0 / 31

1.000

-12452.894
0 / 0 / 34

1.000

-16050.373
8 / 0 / 26

1.000

-18448.436
12 / 0 / 22

0.988

-21300.127
10 / 0 / 24

0.999

-29953.930
0 / 0 / 34

1.000

-59552.228
0 / 0 / 34

1.000

1012.291
5 / 0 / 29

1.000
-

-171.836
18 / 0 / 16

0.407

-3813.576
5 / 0 / 29

1.000

-5392.258
1 / 0 / 33

1.000

-7866.570
1 / 0 / 33

1.000

-11440.602
0 / 0 / 34

1.000

-15038.081
1 / 0 / 33

1.000

-17436.145
0 / 0 / 34

1.000

-20287.836
0 / 0 / 34

1.000

-28941.639
0 / 0 / 34

1.000

-58539.936
0 / 0 / 34

1.000

1184.127
12 / 0 / 22

0.944

171.836
16 / 0 / 18

0.600
-

-3641.741
2 / 0 / 32

1.000

-5220.422
2 / 0 / 32

1.000

-7694.734
1 / 0 / 33

1.000

-11268.767
1 / 0 / 33

1.000

-14866.246
2 / 0 / 32

1.000

-17264.309
1 / 0 / 33

1.000

-20116.000
1 / 0 / 33

1.000

-28769.803
1 / 0 / 33

1.000

-58368.101
1 / 0 / 33

1.000

4825.868
20 / 0 / 14

0.159

3813.576
29 / 0 / 5
 1e-03

3641.741
32 / 0 / 2
 1e-03

-
-1578.682
13 / 0 / 21

0.837

-4052.994
3 / 0 / 31

1.000

-7627.026
2 / 0 / 32

1.000

-11224.505
8 / 0 / 26

1.000

-13622.568
5 / 0 / 29

1.000

-16474.260
7 / 0 / 27

1.000

-25128.063
2 / 0 / 32

1.000

-54726.360
1 / 0 / 33

1.000

6404.549
21 / 0 / 13

0.101

5392.258
33 / 0 / 1
 1e-03

5220.422
32 / 0 / 2
 1e-03

1578.682
21 / 0 / 13

0.167
-

-2474.312
10 / 1 / 23

0.998

-6048.345
5 / 1 / 28

1.000

-9645.823
15 / 2 / 17

0.984

-12043.887
17 / 1 / 16

0.822

-14895.578
14 / 1 / 19

0.993

-23549.381
4 / 1 / 29

1.000

-53147.678
2 / 1 / 31

1.000

8878.861
31 / 0 / 3
 1e-03

7866.570
33 / 0 / 1
 1e-03

7694.734
33 / 0 / 1
 1e-03

4052.994
31 / 0 / 3
 1e-03

2474.312
23 / 1 / 10

0.002
-

-3574.032
4 / 2 / 28

1.000

-7171.511
19 / 2 / 13

0.672

-9569.575
21 / 2 / 11

0.335

-12421.266
23 / 2 / 9

0.196

-21075.069
1 / 2 / 31

1.000

-50673.366
0 / 2 / 32

1.000

12452.894
34 / 0 / 0
 1e-03

11440.602
34 / 0 / 0
 1e-03

11268.767
33 / 0 / 1
 1e-03

7627.026
32 / 0 / 2
 1e-03

6048.345
28 / 1 / 5
 1e-03

3574.032
28 / 2 / 4
 1e-03

-
-3597.479
24 / 2 / 8

0.097

-5995.542
27 / 2 / 5

0.001

-8847.233
27 / 2 / 5

0.002

-17501.037
4 / 2 / 28

1.000

-47099.334
2 / 2 / 30

1.000

16050.373
26 / 0 / 8
 1e-03

15038.081
33 / 0 / 1
 1e-03

14866.246
32 / 0 / 2
 1e-03

11224.505
26 / 0 / 8
 1e-03

9645.823
17 / 2 / 15

0.016

7171.511
13 / 2 / 19

0.328

3597.479
8 / 2 / 24

0.903
-

-2398.063
16 / 2 / 16

0.221

-5249.755
13 / 3 / 18

0.551

-13903.558
3 / 2 / 29

1.000

-43501.855
1 / 2 / 31

1.000

18448.436
22 / 0 / 12

0.012

17436.145
34 / 0 / 0
 1e-03

17264.309
33 / 0 / 1
 1e-03

13622.568
29 / 0 / 5
 1e-03

12043.887
16 / 1 / 17

0.178

9569.575
11 / 2 / 21

0.665

5995.542
5 / 2 / 27

0.999

2398.063
16 / 2 / 16

0.779
-

-2851.691
16 / 2 / 16

0.684

-11505.494
2 / 2 / 30

1.000

-41103.792
1 / 2 / 31

1.000

21300.127
24 / 0 / 10

0.001

20287.836
34 / 0 / 0
 1e-03

20116.000
33 / 0 / 1
 1e-03

16474.260
27 / 0 / 7
 1e-03

14895.578
19 / 1 / 14

0.007

12421.266
9 / 2 / 23

0.804

8847.233
5 / 2 / 27

0.998

5249.755
18 / 3 / 13

0.449

2851.691
16 / 2 / 16

0.316
-

-8653.803
3 / 2 / 29

1.000

-38252.100
1 / 2 / 31

1.000

29953.930
34 / 0 / 0
 1e-03

28941.639
34 / 0 / 0
 1e-03

28769.803
33 / 0 / 1
 1e-03

25128.063
32 / 0 / 2
 1e-03

23549.381
29 / 1 / 4
 1e-03

21075.069
31 / 2 / 1
 1e-03

17501.037
28 / 2 / 4
 1e-03

13903.558
29 / 2 / 3
 1e-03

11505.494
30 / 2 / 2
 1e-03

8653.803
29 / 2 / 3
 1e-03

-
-29598.297

4 / 2 / 28
1.000

59552.228
34 / 0 / 0
 1e-03

58539.936
34 / 0 / 0
 1e-03

58368.101
33 / 0 / 1
 1e-03

54726.360
33 / 0 / 1
 1e-03

53147.678
31 / 1 / 2
 1e-03

50673.366
32 / 2 / 0
 1e-03

47099.334
30 / 2 / 2
 1e-03

43501.855
31 / 2 / 1
 1e-03

41103.792
31 / 2 / 1
 1e-03

38252.100
31 / 2 / 1
 1e-03

29598.297
28 / 2 / 4
 1e-03

If in bold, then
p-value < 0.05

Mean-total_time

60000

40000

20000

0

20000

40000

60000

M
ea

n-
Di

ffe
re

nc
e

(a) Total Runtime.
ROCKET
0.851

BORF
0.844

LGBM
0.832

RIFC
0.815

SAITS
0.748

RAINDROP
0.744

TIMESNET
0.741

BRITS
0.736

GRU-D
0.718

KNN
0.701

NCDE
0.693

SVM
0.493

ROCKET
0.851

BORF
0.844

LGBM
0.832

RIFC
0.815

SAITS
0.748

RAINDROP
0.744

TIMESNET
0.741

BRITS
0.736

GRU-D
0.718

KNN
0.701

NCDE
0.693

SVM
0.493

Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value

0.007
23 / 4 / 7

0.007

0.019
21 / 4 / 9

0.021

0.036
27 / 4 / 3
 1e-03

0.104
27 / 0 / 7

0.002

0.108
27 / 1 / 6

0.001

0.111
27 / 0 / 7
 1e-03

0.115
25 / 1 / 8

0.002

0.133
25 / 0 / 9

0.002

0.151
30 / 0 / 4
 1e-03

0.158
27 / 0 / 7
 1e-03

0.358
31 / 1 / 2
 1e-03

-0.007
7 / 4 / 23

0.993
-

0.012
18 / 4 / 12

0.128

0.029
22 / 4 / 8

0.007

0.097
27 / 0 / 7

0.001

0.101
25 / 1 / 8

0.001

0.104
24 / 0 / 10
 1e-03

0.108
22 / 1 / 11

0.004

0.126
22 / 0 / 12

0.001

0.144
23 / 0 / 11

0.005

0.151
29 / 0 / 5
 1e-03

0.351
30 / 1 / 3
 1e-03

-0.019
9 / 4 / 21

0.979

-0.012
12 / 4 / 18

0.872
-

0.017
20 / 4 / 10

0.057

0.085
24 / 0 / 10

0.004

0.089
27 / 1 / 6
 1e-03

0.092
25 / 0 / 9
 1e-03

0.096
23 / 1 / 10

0.002

0.114
26 / 0 / 8

0.001

0.132
21 / 0 / 13

0.025

0.139
29 / 0 / 5
 1e-03

0.339
30 / 1 / 3
 1e-03

-0.036
3 / 4 / 27

1.000

-0.029
8 / 4 / 22

0.993

-0.017
10 / 4 / 20

0.943
-

0.068
24 / 0 / 10

0.026

0.072
21 / 1 / 12

0.045

0.075
21 / 0 / 13

0.030

0.080
21 / 1 / 12

0.016

0.098
24 / 0 / 10

0.003

0.115
22 / 0 / 12

0.023

0.122
26 / 0 / 8

0.002

0.322
31 / 1 / 2
 1e-03

-0.104
7 / 0 / 27

0.998

-0.097
7 / 0 / 27

0.999

-0.085
10 / 0 / 24

0.996

-0.068
10 / 0 / 24

0.975
-

0.004
14 / 2 / 18

0.678

0.007
13 / 2 / 19

0.702

0.012
14 / 2 / 18

0.425

0.030
20 / 2 / 12

0.091

0.047
13 / 2 / 19

0.541

0.054
25 / 1 / 8

0.010

0.254
29 / 2 / 3
 1e-03

-0.108
6 / 1 / 27

0.999

-0.101
8 / 1 / 25

0.999

-0.089
6 / 1 / 27

1.000

-0.072
12 / 1 / 21

0.955

-0.004
18 / 2 / 14

0.322
-

0.003
17 / 2 / 15

0.231

0.008
16 / 3 / 15

0.307

0.026
19 / 2 / 13

0.088

0.043
13 / 2 / 19

0.527

0.050
23 / 1 / 10

0.010

0.250
27 / 4 / 3
 1e-03

-0.111
7 / 0 / 27

1.000

-0.104
10 / 0 / 24

1.000

-0.092
9 / 0 / 25

1.000

-0.075
13 / 0 / 21

0.971

-0.007
19 / 2 / 13

0.298

-0.003
15 / 2 / 17

0.769
-

0.005
18 / 2 / 14

0.298

0.023
21 / 2 / 11

0.058

0.040
13 / 2 / 19

0.601

0.047
23 / 1 / 10

0.052

0.247
26 / 2 / 6
 1e-03

-0.115
8 / 1 / 25

0.998

-0.108
11 / 1 / 22

0.996

-0.096
10 / 1 / 23

0.998

-0.080
12 / 1 / 21

0.984

-0.012
18 / 2 / 14

0.575

-0.008
15 / 3 / 16

0.693

-0.005
14 / 2 / 18

0.702
-

0.018
20 / 2 / 12

0.122

0.035
15 / 2 / 17

0.527

0.043
23 / 1 / 10

0.014

0.243
29 / 3 / 2
 1e-03

-0.133
9 / 0 / 25

0.998

-0.126
12 / 0 / 22

0.999

-0.114
8 / 0 / 26

0.999

-0.098
10 / 0 / 24

0.997

-0.030
12 / 2 / 20

0.909

-0.026
13 / 2 / 19

0.912

-0.023
11 / 2 / 21

0.942

-0.018
12 / 2 / 20

0.878
-

0.017
15 / 2 / 17

0.708

0.025
20 / 1 / 13

0.161

0.225
29 / 2 / 3
 1e-03

-0.151
4 / 0 / 30

1.000

-0.144
11 / 0 / 23

0.995

-0.132
13 / 0 / 21

0.976

-0.115
12 / 0 / 22

0.978

-0.047
19 / 2 / 13

0.459

-0.043
19 / 2 / 13

0.473

-0.040
19 / 2 / 13

0.399

-0.035
17 / 2 / 15

0.473

-0.017
17 / 2 / 15

0.292
-

0.007
20 / 2 / 12

0.152

0.207
26 / 6 / 2
 1e-03

-0.158
7 / 0 / 27

1.000

-0.151
5 / 0 / 29

1.000

-0.139
5 / 0 / 29

1.000

-0.122
8 / 0 / 26

0.998

-0.054
8 / 1 / 25

0.990

-0.050
10 / 1 / 23

0.990

-0.047
10 / 1 / 23

0.948

-0.043
10 / 1 / 23

0.986

-0.025
13 / 1 / 20

0.839

-0.007
12 / 2 / 20

0.848
-

0.200
29 / 1 / 4
 1e-03

-0.358
2 / 1 / 31

1.000

-0.351
3 / 1 / 30

1.000

-0.339
3 / 1 / 30

1.000

-0.322
2 / 1 / 31

1.000

-0.254
3 / 2 / 29

1.000

-0.250
3 / 4 / 27

1.000

-0.247
6 / 2 / 26

1.000

-0.243
2 / 3 / 29

1.000

-0.225
3 / 2 / 29

1.000

-0.207
2 / 6 / 26

1.000

-0.200
4 / 1 / 29

1.000
If in bold, then
p-value < 0.05

Mean-roc_auc

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

M
ea

n-
Di

ffe
re

nc
e

(b) ROC-AUC.

Figure 14: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
ac

cu
ra

cy
 ra

nk

BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS

GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(a) Accuracy.

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
ro

c_
au

c
ra

nk

BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS

GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(b) ROC-AUC.

Figure 15: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
pr

ec
isi

on
 ra

nk

BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS

GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(a) Precision.

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
re

ca
ll

ra
nk

BORF

BRITS
GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS
GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(b) Recall.

Figure 16: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
f1

 ra
nk

BORF

BRITS

GRU-D

LGBM

NCDE
RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITSGRU-D

KNN

LGBM

NCDE
RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(a) Unevenly Sampled.

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
f1

 ra
nk BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS

GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(b) Partially Observed.

Figure 17: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

102 103 104 105 106

mean training runtime (s)

2

4

6

8

10

12

m
ea

n
f1

 ra
nk

BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS

GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(a) Unequal Length.

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11

m
ea

n
f1

 ra
nk

BORF

BRITS

GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITSGRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(b) Shift.

Figure 18: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

102 103 104 105 106

mean training runtime (s)

3

4

5

6

7

8

9

10

11
m

ea
n

f1
 ra

nk

BORF

BRITS
GRU-D

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

101 102 103 104 105

mean inference runtime (s)

BORF

BRITS

GRU-D

KNN

LGBM

NCDE

RAINDROP

RIFC

ROCKET

SAITS

SVM

TIMESNET

(a) Ragged Sampling.

Figure 19: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.

LG
B

M

R
IF

C

B
O

R
F

R
O

C
K

E
T

B
R

IT
S

G
R

U
-D

N
C

D
E

S
V

M

K
N

N

R
A

IN
D

R
O

P

S
A

IT
S

TI
M

E
S

N
E

T

model_str

LGBM

RIFC

BORF

ROCKET

BRITS

GRU-D

NCDE

SVM

KNN

RAINDROP

SAITS

TIMESNET

m
od

el
_s

tr

1

0

1

Figure 20: F1 rank correlation between models. Models are hierarchically clustered using average
linkage applied to the rank correlation matrix. Positive correlations indicate that models tend
to perform similarly across datasets, reflecting comparable strengths or weaknesses. Negative
correlations suggest that models excel on different datasets, revealing complementary behaviors or
distinct inductive biases.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Ta
bl

e
7:

F1
sc

or
e

on
th

e
te

st
se

tf
or

ea
ch

da
ta

se
ta

nd
ea

ch
cl

as
si

fie
r.

T
he

av
er

ag
e

of
3

ru
ns

is
ta

ke
n

fo
r

m
et

ho
ds

th
at

hi
gh

ly
de

pe
nd

up
on

in
iti

al
iz

at
io

n,
i.e

.,
al

l
ap

pr
oa

ch
es

be
si

de
s

B
O

R
F,

K
N

N
,L

G
B

M
,a

nd
S

V
M

.M
is

si
ng

va
lu

es
ar

e
du

e
to

ex
ce

ed
in

g
m

em
or

y
or

m
ax

im
um

ru
nt

im
e.

T
he

be
st

va
lu

es
fo

re
ac

h
da

ta
se

ta
re

in
bo

ld
.

B
O

R
F

B
R

IT
S

G
R

U
-D

K
N

N
L

G
B

M
N

C
D

E
R

A
IN

D
R

O
P

R
IF

C
R

O
C

K
E

T
S

A
IT

S
S

V
M

T
IM

E
S

N
E

T

A
B
F

0.
17

0.
33

±
0.

01
0.

28
±

0.
09

0.
31

0.
17

0.
41

±
0.

02
0.

27
±

0.
01

0.
17

±
0.

00
0.

17
±

0.
00

0.
30

±
0.

03
0.

32
0.

31
±

0.
01

A
N

0.
80

0.
65

±
0.

00
0.

68
±

0.
03

0.
80

0.
80

0.
43

±
0.

11
0.

64
±

0.
05

0.
88

±
0.

02
0.

90
±

0.
04

0.
59

±
0.

03
0.

07
0.

61
±

0.
01

A
O
C

0.
82

0.
30

±
0.

00
0.

31
±

0.
28

0.
64

0.
68

0.
51

±
0.

01
0.

66
±

0.
03

0.
68

±
0.

03
0.

80
±

0.
01

0.
75

±
0.

02
0.

02
0.

62
±

0.
03

A
P
T

0.
91

0.
78

±
0.

02
0.

49
±

0.
31

0.
34

0.
80

0.
69

±
0.

00
0.

77
±

0.
01

0.
88

±
0.

03
0.

96
±

0.
00

0.
84

±
0.

01
0.

05
0.

86
±

0.
02

A
R
C

0.
95

0.
99

±
0.

00
0.

63
±

0.
10

0.
36

0.
95

0.
81

±
0.

00
0.

97
±

0.
01

0.
77

±
0.

28
0.

99
±

0.
01

0.
99

±
0.

00
0.

10
0.

99
±

0.
00

C
T

0.
94

0.
96

±
0.

05
0.

64
±

0.
30

0.
98

0.
95

0.
87

±
0.

01
0.

97
±

0.
00

0.
94

±
0.

02
0.

98
±

0.
00

0.
94

±
0.

05
0.

68
0.

95
±

0.
02

D
D

0.
51

0.
52

±
0.

02
0.

46
±

0.
07

0.
44

0.
52

0.
29

±
0.

12
0.

45
±

0.
04

0.
49

±
0.

04
0.

54
±

0.
03

0.
43

±
0.

06
0.

23
0.

20
±

0.
02

D
G

0.
34

0.
72

±
0.

07
0.

71
±

0.
07

0.
90

0.
34

0.
51

±
0.

04
0.

60
±

0.
22

0.
34

±
0.

00
0.

34
±

0.
00

0.
57

±
0.

10
0.

85
0.

42
±

0.
03

D
W

0.
42

0.
93

±
0.

02
0.

63
±

0.
27

0.
97

0.
42

0.
80

±
0.

13
0.

78
±

0.
31

0.
42

±
0.

00
0.

42
±

0.
00

0.
96

±
0.

01
0.

96
0.

63
±

0.
02

G
M
1

0.
58

0.
47

±
0.

04
0.

24
±

0.
08

0.
33

0.
57

0.
23

±
0.

02
0.

46
±

0.
11

0.
49

±
0.

02
0.

66
±

0.
02

0.
41

±
0.

02
0.

04
0.

50
±

0.
04

G
M
2

0.
50

0.
32

±
0.

05
0.

40
±

0.
08

0.
26

0.
39

0.
20

±
0.

08
0.

30
±

0.
15

0.
36

±
0.

03
0.

57
±

0.
05

0.
24

±
0.

25
0.

13
0.

45
±

0.
03

G
M
3

0.
34

0.
22

±
0.

02
0.

06
±

0.
02

0.
14

0.
25

0.
17

±
0.

01
0.

31
±

0.
03

0.
26

±
0.

05
0.

48
±

0.
03

0.
27

±
0.

11
0.

01
0.

32
±

0.
03

G
P
1

0.
88

0.
27

±
0.

06
0.

23
±

0.
14

0.
75

0.
78

0.
32

±
0.

02
0.

81
±

0.
05

0.
80

±
0.

04
0.

89
±

0.
02

0.
75

±
0.

02
0.

16
0.

73
±

0.
06

G
P
2

0.
79

0.
31

±
0.

04
0.

56
±

0.
24

0.
74

0.
73

0.
35

±
0.

01
0.

63
±

0.
10

0.
76

±
0.

05
0.

85
±

0.
05

0.
54

±
0.

10
0.

43
0.

58
±

0.
04

G
S

0.
41

-
-

-
0.

13
0.

52
±

0.
29

-
0.

07
±

0.
02

0.
31

±
0.

15
-

-
-

G
X

0.
55

0.
09

±
0.

09
0.

11
±

0.
04

0.
65

0.
50

0.
13

±
0.

05
0.

44
±

0.
08

0.
47

±
0.

11
0.

70
±

0.
01

0.
33

±
0.

09
0.

11
0.

44
±

0.
00

G
Y

0.
64

0.
18

±
0.

07
0.

13
±

0.
07

0.
65

0.
55

0.
26

±
0.

01
0.

46
±

0.
04

0.
49

±
0.

14
0.

70
±

0.
02

0.
43

±
0.

10
0.

13
0.

44
±

0.
02

G
Z

0.
58

0.
17

±
0.

09
0.

10
±

0.
04

0.
62

0.
48

0.
11

±
0.

04
0.

33
±

0.
04

0.
44

±
0.

13
0.

69
±

0.
01

0.
19

±
0.

12
0.

06
0.

33
±

0.
02

I
W

0.
48

0.
65

±
0.

01
0.

61
±

0.
00

-
0.

71
0.

10
±

0.
02

0.
02

±
0.

00
0.

39
±

0.
34

0.
53

±
0.

00
0.

13
±

0.
07

0.
02

0.
60

±
0.

00
J
V

0.
71

0.
96

±
0.

00
0.

96
±

0.
01

0.
96

0.
93

0.
57

±
0.

02
0.

94
±

0.
02

0.
89

±
0.

10
0.

94
±

0.
01

0.
96

±
0.

01
0.

47
0.

97
±

0.
01

L
P
A

0.
73

0.
28

±
0.

20
0.

21
±

0.
14

0.
02

0.
53

0.
44

±
0.

03
0.

33
±

0.
09

0.
32

±
0.

20
0.

02
±

0.
01

0.
26

±
0.

06
0.

02
0.

27
±

0.
03

M
I
3

0.
27

0.
42

±
0.

11
0.

35
±

0.
00

0.
35

0.
41

0.
34

±
0.

17
0.

36
±

0.
15

0.
56

±
0.

22
0.

35
±

0.
00

0.
46

±
0.

10
0.

35
0.

42
±

0.
11

M
P

0.
85

0.
92

±
0.

00
0.

92
±

0.
01

0.
88

0.
96

0.
63

±
0.

02
0.

74
±

0.
04

0.
90

±
0.

04
0.

94
±

0.
00

0.
67

±
0.

34
0.

44
0.

93
±

0.
01

P
1
2

0.
51

0.
46

±
0.

00
0.

61
±

0.
02

0.
12

0.
55

0.
49

±
0.

01
0.

56
±

0.
02

0.
63

±
0.

01
0.

47
±

0.
01

0.
55

±
0.

01
0.

46
0.

56
±

0.
01

P
1
9

0.
71

0.
49

±
0.

00
0.

55
±

0.
02

-
0.

75
-

0.
69

±
0.

01
0.

66
±

0.
03

0.
71

±
0.

01
0.

72
±

0.
00

0.
05

0.
71

±
0.

01
P
A
M

0.
53

-
-

-
0.

33
-

-
0.

37
±

0.
32

0.
66

±
0.

10
-

-
-

P
G
E

0.
40

0.
78

±
0.

00
0.

78
±

0.
00

0.
78

0.
40

0.
57

±
0.

29
0.

48
±

0.
26

0.
40

±
0.

00
0.

40
±

0.
00

0.
65

±
0.

22
0.

40
0.

43
±

0.
05

P
G
Z

0.
46

0.
34

±
0.

03
0.

26
±

0.
14

0.
61

0.
54

0.
30

±
0.

02
0.

46
±

0.
34

0.
60

±
0.

12
0.

73
±

0.
00

0.
65

±
0.

07
0.

16
0.

57
±

0.
06

P
L

0.
87

0.
36

±
0.

04
0.

20
±

0.
10

0.
64

0.
71

0.
28

±
0.

01
0.

53
±

0.
03

0.
47

±
0.

02
0.

85
±

0.
01

0.
39

±
0.

06
0.

20
0.

45
±

0.
02

S
A
D

0.
98

0.
99

±
0.

00
0.

99
±

0.
00

0.
97

0.
97

0.
74

±
0.

01
0.

98
±

0.
00

0.
65

±
0.

42
0.

98
±

0.
00

0.
95

±
0.

01
0.

62
0.

99
±

0.
00

S
E

0.
47

0.
48

±
0.

15
0.

49
±

0.
17

0.
38

0.
42

0.
33

±
0.

08
0.

40
±

0.
15

0.
82

±
0.

04
0.

80
±

0.
08

0.
27

±
0.

02
0.

26
0.

24
±

0.
06

S
G
Z

0.
75

0.
34

±
0.

05
0.

38
±

0.
08

0.
77

0.
65

0.
12

±
0.

05
0.

46
±

0.
04

0.
75

±
0.

08
0.

88
±

0.
02

0.
57

±
0.

11
0.

13
0.

49
±

0.
09

T
A

0.
42

0.
23

±
0.

00
0.

23
±

0.
00

-
0.

77
0.

33
±

0.
01

0.
25

±
0.

02
0.

38
±

0.
06

0.
57

±
0.

01
0.

25
±

0.
01

-
0.

25
±

0.
01

V
E

0.
97

0.
50

±
0.

08
0.

60
±

0.
01

0.
88

0.
94

0.
63

±
0.

08
0.

65
±

0.
02

0.
90

±
0.

02
0.

94
±

0.
02

0.
62

±
0.

03
0.

40
0.

59
±

0.
01

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E COMPLEXITY AND PIPELINE COSTS

In this section, we analyze the efficiency of our proposed library and the benchmarked classifiers
in terms of both time and space complexity. The end-to-end cost of the classification pipeline
consists of three components: (i) loading the dataset from disk into memory, (ii) converting it into
a dense representation, and (iii) running the models. The last component is an external cost, since
pyrregular wraps existing state-of-the-art classifiers from other libraries, and is reported separately
in Table 9.

In Table 8 we report instead the internal costs for datasets with a size greater than 10MB. The first
two columns of report the empirical times needed for dataset loading and conversion. Theoretically,
the dominant cost arises when converting the sparse COO representation into dense form, which
requires ranking the timestamps (Section 4). This amounts to sorting within each time series, leading
to a complexity that scales linearly with the number of time series and log-linearly with the number
of non-null observations per series. Thus, in practice, runtimes are efficient: for example, P19 takes
less than 3 seconds end-to-end, while the largest dataset, PA2, is converted in under one minute.

The third and fourth columns of Table 8 compare disk usage of our proposed array format with that
of the raw data. In most cases, the proposed format either matches or substantially reduces disk
requirements. For instance, GS decreases from 0.24GB in raw form to 0.09GB with our approach,
while the reduction is even more pronounced for TA, which shrinks from 1.81GB to only 0.08GB.
These reductions are especially valuable for large-scale datasets where disk I/O is a bottleneck.

The last three columns of Table 8 detail the memory footprint of different representations. The sparse
COO representation incurs a cost of four times the number of non-null observations, accounting
for the storage of coordinates and values. Conversion into a minimally ragged dense format leads
to a worst-case memory complexity of O(n × d × T), where T = maxni (Ti) is the longest series
length. If the dataset is instead expanded into a fully ragged dense array, the worst-case complexity
becomes O(n × d × T), which grows quickly with irregularity. Empirical results illustrate these
trends. For example, on PA2, the sparse representation required only 3.93GB, compared to 5.33GB
for a minimally ragged dense format. The largest savings are seen in highly irregular datasets: for
TA, the sparse format used 0.34GB, while the fully ragged dense array would require over 4TB of
memory, an impractical cost.

Table 8: Loading and conversion times (in seconds) for datasets using the proposed array format,
along with disk size consumption (GB) compared to the raw data. Memory usage (GB) of the sparse
representation is also reported relative to dense alternatives.

time (s) disk size (GB) memory (GB)

Loading Conversion ours raw ours
dense w/o
raggedness

dense with
raggedness

ABF 0.03 0.06 ∼0.00 0.01 ∼0.00 ∼0.00 0.81
AOC 0.09 0.12 0.01 ∼0.00 0.02 0.01 0.01
APT 0.30 0.42 0.02 0.02 0.08 0.11 0.11
ARC 0.21 0.28 0.01 0.01 0.05 0.14 0.14
CT 0.12 0.16 0.01 0.01 0.03 0.01 0.01
GS 1.25 3.62 0.09 0.24 0.29 8.58 377.15
IW 6.93 13.01 0.36 0.31 2.00 1.64 1.64
LPA 0.07 0.10 ∼0.00 0.02 0.01 0.07 4.02
MI3 0.13 0.01 ∼0.00 0.04 ∼0.00 ∼0.00 0.03
P12 0.35 0.65 0.01 0.08 0.1 0.45 6.35
P19 0.96 2.08 0.03 0.24 0.31 3.41 3.43
PA2 13.46 21.35 0.83 1.61 3.93 5.33 21.47
PL 0.06 0.07 ∼0.00 ∼0.00 0.01 0.01 0.01
SAD 0.49 0.65 0.02 0.02 0.14 0.08 0.08
SE 0.15 0.17 0.01 0.06 0.03 0.02 0.84
TA 1.49 2.34 0.08 1.81 0.34 0.22 4135.02
VE 0.05 0.08 ∼0.00 0.01 0.01 0.01 0.17

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Ta
bl

e
9:

To
ta

lr
un

tim
e

(s
ec

on
ds

)
fo

r
ea

ch
da

ta
se

ta
nd

ea
ch

cl
as

si
fie

r.
T

he
av

er
ag

e
of

3
ru

ns
is

ta
ke

n
fo

r
m

et
ho

ds
th

at
hi

gh
ly

de
pe

nd
up

on
in

iti
al

iz
at

io
n,

i.e
.,

al
l

ap
pr

oa
ch

es
be

si
de

s
B

O
R

F,
K

N
N

,L
G

B
M

,a
nd

S
V

M
.M

is
si

ng
va

lu
es

ar
e

du
e

to
ex

ce
ed

in
g

m
em

or
y

or
m

ax
im

um
ru

nt
im

e.
T

he
be

st
va

lu
es

fo
re

ac
h

da
ta

se
ta

re
in

bo
ld

.

B
O

R
F

B
R

IT
S

G
R

U
-D

K
N

N
L

G
B

M
N

C
D

E
R

A
IN

D
R

O
P

R
IF

C
R

O
C

K
E

T
S

A
IT

S
S

V
M

T
IM

E
S

N
E

T

A
B
F

16
23

0±
8

33
±

6
10

2
12

90
±

20
51

16
±

2
5±

0
1±

0
76

±
16

20
65

±
12

A
N

18
59

52
±

51
0

12
1±

24
8

12
93

±
24

23
±

4
2±

0
1±

0
34

4±
40

11
20

3±
29

A
O
C

29
5

55
72

±
90

6
12

74
±

50
3

13
18

13
9

92
±

28
94

±
2

21
±

1
23

±
1

57
64

±
90

3
11

96
26

01
±

43
8

A
P
T

10
00

47
50

1±
10

14
4

94
16

±
38

23
32

48
2

30
2

18
0±

5
13

01
4±

21
27

0
78

±
6

38
±

0
11

34
32

±
70

34
14

17
8

21
28

3±
13

63
A
R
C

67
9

24
67

25
±

14
04

03
16

23
6±

54
90

26
77

5
14

4
17

5±
60

88
37

6±
76

13
68

±
5

52
±

1
24

82
53

±
10

87
2

80
21

18
77

5±
12

90
C
T

30
0

18
06

1±
47

79
15

42
±

71
9

25
63

61
3

24
3±

85
47

2±
84

72
±

4
19

1±
3

35
16

±
59

0
28

98
19

89
±

29
2

D
D

20
19

89
±

47
8

90
±

24
4

32
11

1±
29

39
±

9
2±

0
7±

0
40

4±
84

22
23

2±
30

D
G

12
10

63
±

21
5

41
±

6
3

1
11

1±
68

19
±

9
1±

0
0±

0
17

4±
7

7
64

±
12

D
W

12
15

26
±

90
4

67
±

39
3

1
24

3±
14

1
40

±
37

1±
0

0±
0

22
3±

10
3

7
31

0±
37

8
G
M
1

18
10

40
0±

28
49

47
7±

16
3

95
34

6
15

8±
42

76
±

19
4±

0
25

±
1

11
56

±
16

9
10

2
58

6±
10

4
G
M
2

20
15

74
6±

19
39

46
6±

86
94

36
4

18
8±

10
0

15
6±

37
4±

0
26

±
1

15
28

±
45

9
10

3
10

78
±

26
6

G
M
3

22
74

42
±

11
18

46
7±

22
2

93
44

0
13

6±
39

80
±

18
4±

0
28

±
1

12
28

±
12

2
10

3
63

4±
26

G
P
1

25
68

02
±

55
00

33
8±

14
82

61
91

±
27

56
±

9
3±

0
5±

0
14

50
±

36
0

97
57

5±
16

5
G
P
2

27
65

79
±

15
63

99
8±

53
79

71
90

±
25

50
±

9
3±

0
5±

0
12

53
±

78
10

5
79

7±
14

9
G
S

57
18

-
-

-
13

58
48

15
±

65
30

-
18

26
±

22
26

01
0±

13
6

-
-

-
G
X

62
48

46
±

16
52

43
0±

13
3

94
2

37
3

52
±

25
85

±
5

7±
0

17
±

1
20

15
±

34
1

30
7

12
02

±
37

3
G
Y

54
53

14
±

44
7

61
2±

77
93

9
37

4
59

±
11

78
±

2
7±

0
17

±
0

25
19

±
36

2
31

1
11

51
±

19
8

G
Z

63
64

39
±

30
59

53
3±

67
87

9
23

0
87

±
24

97
±

3
7±

0
17

±
1

28
64

±
64

7
30

6
11

94
±

22
5

I
W

31
58

7
70

67
±

13
8

14
60

±
62

-
45

33
38

76
7±

88
67

59
37

±
15

96
39

77
5±

85
1

11
8±

2
52

57
±

24
8

27
94

77
58

25
±

10
60

J
V

23
28

9±
79

51
±

0
48

13
3

92
±

27
89

±
7

35
±

2
6±

0
19

7±
11

2
41

33
7±

42
L
P
A

41
1

31
53

4±
11

20
4

38
54

±
30

3
44

7
27

8
18

6±
10

10
31

8±
17

14
9

46
±

1
27

±
0

39
93

9±
50

76
99

35
63

4±
26

81
5

M
I
3

12
14

21
±

33
5

41
±

10
3

3
76

±
16

14
±

2
6±

0
0±

0
11

3±
35

4
81

±
12

M
P

26
62

30
±

7
12

2±
13

81
6

30
6

20
5±

85
55

0±
20

7
18

±
1

14
2±

1
11

71
±

24
1

95
0

48
9±

90
P
1
2

54
55

72
50

8±
32

35
9

41
82

±
94

8
40

22
6

23
9

12
04

±
20

5
75

82
±

12
02

5
19

07
±

34
22

±
1

94
44

±
12

50
57

64
78

17
±

11
45

P
1
9

30
85

8
24

44
47

±
11

21
57

45
31

5±
61

10
-

75
1

-
29

44
68

±
72

19
4

92
43

±
91

9
20

6±
2

11
69

71
±

22
03

8
14

41
63

51
34

3±
61

96
P
A
2

77
64

7
-

-
-

40
04

-
-

11
79

±
97

22
96

3±
92

-
-

-
P
G
E

6
78

4±
16

5
50

±
69

2
1

19
7±

12
3

9±
1

2±
0

0±
0

39
±

25
2

21
±

3
P
G
Z

8
21

82
±

67
0

24
5±

14
2

11
1

11
0±

28
30

±
15

1±
0

1±
0

36
5±

63
8

19
7±

15
P
L

10
8

56
92

0±
23

27
5

46
15

±
39

22
40

17
45

2
10

6±
2

51
62

±
83

92
11

±
0

40
±

1
26

15
6±

22
39

26
66

70
31

±
11

67
S
A
D

84
87

33
02

1±
56

48
18

29
±

13
3

17
30

9
82

93
0±

14
3

19
66

±
39

8
67

5±
53

10
3±

1
69

56
±

53
6

17
10

6
69

91
±

93
6

S
E

20
4

80
10

1±
34

11
5

18
93

±
12

0
16

4
17

12
3±

31
20

91
8±

29
25

9±
0

39
±

1
59

80
0±

14
90

9
20

19
31

22
±

59
4

S
G
Z

9
18

21
±

11
9

26
7±

29
12

28
11

5±
69

25
±

5
1±

0
2±

0
32

5±
20

10
23

9±
34

T
A

16
82

5
86

14
75

±
86

40
0

46
78

1±
20

52
4

-
35

2
10

59
2±

65
09

20
57

6±
74

35
13

05
±

19
35

0±
9

19
77

88
±

30
35

4
-

92
47

0±
29

58
3

V
E

12
7

76
06

4±
58

36
13

11
±

58
9

36
2

32
11

5±
49

10
8±

27
8±

0
6±

0
10

98
7±

63
96

97
6

23
39

±
19

6

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F ARRAY STRUCTURES

We report a summary of the main formats used to represent regular and irregular time series data in
the literature in Table 10.

Table 10: Overview of the main formats used to represent regular and irregular time series data in the
literature, categorized by tensor type. The table details the underlying data structures (classes), the
software libraries that implement them, their usage across the time series libraries considered in this
study, and their support for timestamps and tensor operations.

Type Format Library Class Usage Timestamps Tensor Ops.

D
en

se

3D Tensor

numpy Array aeon ✗ ✓
numpy Array sktime ✗ ✓
numpy Array tslearn ✗ ✓
numpy MaskedArray - ✗ ✓
jax Array diffrax ✓* ✓
tensorflow Array - ✗ ✓
torch Tensor pypots ✗ ✓

R
ag

ge
d

3D Tensor

awkward AwkwardArray - ✗ ✓
tensorflow RaggedTensor - ✗ ✓
torch NestedTensor - ✗ ✓
zarr RaggedArray - ✗ ✓
pyarrow ListArray - ✗ ✓

Sp
ar

se

3D Tensor
sparse GCXS - ✗ ✓
sparse DOK - ✗ ✓
sparse COO - ✗ ✓

O
th

er

Nested List python List[Array] aeon ✗ ✗
3D tensor** xarray Dataset - ✓ ✓
Long pandas DataFrame sktime ✓ ✗
MultiIndex pandas DataFrame sktime ✓ ✗

* only as a separate channel
** with additional tensors for static variables

G EXTENDING PYRREGULAR TO OTHER TASKS

As noted in Section 6, our framework is designed to extend naturally to several additional tasks
beyond classification. In particular, we highlight regression, forecasting, and anomaly detection,
which are already supported at the representation level and require only minor adjustments to dataset
metadata or the inclusion of auxiliary variables.

Regression. This task involves predicting continuous outcomes and is directly supported by our
framework. Examples include SAPS-I (Simplified Acute Physiology Score) in PhysioNet 2012 or
raw productivity in the Garment dataset.

Forecasting. Here the objective is to predict future values of a time series given its history. We
plan to introduce a static variable with a cutoff point to indicate the train/test split, and to extend the
accessor method to provide users with a straightforward mechanism for performing this split.

Anomaly detection. This task aims to identify unusual or irregular patterns in the data. Since
anomalies may have the same shape as the underlying dataset, they cannot be indicated via static
variables. Instead, leveraging the support for additional data arrays in xarray, we will represent
anomalies using sparse binary masks that flag anomalous regions in the time series.

Model support. We also plan to support a set of representative models for such tasks. A non-
comprehensive list includes recent work introducing dynamic graph networks for medical data (Luo
et al., 2024), image-based transformers for irregular series (Li et al., 2023), channel harmony strategies
(Liu et al., 2025), graph neural flows (Mercatali et al., 2024), temporal graph ODEs (Gravina et al.,
2024), state space models (Gu et al., 2022), and patching graph neural networks for forecasting
(Zhang et al., 2024), to name a few.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

H QUICK GUIDE

Extensive documentation and examples were removed from the Supplementary Materials due to
double-blind constraints. Thus, we provide a quick start guide and simple workflow notebooks below.

pip install pyrregular[models]

H.1 LIST DATASETS

If you want to see all the datasets available, you can use the list_datasets function:

from pyrregular import list_datasets
df = list_datasets()

H.2 LOAD A DATASET

To load a dataset, you can use the load_dataset function. For example, to load the "Garment"
dataset, you can do:

from pyrregular import load_dataset
df = load_dataset("Garment.h5")

H.3 CLASSIFICATION

To use the dataset for classification, you can just "densify" it:

from pyrregular import load_dataset

df = load_dataset("Garment.h5")
X, _ = df.irr.to_dense()
y, split = df.irr.get_task_target_and_split()

X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]

We have ready-to-go models from various libraries:
from pyrregular.models.rocket import rocket_pipeline

model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)

The dataset can be also easily used in pytorch

from torch.utils.data import DataLoader, TensorDataset
import torch

data = TensorDataset(X, y)
dataloader = DataLoader(data, batch_size=16, shuffle=True)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Notebook: Basic Workflow

[1]: import xarray as xr

List available datasets

To view available datasets, you can use the list_datasets function.

[2]: from pyrregular import list_datasets

[3]: print(list_datasets())

['Abf.h5', 'AllGestureWiimoteX.h5', 'AllGestureWiimoteY.h5',
'AllGestureWiimoteZ.h5', 'Animals.h5', 'AsphaltObstaclesCoordinates.h5',
'AsphaltPavementTypeCoordinates.h5', 'AsphaltRegularityCoordinates.h5',
'CharacterTrajectories.h5', 'DodgerLoopDay.h5',
'DodgerLoopGame.h5', 'DodgerLoopWeekend.h5', 'Garment.h5',
'GeolifeSupervised.h5', 'GestureMidAirD1.h5', 'GestureMidAirD2.h5',
'GestureMidAirD3.h5', 'GesturePebbleZ1.h5', 'GesturePebbleZ2.h5',
'JapaneseVowels.h5', 'Ldfpa.h5', 'MelbournePedestrian.h5', 'Mimic3.h5',
'PLAID.h5', 'Pamap2.h5', 'Physionet2012.h5', 'Physionet2019.h5',
'PickupGestureWiimoteZ.h5', 'Seabirds.h5', 'ShakeGestureWiimoteZ.h5',
'SpokenArabicDigits.h5', 'Taxi.h5', 'Vehicles.h5']

Loading the dataset from the online repository

Loading a dataset is as from the online repo is as simple as calling the load_dataset function with
the dataset name.

[4]: from pyrregular import load_dataset

[64]: ds = load_dataset("Garment.h5")

The dataset is loaded as an xarray dataset. The dataset is saved in the default os cache directory,
which can be found with:

import pooch
print(pooch.os_cache("pyrregular"))

You can also use xarray to directly load a local file. In this case, you have to specify our backend
as pyrregular in the engine argument.

import xarray as xr
ds = xr.load_dataset("path/to/file.h5", engine="pyrregular")

You can view the underlying DataArray by calling the data variable.

[65]: da = ds.data

[66]: da

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

[66]: <xarray.DataArray 'data' (ts_id: 24, signal_id: 9, time_id: 59)> Size: 329kB
<COO: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0 1 1 1 1 1 1 ... 1 1 0 0 0 0 1
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 12 2 3 4 ... 3 4 5 6 7 8 9

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
* ts_id (ts_id) <U12 1kB 'finishing_1' ... 'sweing_9'

Attributes:
_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True
author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]
configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0
source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

[67]: # the shape is (n_time_series, n_channels, n_timestamps)
da.shape

[67]: (24, 9, 59)

[68]: # the array is stored as a sparse array
da.data

[68]: <COO: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>

[69]: # dimensions contain the time series ids, signal ids and timestamps
da.dims

[69]: ('ts_id', 'signal_id', 'time_id')

[70]: # e.g., these are the time series ids
da["ts_id"].data

[70]: array(['finishing_1', 'finishing_10', 'finishing_11', 'finishing_12',
'finishing_2', 'finishing_3', 'finishing_4', 'finishing_5',
'finishing_6', 'finishing_7', 'finishing_8', 'finishing_9',
'sweing_1', 'sweing_10', 'sweing_11', 'sweing_12', 'sweing_2',
'sweing_3', 'sweing_4', 'sweing_5', 'sweing_6', 'sweing_7',
'sweing_8', 'sweing_9'], dtype='<U12')

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

[72]: # there are also static variables, such as the class
da["productivity_binary"].data

[72]: array([1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 1], dtype=int32)

[74]: # the train/test split
da["split"].data

[74]: array(['train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'test', 'train', 'train', 'train', 'train', 'test',
'train', 'train', 'train'], dtype='<U5')

[75]: # all the coordinates can be accessed via the `coords` variable
da.coords

[75]: Coordinates:
day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0 1 1 1 1 1 1 ... 1 1 0 0 0 0 1
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 12 2 3 4 ... 3 4 5 6 7 8 9

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
* ts_id (ts_id) <U12 1kB 'finishing_1' ... 'sweing_9'

[76]: # metadata contains informations about the datasets and tasks
da.attrs

[76]: {'_fixed_at': '2024-12-04T21:50:44.408790-12:00',
'_is_fixed': True,
'author': [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed],
'configs': {'default': {'task': 'classification',

'split': 'split',
'target': 'productivity_binary'},

'regression': {'task': 'regression',
'split': 'split',
'target': 'productivity_numerical'}},

'license': 'CC BY 4.0',
'source': 'https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+g

arment+employees',
'title': 'Productivity Prediction of Garment Employees'}

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Data Handling and Plotting

Data can be accessed with standard xarray methods.

[77]: import matplotlib.pyplot as plt
import numpy as np

[78]: # the first time series
da[0]

[78]: <xarray.DataArray 'data' (signal_id: 9, time_id: 59)> Size: 9kB
<COO: shape=(9, 59), dtype=float64, nnz=392, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split <U5 20B 'train'
team int32 4B 1

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
ts_id <U12 48B 'finishing_1'

Attributes:
_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True
author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]
configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0
source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

[79]: # the first channel of the first time series
da[0, 0]

[79]: <xarray.DataArray 'data' (time_id: 59)> Size: 784B
<COO: shape=(59,), dtype=float64, nnz=49, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarter1' ... 'Quarter2'
signal_id <U21 84B 'idle_men'
split <U5 20B 'train'
team int32 4B 1

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
ts_id <U12 48B 'finishing_1'

Attributes:
_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True
author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]
configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0
source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

[80]: # to access the underlying sparse vector
da[0, 0].data

[80]: <COO: shape=(59,), dtype=float64, nnz=49, fill_value=nan>

[87]: # to access the underlying dense vector
da[0, 4].data.todense()

[87]: array([8., 8., 8., 8., 8., 8., 8., 8., 8., 8., 2., 8., 8.,
8., nan, nan, nan, 8., 25., 8., 8., 10., 10., 10., 10., 15.,

19., 19., 10., 10., 12., 10., 10., 10., 12., 12., 12., 12., 8.,
nan, nan, nan, nan, 12., nan, nan, nan, 8., 8., 8., 8., 8.,
8., 8., 8., 8., 8., 8., 8.])

[89]: # this vector contains a lot of nans, which are the padding necessary to have␣
↪→shared timestamps w.r.t. the whole dataset

np.isnan(da[0, 4].data.todense()).sum()

[89]: 10

[90]: plt.plot(da[0, 4]["time_id"], da[0, 4], marker="o")

[90]: [<matplotlib.lines.Line2D at 0x14eb06990>]

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

[92]: # using the custom ".irr" accessor, we can filter out the nans to the minimum␣
↪→amount possible due to raggedness

np.isnan(da.irr[0, 4].data.todense()).sum()

[92]: 0

[93]: plt.plot(da.irr[0, 4]["time_id"], da.irr[0, 4], marker="o")

[93]: [<matplotlib.lines.Line2D at 0x14eb6b230>]

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

[94]: # the fourth channel first 10 time series of the dataset, as a heatmap
da.irr[:10, 4].plot()

[94]: <matplotlib.collections.QuadMesh at 0x14dcf3680>

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

[103]: # plotting some channels
da.irr[0, 2].plot(label=da.coords["signal_id"][2].item())
da.irr[0, 4].plot(label=da.coords["signal_id"][4].item())
da.irr[0, 5].plot(label=da.coords["signal_id"][5].item())
plt.legend()

[103]: <matplotlib.legend.Legend at 0x16ea32870>

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Downstream Tasks

The xarray is nice, but not supported by basically any downstream library. Thus, we can convert
it into a numpy array.

[104]: %%time
time series data, timestamps
X, T = da.irr.to_dense(

normalize_time=True, # normalize the time index to [0, 1]
)

CPU times: user 2.23 s, sys: 79 ms, total: 2.31 s
Wall time: 2.34 s

[106]: # the shape is (n_time_series, n_channels, n_timestamps), timestamps are␣
↪→returned as a separate channel, for downstream methods that are able to use␣
↪→them

X.shape, T.shape

[106]: ((24, 9, 59), (24, 1, 59))

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

[107]: # static variables
Z = da.coords.to_dataset()[["split", "productivity_binary"]].to_pandas()
Z.head()

[107]: split productivity_binary department productivity_class \
ts_id
finishing_1 train 1 finishing high
finishing_10 train 0 finishing low
finishing_11 test 1 finishing high
finishing_12 train 1 finishing high
finishing_2 train 1 finishing high

productivity_numerical team
ts_id
finishing_1 0.812625 1
finishing_10 0.628333 10
finishing_11 0.874028 11
finishing_12 0.922840 12
finishing_2 0.819271 2

[108]: # target and split
y, split = da.irr.get_task_target_and_split()

Train-test split

[111]: X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]
X_train.shape, y_train.shape, X_test.shape, y_test.shape

[111]: ((18, 9, 59), (18,), (6, 9, 59), (6,))

Classification

We have several ready-to-use classifiers in the pyrregular package. Be sure to install the required
dependencies.

[118]: from pyrregular.models.rocket import rocket_pipeline

[119]: %%time
model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)

[119]: 0.6666666666666666

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Notebook: Dataset Conversion

The “Long Format”

The basic format to convert any dataset to our representation is the long format. The long format
is simply a tuple:

(time_series_id, channel_id, timestamp, value, static_var_1, static_var_2, ...).

If your dataset contains rows that are in this format, you are almost good to go. Else, there will be
a little bit of preprocessing to do.

Case 1. (easy) Your dataset is already in the long format

Let’s assume for now your dataset is already in this form. Here is a minimal working example.

[28]: import pandas as pd
import numpy as np

[29]: df = pd.DataFrame(
{

"time_series_id": np.random.choice(["A", "B", "C"], size=100),
"channel_id": np.random.choice(["X", "Y", "Z"], size=100),
"timestamp": pd.date_range("2023-01-01", periods=100, freq="H"),
"value": np.random.randn(100),

}
)
df["labels"] = df["time_series_id"].map(

{"A": 0, "B": 1, "C": 1}
) # let's say we have labels
df.head()

[29]: time_series_id channel_id timestamp value labels
0 B Y 2023-01-01 00:00:00 0.105162 1
1 B Z 2023-01-01 01:00:00 -0.573337 1
2 B X 2023-01-01 02:00:00 -1.973967 1
3 C Y 2023-01-01 03:00:00 0.656065 1
4 A Y 2023-01-01 04:00:00 -0.500246 0

[30]: # Let's save this dataframe to a CSV file
df.to_csv("your_original_dataset.csv", index=False)

[31]: # the csv file can be converted to our format using our interface

from pyrregular.io_utils import read_csv
from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

@staticmethod
def read_original_version(verbose=False):

return read_csv(
filenames="your_original_dataset.csv",
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",
dims={

"ts_id": [
"labels"

], # static variable that depends on the time series id
"signal_id": [],
"time_id": [],

},
time_index_as_datetime=False,
verbose=verbose,

)

[32]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, ?it/s]

Reading dataset: 0%| | 0/100 [00:00<?, ?it/s]

[32]: <xarray.DataArray (ts_id: 3, signal_id: 3, time_id: 100)> Size: 3kB
<COO: shape=(3, 3, 100), dtype=float64, nnz=100, fill_value=nan>
Coordinates:

* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
labels (ts_id) int64 24B 0 1 1

* ts_id (ts_id) <U1 12B 'A' 'B' 'C'
* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'

If you don’t know if a variable is static, or to which dimension it depends from, you can check it.

[33]: from pyrregular.data_utils import infer_static_columns

infer_static_columns(df, "time_series_id")

[33]: ['labels']

The dataset can be saved with our custom accessor

[34]: da.irr.to_hdf5("your_dataset.h5")

And then loaded directly with xarray

[35]: import xarray as xr

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

[36]: da2 = xr.load_dataset("your_dataset.h5", engine="pyrregular")
da2

[36]: <xarray.Dataset> Size: 11kB
Dimensions: (ts_id: 3, signal_id: 3, time_id: 100)
Coordinates:

labels (ts_id) int32 12B 0 1 1
* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'
* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
* ts_id (ts_id) <U1 12B 'A' 'B' 'C'

Data variables:
data (ts_id, signal_id, time_id) float64 3kB <COO: nnz=100,

fill_value=nan>

Case 2. Your dataset is not in the long format

Let’s say you have a 3d numpy array, containing the time series, and a numpy array containing only
the labels.

[37]: import numpy as np

shape = (10, 2, 100) # 10 time series, 2 channels, 100 timestamps
data = np.full(shape, np.nan)
mask = np.random.rand(*shape) < 0.35
data[mask] = np.random.randn(mask.sum())
labels = np.random.randint(0, 2, shape[0])

np.save("your_more_complex_dataset.npy", data)
np.save("your_more_complex_dataset_labels.npy", labels)

data.shape, labels.shape

[37]: ((10, 2, 100), (10,))

You need only a function that takes the data and the labels, and returns a dataframe in the long
format, yielding it row by row.

[38]: def read_your_dataset(filenames):
data = np.load(filenames["data"])
labels = np.load(filenames["labels"])
ts_ids, signal_ids, timestamps = np.indices(shape)
ts_ids, signal_ids, timestamps = ts_ids.ravel(), signal_ids.ravel(),␣

↪→timestamps.ravel()

for ts_id, signal_id, timestamp in zip(ts_ids, signal_ids, timestamps):
value = data[ts_id, signal_id, timestamp]
if np.isnan(value):

continue

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

label = labels[ts_id]
yield dict(

time_series_id=ts_id,
channel_id=signal_id,
timestamp=timestamp,
value=value,
labels=label,

)

[39]: from pyrregular.io_utils import read_csv
from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):
@staticmethod
def read_original_version(verbose=False):

return read_csv(
filenames={

"data": "your_more_complex_dataset.npy",
"labels": "your_more_complex_dataset_labels.npy",

},
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",
dims={

"ts_id": [
"labels"

], # static variable that depends on the time series id
"signal_id": [],
"time_id": [],

},
reader_fun=read_your_dataset,
time_index_as_datetime=False,
verbose=verbose,
attrs={

"authors": "Bond, James Bond", # you can add any attribute you␣
↪→want

}
)

[40]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, ?it/s]

Reading dataset: 0%| | 0/720 [00:00<?, ?it/s]

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

[40]: <xarray.DataArray (ts_id: 10, signal_id: 2, time_id: 100)> Size: 23kB
<COO: shape=(10, 2, 100), dtype=float64, nnz=720, fill_value=nan>
Coordinates:

* time_id (time_id) int64 800B 0 1 2 3 4 5 6 7 ... 92 93 94 95 96 97 98 99
labels (ts_id) int64 80B 0 0 0 1 1 1 0 1 1 0

* ts_id (ts_id) <U21 840B '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'
* signal_id (signal_id) <U21 168B '0' '1'

Attributes:
authors: Bond, James Bond

55

	Introduction
	Organizing Irregularity
	Related Work
	A Unified Framework for Irregular Time Series
	Classification Benchmarks
	Results and Discussion.

	Conclusion
	Summary of Notation
	Taxonomy of Time Series Irregularities
	Uneven Sampling
	Partial Observation
	Ragged Length
	Shift
	Ragged Sampling

	Experimental Details.
	Models
	Datasets

	Additional Results and Statistical Tests
	Complexity and Pipeline Costs
	Array Structures
	Extending PYRREGULAR to Other Tasks
	Quick Guide
	List datasets
	Load a dataset
	Classification

