Under review as a conference paper at ICLR 2026

PYRREGULAR: A UNIFIED FRAMEWORK
FOR IRREGULAR TIME SERIES,
WITH CLASSIFICATION BENCHMARKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Irregular temporal data, characterized by varying recording frequencies, differ-
ing observation durations, and missing values, presents significant challenges
across fields like mobility, healthcare, and environmental science. Existing re-
search communities often overlook or address these challenges in isolation, leading
to fragmented tools and methods. To bridge this gap, we introduce a unified
framework, and the first standardized dataset repository for irregular time series
classification, built on a common array format to enhance interoperability. This
repository comprises 34 datasets on which we benchmark 12 classifier models from
diverse domains and communities. This work aims to centralize research efforts
and enable a more robust evaluation of irregular temporal data analysis methods.

1 INTRODUCTION

High-dimensional temporal data is increasingly accessible to decision-makers, domain experts, and
researchers (Shumway et al., 2000). It is vital in fields like mobility, healthcare, and environmental
science to capture dynamic changes over time. Yet, variations in recording frequencies, durations
across sensors, and occasional failures lead to signals with unequal lengths, gaps, and missing
values (Harvey et al.l|1998). These traits make real-world temporal data irregular and hard to manage.

Several research communities address the challenge of irregular temporal data from different per-
spectives, as its analysis depends heavily on the task, application setting, and modeling approach.
As a result, the problem spans multiple fields, including mobility analytics (da Silva et al.| [2019),
irregular time series classification (Kidger et al., [2020), forecasting (Weerakody et al., 2021)), and
imputation (Luo et al.; 2018}; L1 & Marlin, [2020), to name a few. Due to this vast amount of tasks,
and despite some shared challenges, communities working on irregular temporal data tend to be
separated, each relying on its own set of techniques, such as traditional statistical or data mining
models (Hamilton, [2020), neural networks (Wang et al.;2024)), or differential equations (Rubanova
et al.,[2019), often resulting in domain-specific tools and libraries. This is not inherently a drawback,
but can lead to fragmented research efforts. The challenges of irregular temporal data are amplified
in supervised learning, where standardized benchmarks are notably lacking. While repositories exist
for regular time series classification (Dau et al., [2019), truly irregular datasets, capturing real-world
missingness and variability, remain scarce. Researchers often resort to artificially manipulated
datasets (Weerakody et al.,|2021)), introducing assumptions that overlook structural missingness tied
to data collection (Mitra et al.,[2023). As a result, and given that many studies rely on a narrow range
of datasets, the generalizability of their methods often remains untested.

We bridge this gap by proposing pyrregular, a unified framework for irregular time series. (1)
We introduce a taxonomy of irregularities and a dataset structure in a common array format that
improves interoperability across libraries while supporting the handling, visualization, and modeling
of irregular time series using existing analysis methods. (2) We introduce the first standardized dataset
repository for irregular time series classification, and (3) we leverage this repository to propose the
first generalized benchmark for state-of-the-art classifiers from different research domains, in an
effort to centralize research on this topic. Specifically, we curate 34 irregular time series datasets and
evaluate 12 time series classifiers. Our goal is to empower users to seamlessly explore and evaluate a
wide range of libraries to address the challenges of irregular temporal data.

Under review as a conference paper at ICLR 2026

. UNEVENLY ~ PARTIALLY RAGGED

3 O’%{M% SAMPLED OBSERVED

i O0—000| (00 - 0| (0000 o000 o—0—0
O0—0-00) (O 000, (00000 o000 (000

Xo O\O/W LENGTH SHIFT SAMPLING

Figure 2: Different kinds of irregularity shown
on a multivariate time series with 2 signals and
containing up to 5 timestamps. Missing values
Figure 1: An example of an irregular time series, are depicted as faded red if they were expected
X, comprising two signals x1, x> with indices (o be recorded, while they are omitted if they are
t1, to, and the combined shared index t. caused by raggedness.

2 ORGANIZING IRREGULARITY

As our first contribution, we propose a systematic taxonomy that clearly distinguishes among different
forms of irregularity. We begin by defining a time series signal.

Definition 2.1 (Time Series Signal). A signal (or channel) is a sequence of 7 observations, each
associated to a timestamp, i.e., x = [(x1,t1),..., (Tr,t7)] = [y, ..., 2] ER.

A single signal can be irregular for two reasons: uneven sampling, when at least one interval £ — 1,
differs from a constant At, and partially observed, when expected values are missing and marked as
NaN. The set of real numbers extended with the NaN symbol is here represented as R. We denote
with t = [t1,...,t,;] € R7, the sorted collection of all timestamps where an observation of signal x
was, or should have been recorded, and with 7 = |t| the number of observations.

Definition 2.2 (Time Series). A time series is a collection of d signals, X = {x1,...,xq} € RIxT,

Time series timestamps are the sorted union of all signal timestamps, i.e., t= U;.i: 1 t ; € RT, with

T = |t|, as shown in Figure |1} In addition to these intrinsic irregularities, tensor representations
introduce a third, structural type: raggedness, that is the necessity of padding due to length, sampling,
or alignment mismatches between signals. Hence, there are three independent irregularity causes:
uneven sampling, partial observation, and raggedness, as depicted in Figure[2] While these categories
have appeared informally in prior literature, here we show that they are independent: none implies
the others. Unevenly sampled time series do not necessarily imply the presence of partially observed
data, as seen in Figure [2] (left). This commonly happens in trajectory data, where the timestamps are
usually highly uneven, but shared across the latitude and longitude signals. Vice versa, the presence
of unobserved data does not imply uneven timestamps, as an observation may be accidentally missing
from an overall constant sampling. Finally, neither unevenly sampled nor partially observed data
imply raggedness. In particular, the two leftmost time series shown in Figure 2] could be stored in
2 x 4 and 2 x 5 matrices, respectively, without requiring any padding.

Raggedness arises because of different issues created when storing a multivariate time series in
an array-like structure. As so, a single, univariate signal cannot be ragged by itself. In general,
raggedness arises when at least two signals, a and b, do not share the same timestamps, i.e., t, # tp.
We identify three independent fundamental reasons for why this can happen. The first is ragged
length, when a and b have a different number of observations: 7, # 7;,. The second is shift, where
at least one signal starts and ends before another: (t,1 < tp.1) A (ta,r, < tp,7,). The third is
ragged sampling, when at least one element of the sampling intervals differs between two signals,
ie., Aty # Aty for some k, where Aty = tqp+1 — tar and Aty = tp p+1 — to.x. Again,
none of these, by itself, implies the other, as shown in Figure Q], and, in more detail, in Appendix
Combinations of these issues yield highly irregular data, where NaN can indicate either a missing
value in a partially observed time series or padding due to raggedness. Moreover, raggedness can
exist also in a time series dataset, i.e., a collection of n time series, X = {X1,..., X, } € R”XdXT,

as all instances share the same sorted timestamps, t = [J;__; t; € RT, with T = |t|. The timestamp
index for the whole dataset is denoted as k = [1,...,T].

Associated with time series datasets are often static attributes, which refer to information linked to
individual instances that remain independent of the time dimension. These attributes can also serve
as targets in supervised tasks. Specifically, we focus on classification, i.e., targets are categorical.

Under review as a conference paper at ICLR 2026

3 RELATED WORK

Datasets and Benchmarks. There is a significant divide in the literature in the availability of datasets
and benchmarking efforts, between regular and irregular time series data. Supervised learning for
regular time series data is extensively addressed in the literature, with numerous “bake-offs” (Bagnall
et al.,[2017; Ruiz et al, 2021; Middlehurst et al.} 2024b)) benchmarking state-of-the-art classifiers on
hundreds of standard datasets from the UEA and UCR repositories (Dau et al., 2019; Bagnall et al.,
2018)). On the contrary, the benchmarking literature on irregular time series remains limited. While
secondary sources, such as (Weerakody et al.|[2021;|Wang et al.,[2024), offer surveys on specific tasks
like ITS imputation, comprehensive benchmarks for downstream tasks like classification are largely
confined to primary studies (Kidger et al.,[2020; Shukla & Marlin, |2021}; Du et al., 2023). Even within
these studies, evaluations are often performed on a small number of datasets. Moreover, benchmark
datasets are not always inherently irregular; instead, they are commonly derived from regular datasets
through simulation, i.e., dropping valid observations (Weerakody et al.l 2021). Although this strategy
can create ITS, introducing missingness is a non-trivial process requiring careful decisions about the
type of missingness to simulate (Rubin, |1976). Adding to these challenges, a recent study (Mitra
et al.| [2023) highlighted that most research neglects structural missingness, referring to non-random,
multivariate patterns of missingness within datasets. Such patterns can be faithfully preserved only by
maintaining the original data with minimal modifications, which is the central focus of this proposal.

Libraries. Regarding regular time series data, Python libraries such as sktime (Loning et al., 2019),
aeon (Middlehurst et al.l 2024a)), and tslearn (Tavenard et al., [2020) provide a wide range of
classifier implementations, along with access to the UEA and UCR repositories, enabling systematic
and reproducible evaluations. Although some of these datasets contain irregularities, the typical
approach involves imputing missing values and discarding timestamps during downstream tasks. The
most prominent Python library for irregular time series analysis is pypots (Dul [2023)). pypots
offers several classifiers, a few partially observed time series datasets, and provides an interface for
adding missingness in regular datasets. A limitation of pypots is that it overlooks irregularity from
uneven sampling, ignoring timestamps. It also operates within its own ecosystem, lacking interfaces
for cross-library comparisons. This makes using I7'S with libraries like aecon and sktime difficult,
due to incompatible data formats and requirements, hindering standardization efforts. The primary
reason for these challenges is the difficulty in managing I7'S due to high dimensionality, missing
values, and timestamps. Most libraries for time series prediction require dense 3D tensors to represent
time series, signals, and identifiers (IDs), often demanding extensive padding and increased memory
usage. To mitigate this, special arrays to represent missing values or variable-length instances are
often used. For example, numpy masked arrays (Harris et al.,|2020) indicate valid entries with masks
but are memory-inefficient since they store both data and masks. Alternatives include awkward
arrays (Pivarski et al., [2020), jagged pytorch arrays (Paszke et all 2017), ragged tensorflow
arrays (Abadi et al.| 2015), zarr, pyarrow, or sparse arrays (Abbasi, 2018). Although efficient
in managing varied-sized data, these structures cannot inherently handle timestamps. Forecasting
libraries like nixtla or gluonTS (Alexandrov et al.,2020) typically use a long format, representing
data as tuples (i, j,t,x) with instance and signal IDs, timestamps, and observed values. While
efficient for forecasting, this format requires pivoting for classification tasks, and static variables are
either duplicated or stored separately, causing inefficiencies. Lastly, xarray (Hoyer & Hamman|
2017) supports timestamped multi-dimensional arrays but lacks native support for sparse I7S.

In summary, to the best of our knowledge, no existing array format is capable of representing /7S data
in all their nuances. To address this limitation, we propose a framework that serves as a compatibility
layer based on a unified array format, facilitating comprehensive benchmarking across a wide range
of datasets and methods from diverse time series communities.

4 A UNIFIED FRAMEWORK FOR IRREGULAR TIME SERIES

This work addresses the gap in the literature on irregular time series by introducing an efficient
container specifically designed for such data. This facilitates the integration of methods and datasets
from various research communities into a unified framework. We outline key aspects of this solution.
(i) Ease of Use: the framework supports several stages of the data science workflow, including visual-
ization, preprocessing with classical and temporal slicing, and seamless conversion to dense arrays
used in leading machine learning libraries. (ii) Robustness: the implementation leverages established

Under review as a conference paper at ICLR 2026

PREPROCESSING HANDLING CONVERTING

yml SR
OV npy s sparse % ﬁ Nz numpy

.pkl x O torch
D 4 xarray orc
[S— .h5 -
- &
) npz
.db | e custom accessor & backend time series libraries
.sq
Axt " .
Jarr matplotlib) pooch 155 sktime pypots aeon
tar
& seaborn HF hdf5 diffrax tslearn
PLOT ARCHIVE MODEL

Figure 3: A simplified schema of our framework. (left) Data from different sources is preprocessed
and represented in our proposed array container (center), which combines xarray with an underlying
sparse tensor via a custom accessor and backend. This container can be easily manipulated, plotted,
and stored. (right) Finally, it can also be converted into a more common dense representation, which
can be used for downstream tasks with any standard time series library.

and well-maintained libraries, as there is no point in reinventing the wheel. (iii) Flexibility: the
container supports several types of time series irregularities. (iv) Replicability: to ensure comparable
results, preprocessing is standardized, addressing the variability in ITS. A depiction of the three
steps of pyrregular is shown in Figure[3} preprocessing, where the original ITS is transformed
into our proposed container; handling, where the data can be explored, manipulated, and stored; and
converting, where the data is prepared for downstream tasks. [1_-]

Preprocessing. The first step in our framework involves transforming /7S datasets into the proposed
representation. /7S can be found in a wide variety of sources and formats (Figure 3] left), presenting
unique challenges in terms of preprocessing. Regardless of the original data structure, our framework
requires only a function capable of yielding the data in the standardized long format. In this
representation, each row captures the time series ID, signal ID, timestamp, and observed value:
(4, J,t,). The core intuition behind our approach is that the long format closely resembles the sparse
coordinate (COO) representation (Duff et al.,[2017).

The coo format, as implemented by sparse (Abbasi,|2018)), can efficiently encode sparse 3D tensors,
by using indices for the time series, signal, and timestamp, accompanied by an observed value entry,
formally (4, j, k, z). The key distinction between the long format and the COO representation lies in
the handling of the timestamps: while the COO format requires discrete timestamp indices, k, the
long format uses real-valued timestamps, ¢. An example is reported in Figure [(left). This difference,
however, can be easily bridged by mapping the timestamps, t, to discrete positions within the COO
array, k. Formally, given the timestamps vector t = [t1, ..., 7], each timestamp can be mapped to its
corresponding position (index), in the COO format as k = [1, ..., 7] (and vice-versa), as depicted in
Figure [] (center). With this mapping, converting between the long format and the COO representation
can be easily accomplished, as the time series dataset is read once to construct the mapping and a
second time to incrementally build the COO matrix by yielding each row as it is generated (Figure 4]
right). Practitioners need only to define a custom function that, given their own data, incrementally
produces rows in the long format. Even when the initial dataset is not organized in this manner,
the conversion to the long format is typically straightforward. This process ensures uniformity
across input formats and transparency, as the preprocessing steps are explicitly documented in this
function, and can be reproduced at any time. Though it may be runtime-intensive, this step needs
to be performed only once, after which the library streamlines all subsequent transformations and
processing. The output after preprocessing is a sparse tensor, denoted as X € R7>dxT,

Handling. The COO representation offers advantages over the classical long format. First, it supports
array-like operations with reasonable performance, including reshaping and slicing. Moreover, it
allows for rapid conversion to task-specific array structures, such as other sparse formats like GCXS

'The code is provided in the Supplementary Materials. Examples are available in Appendix

Under review as a conference paper at ICLR 2026

(Shaikh & Hasan, |2015)). Compared to classical dense arrays, its primary advantage lies in memory
efficiency, as only the recorded observations are stored. All padding is represented by a fill value
and remains implicit, meaning it is not directly stored but is generated only when the sparse array is
transformed into a dense form. We propose setting such value to NaN to capture raggedness. Further,
the COO format naturally accommodates partially observed data by explicitly storing a fill value. This
allows for distinguishing between the two types of missing data previously discussed. Specifically,
an explicitly stored fill value, i.e., a row (4, j, k, NaN), can indicate a missing entry that should be
present, while implicit NaN's reflect missingness due to data raggedness. In this sense, the COO tensor
by itself is enough to represent both ragged and partially observed time series.

However, to capture an unevenly sampled
time series, it is also essential to store the
timestamps. To achieve this, we leverage
the timestamp to COO (t to k) mapping
using xarray (Figure |3 center). In par- t
ticular, we use xarray (Hoyer & Ham+{ 1
man, 2017) to store the timestamps and 2

extend it to utilize an underlying sparse A
CoO tensor. These functionalities are pos-

sible through our custom backend and ac- Figure 4: Long format to COO tensor conversion process.
cessor, which extend the xarray library, to Each row of the long format is processed to retrieve the
support sparse arrays. Further, xarray apsolute position of a given timestamp ¢. The triplet,
naturally facilitates the storage of static at- jpstance 1D (i = 1), signal ID (j = 2), and timestamp

tributes linked to any dataset dimension, index (k = 7), is used to populate the sparse COO tensor.
such as class labels in classification tasks.

Overall, this approach offers significant

storage efficiency, particularly given the typically high data sparsity (see Appendix [E), and en-
sures ease of use by supporting all existing xarray functions like timestamp range queries. Further,
our accessor enables plotting, while our backend allows direct saving and loading to a hierarchical
data format, locally or online, eliminating the need to perform the preprocessing step again.

Long Format Mapping COO Tensor

i t t k
|

13/01/2025% 03/01/2025 | 6
05/01/2025 05/01/2025]
12/01/2025 06/01/2025 | 8
31/12/2024 07/01/2025 | 9

instances (i)
o N~

=

2
2
1

-
~

Converting. Despite its advantages, xarray is not directly supported by most libraries for supervised
learning tasks. Therefore, it is crucial to demonstrate how this array structure can be efficiently
prepared for such applications. Specifically, for classification tasks, X € R™*4XT should be
transformed into a dense tensor that minimizes raggedness while preserving the inherent missingness
from partially observed time series and maintaining the order of observations within the same time
series. This conversion is important because, in classification tasks, raggedness is typically irrelevant
to the target and would otherwise result in vast dense arrays filled predominantly with NaNs. For
instance, the specific starting dates of time series, such as a beginning on January 23rd and b on
January 30th, are typically uninformative with respect to the output class, so we generally want to
avoid introducing 7 leading NaNs in time series b to account for the shift. For a COO array, this
transformation corresponds to a dense ranking operation on the timestamp index, k, performed time
series-wise. Formally, for each COO entry (3, j, k, «), we produce (4, j, rank;(k), z), where:

rank;(k) =1+ |{k' € 1, T;] : k' < k}|.

This process shifts the timestamp indices within each time series, X;, into a consecutive sequence
ranging from 1 to its length, 7;. As a result, the tensor X € R™*9*7 can be densified into a
more compact, X' € R™*4xT where T = max}(T;). This ensures minimal raggedness, with the
timestamp dimension set to the maximum number of timestamps in any time series. X’ can be used
by downstream libraries such as sktime (Loning et al., [2019), aeon (Middlehurst et al.| [20244),
tslearn (Tavenard et al., 2020), pypots (Du,[2023)) and diffrax (Kidger, 2021).

5 CLASSIFICATION BENCHMARKS

We present a comprehensive benchmark enabled by pyrregular, in which we evaluate 12 classifiers
from a variety of time series libraries on a curated collection of 34 ITS datasets. We assess model per-
formance from multiple perspectives, including dataset characteristics, robustness across irregularity
types, and the potential for performance improvement through fine-tuning.

Under review as a conference paper at ICLR 2026

Table 1: Datasets used for our benchmarks, divided by irregularity type: unevenly sampled (US),
partially observed (PO), unequal length (UL), shift (SH), ragged sampling (RS).

health human activity recognition mobility sensor other synth
[\2 1o\)] N M- AN < =5 N N OB O m a [y
HdBH==ssAAN>NACSOSDUOU=0AMcNALHdSEdAAU=E=>0d<s M
SAAfp DTSV A NaES<<<UOD=nNEHEAANAAHDAAN <
USVVVXXXXXXXXXSVXXVXXXS XSS XXXXXL XX/
POV XXXXXXXXXXVXXXXXXXXXXXV VT XXXXX X
ULvV/ /V/ VYA I I XXX X
SHVY V VXX XXXXXXXVVVXXXXXXS XSV XXXXXXL XX X
RSV VVXXXXXXXXXS VXXV XXSIVV XSV XX XXX XX X
Table 2: Summary of evaluated classifiers.
Library Model Type Domain
acon (Spinnato et al., 2024) BORF dictionary-based transform + LGBM classifier regular, ragged
RIFC interval-based transform + LGBM classifier partially observed
diffrax (Kidger et al.l 2020) NCDE neural controlled differential equations unevenly sampled
Cao et al. BRITS bidirectional recurrent imputation network partially observed
Che et al. GRU-D gated recurrent unit with decay partially observed
pypots RAINDROP graph neural network partially observed
SAITS self-attention-based imputation transformer partially observed
TIMESNET temporal 2d-variation transformer. partially observed
LGBM gradient boosted tree tabular
sktime ROCKET kernel-based transform + LGBM classifier regular
SVM support vector machine with distance kernel regular, ragged
tslearn Sakoe & Chib;l 1978) KNN distance-based with dynamic time warping regular, ragged

Datasets. Following established repositories such as UEA and UCR, we compile a diverse collection
of datasets that vary in size (small to large), length (short to long), and dimensionality (univariate
to multivariate), ensuring broad representativeness. We solely focus on naturally irregular datasets,
without artificially inducing irregularity (Tables[T|and[5). First, our collection contains widely used ITS
classification datasets: PhysioNet 2012 (P12) (Silva et al.} 2012), PhysioNet 2019 (P19)
[2020), and the MIMIC-1II (MI3) clinical database (Johnson et all [2016) from the medical domain,
as well as Pamap2 (PAM) (Reiss & Stricker, [2012) for physical activity monitoring. Additionally,
we include the 11 variable-length univariate time series classification problems (Guna et al., 2014
[Caputo et al., 2018}, [Mezari & Maglogiannis), 2018}, |Gao et al.} [2014) from (Bagnall et al., [2020), the
4 partially observed datasets (Ihler et al., 2006} [City of Melbourne), 2020) from (Middlehurst et al]
2024b), and the 7 variable-length multivariate time series classification problems (de Souzal, 2018}
[Williams et al. 2006} [Chen et al., 2014} [Kudo et al.,[1999; [Hammami & Bedda, [2010) from (Ruiz
et a!.|, @[) We also provide datasets that, to the best of our knowledge, were never used in these
kinds of benchmarks. These include data for trajectory classification of entities such as mammals
(AN)(Ferrero et al. [2018)), birds (SE) (Browning et al}, [2018), and vehicles like buses and trucks
(VE), taxis (Moreira-Matias et al.| 2013) (TA) and combinations of the previous (Zheng et al.,[2010)
(GS). Further, we include a small dataset about the productivity prediction for garment employees
(Tmran et al.| [2021)) (PGE), and a human activity recognition dataset (Vidulin et al.| [2010) (LPA).
Finally, inspired by the classical Cylinder-Bell-Funnel benchmark 1994) for regular time
series classification, we introduce an irregular version called Alembics-Bowls-Flasks (ABF), in which
the class depends on the skewness of the time sampling. Where available, we use the default train/test
split for training and inference, else we set them based on each dataset description and original paper.

Models. The objective of these experiments is to benchmark methods capable of naturally handling
ITS without introducing bias through imputation. For this reason, and to keep the benchmarks to a
reasonable amount, we limit our evaluation to classifiers that inherently support irregular inputs and
are available in the aforementioned libraries (Table[2]and Appendix [C)). As classical baselines, we
use K-Nearest Neighbors (KNN) with Dynamic Time Warping (Sakoe & Chiba) [1978), a time series
Support Vector Machine (SVM) with a Longest Common Subsequence (LCSS) kernel

Under review as a conference paper at ICLR 2026

121110 9 8 7 6 5 4 3 2 1 9 NCDE NCDE
| I P I 'l T |
[l 8- GRU-D GRU-D
mm ¥5] SAITS _ oits | sAITs L/BR'TS
g RAINDROP e KNN
—
Te 1 > RAINDROP
RIFC =~
SVM 10:4412| L 34706 ROCKET 5 LGBM pope TIMESNET| [TMESNET gay & -
NCDE 8.5588 4.8676 BORF E5— 1
GRU-D 7.7059 5.0735 LGBM o] 1
SAITS 6.7206 5.5294 R”:C ROCKET ROCKET
6.7059 6.0588
3 T T T T T T T
Binﬁ 6.4559 6.4118 E%IEBRE’L 102 10° 10 105 10° 100 102 10° 10* 10°
mean trainina runtime (s) mean inference runtime (s)

Figure 5: CD plot for the benchmarked models in Figure 6: Mean F1 rank against training and in-
terms of F1. Best models to the right. Connected ference runtimes for the top 11 models across all
models are statistically tied. datasets. The best models are on the bottom left.

2016), and a LightGBM classifier (LGBM) trained directly on raw ITS, ignoring temporal dependencies.
For regular time series models, we include the Bag-Of-Receptive-Fields (BORF) (Spinnato et al.|
2024) from aeon, ROCKET (Dempster et al., [2020;2021) via its MINIROCKET version in sktime,
and a Random Interval Feature Classifier (RIFC). These models transform the data and rely on
downstream classifiers; we use LGBM to handle possible NaNs. For partially observed data, we
benchmark GRU-D (Che et al.| 2018), BRITS (Cao et al.| 2018), RAINDROP (Zhang et al.|[2022), two
transformer models, SAITS (Du et al.,[2023) and TIMESNET (Wu et al.| 2023)), from pypots, and a
Neural Controlled Differential Equation model (NCDE) (Kidger et al., [2020) from diffrax.

Experimental Setup. Following standard practice in similar benchmarking studies (Bagnall et al.,
2017; IMiddlehurst et al., [2024b), all models are trained using the default hyperparameters provided
by their respective libraries or those recommended in the original papers. The goal of this benchmark,
consistent with prior bake-offs, is to identify the model that best generalizes with a single, reasonable
parameter configuration rather than fine-tuning each model for individual datasets. For this reason,
the results of these benchmarks do not necessarily highlight the best possible model for a given task,
but the model that generalizes best in many. Each model is allocated two weeks (= 20000 minutes)
for training and inference on each dataset, with access to 32 cores and 512 GB of memory, and to a
GPU when the model can use iﬂ Experiments are repeated three times for highly stochastic models,
and the average performance is maintained. We use the F1 score with macro averaging as the primary
performance metric, as it is robust in the presence of unbalanced data (Japkowicz, |2013)), which
occurs in some of our datasets. Accuracy results, along with additional metrics and statistical tests,
are reported in Appendix [D|and are consistent with the following findings.

5.1 RESULTS AND DISCUSSION.

We present a comparative analysis of the aggregate results of the benchmark outcomes. We report a
critical difference (CD) plot in Figure[5] which ranks models in terms of F1. Models are arranged from
right to left, with lower ranks indicating better performance. Models connected by a horizontal bar
are statistically tied under a one-sided Holm-corrected Wilcoxon signed-rank test with a significance
threshold of 0.05. ROCKET emerged as the clear top-performing model, demonstrating consistent
superiority across the datasets. Even if this result aligns with its established reputation as one of
the best models for regular time series classification (Middlehurst et al., [2024b), its efficacy on
irregular data is somewhat surprising, as ROCKET does not exploit any information about said
irregularity. Following ROCKET, a cluster of methods, including BORF, LGBM, RIFC, TIMESNET,
exhibits statistically tied performance. Lower ranks are occupied by RAINDROP, KNN, BRITS,
followed by GRU-D and NCDE, with SVM distinctly identified as the worst-performing model.

Performance vs. Time. Besides predictive performance, runtime is also a significant factor. In
Figure[6l we compare the average F1 rank against training and inference runtimes, discarding SVM
for better readability. The better-performing, faster models appear in the bottom-left region of
the plot. In terms of training, LGBM is the fastest, followed by RIFC and ROCKET, with ROCKET
also being also very fast during inference. For this reason, ROCKET emerges as the best tradeoff
between F1 and runtime. Interestingly, despite being designed for tabular data, LGBM performs

2System: IBM SYSTEM POWER AC922 Compute Nodes with 2 x 16-core 2.7GHz POWER9 CPUs,
512GB of RAM. NVIDIA Tesla V100 32GB GPU

Under review as a conference paper at ICLR 2026

] 5.9 5.6 FX 4.9 3.6 1o.o 10
, o

4.6 mm 4.7 5.4 m
5.1 6.2 mm a.8 m

big small
Lo Y
©o ©

Size

Length Signals
long short multi uni

»

©

[}

N

]

o

of
(=)
3
)
=
&
3

%,

04,%

K2
1,
8,
(9

Figure 7: Mean F1 rank (lower is better) against Figure 8: Mean F1 (higher is better) of the 5 best-
dataset size in terms of instances (top), number of performing models for each type of irregularity.
signals (center), and time series length (bottom).

well. This finding aligns with observations in 2020), where gradient-boosting trees
showed strong performance in regular time series regression. LGBM is a compelling choice due to its
decent performance and exceptionally fast training time, making it attractive for practitioners needing
solid baselines. Neural network-based methods, though designed for /7S, underperform in these
bake-off-style benchmarks, except for their competitive inference runtime. Similar patterns appear in
regular time series classification (Middlehurst et all,[2024b). We hypothesize that simpler, generalist,
models, like ROCKET, excel in bake-off settings due to their low-variance, high-bias inductive bias,
making them robust across a wide range of tasks, contrary to specialized models, which exhibit strong
performance on specific types of irregularity or dataset characteristics, especially after fine-tuning.

Performance vs. Dimension. Figure[7] (top) shows the mean F1 ranks of all benchmarked models
(lower is better), stratified by dataset size: small (at most 500 instances) and large (more than 500
instances). KNN and RIFC exhibit a noticeable worsening in rank on larger datasets, indicating limited
scalability or reduced robustness as the number of training examples increases. In contrast, LGBM,
and especially TIMESNET, improve significantly in rank, suggesting that more complex models,
particularly transformer-based ones, benefit from greater data availability to better exploit their
capacity. Figure [7] (center) shows the mean F1 ranks for univariate and multivariate time series.
While the best-ranked model is again ROCKET, all neural network-based approaches benefit from
increased dimensionality, making them particularly suitable for multivariate time series. Figure[7]
(bottom) reports the mean F1 ranks stratified by time series length: short (at most 360 observations)
and long (more than 360 observations). Here, recurrent models such as GRU-D and BRITS, along with
several other neural architectures, tend to struggle on longer sequences. RAINDROP stands out as
an exception, likely owing to its graph-based design. Meanwhile, models that rely on localized or
interval-based features, such as ROCKET, RIFC, and especially BORF, show improved performance on
longer time series, indicating that in this case, simpler is better (more details available in Appendix [C).

Performance vs. Irregularity. In Figure[§] we report the average F1 score of the top-5 performing
models within each irregularity group (higher is better). ROCKET, BORF, and LGBM consistently rank
among the top three across unevenly sampled, unequal length, shifted, and ragged sampling time
series. GRU-D, while generally ranking lower overall, appears among the top five models in three
out of the five groups, showing solid average performance. Partially observed time series exhibit
markedly different behavior: here, models designed to handle missing data, such as SAITS and BRITS,
outperform ROCKET, BORF, and LGBM. This suggests that explicitly modeling missingness can be
highly beneficial, particularly for datasets with structured patterns of missing values.

Performance after Fine-tuning. In Table[3] we present the average performance of the top three
generalist models, ROCKET, BORF, and LGBM, evaluated in terms of area under the Receiver
Operating Characteristic curve (auc) and area under the Precision-Recall curve (aupr) following
hyperparameter tuning. These evaluations follow the same 5-fold cross-validation setup and are
compared against reference results from (Li et al.| [2023} [Liu et al.| 2024} [Zheng et al., 2024) on
the two most commonly used irregular medical datasets: P12 (Silva et al.l[2012)) and P19
2020). This benchmark aims to assess whether generalist classifiers can also be effectively
fine-tuned for specific tasks, and to compare them with state-of-the-art specialist deep learning
models such as CONTIFORMER (Chen et al.,[2024), GRU-D (Che et al.l 2018), MTSFORMER
2024), MUSICNET (Liu et al.| 2024), and RAINDROP (Zhang et al., 2022). Results indicate that,
when optimally fine-tuned, deep learning-based algorithms outperform simpler regular time series

Under review as a conference paper at ICLR 2026

Table 3: Comparison of best-performing models from the bake-off, against baseline reference results
(higher is better). Best values in bold, second best underlined.

CONTI MTS MUSIC RAIN
BORF FORMER GRU-D LGBM FORMER NET DROP ROCKET
N auc 749400 812+08 819421 784400 84.9+14 86.1+04 82.8+17 534400
B aupr 334400 43.9+30 46.144.7 381400 511437 541422 440430 158400
o auc 80.140.0 792+23 839417 852400 888+15 86.8+14 87.0+23 773400
B aupr 381400 35.8+23 469421 44.140.0 57.7+44 454427 51.8+55 352400

classifiers. However, except for ROCKET, which underperforms in this test, this advantage is not
always substantial; for instance, LGBM achieves the fourth-best score on P19, outperforming models
like CONTIFORMER and GRU-D. Another advantage of models such as ROCKET, BORF, and LGBM is
that the performance is very stable, with near-zero standard deviation to a single decimal place. This
underscores the value of being able to readily apply standard approaches, as they can offer fast, stable,
and non-trivial baselines. However, deep learning offers more flexibility for optimizing on specific
tasks, with reasonable inference times when aiming for raw performance for deployment purposes.

Performance vs. Trustworthiness. Though not the main focus of this work, we briefly address
model trustworthiness, crucial in high-stakes fields like healthcare, where ITS are common. The most
interpretable models in our benchmark are BORF, which relies on subsequence presence/absence,
and RIFC, which uses simple interval-based features, both followed by a tree-based model. Neural
models can be interpreted with gradient-based methods, though the reliability of their explanations
on ITS is unexplored. The top-performing model, ROCKET, offers little interpretability and depends
on expensive model-agnostic techniques (Theissler et al.| [2022). Robustness to random initialization
also matters: models with high variance across seeds hinder reproducibility. Stable methods like
LGBM, BORF, and KNN may be preferable in sensitive settings, even at some cost in performance.

6 CONCLUSION

In this work, we presented pyrregular, a unified framework for addressing the challenges of ITS.
By introducing a standardized repository for ITS classification and structuring the datasets in a
common array format, we provided a cohesive way to work with varying forms of irregularity. Our
extensive empirical evaluation of 12 state-of-the-art classifiers and baseline methods on 34 datasets
emphasizes both the complexity of this domain and the benefits of a shared benchmarking resource.
Results indicate that, with appropriate configuration and tuning, specialist models such as neural
networks still attain state-of-the-art performance. However, extending their applicability across
diverse tasks remains a significant challenge. Interestingly, simple generalist classifiers originally
designed for regular time series data, such as ROCKET, perform remarkably well on irregular time
series in bake-off-style benchmarks, even without leveraging the irregularity itself. This observation
reveals a crucial research gap: the need to develop generalist methods capable of explicitly exploiting
irregularities, such as missingness and timestamp information.

The construction of this extensive set of benchmarks was greatly facilitated by pyrregular, which
abstracts the complexities of I7S across diverse libraries. While we aimed to provide a diverse and
representative selection of baseline models, our choices were also guided by practical considerations
such as library availability and interface compatibility, rather than exhaustive coverage. We acknowl-
edge that several other relevant baselines could further enrich the comparison. Our goal was not to be
fully comprehensive, but to establish a robust and extensible starting point for benchmarking within a
unified framework. Further, we deliberately limited the scope of the benchmarks to classification, as
achieving the same level of detail for other tasks, such as forecasting, anomaly detection, or imputa-
tion, would require an effort comparable in scale to what we present here, and is therefore left for
future work. Nevertheless, because the proposed array format is task-independent and some curated
datasets already include additional target variables, our framework naturally enables exploration
of these tasks (see Appendix [G] for details). Going forward, pyrregular will be extended to such
additional tasks, integrated with more datasets, and enriched with methods from a broader selection
of time series libraries, increasing its relevance across diverse research domains.

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.

Hameer Abbasi. Sparse: A more modern sparse array library. In SciPy, pp. 65-68, 2018.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Tiirkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural
Time Series Modeling in Python. Journal of Machine Learning Research, 21(116):1-6, 2020. URL
http://jmlr.org/papers/v21/19-820.html.

Mohammad Ali Bagheri, Qigang Gao, and Sergio Escalera. Support vector machines with time series
distance kernels for action classification. In 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1-7. IEEE, 2016.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time
series classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data mining and knowledge discovery, 31:606-660, 2017.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Anthony Bagnall, Michael Flynn, James Large, Jason Lines, and Matthew Middlehurst. On the usage
and performance of the hierarchical vote collective of transformation-based ensembles version
1.0 (hive-cote v1. 0). In Advanced Analytics and Learning on Temporal Data: 5th ECML PKDD
Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020, Revised Selected Papers 6, pp.
3-18. Springer, 2020.

Ella Browning, Mark Bolton, Ellie Owen, Akiko Shoji, Tim Guilford, and Robin Freeman. Predicting
animal behaviour using deep learning: Gps data alone accurately predict diving in seabirds.
Methods in Ecology and Evolution, 9(3):681-692, 2018.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

Fabio Marco Caputo, Pietro Prebianca, Alessandro Carcangiu, Lucio Davide Spano, and Andrea
Giachetti. Comparing 3d trajectories for simple mid-air gesture recognition. Comput. Graph., 73:
17-25, 2018.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

Yanping Chen, Adena Why, Gustavo Batista, Agenor Mafra-Neto, and Eamonn Keogh. Flying insect
classification with inexpensive sensors. Journal of insect behavior, 27:657-677, 2014.

Yugqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. Advances in Neural Information
Processing Systems, 36, 2024.

ChoroChronos Archive. Trucks dataset - dataset and algorithms | chorochronos.org. http://www,
chorochronos.org/. Accessed: 2025-01-23.

Martina Cinquini, Fosca Giannotti, Riccardo Guidotti, and Andrea Mattei. Handling missing values
in local post-hoc explainability. In World Conference on Explainable Artificial Intelligence, pp.
256-278. Springer, 2023.

10

http://jmlr.org/papers/v21/19-820.html
http://www.chorochronos.org/
http://www.chorochronos.org/

Under review as a conference paper at ICLR 2026

City of Melbourne. Pedestrian counting system. http://www.pedestrian.melbourne,
vic.gov.au, 2020. Accessed: 2025-01-23.

Camila Leite da Silva, Lucas May Petry, and Vania Bogorny. A survey and comparison of trajectory
classification methods. In 2019 8th Brazilian conference on intelligent systems (BRACIS), pp.
788-793. IEEE, 2019.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293-1305, 2019.

Vinicius M. A. de Souza. Asphalt pavement classification using smartphone accelerometer and
complexity invariant distance. Eng. Appl. Artif. Intell., 74:198-211, 2018.

Angus Dempster, Francgois Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454—-1495, 2020.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. Minirocket: A very fast (almost)
deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, pp. 248-257, 2021.

Wenjie Du. Pypots: A python toolbox for data mining on partially-observed time series. arXiv
preprint arXiv:2305.18811, 2023.

Wenjie Du, David Co6té, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert
Systems with Applications, 219:119619, 2023.

Iain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods for sparse matrices. Oxford
University Press, 2017.

Carlos Andres Ferrero, Luis Otavio Alvares, Willian Zalewski, and Vania Bogorny. Movelets:
Exploring relevant subtrajectories for robust trajectory classification. In Proceedings of the 33rd
Annual ACM symposium on applied computing, pp. 849-856, 2018.

Jingkun Gao, Suman Giri, Emre Can Kara, and Mario Berges. PLAID: a public dataset of high-
resoultion electrical appliance measurements for load identification research: demo abstract. In
BuildSys, pp. 198-199. ACM, 2014.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215-e220, 2000.

Alessio Gravina, Daniele Zambon, Davide Bacciu, and Cesare Alippi. Temporal graph odes for
irregularly-sampled time series. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, pp. 4025-4034, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=uYLFozlv1AC.

Joze Guna, Grega Jakus, Matevz Pogacnik, Saso Tomazic, and Jaka Sodnik. An analysis of the
precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.
Sensors, 14(2):3702-3720, 2014.

James D Hamilton. Time series analysis. Princeton university press, 2020.

Nacereddine Hammami and Mouldi Bedda. Improved tree model for arabic speech recognition. In
2010 3rd international conference on computer science and information technology, volume 5, pp.
521-526. IEEE, 2010.

11

http://www.pedestrian.melbourne.vic.gov.au
http://www.pedestrian.melbourne.vic.gov.au
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

Under review as a conference paper at ICLR 2026

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez
del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357-362, September 2020. doi: 10.1038/s41586-020-2649-2.
URLhttps://doi.org/10.1038/s41586-020-2649-2.

Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Mul-
titask learning and benchmarking with clinical time series data. Scientific Data, 6(1):96, 2019.
ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9. URL https://doi.org/10.1038/
s41597-019-0103-9!

Andrew Harvey, Siem Jan Koopman, and Jeremy Penzer. Messy time series: a unified approach.
Advances in econometrics, 13:103-144, 1998.

Stephan Hoyer and Joe Hamman. xarray: Nd labeled arrays and datasets in python. Journal of Open
Research Software, 5(1):10-10, 2017.

Alexander Ihler, Jon Hutchins, and Padhraic Smyth. Adaptive event detection with time-varying
poisson processes. In KDD, pp. 207-216. ACM, 2006.

Abdullah Al Imran, Md Shamsur Rahim, and Tanvir Ahmed. Mining the productivity data of the
garment industry. Int. J. Bus. Intell. Data Min., 19(3):319-342, 2021.

Ali Ismail-Fawaz, Angus Dempster, Chang Wei Tan, Matthieu Herrmann, Lynn Miller, Daniel F
Schmidt, Stefano Berretti, Jonathan Weber, Maxime Devanne, Germain Forestier, et al. An
approach to multiple comparison benchmark evaluations that is stable under manipulation of the
comparate set. arXiv preprint arXiv:2305.11921, 2023.

Nathalie Japkowicz. Assessment metrics for imbalanced learning. Imbalanced learning: Foundations,
algorithms, and applications, pp. 187-206, 2013.

Alistair Johnson, Tom Pollard, and Roger Mark. Mimic-iii clinical database demo (version 1.4).
PhysioNet, 10:C2HM2Q, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1-9, 2016.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696-6707,
2020.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455-500, 2009.

Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Multidimensional curve classification using
passing-through regions. Pattern Recognit. Lett., 20(11-13):1103-1111, 1999.

Cristiano Landi, Riccardo Guidotti, Mirco Nanni, and Anna Monreale. The trajectory interval forest
classifier for trajectory classification. In SIGSPATIAL/GIS, pp. 67:1-67:4. ACM, 2023a.

Cristiano Landi, Francesco Spinnato, Riccardo Guidotti, Anna Monreale, and Mirco Nanni. Geolet:

An interpretable model for trajectory classification. In IDA, volume 13876 of Lecture Notes in
Computer Science, pp. 236-248. Springer, 2023b.

12

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41597-019-0103-9
https://doi.org/10.1038/s41597-019-0103-9

Under review as a conference paper at ICLR 2026

Steven Cheng-Xian Li and Benjamin Marlin. Learning from irregularly-sampled time series: A
missing data perspective. In International Conference on Machine Learning, pp. 5937-5946.
PMLR, 2020.

Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for irregularly
sampled time series. Advances in Neural Information Processing Systems, 36:49187-49204, 2023.

Jiexi Liu, Meng Cao, and Songcan Chen. Musicnet: A gradual coarse-to-fine framework for
irregularly sampled multivariate time series analysis. arXiv preprint arXiv:2412.01063, 2024.

Jiexi Liu, Meng Cao, and Songcan Chen. Timecheat: A channel harmony strategy for irregularly
sampled multivariate time series analysis. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 18861-18869, 2025.

Markus Loning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, and Franz J
Kirédly. sktime: A unified interface for machine learning with time series. arXiv preprint
arXiv:1909.07872, 2019.

Yicheng Luo, Zhen Liu, Linghao Wang, Binquan Wu, Junhao Zheng, and Qianli Ma. Knowledge-
empowered dynamic graph network for irregularly sampled medical time series. Advances in
Neural Information Processing Systems, 37:67172—-67199, 2024.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with
generative adversarial networks. Advances in neural information processing systems, 31, 2018.

Giangiacomo Mercatali, Andre Freitas, and Jie Chen. Graph neural flows for unveiling systemic
interactions among irregularly sampled time series. Advances in Neural Information Processing
Systems, 37:57183-57206, 2024.

Antigoni Mezari and Ilias Maglogiannis. An easily customized gesture recognizer for assisted living
using commodity mobile devices. Journal of Healthcare Engineering, 2018(1):3180652, 2018.

Matthew Middlehurst, Ali Ismail-Fawaz, Antoine Guillaume, Christopher Holder, David Guijo-Rubio,
Guzal Bulatova, Leonidas Tsaprounis, Lukasz Mentel, Martin Walter, Patrick Schifer, et al. aeon:
a python toolkit for learning from time series. Journal of Machine Learning Research, 25(289):
1-10, 2024a.

Matthew Middlehurst, Patrick Schifer, and Anthony Bagnall. Bake off redux: a review and exper-
imental evaluation of recent time series classification algorithms. Data Mining and Knowledge
Discovery, pp. 1-74, 2024b.

Robin Mitra, Sarah F McGough, Tapabrata Chakraborti, Chris Holmes, Ryan Copping, Niels Hagen-
buch, Stefanie Biedermann, Jack Noonan, Brieuc Lehmann, Aditi Shenvi, et al. Learning from
data with structured missingness. Nature Machine Intelligence, 5(1):13-23, 2023.

Luis Moreira-Matias, Michel Ferreira, Joao Mendes-Moreira, L. L., and J. J. Taxi Service Trajectory
- Prediction Challenge, ECML PKDD 2015. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C55W25.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jim Pivarski, Peter Elmer, and David Lange. Awkward arrays in python, c++, and numba. In EPJ
Web of Conferences, volume 245, pp. 05023. EDP Sciences, 2020.

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring. In
2012 16th international symposium on wearable computers, pp. 108—109. IEEE, 2012.

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon Westover,
Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from clinical data:
the physionet/computing in cardiology challenge 2019. Critical care medicine, 48(2):210-217,
2020.

13

Under review as a conference paper at ICLR 2026

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976.

Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and Anthony Bagnall.
The great multivariate time series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery, 35(2):401-449, 2021.

Naoki Saito. Local feature extraction and its applications using a library of bases. Yale University,
1994.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEFE transactions on acoustics, speech, and signal processing, 26(1):43-49, 1978.

Md Abu Hanif Shaikh and KM Azharul Hasan. Efficient storage scheme for n-dimensional sparse
array: Gers/gees. In 2015 International Conference on High Performance Computing & Simulation
(HPCS), pp. 137-142. IEEE, 2015.

Satya Narayan Shukla and Benjamin M. Marlin. Multi-time attention networks for irregularly
sampled time series. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview,
net/forum?id=4c0J61wQ4 |

Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its applications,
volume 3. Springer, 2000.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012
computing in cardiology, pp. 245-248. IEEE, 2012.

Francesco Spinnato, Riccardo Guidotti, Anna Monreale, and Mirco Nanni. Fast, interpretable and
deterministic time series classification with a bag-of-receptive-fields. IEEE Access, 2024.

Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb. Monash university,
uea, ucr time series extrinsic regression archive. arXiv preprint arXiv:2006.10996, 2020.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz,
Marie Payne, Roman Yurchak, Marc RuSwurm, Kushal Kolar, and Eli Woods. Tslearn, a machine
learning toolkit for time series data. Journal of Machine Learning Research, 21(118):1-6, 2020.
URL http://jmlr.org/papers/v21/20-091.htmll

Andreas Theissler, Francesco Spinnato, Udo Schlegel, and Riccardo Guidotti. Explainable ai for time
series classification: a review, taxonomy and research directions. leee Access, 10:100700-100724,
2022.

V Vidulin, M Lustrek, B Kaluza, R Piltaver, and J Krivec. Localization data for person activity. UCI
Machine Learning Repository, 2010.

Jun Wang, Wenjie Du, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, and Qingsong Wen. Deep
learning for multivariate time series imputation: A survey. arXiv preprint arXiv:2402.04059, 2024.

Philip B Weerakody, Kok Wai Wong, Guanjin Wang, and Wendell Ela. A review of irregular time
series data handling with gated recurrent neural networks. Neurocomputing, 441:161-178, 2021.

Ben H. Williams, Marc Toussaint, and Amos J. Storkey. Extracting motion primitives from natural
handwriting data. In ICANN (2), volume 4132 of Lecture Notes in Computer Science, pp. 634—-643.
Springer, 2006.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:

Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

14

https://openreview.net/forum?id=4c0J6lwQ4_
https://openreview.net/forum?id=4c0J6lwQ4_
http://jmlr.org/papers/v21/20-091.html

Under review as a conference paper at ICLR 2026

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL |https://openreview.net/forum?id=ju_Uqw3840g.

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K Ravikumar. On the
(in) fidelity and sensitivity of explanations. Advances in neural information processing systems,
32,2019.

Weijia Zhang, Chenlong Yin, Hao Liu, Xiaofang Zhou, and Hui Xiong. Irregular multivariate
time series forecasting: A transformable patching graph neural networks approach. In Forty-first
International Conference on Machine Learning, 2024.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network for
irregularly sampled multivariate time series. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=Kwm8I7dU-15.

Liangwei Nathan Zheng, Zhengyang Li, Chang George Dong, Wei Emma Zhang, Lin Yue, Miao Xu,
Olaf Maennel, and Weitong Chen. Irregularity-informed time series analysis: Adaptive modelling
of spatial and temporal dynamics. In Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management, pp. 3405-3414, 2024.

Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding mobility based
on GPS data. In UbiComp, volume 344 of ACM International Conference Proceeding Series, pp.
312-321. ACM, 2008.

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations and travel
sequences from gps trajectories. In Proceedings of the 18th international conference on World
wide web, pp. 791-800, 2009.

Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull., 33(2):32-39, 2010.

15

https://openreview.net/forum?id=ju_Uqw384Oq
https://openreview.net/forum?id=Kwm8I7dU-l5

Under review as a conference paper at ICLR 2026

A SUMMARY OF NOTATION

We have adopted a tensor-like notation inspired by (Kolda & Bader;, 2009). The time series dataset is
structured along three dimensions: the instance dimension, which consists of n instances (e.g., X;
denotes the i-th time series in the dataset X); the signal dimension, which includes d channels (e.g.,
x;,; represents the j-th signal in time series X;); and the time dimension, spanning 7 points (e.g.,
%44, Tepresents the ¢, observation of j-th signal in time series X;). We use tildes to specify the
index being referenced (e.g., tx € t corresponds to the k-th timestamp at the dataset’s level, while
t}, € t corresponds to the k-th timestamp at the time series’s level). For improved readability, indices
are omitted when they are not relevant.

Table 4: Summary of notation.

Notation

X, X,x,z time series dataset, instance, signal, entry

t,t,t,t timestamps for a time series dataset, instance, signal, entry
k timestamp index

n number of instances in a dataset

d number of signals in a time series

T,T,71 number timestamps in a time series dataset, instance, signal

i,5,k indexes for instances, signals, timestamps

B TAXONOMY OF TIME SERIES IRREGULARITIES

In addition to the well-known missingness taxonomy introduced in (Rubin, |1976) (MCAR, MAR,
and MNAR), Mitra et al.|(2023)) proposed an additional category: structural missingness (SM). While
Rubin’s framework is typically formulated in terms of univariate patterns, SM highlights situations
where missingness is organized across multiple variables and exhibits systematic structure. Our
primary aim, distinct from previous works, is to preserve such structural patterns of missingness.

Consider, for instance, daily heart rate signals collected by wearables over three months. Data may
be missing completely at random (MCAR) when some days are absent because the device randomly
fails to sync, in which case missingness is unrelated to any variable. It may be missing at random
(MAR) when data are more frequently absent on weekends, particularly for users with low recorded
activity. It may be missing not at random (MNAR) when users remove the device precisely when
feeling unwell, so missingness coincides with unrecorded spikes in heart rate. Finally, it may exhibit
structural missingness (SM) when devices differ in recording frequency, such as once per second
versus once per millisecond, or when a firmware update produces week-long gaps.

In this last case, missingness follows clear temporal patterns tied to device characteristics or design
flaws, rather than to a single variable. Addressing such missingness (or raggedness) should therefore
be an intentional modeling choice by the practitioner, not the result of routine preprocessing. We pro-
vide here formal definitions for each type of time series irregularity and use minimal counterexamples
to show that none of these irregularities implies the others.

Definition B.1 (Uneven Sampling). A signal x = [z¢,,...,2¢ | € R7 is said to be unevenly sampled
if there exists at least one index k € {1,...,7 — 1} such that the time interval between successive
observations is not constant, i.e., tx41 — tr 7 At for some fixed At € R.

The same definition applies to time series instances and datasets, using their respective indices t, t.

Definition B.2 (Partial Observation). A signal x = [zy,,..., 2] € R7 is said to be partially
observed if at least one value x;, is missing and represented by a special symbol NaN, indicating
the absence of an observation at a timestamp where one was expected, i.e., z;, = NaN for some
ke{l,...,7}.

Again, the same definition applies to time series instances and datasets.
Definition B.3 (Raggedness). Raggedness is a structural irregularity that arises in a multivariate time
series X = {x1,...,%4} € R®7T when the component signals do not share a common timestamp

16

Under review as a conference paper at ICLR 2026

index. Formally, raggedness is present when there exist at least two signals x, and x; such that
t, # tp. It manifests in three independent forms:

* (a) Ragged Length: 7, # 7.
 (b) Shift: (ta71 < tb,l) A (ta,q—a < tb,frb)~

* (c) Ragged Sampling: At, ;. # Aty j, for some k, where At . = t; 1.1 —t; 1. The index
k ranges from 1 to min(7,, 75) — 1, so only intervals that exist in both signals are compared.

The same definition applies to time series datasets.

We now show that the five forms of time series irregularity are mutually independent: none implies
any of the others. This is shown through minimal examples of time series that satisfy one irregularity
condition while exhibiting none of the others.

B.1 UNEVEN SAMPLING

Let X = {x4,xp} be a time series where both signals share the same timestamp index, t=1t, =

t, = [t1,to, 3], and assume that the sampling intervals are not constant, i.e., to — t1 # t3 — to. Then
X is unevenly sampled.

UNEVEN SAMPLING #- PARTIAL OBSERVATION. Suppose that all values in both x, and x; are
observed (i.e., none are NaN). Then X is unevenly sampled, but not partially observed.

UNEVEN SAMPLING # RAGGEDNESS. Since t, = t;, both signals are aligned on the same
timestamps. Therefore, X is not ragged.

B.2 PARTIAL OBSERVATION

Let X = {x,, X} be a time series where both signals share the same timestamp index, t=1, =
ty = [t1,12,t3]. Suppose that one observation is missing, e.g., £4,t, = NaN. Then X is partially
observed.

PARTIAL OBSERVATION % UNEVEN SAMPLING. Let the timestamps be equally spaced, i.e., t2—t1 =
ts — to = At. Then X is partially observed but evenly sampled.

PARTIAL OBSERVATION # RAGGEDNESS. Since both signals are defined over the same set of
timestamps, t, = t;, X is not ragged.

B.3 RAGGED LENGTH
Let X = {x,,X;} be a time series exhibiting ragged length, with t, = [t1, 2] and t; = [t1,t2, t3].
Then the unified timestamp index is t = [t1, t2, 3], and X satisfies 7, = 2 # 3 = 7,

RAGGED LENGTH #- UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., to — t] =
t3 — to = At. Then X exhibits ragged length, but is evenly sampled.

RAGGED LENGTH # PARTIAL OBSERVATION. Suppose that all values in both x, and x; are
observed (i.e., no NaNs). Then X exhibits ragged length, but is not partially observed.

RAGGED LENGTH #- SHIFT. Although the signals have different lengths, they both start at the same
time, ¢1. Hence, X is not shifted.

RAGGED LENGTH #- RAGGED SAMPLING. The sampling intervals are identical across both signals,
ie., Aty 1 = Aty 1 = to — t1. Therefore, X is not raggedly sampled.

B.4 SHIFT

Let X = {x4,x;} be a time series exhibiting shift, with t, = [t1, 2] and t; = [t2,t3]. Then the
unified timestamp index is t= [t1,12,t3], and X is shifted, as x,, starts and ends before xp.

SHIFT % UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., to — t1 = t3 — to = At.
Then X exhibits shift, but is evenly sampled.

17

Under review as a conference paper at ICLR 2026

SHIFT # PARTIAL OBSERVATION. Suppose that all values in both x, and x; are observed (i.e., no
NaNs). Then X exhibits shift, but is not partially observed.

SHIFT # RAGGED LENGTH. Both signals have the same number of observations, i.e., 7, = 75 = 2.
Hence, X exhibits shift but not ragged length.

SHIFT # RAGGED SAMPLING. The sampling intervals within each signal are equal, i.e., Afa’l =
to —t1 = Afb’l = t3 — to. Therefore, X is not raggedly sampled.

B.5 RAGGED SAMPLING

Let X = {x,,X;} be a time series exhibiting ragged sampling, with t, = [t1, o] and t, = [t1, ¢3].
Then the unified timestamp index is t = [t1, f2, ¢3], and the sampling intervals differ across signals:
Atgg =ta —t1 #t3 —t1 = Aty 1.

RAGGED SAMPLING #- UNEVEN SAMPLING. Let the global timestamps satisfy to —t1 = t3 —t2 =
At. Then X is raggedly sampled but not unevenly sampled.

RAGGED SAMPLING # PARTIAL OBSERVATION. Suppose that all values in both x, and x;, are
observed (i.e., no NaNs). Then X exhibits ragged sampling, but is not partially observed.

RAGGED SAMPLING #- RAGGED LENGTH. Both signals contain the same number of observations,
Ta = Tp = 2. Thus, X is not ragged in length.

RAGGED SAMPLING # SHIFT. Both signals start at the same time, ¢, and have the same length.
Therefore, X is not shifted.

These examples are minimal and can be easily extended to longer signals and time series. They
suffice to establish that all forms of irregularity discussed, both in the main and raggedness subtypes,
are pairwise independent. None of them implies any other, as illustrated also in Figure[2] To the best
of our knowledge, this taxonomy accounts for all known forms of structural time series irregularity
relevant to data modeling and representation.

18

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS.

In this section, we summarize experimental details regarding the models and datasets.

C.1 MODELS

The objective of these experiments is to benchmark methods capable of naturally handling irregular
time series without introducing bias through imputation techniques. To achieve this, we limit our
evaluation to classifiers that inherently support missing data in their input and are available in major
time series libraries. Below, we describe the implementation details and hyperparameters for each
method. Parameters that are not mentioned are left to their default in their library implementation.

Bag-of-Receptive-Fields (BORF) The Bag of Receptive Fields (BORF) algorithm (Spinnato et al.,
2024) from the aeon library extracts discretized subsequences and counts their appearance in the time
series, allowing the presence of missing data. A downstream LightGBM classifier with default param-
eters is used to handle transformed features. For the fine-tuned benchmark, the hyperparameter was
on performed on the min_window_to_signal_std_ratio in the interval [0, 0.2] with 0.05 increments.

Bidirectional Recurrent Imputation for Time Series (BRITS) The BRITS algorithm (Cao et al.,
2018)), also from the pypots library, employs a bidirectional recurrent network for imputing and
classifying incomplete time series. It uses a hidden layer size of 256 and a batch size of 32. Training
runs for up to 1000 epochs, with early stopping after 50 epochs of no improvement.

Gated Recurrent Unit with Decay (GRU-D) The GRU-D model (Che et al.,|2018)), available in
the pypots library, extends the Gated Recurrent Unit architecture by introducing decay mechanisms
that account for missing data patterns. The recurrent hidden layer size is set to 256, with a batch size
of 32. Training uses a maximum of 1000 epochs, with early stopping triggered after 50 epochs of no
improvement.

K-Nearest Neighbors with DTW (KNN) This baseline model employs the tslearn K-Nearest
Neighbors algorithm, configured to use the Dynamic Time Warping (DTW) distance measure. DTW
incorporates temporal alignment to handle time series of varying lengths effectively. The distance
computation uses a Sakoe-Chiba band (Sakoe & Chiba, [1978) of 10 points, which limits the warping
window to a fixed radius.

LightGBM (LGBM) LightGBM (Ke et al.,[2017) is a gradient-boosting framework optimized for
speed and efficiency, and can naturally handle missing values. In this baseline, it is trained directly
with default parameters on raw time series data transformed into a tabular format using the sktime
Tabularizer. For the fine-tuned benchmark, hyperparameter optimization was conducted over a
predefined search space that included the number of leaves (num_leaves) € {31, 63, 127}, maximum
tree depth (max_depth) € {—1, 7,10}, (learning_rate) € {0.05,0.1}, and the minimum number of
samples per leaf (min_data_in_leaf) € {20,100}.

Neural Controlled Differential Equation (NCDE) The Neural CDE model (Kidger et al., 2020),
implemented via the diffrax library, learns continuous-time representations of time series data
using differential equations. It employs an Euler solver with a maximum of 100 steps, with step size
equal to the minimum time difference between any two adjacent observations, a hidden layer size of
8, and a width size of 32. Training uses a maximum of 1000 iterations, using Adam as optimizer,
with a starting learning rate of 0.01, patience of 200 for early stopping, and a learning rate reduction
factor of 0.5 after 50 stagnant iterations.

Raindrop (RAINDROP) The Raindrop model (Zhang et al., |[2022), a graph-based neural network
from pypots, handles irregular time series by sending messages over graphs that are optimized
for capturing time-varying dependencies among sensors. This model uses 2 layers, a feed-forward
network size of 256, 2 attention heads, and a dropout rate of 0.3. Training employs a batch size of 32,
with early stopping after 50 epochs of no improvement.

19

Under review as a conference paper at ICLR 2026

Alembic Bowl Flask

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: Three examples of instances from the (ABF) dataset, from left to right, Alembic, Bowl, and
Flask.

Random Interval Feature Classifier (RIFC) The Random Interval Feature Classifier (RIFC)
leverages the RandomIntervalFeatureExtractor from the sktime library to generate simple
statistical summaries (mean, standard deviation, minimum, maximum, median, skewness, and
kurtosis) from randomly selected intervals within the time series, with the number of intervals being
the logarithm of the time series length. These features are subsequently used by a downstream
LightGBM classifier to perform classification.

Minimally Random Convolutional Kernel Transform (ROCKET) Rocket, in its Minirocket
implementation (Dempster et al., 2021) from the sktime library, employs 10000 fixed con-
volutional kernels to extract features from time series data. This implementation includes
MiniRocketMultivariateVariable, which handles multivariate time series while tolerating
missing data. The transformation could include missing data; therefore, instead of the most
common ridge classifier, LightGBM with default parameters is used. For the fine-tuned bench-
mark, hyperparameter optimization was conducted over the number of kernels, num_kernels €
{100, 500, 1000, 5000, 10000, 50000}

Self-Attention Imputation for Time Series (SAITS) The SAITS model (Du et al.} 2023)), imple-
mented in the pypots library, employs a transformer-based architecture specifically tailored for time
series imputation. It utilizes a dual self-attention mechanism across temporal dimensions, enabling
it to capture both global and local patterns despite missing values. In this configuration, SAITS is
trained with 2 attention layers, a model dimension of 256, 4 attention heads, and hidden dimensions
dy, = 64, d,, = 64, and dg, = 128. A dropout rate of 0.1 is used for both the transformer blocks
and attention layers. The model is optimized over a maximum of 1000 epochs, with early stopping
triggered after 50 stagnant epochs. Training is performed with a batch size of 32.

Support Vector Machine with LCSS Kernel (SvM) This method uses the sktime implementation
of a Support Vector Machine, enhanced with the Longest Common Subsequence (LCSS) distance
kernel (Bagheri et al., 2016)). LCSS is robust to missing values and temporal distortions, as it matches
time series subsequences with allowable gaps. The kernel uses a Sakoe-Chiba constraint with a
radius of 10. Each time series is standardized using z-score normalization. The model is trained for a
maximum of 1000 iterations.

TimesNet (TIMESNET) TimesNet (Wu et al., [2023) is a modern transformer-based architecture
designed for multivariate time series modeling, emphasizing temporal receptive fields through
learnable convolutional kernels. Its implementation here leverages 2 layers and 3 convolutional
kernels with dynamic top-k temporal selection. The model dimension is set to 64, with a feed-
forward network size of 128. Training is conducted using a batch size of 32 over 1000 epochs, with
early stopping after 50 epochs without validation improvement.

C.2 DATASETS

The repository includes 34 datasets, each briefly described below, along with the data preparation steps
applied. E] For datasets without a predefined train-test split, we created a stratified, instance-based
70-30% train-test split.

Data is hosted at link redacted for double-blind review.

20

Under review as a conference paper at ICLR 2026

Alembics Bowls Flasks. (ABF) This dataset is inspired by the classical Cylinder-Bell-Funnel (CBF)
benchmark (Saito, |1994) for regular time series classification. Similarly to CBF, there are three
classes, which are Alembics, Bowls, and Flasks. The classes differ by how much the temporal axis
is skewed, i.e., if it has positive (Alembic), negative (Flask), or no skewness (Bowl). For each time
series, 128 values are sampled from a circumference and then standardized. There are 10 instances
for each class in the training set and 300 for each in the test set. An example is presented in Figure[9]

Animals (AN) This dataset, generated during the Starkey project (Ferrero et al., [2018]), consists of
trajectories from three animal species—elk, deer, and cattle. The classification task commonly used
in the literature (Ferrero et al.| 2018}; [Landi et al.l 2023bfa)) involves inferring the species based on
movement patterns. The target classes in the dataset are balanced, with 38 trajectories for the elk, 30
for the deer, and 34 for the cattle.

Geolife (GS) This dataset was collected during the GeoLife Project (Microsoft Research Asia)
from April 2007 to August 2012 (Zheng et al.| 2009; 2008} 2010). It contains the trajectories of
182 users and has been preprocessed as detailed in the public User Guide-1.3. One of the most
common supervised machine-learning tasks using this dataset is to identify (a subset) of the 11 means
of transportation. We defined three target variables with a decreasing number of classes. The first
target variable includes all the means of transportation in the dataset: airplane, bike, boat, bus, car,
motorcycle, run, subway, taxi, train, and walk. The second target variable, used in (Ferrero et al.|
2018)), groups the transportation modes into six classes: bike, bus/taxi, car, subway, train, and walk.
The third target variable, used in (Landi et al.| [2023b)), simplifies the classification into two categories:
private (bike, boat, car, motorcycle, run, walk) and public (the remaining modes of transportation).
In Section[5] we benchmark the models against the first target variable. In this setting, each class
accounts for approximately 9.1% of the total instances, but the standard deviation is 12.7%, i.e., the
target variable is highly imbalanced.

GPS Data of Seabirds (SE) This dataset, introduced in (Browning et al.,[2018)), consists of GPS
data collected from 108 seabirds spanning three species: European shag (15), common guillemot
(31), and razorbill (62). Similar to the Animals dataset, the species has been used to evaluate model
performance in inferring species. The target variable is imbalanced, with the majority class (razorbill)
comprising 62 individuals, while the minority class (European shag) includes only 15.

Localization Data for Person Activity (LPA) Introduced in (Vidulin et al. [2010), this dataset
contains data from 5 individuals performing 11 different actions: falling, lying, lying down, on all
fours, sitting, sitting down, sitting on the ground, standing up from lying, standing up from sitting,
standing up from sitting on the ground, walking. Each action was recorded by tracking the positions
of the body’s right and left ankles, chest, and belt in a 3-dimensional space, resulting in 12 distinct
signals per time series.

MIMIC-III Clinical Database Demo (MI3) Introduced by (Johnson et al.[2016;(2019) on the
Physionet platform (Goldberger et al., 2000), the dataset contains health-related data associated
with 40,000 patients in critical care at the Beth Israel Deaconess Medical Center from 2001 to 2012.
Since the full version is available to credentialed users under strict requirements, we use the publicly
available demo version in our work. We preprocess the data in accordance with (Harutyunyan et al.,
2019). The classification target involves predicting in-hospital mortality.

PAMAP?2 Physical Activity Monitoring (PA2) This dataset, introduced in (Reiss & Stricker} 2012,
contains data from 9 subjects (1 female, 8 male) performing 19 different physical activities: ascending
stairs, car driving, computer work, cycling, descending stairs, folding laundry, house cleaning, ironing,
lying, nordic walking, playing soccer, rope jumping, running, sitting, standing, transient, vacuum
cleaning, walking, watching TV. The data includes measurements from 3 inertial measurement units
(IMUs) positioned on the dominant arm, chest, and dominant side’s ankle. Specifically, from each
IMU sensor, the dataset contains information about the temperature, the 3-dimensional acceleration,
gyroscope and magnetometer data, and the sensor orientation. Additionally, heart rate observations
are included. The two types of sensors record data at different sampling rates: 100 Hz for the IMUs
and 9 Hz for the heart rate monitor. We preprocess the data according to the authors’ guidelines when
downloading the dataset. Data from the “transient” activity, i.e., movements between the end of one

21

Under review as a conference paper at ICLR 2026

activity and the start of another, was excluded. The remaining 18 activities serve as classification
target classes.

PhysioNet 2012 (P12) Published as data for the “Predicting Mortality of ICU Patients: The
PhysioNet/Computing in Cardiology” challenge in 2012 (Silva et al., [2012)), the data contains
information about the patient, like age, gender, height, and weight, and 37 different types of time
series. Similar to the MIMIC-III dataset, the classification target is about predicting in-hospital death.

PhysioNet 2019 (P19) Published as data for the “Early Prediction of Sepsis from Clinical Data:
The PhysioNet/Computing in Cardiology” challenge in 2019 (Reyna et al.|[2020), the dataset contains
demographic information about the patients, such as age, gender, height, and weight, alongside 34
other time-series variables for vital signs and laboratory test values. The classification task involves
predicting whether a patient has sepsis or not.

Productivity Prediction of Garment Employees (PGE) Introduced in (Imran et al., 2021), this
dataset contains information about garment manufacturing processing on a per-team level. Addition-
ally, this dataset contains a team productivity performance index, which ranges between 0 and 1. As
suggested by the authors, we use this index as a classification target. Specifically, we defined a team
efficient if the productivity performance index is strictly greater than 0.75.

Taxi (TA) This dataset, introduced as part of the “ECML/PKDD 15: Taxi Trip Time Prediction
(IT) Competition” (Moreira-Matias et al., [2013) consists of 121,312 trajectories of Taxis in Porto
(Portugal). The classification task is to predict the type of call that generated the run. The types of
calls could be: A if this trip was dispatched from the central, B if this trip was demanded directly to a
taxi driver on a specific stand C otherwise. The classes are balanced.

Vehicles (VE) GPS trajectories about two different types of vehicles -buses and trucks- moving in
Athens. This dataset is available from download from the Chorochronos Archive (ChoroChronos
Archive).

UEA and UCR Irregular Datasets. The other 22 irregular time-series datasets were downloaded
from the UEA and UCR dataset repository. In particular, we included the following datasets:

* 11 variable-length univariate time series classification problems from (Bagnall et al.| [2020):
AllGestureWiimoteX, AllGestureWiimoteY and AllGestureWiimoteZ (GX, GY, GZ) from
(Guna et al.l [2014); GestureMidAirD1, GestureMidAirD2, and GestureMidAirD3 (GM1,
GM2, GM3) from (Caputo et al.| 2018)); GesturePebbleZ1 and GesturePebbleZ2 (GP1, GP2)
from (Mezari & Maglogiannis, [2018)); PickupGestureWiimoteZ and ShakeGestureWiimoteZ
(PGZ, SGZ) from (Guna et al.,[2014); PLAID (PL) from (Gao et al., 2014);

* 4 fixed length univariate time series with missing values from (Middlehurst et al., 2024b):
DodgerLoopDay, DodgerLoopGame, and DodgerLLoopWeekend (DD, DG, DW) from (Ihler
et al.| 2006); MelbournePedestrian (MP) (City of Melbournel 2020)) extracted from the City
of Melbourne website;

7 variable-length multivariate time series from (Ruiz et al.,|2021): AsphaltObstaclesCoor-
dinates, AsphaltPavementTypeCoordinates, and AsphaltRegularityCoordinates (AOC, APT,
ARC) from (de Souzal [2018)); CharacterTrajectories (CT) from (Williams et al., [2006); In-
sectWingbeat (IW) from (Chen et al., 2014); JapaneseVowels (JV) from (Kudo et al., [1999);
SpokenArabicDigits (SAD) from (Hammami & Beddal [2010);

Table [5]contains the full list of curated datasets at the moment of publication on our repository. The
list additionally contains some information about the datasets: the number of instances, #Inst, number
of signals, #Sign, and number of observations, #Obs (max}’ (T3)), the number of target classes #TC
and the standard deviation between the number of instances per class (CU). Additionally, the dataset
contains information about the time series, like the percentage of missing values (MV)-computed
as the ratio between the NaN observations divided by the total number of observations- and the
sampling coefficient of variation (SCV), alongside information on the different kind of irregularity in
the dataset.

22

Under review as a conference paper at ICLR 2026

Table 5: Summary of dataset characteristics: the number of instances (#Inst), signals (#Sign), and
observations (#Obs); target classes (#TC) and class imbalance (CU); as well as time-series-specific
metrics like missing values (MV) and sampling coefficient of variation (SCV), and each type of
irregularity, i.e., unevenly sampled (US), partially observed (PO), unequal length (UL), shift (SH),
ragged sampling (RS).

Cat Name Source #Inst #Sign #Obs #TC CU (o) MV (%) SVC US PO UL SH RS

= MI3 57 17 145 2 0.20 0.83 060 v v v V /
§ P12 (Sivaetal}[2012 7990 37 203 2 036 094 059 v / / J /
< P19 al. 4033 34 334 2 043 098 018 v / / /
CT Williams et al.} 2006 2858 3 182 20 0.01 0.34 0.00 x x v x x

L GML Caputo et al.| |2 338 1 360 26 0.00 054 000 x x v X X
= GM2 (Caputoetal. 338 1 360 26 0.00 0.54 0.00 x x v x X
i GM3 Caputo et al. 338 1 360 26 0.00 054 000 x x v x X
S GP1 304 1 455 6 0.01 0.52 0.00 x x v X X
£ Gp2 ezarl aglogiannis} 2018) 304 1 455 6 0.01 0.52 0.00 x x v x X
£ Guna et al.}[2014 1000 1 385 10 0.00 0.68 000 x x / X X
£ GY Guna et al 2014 1000 1 385 10 0.00 068 000 x x / x X
S 6z (Gunaetal)2014 1000 1385 10 0.00 0.68 000 x x / X X
S LPA Vidulin et al. 0 273 12 2870 11 0.00 0.95 20 v x v V /
§ PAM elss tricke 12 124 52 110883 16 0.03 0.82 001 v v v v /
PGZ Guna et al.|[2014 100 1 361 10 0.00 0.60 0.00 x x v x x

SGZ Guna et al. 100 1 385 10 0.00 0.57 0.00 x x v Xx X

AN Ferrero et al.} 2018 102 2 291 3 0.03 0.50 1.21 v x v X /

AQC de Souzal 201 781 3 736 4 0.03 0.59 0.00 x x v Xx X

APT de Souza 2111 3 2371 3 0.06 0.83 0.00 x x v x X

g‘ ARC de Souzal 1502 3 4201 2 0.01 0.91 0.00 x x v x x
li; GS Zheng et al.}|2010; 5977 2 96282 11 0.13 099 1027 v x Vv V /
£ MP ity of Melbourne} 2020, 3633 1 24 10 0.00 0.00 001 x x v Xx X
SE rowning et al. 108 4 6048 3 0.18 0.60 0.00 v x v v V/

TA oreira-Matias et al.} 2013 121312 2 119 3 0.13 0.61 0.00 v x v v V/

VE oroChronos Archive 381 2 1095 2 0.22 0.57 529 v Xx v X V

5 DD Ihler et al. 158 1 288 7 0.01 0.01 0.00 x v x x X
£ DG Thler et al. 158 1 288 2 0.02 0.01 0.00 x v x x X
5 o hler ct al. 158 1 288 2 021 001 000 x / X X X
Iw 50000 200 22 10 0.00 0.70 000 x x v X X

5 Jv 640 12 29 9 0.03 0.46 0.00 x x v Xx X
< PGE 24 9 59 2 0.13 0.19 068 v x v vV /
S PL 1074 1 1344 11 0.05 0.76 000 x x / X X
SAD 8798 13 93 10 0.00 0.57 0.00 x x v x X
synth ABF new! 930 1 128 3 0.00 0.00 195 v X x Xx X

Given y;, as the labels vector containing only the h-th class, CU is defined as follows:

CU:,/M 1)

where 1 is the average number of observations. Given At as the vector of differences between
consecutive timestamps of a signal, the SCV is computed as the coefficient of variation (the ratio of
the standard deviation to the mean) for each signal, averaged first across each time series and then
over the entire dataset.

We divided the dataset into 6 categories based on the type of phenomena captured: healthcare, human
activity recognition, mobility (or more generically, geo-temporal motion), sensors, synthetic data, and
others for datasets that don’t fall in any of the previous categories (like the UCR audio and speech
categories).

23

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS AND STATISTICAL TESTS

The full result table in terms of F1 is available in Table[/| Further, we provide several other statistical
tests, using a diverse range of metrics, and with respect to different dataset subgroups.

Critical Difference Plots. Figure [I0]shows the cD-plots for common performance metrics and
runtimes. F1, accuracy, roc-auc, precision, and recall yield consistent rankings for the top four
models, ROCKET, BORF, LGBM, and RIFC, as well as for the three lowest-performing ones: GRU-D,
NCDE, and SVM. In the mid-range, rankings vary slightly across metrics: for instance, KNN performs
notably worse in terms of F1 compared to accuracy, whereas TIMESNET shows the opposite trend. As
for training time, KNN, being a lazy learner, is the fastest, followed by RIFC and ROCKET. Although
LGBM ranks fourth, the previous results in median runtime (Figure [6) suggest that it may be slightly
slower on smaller datasets but highly efficient on larger ones, which contributes to its overall strong
performance. Neural network-based models generally exhibit longer training times but benefit from
faster inference; nevertheless, ROCKET and LGBM maintain a performance edge across both phases.

F1 cp-plots computed for subsets of datasets with specific characteristics, are shown in Figure[TT]
These plots provide additional and complementary insights to those in Figures[/{and [8| Notably,
they reinforce the observation that models explicitly designed for partially observed data tend to
outperform more general-purpose approaches, even though the top rankings remain closely contested
among SAITS, RIFC, LGBM, BRITS, and ROCKET. BRITS and TIMESNET, in particular, show strong
performance on shorter datasets, ranking second and third, respectively, and closely trailing ROCKET.
The remaining plots are similar to those discussed in Section [3]

Multiple Comparison Matrices. While the widely used CD-plot is effective, it has been criticized
in (Ismail-Fawaz et al.|[2023) for its susceptibility to manipulation, as the average rank of a model can
be influenced by the performance of other comparators. For this reason, we also propose MCM matrix
for several metrics in Figures @] to @ However, in our case, results are consistent with the CD-plots
presented in the previous paragraph, and in the main text, and are presented here in the appendix only
due to space limitations. Again, the top four models are always ROCKET, BORF, LGBM, and RIFC,
and the lowest-performing are GRU-D, NCDE, and SVM, with mid-range models rankings changing
slightly from metric to metric.

Additional Performance vs Runtime Plots. We report in Figures [I3] to [I9] the performance
rankings across multiple metrics, dataset subsets, and with respect to both training and inference
times. In addition to the insights discussed in the main text, these figures reveal that neural network-
based models tend to cluster together in terms of both runtime and performance, regardless of the
dataset subset or evaluation metric. This suggests that, although their relative rankings may vary,
their overall behavior remains consistent.

Rank Correlation. We report in Figure 20| the F1 rank correlation among models. Models are
hierarchically clustered using average linkage applied to the rank correlation matrix. Positive
correlations indicate that models tend to perform similarly across datasets, reflecting comparable
strengths or weaknesses, while negative correlations suggest divergent performance, highlighting
complementary behaviors or differing inductive biases. Reinforcing the categorization proposed
in the main text, the plot reveals a strong cluster of generalist methods, LGBM, ROCKET, RIFC,
and BORF, which group together at the top hierarchical level. The second major cluster includes
the remaining models, with specialist approaches like BRITS and GRU-D showing high correlation,
which is expected given their shared RNN architecture. Similarly, TIMESNET and SAITS also form a
coherent transformers subgroup. Notable exceptions to the generalist/specialist categorization are
SVM, likely due to its overall poor performance across datasets, and KNN, which we hypothesize
behaves differently due to its lazy learning paradigm based on distances, which could be more prone
to sensitivity to dataset-specific characteristics.

Model Failures and Limitations. From these experiments, several model weaknesses become
apparent, particularly in relation to specific data characteristics. For example, Figure[7 highlights how
RNN-based methods fail to handle long time series effectively, while Table 3] shows that ROCKET
underperformed relative to its baseline results after fine-tuning.

24

Under review as a conference paper at ICLR 2026

Additional insights arise from the CD plots in Figure[T1] Comparing the general rankings in Figure[TTa]
with those on specific subsets reveals which models are most sensitive to dataset properties. For
instance, Figure[[Tg|shows that the transformer-based TIMESNET performs worse on smaller datasets,
a point also observerd in Section[5] BORF, despite its strong overall performance, ranks third-to-last
on partially observed data and declines significantly on short time series (Figures and [TTi). KNN
also struggles under shift and ragged sampling conditions (Figures[TTe|and [ITf). Notably, KNN was
the weakest model in terms of memory consumption, which explodes with longer series (Table D).

To provide a more fine-grained view, we report in Table [6]each model’s worst performance in terms
ratio between that worst-case rank and its average rank across all datasets. Higher ratios indicate
greater variability, a phenomenon most pronounced among models that otherwise perform strongly
on average, such as ROCKET, BORF, and LGBM. Several notable cases emerge. ROCKET, for instance,
performs poorly on ABF, a dataset with highly uneven sampling. Similarly, BORF ranks 2.4 times
worse than its average on the Mimic3 dataset, which is also highly irregular. Interestingly, LGBM
performs unexpectedly poorly on the Garment dataset, whose small size would normally favor
tree-based models.

These findings highlight that strong average performance does not necessarily imply robustness
across all dataset types. In particular, models often fail on datasets with structural irregularities or
atypical sampling patterns.

Table 6: Worst-case dataset performance for each model, along with the ratio between its worst rank
and average rank across all datasets. Higher ratios indicate greater variability compared to average
performance.

model worst dataset performance worst-to-average rank ratio
BORF Mimic3 24
BRITS AllGestureWiimoteX 1.8
GRU-D CharacterTrajectories 1.6
KNN Physionet2012 1.9
LGBM Garment 23
NCDE ShakeGestureWiimoteZ 1.4
RAINDROP InsectWingbeat 1.8
RIFC GeolifeSupervised 2.2
ROCKET Abf 3.0
SAITS Animals 1.5
SVM AllGestureWiimoteY 1.2
TIMESNET DodgerLoopDay 2.0

Impact of irregularity on explanations. As discussed in Section[5} XAI for irregular time series
remains largely unexplored. pyrregular allows researchers to work directly with data while
preserving its irregularities, avoiding the bias introduced by imputation choices, which is fundamental
since explanations are known to be highly sensitive to input variations (Yeh et al.l |2019). This,
however, is only a first step. Even when the data retains its irregularity (as in our approach), and
even when models can handle irregular inputs, the explainers themselves typically cannot. In line
with the observations of |Cinquini et al.| (2023), we argue that this is primarily an implementation
gap on the explainer side. Addressing this limitation would enable our taxonomy of irregularities
to be applied to more fine-grained interpretability. For example, it could help distinguish whether a
model assigns importance to a missing value because of partial observation or because of raggedness,
offering deeper insights into the model’s behavior under irregular conditions.

25

Under review as a conference paper at ICLR 2026

121110 9 8 7 6 5 4 3 2 1
| I T 'l |
SVM 10.4412 3.4706 ROCKET
NCDE 8.5588 4.8676 BORF
GRU‘D 7.7059 5.0735 LGBM
SAITS 6.7206 5.5294 RIFC
BRITS £7059 6.0588. TIMESNET
KNN 84559 64118 RAINDROP
(a) F1.
121110 9 8 7 6 5 4 3 2 1
[I ' |
SVM 10.2353 3.5294 ROCKET
NCDE 8.7353 4.7500 BORF
GRU-D 7.8676 4.9559 LGBM
SAITS 6.7794 5.5147 RIFC
BRITS 6.7059 6.2206 KNN
RAINDROP -£:4706 6.2353 TIMESNET
(c) Precision.
121110 9 8 7 6 5 4 3 2 1
| I I | I T |
SVM 10.676 3.2500 ROCKET
NCDE 8.4412 4.4559 BORF
GRU-D 7.3676 4.5441 LGBM
SAITS 7.0441 5.5735 RIFC
RAINDROP 8522 65294 KNN
TIMESNET 86912 65735 BRITS
(e) ROC-AUC.
121110 9 8 7 6 5 4 3 2 1
| I | I I T |
BRITS 11.4P65 2.2794 KNN
SAITS 10.4853 2.6471 RIFC
TIMESNET 24550 | L 27941 ROCKET
GRU-D 8.0735 5.0882 LGBM
RAINDROP 1:2206 21471 BORF
NCDE 6.9706 6.4118 SVM

(g) Train Runtime.

121110 9 8 7 6 5 4 3 2 1
l 1 l 1 l 1 1 l 1 l 1 l 1 l 1 l 1 I
SVM 10.3382 3.1176 ROCKET
NCDE 8.9118 4.4559 BORF
GRU'D 7.6324 4.7794 LGBM
SAITS 7.2206 5.0882 R”:C
TlMESNET 6.9412 6.3529 KNN
BRITS 618 6.5000 RAINDROP
(b) Accuracy.
121110 9 8 7 6 5 4 3 2 1
Lelyloba ol da]alydalyl
SVM 10:5294 L 33824 ROCKET
NCDE 8.6471 4.6618 BORF
GRU-D 7.4559 5.0588 LGBM
BRITS 6.9853 5.3824 RIFC
SAITS 6.8529 6.3235 KNN
RAINDROP -£:3676 63529 TIMESNET
(d) Recall.
121110 9 8 7 6 5 4 3 2 1
[N NN
BRITS 11.4p65 .9118 ROCKET
SAITS 10:3971) 21765 RIFC
TIMESNET 22206 | 4.2647) GBM
GRU'D 7.6324 4.5882 BORF
SVM 6.7941 6.2353 NCDE
KNN 6.7206 6.6324 RAINDROP
(f) Total Runtime.
121110 9 8 7 6 5 4 3 2 1
Lely b bybalylalalalalyl
K N 11.3088|] 117647 ROCKET
SVM 10.5294 2.2059 LGBM
BRITS 9.3971 4.7353 NCDE
BORF 8.5000 5.1176
TIMESNET £:2558 52500 RAINDROP
SAITS 6.5147 5.7206 GRU-D

(h) Inference Runtime.

Figure 10: Critical Difference plot for the benchmarked models in terms of different metrics, for all
datasets. Best models to the right. The performance of models connected by the bar is statistically
tied, using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.

26

Under review as a conference paper at ICLR 2026

12 11 10 9

8 76 543 21 121110 9 8 7 6 5 4 3 2 1
Loty lalylyl AEE NN | I I | |
Sy 22 s RockeT svu 222 —TA 0
8.0066 | d 8.0417 4.6250
GI\I!((EJI?IE 7.7059 5.0735 Eggl\ljl TlMESIKII\é'-\lI- 7.0833 4.9167 IF_{%BCI\IQET
SAITS 6.7206 5.5294 RIFC GRU-D 6.9167 5.3750 BORF
BRITS £7059 6.0588 TIMESNET BRITS 58333 65417 RAINDROP
KNN 6.4559 6.4118 RAINDROP NCDE 6.7500 6.7083 SAITS
(a) All datasets. (b) Unequal sampling.
121110 9 8 7 6 5 4 3 2 1 121110 9 8 7 6 5 4 3 2 1
[| Lelalalyl I I I I I P

NCDE 87143 | 52143 GAITS SVM 112333 L 28500 ROCKET

SVM 7.5000 5.4286 RlFC NCDE 8.9333 4.3333 BORF
BORF 7.2857 5.5714 LGBM GRU'D 7.9333 4.6000 LGBM

KNN 7.2143 5.7857 BRITS BRlTS 7.2333 5.0500 RlFC

TIMESNET &7143 6.0000 ROCKET SAITS £:8167 3.8000 T)MESNET
GRU-D 6.5000 6.0714 RA|NDROP KNN 6.8167 6.4000 RAlNDROP
(c) Partially observed. (d) Unequal length.
121110 9 8 7 6 5 4 3 2 1
TN R N Lobploladadabobdolalyl
SVM 101667 3.9444 RIEC SVM 10:5000 L 37727 RIFC
KNN -2:1667 43333 | GBM KNN jz;iz % LGBM
TIMESNET -©:888 50556 ROCKET TIMESNET £ : ROCKET
NCDE -5:8889 53333 BORF NCDE 7.2727 4.9091 BORF
BRITS £6:8889 6.2778 RAINDROP BRITS 12727 6.4091 RAINDROP
GRU-D 6.7778 6.2778 SAITS GRU‘D 6.9091 6.7727 SAITS
(e) Shift. (f) Ragged sampling.
121110 9 8 7 6 5 4 3 2 1
o g Ll bala ol balyladall]

SVM 2:9706 3.5882 ROCKET SVM 108529 L 33824 pOCKET
NCDE 87941 48529 BORF NCDE 8:3235 4.6176 | GBM
GRU'D 7.5294 4.8824 RIFC GRU_D 7.8529 4.9118 BORF

TIMESNET 1763 55588 | GBM KNN £:0000 4.9412 T|MESNET
SAlTS 6.7941 5.8824 KNN BRITS 6.7647 6.2059 RlFC
BRITS £6471 63235 RAINDROP SAITS 86471 65000 RAINDROP

(g) Small (< 500 instances). (h) Big (> 500 instances).

121110 9 8 7 6 5 4 3 2 1 121110 9 8 7 6 5 4 3 2 1

| I 'l P | Lalalalaly clalalalal
SVM 2:6667 48611 pOCKET SVM 1L:2300 9375 ROCKET
NCDE 8.6944 4.9167 BR|TS GRU-D 9.4062 2.7500 BORF

6.8333 5.0278 8.7188 4.3750
BORE 67778 sssss |opn AR — T eses feem
RIFC 6.5833 6.1667 GRU-D TIMESNET 7.2188 6.0000 KNN
SAITS $£:3000 6.4167 RAINDROP SAITS ©:2688 64062 RAINDROP

(i) Short (< 360 observations).

(j) Long (> 360 observations).

Figure 11: Critical Difference plot for the benchmarked models in terms of F1, divided into different
groups. Best models to the right. The performance of models connected by the bar is statistically tied,
using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.

27

Under review as a conference paper at ICLR 2026

ROCKET BORF LGBM RIFC TIMESNET RAINDROP SAITS KNN BRITS GRU-D NCDE SVM
0.669 0.625 0.606 0.571 0.525 0.520 0.518 0.507 0.482 0.435 0.396 0.245
Mean-fL 1 1 1 1 1 1 1 1 1 1 1
Mean-Difference _0.044 0.063 0.098 0.144 0.149 0.151 0.162 0.187 0.234 0.273
ROCKET _ r>c/r=c/r<c 24/3/7 24/3/7 26/4/4 24/0/10 26/0/8 25/0/9 28/0/6 25/0/9 25/0/9 27/0/7
0.669 wilcoxon p-value 0.001 0.003 = 1e-03 = le-03 = 1e-03 0.001 = 1e-03 0.001 = le-03 = 1le-03
0,044 0.019 0.054 0.100 0.105 0.107 0.118 0.143 0.190 0.229
BORF _ 7/3/24 - 19/4/11 22/3/9 20/0/14 25/0/9 23/0/11 20/0/14 21/0/13 23/0/11 28/0/6
0625 0.999 0.084 0.015 0.008 0.002 0.009 0.024 0.006 0.001 = le-03
-0.063 -0.019 0.035 0.081 0.086 0.088 0.099 0.124 0.170 0.210
LGBM _ 7/3/24 11/4/19 - 18/3/13 20/0/14 23/0/11 23/0/11 21/0/13 23/0/11 25/0/9 29/0/5
0606 0.997 0.916 0.114 0.007 0.002 0.008 0.054 0.003 = 1e-03 = le-03
-0.098 -0.054 -0.035 0.046 0.051 0.053 0.064 0.089 0.136 0.175
RIFC_ 4/4/26 9/3/22 13/3/18 - 20/0/14 21/0/13 22/0/12 21/0/13 23/0/11 25/0/9 26/0/8
0571 1.000 0.985 0.886 0.114 0.035. 0.039 0.098 0.019 0.002 = le-03
-0.144 -0.100 -0.081 -0.046 0.005 0.007 0.018 0.043 0.090 0.129 0.280
TIMESNET _ 10/0/24 14/0/20 14/0/20 14/0/20 - 16/2/16 19/2/13 15/2/17 20/3/11 23/2/9 23/1/10 27/2/5
0.525 1.000 0.992 0.994 0.889 0.634 0.316 0.575 0.053 0.004. 0.001 = le-03
-0. 0,105 -0.086 -0.051 -0.005 0.002 0013 0038 0.085 0.124 0.275
RAINDROP _~ g/0/26 9/0/25 11/0/23 13/0/21 16/2/16 - 20/2/12 16/2/16 16/2/16 20/2/12 26/1/7 28/3/3
0520 1.000 0.998 0.998 0.967 0.366 0.269 0.595 0.152 0.014 = le-03 = 1e-03
-0.151 -0.107 -0.088 -0.053 -0.007 -0.002 0,011 0.036 0.082 0.122 0.273
SAITS — 9/0/25 11/0/23 11/0/23 12/0/22 13/2/19 12/2/20 - 12/2/20 17/2/15 20/2/12 27/1/6 29/2/3
0518 0.999 0.992 0.992 0.962 0.684 0.731 0.714 0.196 0.022 = le-03 = le-03
-0.162 -0.118 -0.099 -0.064 -0.018 -0.013 -0.011 0.025 0071 0.111 0.262
KNN _ 6/0/28 14/0/20 13/0/21 13/0/21 17/2/15 16/2/16 20/2/12 - 14/3/17 18/3/13 23/2/9 25/5/4
0.507 1.000 0.977 0.948 0.905 0.425 0.405 0.286 0.422 0.101 0.016 = le-03
-0.187 -0.143 0124 -0.089 -0.043 -0.038 -0.036 -0.025 0.047 0.086 0.237
BRITS _ 9/0/25 13/0/21 11/0/23 11/0/23 11/3/20 16/2/16 15/2/17 17/3/14 - 19/4/11 22/1/11 27/3/4
0482 0.999 0.994 0.997 0.982 0.947 0.848 0.804 0578 0.032 0.004 = le-03
. -0.190 -0.170 -0.136 -0.090 -0.0 -0.082 -0.071 -0.047 0.039 0.190
GRUD _ 9/0/25 11/0/23 9/0/25 9/0/25 9/2/23 12/2/20 12/2/20 13/3/18 11/4/19 B 16/1/17 27/2/5
0435 1.000 1.000 1.000 0.998 0.996 0.986 0.978 0.899 0.968 0.182 = le-03
-0.273 -0.229 0210 0175 -0.129 -0.124 -0.122 -0.111 -0.086 -0.039 0.151
NCDE_ 7/0/27 6/0/28 5/0/29 8/0/26 10/1/23 7/1/26 6/1/27 9/2/23 1/1/22 17/1/16 - 27/1/6
0396 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.984 0.996 0.818 = 1e-03
-0.280 -0.275 -0.273 -0.262 -0.237 -0.190 -0.151
vy 5/2/27 3/3/28 3/2/29 475725 473727 5/2/27 CYEVEZ 1 I bold: then
0245 1.000 1.000 1.000 1.000 1.000 1.000 1.000 w :
(a) F1 score.
ROCKET BORF LGBM RIFC RAINDROP TIMESNET SAITS BRITS KNN GRU-D NCDE SVM
0742 0.700 0674 0.644 0581 0576 0.568 0554 0542 0508 0.456 0300
Mean-accuracy | 1 1 1 1 1 1 1 1 1 1
Mean-Difference _0.042 X 0.098 0.161 0.166 0.174 0.188 0.200 0.234 0.286
ROCKET _ r>c/r=c/r<c 24/3/7 25/3/6 25/4/5 29/0/5 29/0/5 28/0/6 25/0/9 27/1/6 25/1/8 29/0/5
0742 Wilcoxon pvalue 0.001 0.001 = le-03 = 1e-03 < 1e-03 = 1e-03 = le-03 = le-03 = 1e-03 = le-03
-0.042 0.026 0.056 0.119 0.124 0.132 0.146 0.158 0.192 0.244
BORF _ 7/3/24 - 18/7/9 21/3/10 25/0/9 26/0/8 25/0/9 21/0/13 20/1/13 25/0/9 31/0/3
0700 0.999 0.052 0.012 =< 1e-03 0.001 0.001 0.008 0.014 =< 1e-03 = le-03
-0.068 -0,026 0.030 0.094 0.098 0.106 0.120 0.132 0.166 0.218
LGBM _ 6/3/25 9/7/18 - 19/3/12 25/0/9 25/0/9 24/0/10 24/0/10 20/1/13 26/0/8 30/0/4
0.674 0.999 0.948 0.098 = 1e-03 = le-03 0.001 0.001 0.041 =< le-03 = le-03
-0.098 -0.056 -0.030 0.064 0.069 0.076 0.091 0.103 0.137 0.188
RIFC . 5/4/25 10/3/21 12/3/19 - 24/0/10 25/0/9 247/1/9 24/0/10 21/0/13 26/0/8 27/0/7
0.644 1.000 0.988. 0.902 0.012 0.007 0.005 0.011 0.045 < 1e-03 = 1e-03
-0.161 -0.119 -0.094 -0.064 0.005 0012 0,027 0.039 0.073 0.124 0.281
RAINDROP _ - 5/0/29 9/0/25 9/0/25 10/0/24 - 18/2/14 21/2/11 18/2/14 15/3/16 20/2/12 28/1/5 27/2/5
0:581 1.000 1.000 1.000 0.988 0.252 0.114 0.226 0.537 0.021 = le-03 = 1e-03
-0.166 -0.124 -0.098 -0.069 -0.005 0.007 0.022 0.034 0.068 0.120 0.276
TIMESNET _ 5/0/29 8/0/26 9/0/25 9/0/25 14/2/18 - 18/4/12 17/4/13 14/2/18 22/2/10 22/2/10 25/2/7
0576 1.000 0.999 1.000 0.994 0.748 0255 0.198 0.614 0.016 0.002 = le-03
0174 -0.132 -0.106 -0.076 -0.012 -0.007 0,015 0.027 0.061 0.112 0.269
SAITS _ 6/0/28 9/0/25 10/0/24 9/1/24 11/2/21 12/4/18 - 14/3/17 12/2/20 18/2/14 25/1/8 28/2/4
0568 1.000 0.999 0.999 0.995 0.886 0.745 0.591 0.684 0.071 0.001 = le-03
-0.188 -0.146 -0.120 -0.091 -0.027 -0.022 -0.015 0012 0.046 0.098 0.254
BRITS _ 9/0/25 13/0/21 10/0/24 10/0/24 14/2/18 13/4/17 17/3/14 - 16/3/15 19/4/11 22/2/10 28/3/3
0554 1.000 0.992 0.999 0.989 0.774 0.802 0.409 0510 0.023 0.004 = le-03
-0.200 -0.158 0132 -0.103 -0.039 -0.034 -0.027 -0.012 0.034 0.086 0.242
KNN _ 6/1/27 13/1/20 13/1/20 13/0/21 16/3/15 18/2/14 20/2/12 15/3/16 - 17/4/13 23/2/9 26/5/3
0542 1.000 0.986 0.959 0.956 0.463 0.386 0316 0.490 0.158 0.028 = le-03
-0.234 -0.192 -0.166 -0.137 -0.073 -0.068 -0.061 -0.046 -0.034 0.052 0.208
GRUD . g/1/25 9/0/25 8/0/26 8/0/26 12/2/20 10/2/22 14/2/18 11/4/19 13/4/17 - 19/1/14 27/3/4
0508 1.000 1.000 1.000 1.000 0.979 0.984 0.929 0.977 0.842 0.112 = le-03
-0.286 -0.244 -0.218 -0.188 -0.124 -0.120 -0.112 -0.098 -0.086 -0.052 0.157
NCDE _ 5/0/29 3/0/31 470730 7/0/27 5/1/28 10/2/22 8/1/25 10/2/22 9/2/23 14/1/19 - 25/1/8
0456 1.000 1.000 1.000 1.000 1.000 0.998 0.999 0.996 0972 0.888 = le-03
-0.281 -0.276 -0.269 -0.254 -0.242 -0.208 -0.157 5
Svm 5/2/27 7/2/25 4/2/28 3/3/28 3/5/26 4/3/27 8/i/25 Ifinbold, then
0300 1.000 1.000 1.000 1.000 {000 1.000 1.000 L3 <

(b) Accuracy.

Figure 12: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).

28

Under review as a conference paper at ICLR 2026

ROCKET BORF LGBM RIFC TIMESNET SAITS KNN RAINDROP BRITS GRU-D NCDE SVM
0677 0.650 0619 0.600 0.550 0548 0548 0543 0507 0.464 0415 0.269
Mean-precision | 1 1 1 1 1 1 ! ! ! !
Mean-Difference _0.027 0.058 0.077 0.127 0.128 0.128 0.133 0.169 0.213 0.261
ROCKET _ ‘r>c/r=c/r<c 24/3/7 24/3/7 26/4/4 24/0/10 26/0/8 27/1/6 26/0/8 25/0/9 24/1/9 26/0/8
0677 wilcoxon p-value 0.002 0.006 0.001 0.002 0.005 0.001 0.001 0.002 0.001 = 1e-03
-0.027 0.031 0.050 0.099 0.101 0.101 0.106 0.142 0.186 0.234
BORF _ 77324 - 19/4/11 20/3/11 22/0/12 24/0/10 21/0/13 24/0/10 22/0/12 25/0/9 28/0/6
0.650 0.998 0.074 0.024 0.016 0.014 0.047 0.005 0.008 0.001 = le-03
-0.058 -0.031 0.019 0.069 0.071 0.071 0.076 0.112 0.155 0.204
LGBM . 7/3/24 11/4/19 - 19/3/12 21/0/13 23/0/11 21/0/13 23/0/11 24/0/10 26/0/8 29/0/5
0619 0.994 0.926 0.104 0.005 0.014 0.081 0.005 0.005 0.001 = le-03
-0.077 -0.050 -0.019 0.050 0.051 0.051 0.056 0.092 0.136 0.184
RIFC . 4/4/26 11/3/20 12/3/19 - 19/0/15 22/0/12 21/0/13 23/0/11 22/0/12 25/0/9 27/0/7
0.600 0.999 0.976 0.896 0.107 0.045 0176 0.032 0.024 0.002 0.001
-0.127 -0.099 -0.069 -0.050 0.002 0.002 0.007 0.043 0.087 0.135
TIMESNET _ 10/0/24 12/0/22 13/0/21 15/0/19 - 19/2/13 14/2/18 13/2/19 19/3/12 22/2/10 23/1/10
0:550 0.998 0.985 0.995 0.896 0316 0.684 0.684 0.095 0.015 0.001
-0.128 0.101 -0.071 -0.051 -0.002 0.000 0.005 0.041 0.085 0.133
SATS _ 8/0/26 10/0/24 11/0/23 12/0/22 13/2/19 - 12/2/20 13/2/19 16/2/16 19/2/13 28/1/5
0.548 0.995 0.986 0.987 0.956 0.684 0.748 0.608 0.201 0.029 = le-03
-0.128 -0.101 -0.071 -0.051 -0.002 -0.000 0.005 0.041 0.085 0.133
KNN _ 671727 13/0/21 13/0/21 13/0/21 18/2/14 20/2/12 - 18/2/14 16/3/15 20/4/10 23/2/9
0.548 0.999 0.955 0.921 0.829 0316 0.252 0.236 0.278 0.037 0.008
-0.133 -0.106 -0.076 -0.056 -0.007 -0.005 -0.005 0.036 0.080 0.128 0.274
RAINDROP _~ 8/0/26 10/0/24 11/0/23 11/0/23 19/2/13 19/2/13 14/2/18 - 15/2/17 20/2/12 26/1/7 28/3/3
0543 0.999 0.995 0.995 0.969 0316 0392 0.764 0.211 0.018 = 1e-03 = 1e-03
-0.169 -0.142 0112 -0.092 -0.043 -0.041 -0.041 -0.036 0.044 0.092 0.238
BRITS _ 9/0/25 12/0/22 10/0/24 12/0/22 12/3/19 16/2/16 15/3/16 17/2/15 - 20/4/10 23/1/10 25/3/6
0507 0.998 0.992 0.995 0.977 0.905 0.799 0.722 0.789 0.059 0.004 = 1e-03
0213 -0.186 -0.155 -0.136 -0.087 -0.085 -0.085 -0.080 -0.044 0.048 0.195
GRU-D _" 9/1/24 9/0/25 8/0/26 9/0/25 10/2/22 13/2/19 10/4/20 12/2/20 10/4/20 B 17/1/16 24/3/7
0.464 0.999 0.999 0.999 0.998 0.985 0.971 0.963 0.982 0.941 0.137 = le-03
-0.261 -0.234 -0.204 -0.184 -0.135 0133 -0.133 -0.128 -0.092 -0.048 0.146
NCDE _ 8/0/26 6/0/28 5/0/29 7/0/27 10/1/23 5/1/28 9/2/23 7/1/26 10/1/23 16/1/17 - 24/1/9
0.415 1.000 1.000 1.000 0.999 0.999 1.000 0.992 1.000 0.996 0.863 0.001
0.238 -0.195 -0.146
SYM 6/3/25 71324 G) YT I I bold, then
0.269 1,000 1,000 0999 Prvalue <0.05
(a) Precision.
ROCKET BORF LGBM RIFC TIMESNET RAINDROP KNN SAITS BRITS NCDE SVM
0.691 0.645 0625 0591 0540 0538 0535 0533 0.506 0423 0.283
Mean-recall 1 1 1 1 1 1 1 1 1 !
Mean-Difference _0.047 .067 0.100 0.151 0.153 0.156 0.158 0.186 0.268
ROCKET _ ‘r>c/r=c/r<c 22/4/8 24/4/6 26/4/4 25/1/8 27/1/6 27/1/6 26/0/8 26/0/8 27/0/7
0.691 wilcoxon p-value. 0.001 0.001 =< le-03 = le-03 = 1e-03 = le-03 = le-03 = le-03 = 1e-03
-0.047 0.020 0.053 0.104 0.106 0.110 0.111 0.139 0.179 0.221
BORF _ g/a/22 - 19/4/11 22/4/8 22/1/11 24/1/9 20/0/14 24/0/10 22/0/12 23/0/11 28/0/6
0645 0.999 0.074 0.013 0.004 0.001 0.026 0.003 0.006 = le-03 = le-03
-0.067 -0.020 0,033 0.085 0.087 0.090 0.092 0.202
LGBM _ 6/4/24 11/4/19 - 19/4/11 21/1/12 23/1/10 19/1/14 22/0/12 29/0/5
0.625 0.999 0.926 0.072 0.002 0.001 0.071 0.004 = le-03
-0.100 -0.053 -0.033 0.051 0.053 0.056 0.058 0.086 0.125 0.168
RIFC . 4/4/26 8/4/22 11/4/19 - 22/1/11 22/1/11 21/0/13 23/1/10 24/0/10 25/0/9 26/0/8
0.591 1.000 0.987 0.928 0.0a4 0.026 0.098 0.020 0.012 0.001 = le-03
-0.151 -0.104 -0.085 -0.051 0.002 0.005 0.007 0.034 0.074 0.117 0.257
TIMESNET _ /125 11/1/22 12/1/21 11/1/22 - 15/3/16 14/2/18 19/2/13 21/3/10 22/2/10 23/1/10 26/3/5
0540 1.000 0.996 0.998 0.956 0585 0.678 0252 0.065 0.012 0.001 =< le-03
0153 -0.106 -0.087 -0.053 -0.002 0.003 0.005 0,032 0.072 0.115 0.255
RAINDROP _ 61727 9/1/24 10/1/23 11/1/22 16/3/15 - 16/2/16 21/2/11 19/2/13 20/2/12 26/1/7 28/3/3
0538 1.000 0.999 0.999 0.974 0415 0.640 0.231 0.148 0.016 = le-03 = 1e-03
-0.156 -0.110 -0.090 -0.056 -0.005 -0.003 0.002 0.029 0.069 0.112 0.252
KNN _ 671727 14/0/20 14/1/19 13/0/21 18/2/14 16/2/16 - 19/2/13 15/4/15 17/4/13 23/2/9 26/6/2
0535 1.000 0.975 0.929 0.905 0322 0.360 0.269 0.356 0.095 0.011 = le-03
-0.158 -0.111 -0.092 -0.058 -0.007 -0.005 -0.002 0.027 0.067 0.110 0.250
SATS _ 8/0/26 10/0/24 12/0/22 10/1/23 13/2/19 11/2/21 13/2/19 - 16/2/16 19/2/13 27/1/6 29/2/3
0533 1.000 0.997 0.996 0.980 0.748 0.769 0.731 0.280 0.039 = le-03 = le-03
-0.186 -0.139 0119 -0.086 -0.034 -0.032 -0.029 -0.027 0.040 0.083 0.223
BRITS _ 8/0/26 12/0/22 10/0/24 10/0/24 10/3/21 13/2/19 15/4/15 16/2/16 - 17/4/13 23/1/10 27/3/4
0506 1.000 0.994 0.999 0.988 0935 0.852 0.644 0.720 0.082 0.005 = 1e-03
-0.226 -0.179 -0.159 -0.125 0074 -0.072 -0.069 -0.067 -0.040 0,043 0.183
GRUD _ 9/1/24 11/0/23 10/0/24 9/0/25 10/2/22 12/2/20 13/4/17 13/2/19 13/4/17 - 18/1/15 27/3/4
0.466 1.000 1.000 1.000 0.999 0.988 0.984 0.905 0.961 0.918 0.137 = le-03
0117 -0.115 -0.112 -0.110 -0.083 -0.043 0.140
NCDE 10/1/23 7/1/26 9/2/23 6/1/27 10/1/23 15/1/18 - 27/1/6
0.423 0.999 1.000 0.989 1.000 0.995 0.863 = le-03
0257 -0.255 -0.252 -0.250 -0.223 -0.183 -0.140 n
SYM 5/3/26 3/3/28 2/6/26 3/2/29 4/3/27 4/3/27 6/1/27 Ifin bold, then
0.283 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L 8

(b) Recall.

Figure 13: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).

29

Under review as a conference paper at ICLR 2026

LGBM ROCKET RIFC BORF ICDE GRU-D TIMESNET KNN RAINDROP SVM SAITS RITS
472.791 1485.083 1656.918 5298.659 6877.340 9351653 12925.685 16523.164 18921.227 21772.918 30426.722 60025.019
Mean-total_time | i 1 1 1 1 1 1 i i 1
Mean-Difference -1012.291 -1184.127 -4825.868 -6404.549 -8878.861 -12452.894 -16050373 -18448.436 -21300.127 -29953.930
LGBM _r>c/r=c/r<c 29/0/5 22/0/12 14/0/20 13/0/21 3/0/31 0/0/34 8/0/26 12/0/22 10/0/24 0/0/34
472791 \ilcoxon pvalue = 1e-03 0.058 0.845 0.902 1.000 1.000 1.000 0.988 0.999 1.000
1012.291 -171.836 -3813.576 -5392.258 -7866.570 -11440.602 -15038.081 -17436.145 -20287.836 -28941639
ROCKET _ 5/0/29 - 18/0/16 5/0/29 1/0/33 1/0/33 0/0/34 1/0/33 0/0/34 0/0/34 0/0/34
1485.083 1.000 0.407 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1184.127 171.836 -3641.741 -5220.422 -7694.734 11268767 -14866.246 -17264.309 -20116.000 -28769.803
RIFC_ 12/0/22 16/0/18 - 2/0/32 2/0/32 1/0/33 1/0/33 2/0/32 1/0/33 1/0/33 1/0/33
1656.918 0.944 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4825.868 3813.576 3641.741 -1578.682 -4052.994 -7627.026 -11224.505 -13622.568 -16474.260 -25128.063
BORF _ 20/0/14 29/0/5 32/0/2 - 13/0/21 3/0/31 2/0/32 8/0/26 5/0/29 7/0/27 2/0/32
5298.659 0.159 = le-03 = le-03 0.837 1.000 1.000 1.000 1.000 1.000 1.000
6404.549 5392.258 5220.422 1578.682 -2474.312 -6048.345 -9645.823 -12043.887 -14895.578 -23549.381
NCDE _ 2170713 33/0/1 32/0/2 21/0/13 - 10/1723 5/1/28 15/2/17 17/1/16 14/1/19 471/29
6877.340 0.101 = le-03 = le-03 0.167 0.998 1.000 0.984 0.822 0.993 1.000
8878.861 7866.570 7694.734 4052.994 2474.312 -3574.032 7171511 -9569.575 12421266 -21075.069
GRUD _ 31/0/3 33/0/1 33/0/1 31/0/3 23/1/10 - 4/2/28 19/2/13 21/2/11 23/2/9 1/2/31
9351.653 = le-03 = 1e-03 = 1e-03 = 1e-03 0.002 1.000 0.672 0.335 0.196 1.000
12452.894 11440.602 11268.767 7627.026 6048.345 3574.032 -3597.479 -5995.542 -8847.233 -17501.037
TIMESNET _ "347/0/0 34/0/0 33/0/1 32/0/2 28/1/5 28/2/4 - 24/2/8 27/2/5 27/2/5 4/2/28
12925.685 = le-03 = le-03 = le-03 = 1e-03 = 1e-03 = 1e-03 0.001 1.000
16050.373 15038.081 14866.246 11224.505 9645.823 7171511 3597.479 -2398.063 -5249.755 -13903.558
KNN _ "26/0/8 33/0/1 32/0/2 26/0/8 17/2/15 13/2/19 8/2/24 - 16/2/16 13/3/18 3/2/29
16523.164 = le-03 = 1e-03 = 1e-03 = 1e-03 0.016 0.328 0.903 0.221 0.551 1.000
18448.436 17436.145 17264309 13622.568 12043887 9569.575 5995.542 2398.063 -2851.691 -11505.494
RAINDROP _ 22/0/12 34/0/0 33/0/1 29/0/5 16/1/17 11/2/21 5/2/27 16/2/16 - 16/2/16 2/2/30
18921.227 0.012 = 1e-03 = 1e-03 = 1e-03 0.178 0.665 0.999 0.779 0.684 1.000
21300.127 20287.836 20116.000 16474.260 14895.578 12421.266 8847.233 5249.755 2851.691 -8653.803
SVM_ 24/0/10 34/0/0 33/0/1 27/0/7 19/1/14 9/2/23 5/2/27 18/3/13 16/2/16 - 3/2/29
21772918 0.001 = le-03 = le-03 = le-03 0.007 0.804 0.998 0.449 0316 1.000
29953.930 28941.639 28769.803 25128.063 23549.381 21075.069 17501.037 13903.558 11505.494 8653.803 -29598.297
SATS _ '34/0/0 3a/0/0 33/0/1 32/0/2 29/1/4 31/2/1 28/2/4 29/2/3 30/2/2 29/2/3 - 4/2/28
30426.722 = 1e-03 = le-03 = le-03 = le-03 = 1e-03 = 1e-03 = le-03 = le-03 = 1e-03 = le-03 1.000
BRITS 32X Ba953% ifinbold, then
60025.019 ' he-03 812hs pevalue < 0.05
(a) Total Runtime.
ROCKET BORF LGBM RIFC SAITS RAINDROP TIMESNET BRITS GRU-D KNN NCDE svM
0.851 0.844 0.832 0.815 0.748 0.744 0.741 0.736 0.718 0.701 0.693 0.493
Mean-roc_auc | 1 1 1 1 1 1 1 1 1 1
Mean-Difference _0.007 0.019 0.036 0.104 0.108 0.111 0.115 0.133 0.151 0.158
ROCKET _'r>c/r=c/r<c 23/4/7 21/4/9 27/4/3 27/0/7 27/1/6 27/0/7 25/1/8 25/0/9 30/0/4 27/0/7
0851 " wilcoxon p-value 0.007 0.021 = 1e-03 0.002 0.001 = le-03 0.002 0.002 = le-03 = le-03
-0.007 0.012 0.029 0.097 0.101 0.104 0.108 0.126 0.144. 0.151
BORF _ 77423 - 18/4/12 22/4/8 27/0/7 25/1/8 24/0/10 22/1/11 22/0/12 23/0/11 2970/5
0.844 0.993 0.128 0.007 0.001 0.001 = 1e-03 0.004 0.001 0.005 = le-03
-0.019 -0.012 0.017 0.085 0.089 0.092 0.096 0.114 0.132 0.139
LGBM _ 9/4/21 12/4/18 - 20/4/10 24/0/10 27/1/6 25/0/9 23/1/10 26/0/8 21/0/13 29/0/5
0.832 0.979 0.872 0.057 0.004 = le-03 = le-03 0.002 0.001 0.025 = le-03
-0.036 -0.029 -0.017 0.068 0.072 0.075 0.080 0.098 0.115 0.122
RIFC_ 374727 8/4/22 10/4/20 - 24/0/10 21/1/12 21/0/13 21/1/12 24/0/10 22/0/12 26/0/8
0815 1.000 0.993 0.943 0.026 0.045 0.030 0.016 0.003. 0.023 0.002
-0.104 -0.097 -0.085 -0.068 0.004 0.007 0012 0.030 0.047 0.054
SATS . 7/0/27 7/0/27 10/0/24 10/0/24 - 14/2/18 13/2/19 14/2/18 20/2/12 13/2/19 25/1/8
0.748 0.998 0.999 0.996 0.975 0.678 0.702 0.425 0.091 0541 0.010
-0.108 -0.101 -0.089 0.072 -0.004 0.003 0.008 0.026 0.043 0.050
RAINDROP _ 6 /1 /27 8/1/25 6/1/27 12/1/21 18/2/14 - 17/2/15 16/3/15 19/2/13 13/2/19 23/1/10
0.744 0.999 0.999 1.000 0.955 0322 0.231 0.307 0.088 0527 0.010
-0.111 -0.104 -0.092 -0.075 -0.007 -0.003 0.005 0.023 0.040 0.047
TIMESNET _ 7/0/27 10/0/24 9/0/25 13/0/21 19/2/13 15/2/17 - 18/2/14 21/2/11 13/2/19 23/1/10
0741 1.000 1.000 1.000 0.971 0298 0.769 0.208 0.058 0.601 0.052
-0.115 -0.108 -0.096 -0.080 0012 -0.008 -0.005 0.018 0.035 0.043
BRITS _ g/1/25 11/1/22 10/1/23 12/1/21 18/2/14 15/3/16 14/2/18 - 20/2/12 15/2/17 23/1/10
0736 0.998 0.996 0.998 0.984 0575 0.693 0.702 0.122 0527 0.014
-0.133 0.126 0114 -0.098 -0.030 -0.026 -0.023 -0.018 0017 0,025 0.225
GRU-D " 9/0/25 12/0/22 8/0/26 10/0/24 12/2/20 13/2/19 11/2/21 12/2/20 - 15/2/17 20/1/13 29/2/3
0.718 0.998 0.999 0.999 0.997 0.909 0.912 0.942 0.878 0.708 0.161 = le-03
-0.151 -0.144 -0.132 -0.115 -0.047 -0.043 -0.040 -0.035 -0.017 0.007 0.207
KNN _ 470730 11/0/23 13/0/21 12/0/22 19/2/13 19/2/13 19/2/13 17/2/15 17/2/15 - 20/2/12 26/6/2
0.701 1.000 0.995 0.976 0.978 0.459 0.473 0.399 0.473 0.202 0.152 = le-03
-0.158 -0.151 -0.139 -0.122 -0.054 -0.050 -0.047 -0.043 -0.025 -0.007 0.200
NCDE _ 7/0727 5/0/29 5/0/29 8/0/26 8/1/25 10/1/23 10/1/23 10/1/23 13/1/20 12/2/20 - 29/1/4
0.693 1.000 1.000 1.000 0.998 0.990 0.990 0.948 0.986 0.839 0.848 = le-03
-0.225 -0.207 -0.200
SVM 3/2/29 2/6/26 EUENEC ' oo\, then
0.493 1.000 1.000 1.000 & -

(b) ROC-AUC.

Figure 14: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).

30

Under review as a conference paper at ICLR 2026

11
SVM SVYM
10 R
9 NCDE 4 .NCDE
< 89 4
o GRU-D GRU-D
>
4 SAITS SAITS
é 74 TIMESNET 4 TIMESNET
® RAINDRBF> rafifkop
c KNN
©
2o :
RIFC RIFC
51 LGBM 1 LGBM
BORF BORF
44 4
ROCKET ROCKET
3 T T T T T T T
102 10° 10 10° 108 10t 102 103 104 10%
mean training runtime (s) mean inference runtime (s)
(a) Accuracy.
11
SVM SYM
10 4
94 1
NCDE NCDE
2 8]
o
g GRU-D GRU-D
©, ; SAITS o SAITS ROP
o 74 1
¢ TfdREee TingAPRe i
s
Q)
E 6 R
RIFC RIFC
54 1
J GBM BORF § GBM BORF
4 1
ROCKET ROCKET
10? 10° 10* 10° 10° 10! 10? 10° 10* 10°
mean training runtime (s) mean inference runtime (s)
(b) ROC-AUC.

Figure 15: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.

31

Under review as a conference paper at ICLR 2026

11
SVM SVYM
10 1
94 1
NCDE NCDE
€ 89 GRU-D E GRU-D
c
2
u
8 7 SAITERITS 1 SATBRITS
a RAINDROP RAINDROP
S TIMESNET TIMESNET KNN
2o : '
RIFC RIFC
5 LGBM J LGBM
BORF BORF
44 i
ROCKET ROCKET
3 T T T T T T T
102 10° 104 10° 108 10! 102 10° 104 10°
mean training runtime (s) mean inference runtime (s)
(a) Precision.
11
SVM SYM
104 1
94 1
NCDE NCDE
4 8- 7
c
o GRU-D GRU-D
T
8§ 71 SAERITS 1 saPEITS
g TIMESNET _, TIMESNET __ KNN
E 6 RAINDROP g RAINDROP
RIFC RIFC
5] LGBM | LGBM
BORF BORF
44 d
ROCKET ROCKET
3 T T T T T T T
102 10° 10* 10° 108 10! 102 10° 104 10°
mean training runtime (s) mean inference runtime (s)
(b) Recall.

Figure 16: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.

32

Under review as a conference paper at ICLR 2026

11
109 SVM] SVM
94 1
8+ 4 KNN
< GRU-D TIMESNET
S N
= \ / TIMESNET
£ 79 BRITS 1 NCDE GRU:D BRITS
© /1/ — RAINDROP
NCDE
£ 6 RAINDROP i |
BORF BORF
54 ROCKET 4 ROCKET
LGBM LGBM
RIFC RIFC
44 i
3 T T T T T T T
102 10° 104 10° 108 10! 102 10° 104 10°
mean training runtime (s) mean inference runtime (s)
(a) Unevenly Sampled.
11
104 4
94 1
NCDE NCDE
84 1
i~ SVM SVM
c
8 BORF BORF i\
& 74 |
c TIMESNET TIMESNET
3 GRU-D GRU-D
E o ROCKET RAINDROP | ROCKET RAINDROP
BRITS BRITS
LG%NFC §CM RIFC
SAITS SAITS
54 1
44 d
3 T T T T T T T
102 10° 10* 10° 108 10! 102 10° 104 10°
mean training runtime (s) mean inference runtime (s)
(b) Partially Observed.

Figure 17: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for

subsets of datasets. Best values are on the bottom-left of each plot.

33

Under review as a conference paper at ICLR 2026

12
SVM SVM
101 1
NCDE NCDE
84 GRU-D] GRU-D
=
e BRITS BRITS
E SAITS SAITS KNN
S RAINDROP RAINDROP
£ 6 TIMESNET 1 TIMESNET
RIFC RIFC
LGBM LGBM
BORF BORF
2 1
ROCKET ROCKET
2 T T T T T T T
102 10° 104 10 106 10! 10? 10° 104 10
mean training runtime (s) mean inference runtime (s)
(a) Unequal Length.
11
SVM SVM
101 1
KNN
94 4 ¢
8 1
¥
S TIMESNET TIMESNET
2 74 NGBE BRITS 1 NCDE G,@ BRITS
g #
£ GRU-D SAITS SAITSRAINDROP
_
61 RAINDROP 1
BORF BORF
ROCKET ROCKET
5 1
LGBM LGBM
o RIFC 1 RIFC
3 T T T T T T T
10? 10° 104 10 106 10! 10? 10° 104 10

mean training runtime (s) mean inference runtime (s)

(b) Shift.

Figure 18: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.

34

Under review as a conference paper at ICLR 2026

11
éVM ,§VM
104 1
94 1
d(NN
81 NCDE TIMESNET 1 TIMESNET
=
© \\Ly BRITS NCDE BRITS
o
T GRYARrs 1 OSAITS
3 RAINDROP f RAINDROP
£ GRU-D
6 1
51 BORF 1 BORF
ROCKET ROCKET
LGBM LGBM
41 RIFC 1 RIFC
3 T T T T T T T
102 103 104 10° 108 10t 102 103 104 10°
mean training runtime (s) mean inference runtime (s)
(a) Ragged Sampling.

Figure 19: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.

—

N 1
W oIl
N
m

-LGBM
-RIFC
-BORF
-ROCKET
-BRITS
-GRU-D

-NCDE

-SVM

-KNN

-RAINDROP

-SAITS

TIMESNET

LGBM
RIFC
BORF
BRITS
GRU-D
NCDE
SVM
KNN
SAITS

-
w
¥4
]
@]
x

RAINDROP
TIMESNET

Figure 20: F1 rank correlation between models. Models are hierarchically clustered using average
linkage applied to the rank correlation matrix. Positive correlations indicate that models tend
to perform similarly across datasets, reflecting comparable strengths or weaknesses. Negative
correlations suggest that models excel on different datasets, revealing complementary behaviors or
distinct inductive biases.

35

Under review as a conference paper at ICLR 2026

100650 OV'0 €00FC90 WOFY6'0 coF06'0 00F9'0 800F€90 $6'0 880 100F09°0 800F0S'0 L6°0 IA
1000FST°0 - 100FCST0 T100FLSO 900F8E0 200FST0 100F€€°0 LLO - 000F¢€CT0 000F€ECTO o Vi
600F61'0 €I°0 I10FLSO <O0F88°0 800FGLO vOOFOP'0 SOOFCI'0O S9°0 LL'O 800F8E0 SOOFPEQD SLO0 ZDS
900FFC’0 9T0 COFLTO 800F080 Y00FC80 SIOFOP'0 800FEECO TYO 8E€'0 LI0OF6Y'O STOF8Y0 LYO a8
000F66°0 C9°0 100FS6'0 000F86°0 <cv0FG9'0 000F86°0 I00FPLO L60 L60 000F66'0 000F66'0 860 AVS
WoFSH'0 0T0 900F6E£0 100F680 CWOFLY'0 €00F€S0 I00F8CO IL0 ¥9°0 OI'0FOCO P00F9E'0 LS80 1d
900FLS0 9I'0 L00FE90 O000FELQ <IOFO9'0 ve0F9F'0 <0oF0E0 ¥S°0 190 vI'0F9T0 £00F¥E0 9%'0 ZDd
SO0FEP'0 O¥'0 ToFC9'0 000FO0F0 000+0¥°0 9COF8P'O0 6TOFLEO OO0 8L'Q 000F8L'O0 000+8L°0 Ov'0 3dd
- - - 0r'0F99°0 ct'0FLED - - €e’0 - - - €60 Wvd
I00FTL 0 SO0 000FZLQ T00F[LQ €00F99'0 100F690 - SL0 - Wo+6C0 000F6v'0 IL0 6Td
100F96°0 9¥'0 100F66°0 T00FLY'O 100F€9°0 <00F96'0 100F6¥0 S0 CTI'0 <OF[90 000F9%°0 IS0 TId
100+F€6'0 $¥0 ¥vE0FL90 000F¥6'0 +00F06'0 vOOF¥L'0 <00FE90 960 880 100+FC6'0 000+C6'0 S8°0 di
IF0FCH'0 S€0 0I'0F9F'0 000F6E’0 <0980 SIOF9E'0 LI'0OFPE0 I¥'0 S€0 000F6E’0 IT0OFCH0 LTO €IW
00+LC0 <00 900+9C°0 100FC00 0TOFTED 600+EE0 L00FPP'0 €50 <00 YIOFICO 0T0+8C0 €L0 VdI
100FL6°0 L¥VO 100F96'0 100F¥6'0 01'0F68°0 <OO0FP6'0 <0FLSO €60 960 100F96'0 000F96'0 ILO AL
000+09°0 200 LOOFEI'O0 000+ECO0 PEOF6L0 000FC0'0 <00+0I'0 IL°0 - 000F19°0 100F69°0 8¥°0 MI
WoFee'0 900 <roF6I'0 100F69°0 CIOFVY'O0 vOOFECO YOOFIT'0O 870 90 VOOFOI'0 600FLI'O 8S0 YAl
WoFpy'0 €10 OI0FEy0 <0o+0L'0 ¥IOF6Y'0 v00F9¥'0 100F9C°0 6S0 €90 LOOFEI'0 LOOFBI'O +9°0 AD
000Fy¥'0 TI°0 600F€L’0 100FQL0 TFOFLY'O 800FHP'0 SOOFEI'0 0S0 90 VOOFII'0 600F600 SS°0 XD
- - - STOFIE0 C00FLO0 - 6C0+CE0 €10 - - - 170 SD
YO0F8S0 €F'0 OI0OFPSO SOOFSEYQ SO0F9L0 O0I'0FE9'0 100FCE0 €L0 PLO ¥vT0F960 F¥OOFICO 6L0 Tdd
900F€L0 9I'0 TWOFGLO <00+680 P00F080 SOOFI8O <WO0FCE0 8LO SLO F¥LOFETO 900FLC0 880 TdD
€00FCE0 100 TFOFLTO €00F8P°0 SO0F9TO0 €00F[EO I0OOFLI'O 6C0 $I'0 <00F900 <O0FCT0 +E0 EWD
00FCH0 €10 STOFPCO SO0FLEO £00F9€'0 SIOFOL0 800F0C0 6£0 9C0 800FOF0 SOOFCEOD 0S0 CWD
00F0S'0 ¥0'0 CWOFIFO <00F99Q cWOoF6r0 11'0F9F0 WoFETO LSO €0 800FHTO0 POOFLY'O 850 TWD
Wo+E9'0 960 100F96°0 000FCH'0 000FCH'O0 I1€0F8L'0 €I0F08°0 V0 L6'0 LTOFESO TOOFE6'0 TPO na
00FCy0 680 OFOFLSO 000FpE0 000FHE0 <COFO9'0 YOOFISO +vE0 060 LOOFILO LOOFCLO ¥E€0 oa
Wo+0T0 €C0 900FEy0 €00FpS0 YOOF6Y'0 YOOFSH(O TlOF6C0 ¢SO0 PPO L00FOF(0 <00+TS0 IS0 aa
WOFS6'0 890 SO0FP6'0 000F86°0 COOFH6'0 000FL6'0 T00FLBO S60 860 0£0FH9'0 SO0F96'0 +6°0 ID
000+66'0 OI'0 000F66'0 100F66°0 8COFLLO 100FL6'0 O000FI80O S6'0 9¢0 OI'0FE90 000F66'0 S60 DUV
wWoF980 S00 100FH80 000F96°0 €00FR0O 100FLLO 000F69°0 080 PE€0 1€0F6¥0 <OOFL0 160 IV
€00F+¢90 C00 TOFGCLO 100F080 £00F89°0 €00F99°0 I00FISO 890 Y90 8TOFIELO 000+0€0 T80 DOV
100F[9°'0 LOO0 €00F6S0 ¥00F06'0 <00F880 SOO0FHF9'0 I110FeF'0 080 080 €00F89'0 000+69°0 080 NY
00FIE€0 CE0 €00F0€0 000FLI'O O000FLI'QO 100FLTO COFIPFO LIO [€0 600F8C°0 100F€E0 LI'O 49V
LANSHIL INAS SI1IVS LANDO0Y 24d1d dOYANIVH HADN INEDT NN a-nIdon SLIgd Jd04d

"PIOQ UI 9I€ JISBIBP OB J0J SIN[BA 19 9], "SWNUNI WNWIXeW IO AIOWAW SUIPIIIXI 0] NP I san[eA SUISSIA "WAS PUB ‘WIDT ‘NN ‘4404 saplsaq sayoeoldde
Ire o1 ‘uvonezireniut uodn puadop ATySIy Jey) SPOYIoW J0J USYE) SI SUnI ¢ Jo 9FeIoAe oy, “IOYISSR[O JOoea pue Joselep Yoea JoJ Jas 1s9) 9y U0 2I00S [:/ d[qel,

36

Under review as a conference paper at ICLR 2026

E COMPLEXITY AND PIPELINE COSTS

In this section, we analyze the efficiency of our proposed library and the benchmarked classifiers
in terms of both time and space complexity. The end-to-end cost of the classification pipeline
consists of three components: (i) loading the dataset from disk into memory, (ii) converting it into
a dense representation, and (iii) running the models. The last component is an external cost, since
pyrregular wraps existing state-of-the-art classifiers from other libraries, and is reported separately
in Table [0l

In Table 8 we report instead the internal costs for datasets with a size greater than 10MB. The first
two columns of report the empirical times needed for dataset loading and conversion. Theoretically,
the dominant cost arises when converting the sparse COO representation into dense form, which
requires ranking the timestamps (Section). This amounts to sorting within each time series, leading
to a complexity that scales linearly with the number of time series and log-linearly with the number
of non-null observations per series. Thus, in practice, runtimes are efficient: for example, P19 takes
less than 3 seconds end-to-end, while the largest dataset, PA2, is converted in under one minute.

The third and fourth columns of Table [§|compare disk usage of our proposed array format with that
of the raw data. In most cases, the proposed format either matches or substantially reduces disk
requirements. For instance, GS decreases from 0.24GB in raw form to 0.09GB with our approach,
while the reduction is even more pronounced for TA, which shrinks from 1.81GB to only 0.08GB.
These reductions are especially valuable for large-scale datasets where disk I/O is a bottleneck.

The last three columns of Table 8] detail the memory footprint of different representations. The sparse
COO representation incurs a cost of four times the number of non-null observations, accounting
for the storage of coordinates and values. Conversion into a minimally ragged dense format leads
to a worst-case memory complexity of O(n x d x T'), where T' = max]'(7;) is the longest series
length. If the dataset is instead expanded into a fully ragged dense array, the worst-case complexity
becomes O(n x d x T), which grows quickly with irregularity. Empirical results illustrate these
trends. For example, on PA2, the sparse representation required only 3.93GB, compared to 5.33GB
for a minimally ragged dense format. The largest savings are seen in highly irregular datasets: for
TA, the sparse format used 0.34GB, while the fully ragged dense array would require over 4TB of
memory, an impractical cost.

Table 8: Loading and conversion times (in seconds) for datasets using the proposed array format,
along with disk size consumption (GB) compared to the raw data. Memory usage (GB) of the sparse
representation is also reported relative to dense alternatives.

time (s) disk size (GB) memory (GB)

dense w/o dense with

Loading Conversion ours raw ours raggedness raggedness

ABF 0.03 0.06 ~0.00 0.01 ~0.00 ~0.00 0.81
AOC 0.09 0.12 0.01 ~0.00 0.02 0.01 0.01
APT 0.30 0.42 0.02 0.02 0.08 0.11 0.11
ARC 0.21 0.28 0.01 0.01 0.05 0.14 0.14
CT 0.12 0.16 0.01 0.01 0.03 0.01 0.01
GS 1.25 3.62 0.09 0.24 0.29 8.58 377.15
Iw 6.93 13.01 0.36 0.31 2.00 1.64 1.64
LPA 0.07 0.10 ~0.00 0.02 0.01 0.07 4.02
MI3 0.13 0.01 ~0.00 0.04 ~0.00 ~0.00 0.03
P12 0.35 0.65 0.01 0.08 0.1 0.45 6.35
P19 0.96 2.08 0.03 0.24 0.31 3.41 3.43
PA2 13.46 21.35 0.83 1.61 3.93 5.33 21.47
PL 0.06 0.07 ~0.00 ~0.00 0.01 0.01 0.01
SAD 0.49 0.65 0.02 0.02 0.14 0.08 0.08
SE 0.15 0.17 0.01 0.06 0.03 0.02 0.84
TA 1.49 2.34 0.08 1.81 0.34 0.22 4135.02
VE 0.05 0.08 ~0.00 0.01 0.01 0.01 0.17

37

Under review as a conference paper at ICLR 2026

961F6£ET 9L6 96£9F 18601 0F9 0Fg LTFRO0T 6V FGT1 (43 29¢ 68SFII¢] 9e8SF1909L LTl JA
£856CF0OLYCO - YSE0EFQSLLOT 6F0SE 61FG0El SEPLF9LCOT 60S9FT6S0T TSE - YeSOTF18L91 00¥98FCL198 CC891 Vi
reF6€C 0l 0¢F6T¢ 0FC 0FT SF¢CT 69FCI1 8¢ 4\ 6CF /9T 61TF1T8I 6 VAR
vosFCTIE 610C 606¥1F0086S 1F6¢ 0+6 ST6cF+8160¢C 1€F€¢TI L1 91 0C1F€681 SIyeF10108 $¥0C 3S
966 F1669 90ILI 9€$F9G569 IF€01 €SFGL9 86£F9961 P1F0C6 78 60¢L] €€1F6C81 8YoS+120ee L8Y8 dAVS
LOTIFIE0L 999T 6£Te+9S19T 1F0¥ OFII 26e8+7916 <F901 Sy LIOY TeeeFCI9y sLTet+0T69S 801 1d
SIFL6T 8 €9FGo¢ 0F1 0F1 SIF0E 8TFOI1 I 11 WIFCSHT 0L9FT8IT 8 Zod
€FIC 4 STF6E 0F(0FC 1F6 €TIFL6]1 1 T 69F0S SOIFH8L 9 Ind
- - - 6FEC96CC LO6FOLIT - - 700¥ - - - LY9LL TVd
9619FEPEIS €91PP1 8€OTCTFILO9IT TF90T 616F€HC6 ¥61CLF89V16T - 1SL - OLI9FCIESY LSITITFLYYYC 8G80¢ 6Td
SYIIFLISL +9LS 0SCIF¥v16 1+¢¢C YEFLO6] STOCTIFCYSL SOTFHOTI 6€£C 9TCOv 86 +FC8IV 6s€ceF80SCL SS¥S ¢1d
06F 681 0S6 IWCFILIT IFerl I+81 LOTF(SS S8FC0C 90¢ 918 e1FCTl LF0€T9 9T di
CIFI8 14 SEFCIT 0F0 0+9 Fyl 91F9L € 3 OIFI¥ SeeFITPI Cl €IN
SIS9TFHEISE 66 9L0SF6£66¢ 0FLT I+9% 6¥VILIFSIC0I 01F981 8LC LYy €0EFHC8E YOTIIFHECIE [1y VdT
WFLEE 184 TIIFL6T 0F9 ¢Fee LF68 LTFT6 el 34 0FIS 6LF68C €C AL
0901FCT8S LLY6LT 8¥TFLSTS TFQIT IS8FGLLOE 96SIFLEGS L988FLOLBE €ESY - 9F09v1 8¢1FL90L L8SIE MI
STCFY611 90¢ LY9FH98CT IFLT 0FL €FL6 YCFLY 0€C 6L8 L9FEES 6S0€F6£19 €9 yAd)
861 F[CTI 11e eF616T 0FLI 0FL TF8L 11F6S vLE 6£6 LLFTI9 Ly {1 €S S AD
€LEFTOTI LOE WEFGT0T IFLT 0FL SFE8 STFCS €LE Tr6 EEIFOCY S91F9v8Y 29 XD
- - - 9¢1F0109C <T+9C8I1 - 0€S9FCI8Y 8SEI - - - 8ILS 8D
6V1FL6L SOl 8LFECTI 0F¢ 0F¢ 6+0S STF06 1L 6L €6F866 €951+6LS9 LT TdD
SOIFCLS L6 09€F0SY1 0F¢ 0F¢ 6F9¢ LTFI6 19 8 YIF8EE 00S$F+7089 ¢C¢ 1ddD
9CF€9 €01 (FAES 44| 1+8¢C 0Fp 81F08 6£FOCT (Vi €6 TCTF L9V SITFTHYL ¢ €EWD
99TF8LOT €01 65v+8CS1 1F9¢C 0Fp LEFOCT 001F881 9¢ 6 98F991 6€61F9%LC1 0C CTWd
Y01F98¢S 01 691F9GCT | 1+¢C 0Fp 61F9L [Aa{Y! 149 S6 IFLLY 6¥8CF00101 8T TWD
8LEFOIE L €01F€TT 0F0 (G LEFOY IIFE1T I € 6£FL9 v06F+9CS1 Cl na
CIF$9 L LFYLT 0F0 0F1 6F61 8OFII1 1 € 9F1¥y SITFEO01 Cl 2a
0€FCET (44 ¥8+101 0FL 0F¢ 6F6¢ 6CFII11 (43 14 Y06 8LYF6861 0¢ aa
T6TF 6861 868¢C 06SF91S¢ eF161 YF+CL Y8FCLY S8FEVT €19 €967 6ILFTYSI 6LLYFT9081 00¢ LD
06TIFGLL8T 1C08 TL8OIFESTYT 1F¢S S+89 €19LF9L€88 09FGLI Yyl SLL9T 06vSFOEC9I €OvO¥IFCTLOYTC 6L9 DUV
€9CIFERCIT 8LIVI vEOLFTEPET T 0F8¢€ 9F8L OLZITFHI0E T SFO08I1 20¢ T8YCE €WeFI9Iy6 vrIOIFI0SLY 0001 LdV
8¢rF109¢C 9611 €06F149LS 1F€T IFIC 6 8TFT6 6€l 8IEl €0SFPLTI 906FTLSS S6C D0V
6CF€0T 11 0rFi¢ 0FI 0F¢ YFE€C YTFEH Cl 8 YCFICI 01SFTS6S 81 NV
TIFG9 0cC 91F9L 0FT 0F¢ 9] 1S0CF06¢C1 C 01 9F¢E 8F0¢€C 91 49V
LANSHWIL WAS SLIVS LAM00Y OEIR| dOYANIVYI HADN WEDT NN a-nIon sLad J304

"PIOQ UI 9I€ JISBIBP OB J0J SIN[BA 19 9], "SWNUNI WNWIXeW IO AIOWAW SUIPIIIXI 0] NP I san[eA SUISSIA "WAS PUB ‘WIDT ‘NN ‘4404 saplsaq sayoeoldde
Ire “o°1 ‘uonezifeniur uodn puadop AyS1y Jey) spoyjow JoJ uaye) SI Sunl ¢ Jo ofeIoAe U, “JOYISSE[O YOBd PUE Joselep Yoed JoJ (SPuodas) QWU [8)0], 6 9[qel,

38

Under review as a conference paper at ICLR 2026

F ARRAY STRUCTURES

We report a summary of the main formats used to represent regular and irregular time series data in
the literature in Table

Table 10: Overview of the main formats used to represent regular and irregular time series data in the
literature, categorized by tensor type. The table details the underlying data structures (classes), the
software libraries that implement them, their usage across the time series libraries considered in this
study, and their support for timestamps and tensor operations.

Type | Format | Library | Class | Usage | Timestamps | Tensor Ops.

numpy Array aeon X v

numpy Array sktime X v

Q numpy Array tslearn X v
5 3D Tensor numpy MaskedArray - X v
A jax Array diffrax vE v
tensorflow | Array - X v

torch Tensor pypots X v

awkward AwkwardArray - X v

B tensorflow | RaggedTensor - X v
% 3D Tensor torch NestedTensor - X v
~ zarr RaggedArray - X v
pyarrow ListArray - X v

9 sparse GCXS - X v
§_ 3D Tensor sparse DOK - X v
n sparse COO - X v
5 Nested List | python List[Array] aeon X X
2 3D tensor** | xarray Dataset - v/ 4
e} Long pandas DataFrame sktime 4 X
Multilndex pandas DataFrame sktime 4 X

* only as a separate channel
** with additional tensors for static variables

G EXTENDING PYRREGULAR TO OTHER TASKS

As noted in Section [6] our framework is designed to extend naturally to several additional tasks
beyond classification. In particular, we highlight regression, forecasting, and anomaly detection,
which are already supported at the representation level and require only minor adjustments to dataset
metadata or the inclusion of auxiliary variables.

Regression. This task involves predicting continuous outcomes and is directly supported by our
framework. Examples include SAPS-I (Simplified Acute Physiology Score) in PhysioNet 2012 or
raw productivity in the Garment dataset.

Forecasting. Here the objective is to predict future values of a time series given its history. We
plan to introduce a static variable with a cutoff point to indicate the train/test split, and to extend the
accessor method to provide users with a straightforward mechanism for performing this split.

Anomaly detection. This task aims to identify unusual or irregular patterns in the data. Since
anomalies may have the same shape as the underlying dataset, they cannot be indicated via static
variables. Instead, leveraging the support for additional data arrays in xarray, we will represent
anomalies using sparse binary masks that flag anomalous regions in the time series.

Model support. We also plan to support a set of representative models for such tasks. A non-
comprehensive list includes recent work introducing dynamic graph networks for medical data (Luo
et al.||2024])), image-based transformers for irregular series (Li et al.,[2023)), channel harmony strategies
(Liu et al.l 20235)), graph neural flows (Mercatali et al.| 2024), temporal graph ODEs (Gravina et al.,
2024)), state space models (Gu et al.l [2022), and patching graph neural networks for forecasting
(Zhang et al., [2024), to name a few.

39

Under review as a conference paper at ICLR 2026

H Quick GUIDE

Extensive documentation and examples were removed from the Supplementary Materials due to
double-blind constraints. Thus, we provide a quick start guide and simple workflow notebooks below.

pip install pyrregular[models]

H.1 LIST DATASETS

If you want to see all the datasets available, you can use the 1ist_datasets function:

from pyrregular import list_datasets
df = list_datasets()

H.2 LOAD A DATASET

To load a dataset, you can use the load_dataset function. For example, to load the "Garment"
dataset, you can do:

from pyrregular import load_dataset
df = load_dataset ("Garment.h5")

H.3 CLASSIFICATION

To use the dataset for classification, you can just "densify" it:

from pyrregular import load_dataset

df = load_dataset ("Garment.h5")
X, = df.irr.to_dense ()

y, split = df.irr.get_task_target_and_split ()

X_train, X_test X[split != "test"], X[split == "test"]
y_train, y_test = yl[split != "test"], ylsplit == "test"]

We have ready-to-go models from various libraries:
from pyrregular.models.rocket import rocket_pipeline

model = rocket_pipeline
model.fit (X_train, y_train)
model.score (X_test, y_test)

The dataset can be also easily used in pytorch

from torch.utils.data import Dataloader, TensorDataset
import torch

data = TensorDataset (X, vy)
dataloader = Dataloader (data, batch_size=16, shuffle=True)

40

Notebook: Basic Workflow

[1]: | import xarray as xr

List available datasets

To view available datasets, you can use the 1list_datasets function.

[2]: from pyrregular import list_datasets

[3]: print(list_datasets())

['Abf.h5', 'AllGestureWiimoteX.h5', 'AllGestureWiimoteY.h5',
'AllGestureWiimoteZ.h5', 'Animals.h5', 'AsphaltObstaclesCoordinates.h5',
'AsphaltPavementTypeCoordinates.h5', 'AsphaltRegularityCoordinates.h5',
'CharacterTrajectories.hb', 'DodgerLoopDay.h5',

'DodgerLoopGame.h5', 'DodgerLoopWeekend.hb5', 'Garment.h5',
'GeolifeSupervised.hb', 'GestureMidAirD1.h5', 'GestureMidAirD2.h5',
'GestureMidAirD3.h5', 'GesturePebbleZl.h5', 'GesturePebbleZ2.h5',
'JapaneseVowels.h5', 'Ldfpa.h5', 'MelbournePedestrian.hb', 'Mimic3.h5',
'PLAID.h5', 'Pamap2.h5', 'Physionet2012.h5', 'Physionet2019.h5',
'PickupGestureWiimoteZ.h5', 'Seabirds.hb', 'ShakeGestureWiimoteZ.h5',
'SpokenArabicDigits.h5', 'Taxi.hb', 'Vehicles.h5']

Loading the dataset from the online repository

Loading a dataset is as from the online repo is as simple as calling the load_dataset function with
the dataset name.

[4]: from pyrregular import load_dataset

[64]: ds = load_dataset("Garment.h5")

The dataset is loaded as an xarray dataset. The dataset is saved in the default os cache directory,
which can be found with:

import pooch
print(pooch.os_cache("pyrregular"))

You can also use xarray to directly load a local file. In this case, you have to specify our backend
as pyrregular in the engine argument.

import xarray as xr
ds = xr.load_dataset("path/to/file.h5", engine="pyrregular")

You can view the underlying DataArray by calling the data variable.

[65]: da = ds.data

[66]: da

41

[66]: <xarray.DataArray 'data' (ts_id: 24, signal_id: 9, time_id: 59)> Size: 329kB
<C00: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>

[67]:

[67]:

[68]:

[68]:

[69]:

[69]:

[70]:

[70]:

Coordinates:
day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0111111 ...1100001
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarteril' ... 'Quarter2'
* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 1223 4 ... 34567 8 9
* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00. ..
* ts_id (ts_id) <U12 1kB 'finishing 1' ... 'sweing_ 9'
Attributes:

_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True

author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]

configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0

source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

the shape is (n_time_series, n_channels, n_timestamps)

da.shape

(24, 9, 59)

the array is stored as a sparse array

da.data

<C00: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>

dimensions contain the time series ids, signal tds and timestamps

da.dims

('ts_id', 'signal_id', 'time_id')

e.g.,

these are the time sertes tds

da["ts_id"] .data

array(['finishing 1', 'finishing 10', 'finishing 11', 'finishing 12',

'finishing 2', 'finishing_ 3', 'finishing 4', 'finishing 5°',
'finishing 6', 'finishing 7', 'finishing 8', 'finishing 9',
'sweing_1', 'sweing_10', 'sweing_11', 'sweing_12', 'sweing_2',
'sweing_3', 'sweing_4', 'sweing_5', 'sweing_6', 'sweing 7',
'sweing_8', 'sweing_9'], dtype='<U12')

42

[72]: # there are also static variables, such as the class
da["productivity_binary"].data

[72]: array([t, O, 1, 1,1, 1,1,1,0,0,0,0,1,1,1,1,1,1, 1,0, 0, 0,
0, 1], dtype=int32)

[74]: # the train/test split
da["split"].data

[74]: array(['train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'test', 'train', 'train', 'train', 'train', 'test',

'train', 'train', 'train'], dtype='<U5')

[75]: # all the coordinates can be accessed via the “coords’ wariable
da.coords

[75]: Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0111111 ...1100001
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarteril' ... 'Quarter?2'
* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 1223 4 ... 34567 89
* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00. ..
* ts_id (ts_id) <U12 1kB 'finishing 1' ... 'sweing_ 9'

[76]: # metadata contains informations about the datasets and tasks
da.attrs

[76]: {'_fixed_at': '2024-12-04T21:50:44.408790-12:00"',
'_is_fixed': True,
'author': [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed],
'configs': {'default': {'task': 'classification',
'split': 'split',
'target': 'productivity_binary'},

'regression': {'task': 'regression',
'split': 'split',
'target': 'productivity_numerical'}},
'license': 'CC BY 4.0',
'source': 'https://archive.ics.uci.edu/dataset/597/productivity+predictiont+of+g
arment+employees',
'title': 'Productivity Prediction of Garment Employees'}

43

[771:

[78]:

[78]:

[79]:

[79]1:

Data Handling and Plotting

Data can be accessed with standard xarray methods.

import matplotlib.pyplot as plt
import numpy as np

the first time series
da[0]

<xarray.DataArray 'data' (signal_id: 9, time_id: 59)> Size: 9kB
<C00: shape=(9, 59), dtype=float64, nnz=392, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarterl' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split <U5 20B 'train'
team int32 4B 1

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
ts_id <U12 48B 'finishing_1'

Attributes:

_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True

author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]

configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0

source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

the first channel of the first time series
dal0, 0]

<xarray.DataArray 'data' (time_id: 59)> Size: 784B
<C00: shape=(59,), dtype=float64, nnz=49, fill_value=nan>

Coordinates:
day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarteril' ... 'Quarter2'
signal_id <U21 84B 'idle_men'
split <U5 20B 'train'
team int32 4B 1

44

[80]:

[80]:

[87]1:

[871:

[89]:

[89]:
[90]:

[90]:

* time_id
ts_id
Attributes:
_fixed_at:
_is_fixed:
author:
configs:
license:
source:
title:

to access the
da[0, 0].data

<C00: shape=(59,

to access the

(time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
<U12 48B 'finishing_ 1'

2024-12-04T21:50:44.408790-12:00

True

[Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]

{'default': {'task': 'classification', 'split': 'split', 'tar...
CC BY 4.0
https://archive.ics.uci.edu/dataset/597/productivity+predicti...
Productivity Prediction of Garment Employees

underlying sparse vector

), dtype=float64, nnz=49, fill_value=nan>

underlying dense vector

da[0, 4].data.todense()

array([8., 8.,

8., nan,
19., 19.,
nan, nan,

8., 8.,

8., 8., 8., 8., 8., 8., 8., 8., 2., 8., 8.,
nan, nan, 8., 25., 8., 8., 10., 10., 10., 10., 15.,
10., 10., 12., 10., 10., 10., 12., 12., 12., 12., 8.,
nan, nan, 12., nan, nan, nan, 8., 8., 8., 8., 8.,

8., 8., 8., 8., 8.1

this wvector contains a lot of mans, which are the padding necessary to havey

—shared timestamps w.r.t. the whole dataset

np.isnan(da[0, 4].data.todense()).sum()

10

plt.plot(dal0, 4]["time_id"], dal[0, 4], marker="o")

[<matplotlib.lines.Line2D at 0x14eb06990>]

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

[92]:

[92]:
[93]:

[93]:

251

20

15 4

i —

2015-01-01 2015-01-15 2015-02-01 2015-02-15 2015-03-01

using the custom ".irr" accessor, we can filter out the nans to the minimumy
—amount possible due to raggedness
np.isnan(da.irr[0, 4].data.todense()).sum()

0
plt.plot(da.irr[0, 4]["time_id"], da.irr[0, 4], marker="o"

[<matplotlib.lines.Line2D at 0x14eb6b230>]

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

[94]:

[94]:

251

20

15 4

10 4

2015-01-01 2015-01-15 2015-02-01 2015-02-15 2015-03-01

the fourth channel first 10 time series of the dataset, as a heatmap
da.irr[:10, 4].plot()

<matplotlib.collections.QuadMesh at 0x14dcf3680>

47

signal_id = no_of workers

finishing_7

finishing_6 -
finishing_5 -
finishing_4

finishing_3 -

ts_id

finishing_2

finishing_12 -

finishing_11

finishing_10

finishing_1

08 15 22 Feb 08 15 22 Mar 08
time_id 2015-Mar

[103]: | # plotting some channels
da.irr[0, 2].plot(label=da.coords["signal_id"][2].item())
da.irr[0, 4].plot(label=da.coords["signal_id"][4].item())
da.irr[0, 5].plot(label=da.coords["signal_id"][5].item())
plt.legend()

[103]: <matplotlib.legend.Legend at 0x16ea32870>

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626(104] :
2627
2628
2629
2630
2631
2632
2633
2634[106]:
2635
2636
2637
2638[106] :
2639
2640
2641
2642
2643
2644
2645

department = finishing, productivity binary = 1...

—— incentive
14000 A —— no_of_workers
—— over_time
12000 A
10000 -
o 8000
)
[1+]
=]
6000 -
4000 A
2000 A
0-
Jan 15 Feb 15 Mar
time_id 2015-Mar

Downstream Tasks

The xarray is nice, but not supported by basically any downstream library. Thus, we can convert
it into a numpy array.

%Jtime
time series data, timestamps
X, T = da.irr.to_dense(
normalize_time=True, # normalize the time index to [0, 1]

)

CPU times: user 2.23 s, sys: 79 ms, total: 2.31 s
Wall time: 2.34 s

the shape s (n_time_series, n_channels, n_timestamps), timestamps are,
—returned as a separate channel, for dounstream methods that are able to use,
—them

X.shape, T.shape

((24, 9, 59), (24, 1, 59))

49

[107]: | # static variables
Z = da.coords.to_dataset () [["split", "productivity_binary"]].to_pandas()

Z.head ()
[107]: split productivity_binary department productivity_class \

ts_id

finishing 1 train 1 finishing high
finishing 10 train 0 finishing low
finishing 11 test 1 finishing high
finishing 12 train 1 finishing high
finishing 2 train 1 finishing high

productivity_numerical team

ts_id

finishing_1 0.812625 1
finishing_10 0.628333 10
finishing_11 0.874028 11
finishing_ 12 0.922840 12
finishing 2 0.819271 2

[108]: | # target and split
y, split = da.irr.get_task_target_and_split()
Train-test split

[111]: X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]
X_train.shape, y_train.shape, X_test.shape, y_test.shape

[111]: ((18, 9, 59), (18,), (6, 9, 59), (6,))

Classification

We have several ready-to-use classifiers in the pyrregular package. Be sure to install the required
dependencies.

[118]: from pyrregular.models.rocket import rocket_pipeline

[119]: | %%time
model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)

[119]: 0.6666666666666666

50

[28]:

[29]:

[29]:

[30]:

[31]:

Notebook: Dataset Conversion

The “Long Format”

The basic format to convert any dataset to our representation is the long format. The long format
is simply a tuple:

(time_series_id, channel_id, timestamp, value, static_var_1, static_var_2, DR

If your dataset contains rows that are in this format, you are almost good to go. Else, there will be
a little bit of preprocessing to do.

Case 1. (easy) Your dataset is already in the long format

Let’s assume for now your dataset is already in this form. Here is a minimal working example.

import pandas as pd
import numpy as np

df = pd.DataFrame (

{
"time_series_id": np.random.choice(["A", "B", "C"], size=100),
"channel_id": np.random.choice(["X", "Y", "Z"], size=100),
"timestamp": pd.date_range("2023-01-01", periods=100, freq="H"),
"value": np.random.randn(100),

}

)

df ["labels"] = df["time_series_id"] .map(
{"A"Z O, "B"Z 1’ ncu: 1}

) # let's say we have labels

df .head()

time_series_id channel_id timestamp value 1labels
0 B Y 2023-01-01 00:00:00 0.105162 1
1 B Z 2023-01-01 01:00:00 -0.573337 1
2 B X 2023-01-01 02:00:00 -1.973967 1
3 C Y 2023-01-01 03:00:00 0.656065 1
4 A Y 2023-01-01 04:00:00 -0.500246 0

Let's save this dataframe to a CSV file
df .to_csv("your_original_dataset.csv", index=False)

the csv file can be converted to our format using our interface
from pyrregular.io_utils import read_csv

from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):

51

Ostaticmethod
def read_original_version(verbose=False):
return read_csv(
filenames="your_original_dataset.csv",
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",
dims={
"ts_id": [
"labels"
], # static variable that depends on the time series id
"signal_id": [J,
"time_id": [],
I
time_index_as_datetime=False,
verbose=verbose,

[32]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, 7it/s]
Reading dataset: 0%] | 0/100 [00:00<7, 7it/s]

[32] : <xarray.DataArray (ts_id: 3, signal_id: 3, time_id: 100)> Size: 3kB
<C00: shape=(3, 3, 100), dtype=float64, nnz=100, fill_value=nan>

Coordinates:
* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
labels (ts_id) int64 24B 0 1 1
* ts_id (ts_id) <U1 12B 'A' 'B' 'C'

* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'
If you don’t know if a variable is static, or to which dimension it depends from, you can check it.
[33]: from pyrregular.data_utils import infer_static_columns
infer_static_columns(df, "time_series_id")
[33]: ['labels']

The dataset can be saved with our custom accessor

[34]: da.irr.to_hdf5("your_dataset.h5")

And then loaded directly with xarray

[35]: import xarray as xr

52

[36]: da2 = xr.load_dataset("your_dataset.hb", engine="pyrregular")
da2

[36]: <xarray.Dataset> Size: 11kB

Dimensions: (ts_id: 3, signal_id: 3, time_id: 100)
Coordinates:
labels (ts_id) int32 12B 0 1 1
* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'
* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
* ts_id (ts_id) <U1 12B 'A' 'B' 'C'
Data variables:
data (ts_id, signal_id, time_id) float64 3kB <C00: nnz=100,

fill_wvalue=nan>

Case 2. Your dataset is not in the long format

Let’s say you have a 3d numpy array, containing the time series, and a numpy array containing only
the labels.

[37]: import numpy as np

shape = (10, 2, 100) # 10 time series, 2 channels, 100 timestamps
data = np.full(shape, np.nan)

mask = np.random.rand(*shape) < 0.35

data[mask] = np.random.randn(mask.sum())

labels = np.random.randint(0, 2, shape[0])

np.save("your_more_complex_dataset.npy", data)
np.save ("your_more_complex_dataset_labels.npy", labels)

data.shape, labels.shape

[37]: ((10, 2, 100), (10,))

You need only a function that takes the data and the labels, and returns a dataframe in the long
format, yielding it row by row.

[38]: def read_your_dataset(filenames):
data = np.load(filenames["data"])
labels = np.load(filenames["labels"])
ts_ids, signal_ids, timestamps = np.indices(shape)
ts_ids, signal_ids, timestamps = ts_ids.ravel(), signal_ids.ravel(),
—timestamps.ravel()

for ts_id, signal_id, timestamp in zip(ts_ids, signal_ids, timestamps):
value = data[ts_id, signal_id, timestamp]
if np.isnan(value):
continue

53

label = labels[ts_id]

yield dict(
time_series_id=ts_id,
channel_id=signal_id,
timestamp=timestamp,
value=value,
labels=label,

[39]: from pyrregular.io_utils import read_csv
from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):
Ostaticmethod
def read_original_version(verbose=False):
return read_csv(
filenames={
"data": "your_more_complex_dataset.npy",
"labels": "your_more_complex_dataset_labels.npy",
Yo
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",

dims={
"ts_id": [
"labels"
], # static variable that depends on the time series id

"signal_id": [J,
"time_id": [J,
¥o
reader_fun=read_your_dataset,
time_index_as_datetime=False,
verbose=verbose,
attrs={
"authors": "Bond, James Bond", # you can add any attribute youy
—want

[40]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, 7it/s]

Reading dataset: 0%] | 0/720 [00:00<7, 7it/s]

54

[40]: <xarray.DataArray (ts_id: 10, signal_id: 2, time_id: 100)> Size: 23kB
<C00: shape=(10, 2, 100), dtype=float64, nnz=720, fill_value=nan>

Coordinates:
* time_id (time_id) int64 800B 0 1 2 3456 7 ... 92 93 94 95 96 97 98 99
labels (ts_id) int64 80B 0O 0O 01110110
* ts_id (ts_id) <U21 840B 'O' '1' '2' '3' '4' '5' 'g' '7' '' 9!
* signal_id (signal_id) <U21 168B '0' '1!'
Attributes:

authors: Bond, James Bond

55

	Introduction
	Organizing Irregularity
	Related Work
	A Unified Framework for Irregular Time Series
	Classification Benchmarks
	Results and Discussion.

	Conclusion
	Summary of Notation
	Taxonomy of Time Series Irregularities
	Uneven Sampling
	Partial Observation
	Ragged Length
	Shift
	Ragged Sampling

	Experimental Details.
	Models
	Datasets

	Additional Results and Statistical Tests
	Complexity and Pipeline Costs
	Array Structures
	Extending PYRREGULAR to Other Tasks
	Quick Guide
	List datasets
	Load a dataset
	Classification

