
MAGIS: LLM-Based Multi-Agent Framework
for GitHub Issue ReSolution

Wei Tao
Fudan University

wtao18@fudan.edu.cn

Yucheng Zhou
University of Macau

yucheng.zhou@connect.um.edu.mo

Yanlin Wang
Sun Yat-sen University

wangylin36@mail.sysu.edu.cn

Wenqiang Zhang ∗

Fudan University
wqzhang@fudan.edu.cn

Hongyu Zhang
Chongqing University
hyzhang@cqu.edu.cn

Yu Cheng ∗

The Chinese University of Hong Kong
chengyu@cse.cuhk.edu.hk

Abstract

In software development, resolving the emergent issues within GitHub repositories
is a complex challenge that involves not only the incorporation of new code but
also the maintenance of existing code. Large Language Models (LLMs) have
shown promise in code generation but face difficulties in resolving Github issues,
particularly at the repository level. To overcome this challenge, we empirically
study the reason why LLMs fail to resolve GitHub issues and analyze the major
factors. Motivated by the empirical findings, we propose a novel LLM-based Multi-
Agent framework for GitHub Issue reSolution, MAGIS, consisting of four agents
customized for software evolution: Manager, Repository Custodian, Developer, and
Quality Assurance Engineer agents. This framework leverages the collaboration of
various agents in the planning and coding process to unlock the potential of LLMs
to resolve GitHub issues. In experiments, we employ the SWE-bench benchmark
to compare MAGIS with popular LLMs, including GPT-3.5, GPT-4, and Claude-
2. MAGIS can resolve 13.94% GitHub issues, significantly outperforming the
baselines. Specifically, MAGIS achieves an eight-fold increase in resolved ratio
over the direct application of GPT-4, the advanced LLM.

1 Introduction

In real-world software development, the code repository for a project is rarely set in stone. High-
quality and popular software always evolves to address emergent bugs or new requirements. On
platforms such as GitHub [21], issues typically signify the requirement for software evolution. How-
ever, addressing these issues poses significant challenges, as it requires implementing the code change
across the entire repository and maintaining the existing functionality while integrating new capabili-
ties. For example, django, a framework for over 1.6M projects has 34K issues [19]. Consequently,
resolving GitHub issues remains a significant challenge across academia and industry [27, 5].

Large language models (LLMs) have demonstrated remarkable capabilities across a variety of
tasks [8], including code generation and code understanding [64, 47]. Specifically, LLMs excel in

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

generating function-level code, as evidenced by their performance on numerous benchmark datasets
such as MBPP [2] and HumanEval [12]. Despite their success, LLMs remain challenged in tasks that
require advanced code generation capabilities, such as class-level code generation [14]. Moreover,
LLMs exhibit limitations in processing excessively long context inputs and are subject to constraints
regarding their input context length [33]. This limitation is particularly evident in repository-level
coding tasks, such as solving GitHub issues, where the context comprises the entire repository, thus
imposing constraints on directly using the full repository as input to LLMs.

To harness the full potential of LLMs, many LLM-based multi-agent systems are designed [23, 43, 52].
These methods have significantly improved LLMs’ efficacy in code generation, enabling these
systems to construct code repositories based on LLM. While these methods address the process of
transitioning code repositories from inception to establishment, they rarely consider the handling of
software evolution, e.g., resolving GitHub issues. For GitHub repositories, especially the popular
ones, a large number of commits are pushed every day. These commits derive from a spectrum of
evolutionary requirements that span bug fixes, feature additions, performance enhancements, etc [49].
For open-source software, new requirements frequently emerge as issues in the project’s repository.

Recently, Jimenez et al. [27] developed a benchmark, namely SWE-bench, to investigate the capability
of popular LLMs in addressing GitHub issues. Their study reveals that LLMs fail to resolve over
95% of instances, even when file paths that require modifications are provided. This significantly low
rate underscores the importance of understanding the reasons behind their suboptimal performance.

In this study, we analyze the factors impacting the effectiveness of LLMs in resolving GitHub issues.
Furthermore, our empirical analysis has concluded a correlation between locating files/lines to be
modified and the performance of resolving GitHub issues. Based on these insights, we propose a
novel LLM-based multi-agent framework, termed MAGIS, comprising four types of agents: Manager,
Repository Custodian, Developer, and Quality Assurance (QA) Engineer. Our approach facilitates
the resolution of GitHub issues through collaboration among agents, each fulfilling a unique role:
the Manager coordinates the entire process, the Repository Custodian enhances locating files, the
Developer performs code changes after locating lines, and the QA Engineer reviews the code change.

In our experiment, we evaluate our framework on SWE-bench and compare its performance against
existing popular LLMs, such as ChatGPT-3.5 [37], GPT-4 [38], and Claude-2 [1]. The results
demonstrate that our framework, utilizing GPT-4 as its base model, significantly outperforms baselines
and achieves an eight-fold performance gain compared to the direct application of GPT-4. Further
analysis reveals that additional factors, i.e., the planning of code change, locating lines within the
code file, and code review process, can significantly influence the resolution rate.

Our main contributions are summarized as follows:

• We conduct an empirical analysis of LLMs in resolving GitHub issues and explore the correlation
between locating code file/line, complexity of the code change, and the success rate in resolution.

• We propose a novel LLM-based multi-agent framework, MAGIS, to alleviate the limitations
of existing LLMs on GitHub issue resolution. Both our designed four-type agents and their
collaboration for planning and coding unlock LLMs’ potential on the repository-level coding task.

• We compare our framework and other strong LLM competitors (i.e., GPT-3.5, GPT-4, and Claude-2)
on the SWE-bench dataset. The results show MAGIS significantly outperforms these competitors.
Further analysis confirms the effectiveness and necessity of our framework design.

2 Empirical Study

SWE-bench [27] reveals the challenges LLMs face in addressing GitHub issue resolution. For
example, in their evaluation, GPT-4 can only resolve less than 2% issues of the test set. Conversely,
in tasks like function-level code generation, LLMs exhibit superior performance (e.g., GPT-4 gets
the score of 67.0 on HumanEval [36]). Given the complexity of GitHub issue resolution akin to
repository-level coding, we aim to investigate Why the Performance of Directly Using LLMs to
Resolve GitHub Issue is Limited? (RQ 1). We answer this RQ from the following three aspects:

Locating the Files to be Modified. GitHub issue resolution is a repository-level coding task,
distinguishing it from file-level coding tasks primarily in the challenge of locating the files requiring

2

modification. Jimenez et al. [27] employ the BM25 method [45] to retrieve relevant code files that
are subsequently utilized as input to the LLM. After employing retrieval methods, it is necessary
to select the top-K files or truncate the content based on the maximum context length of the LLM.
Incorporating more files can enhance recall scores. However, it also imposes significant demands on
the capabilities of LLMs. As demonstrated by the study [27], Claude-2 exhibits a decrease in the
resolved ratio (from 1.96% to 1.22%) as recall scores increase (from 29.58 to 51.06). This decline
may be attributed to the inclusion of irrelevant files or the limited capacity of LLMs to process longer
contexts effectively. Consequently, optimizing the performance of LLMs can be better achieved by
striving for higher recall scores with a minimized set of files, thus suggesting a strategic balance
between recall optimization and the number of chosen files.

Locating the Lines to be Modified. Beyond the impact of file locating, we delve into the generation
of failed instances when the correct modified files were provided. A typical code change consists of
multiple hunks, each specifying the line numbers targeted for modification and detailing the changes
made at these locations. To quantitatively analyze the accuracy of line localization, we use the line
numbers’ range of the modified content in the reference code change as the basis assuming that the
correct modification location of the code change is uniquely determined in most cases. By calculating
the coverage ratio of the line number ranges of the generated and reference, we can estimate the
accuracy of line localization in the generation process, i.e.,

Coverage Ratio =

∑n
i=0

∑m
j=0

∣∣[si, ei] ∩ [s′j , e
′
j]
∣∣∑n

i=0(ei − si + 1)
, (1)

where the numerator is the length of the intersection of modified lines between the reference divided
into n hunks and the generation divided into m hunks, and the denominator is the number of modified
lines in the reference. More details about Equation 1 can be found in Appendix A.1.

Figure 1: The comparison of line locating coverage
ratio between three LLMs. The vertical axis representing
the frequency of the range of line locating coverage ratio
for each group, and the horizontal axis representing the
coverage ratio.

For 574 instances in the SWE-bench that ex-
periments GPT-4 [27], the distribution of the
coverage ratio between the results generated by
three LLMs and the reference is shown in Fig. 1.
From this, we observe that the performance of
LLMs in generating the code change is proba-
bly related to their ability to locate code lines
accurately (Detailed explanation can be found
in Appendix A.2).

Furthermore, we assess the relationship between
the coverage ratio and the issue resolution by cal-
culating their correlation coefficient. Given that
the distribution of these variables exhibits skew-
ness, and the resolution result is binary (resolved
or not), logistic regression is employed for the
analysis across three LLMs. However, due to
the limited number of successfully generated
instances on GPT-4 and GPT-3.5, a statistically
significant relationship is only detected in the
result generated by Claude-2. The result, i.e.,
P-value < 0.05, shows statistical significance.
Specifically, with a coefficient, 0.5997, on Claude-2, there is a substantial and positive relation
between improvements in the coverage ratio and the probability of successfully resolving issues,
which demonstrates that locating lines is a key factor for GitHub issue resolution.

Complexity of the Code Changes. The complexity of the code change is reflected in various
indices: the number of modified files, functions, hunks, and lines added or deleted. Firstly, we
quantitatively assess the complexity by calculating the value of various indices corresponding to the
reference code change. Secondly, the coefficient is calculated between the numbers in each index and
the issue resolution. Tab. 1 shows the correlation scores under the logistic regression.

As shown in Tab. 1, all three LLMs demonstrate a statistically significant correlation with the issue
resolution across several indices. The correlation scores for the number of files and functions modified

3

Table 1: Correlation between the complexity indices and the issue resolution.

LLM # Files # Functions # Hunks # Added LoC # Deleted LoC # Changed LoC

GPT-3.5 −17.57* −17.57* −0.06* −0.02 −0.03 −0.53*

GPT-4 −25.15* −25.15* −0.06 −0.10 −0.04 −0.21
Claude-2 −1.47* −1.47* −0.11* −0.09* −0.07* −0.44*

* The correlation between the index and the issue resolution is significant (P-value < 0.05).

Human

GitHub Issue

Repository

Developer

Code

Review

Quality
Assurance

Merge

Kick-off
Meeting

Commit

Pull Request

New Repository

New Branch

Build a Team

Human

Locate
Code Files

Planning Coding

Project
Manager

Repository
Custodian

Figure 2: Overview of our framework, MAGIS. The detailed version can be found in Fig. 14.

are notably negative for all models, indicating that an increase in these indices is associated with a
decreasing likelihood of issue resolution. This suggests that the more complex the code change, as
indicated by a higher number of files and functions modified, may hinder the issue resolution. More
analysis can be found in Appendix A.3. The analysis reveals a relationship between the complexity,
as measured by several indices, and whether to successfully resolve the issues in software evolution.
The negative correlations suggest that increased complexity, particularly in terms of the number of
files and functions changed, tends to hinder issue resolution.

3 Methodology

Based on the empirical study identifying key factors affecting LLMs’ issue resolution, we design the
framework illustrated in Fig. 2. This framework aims to mitigate negative impacts by transforming
the complex task of GitHub issue resolution into a collaborative effort. It incorporates four key roles
for LLM-based agents working collaboratively in the workflow: ① Manager: this role tasks with team
assembly, meeting organization, and plan formulation. ② Repository Custodian: it is responsible for
locating the relevant files in the repository acording to the GitHub issue and recording the change of
the repository. ③ Developer: this role participates in planning discussions and completes tasks from
the Manager. ④ Quality Assurance (QA) Engineer: it reviews the code change from Developers to
ensure the quality of the whole repository.

The collaborative process involves planning and coding. In the planning, an issue is assigned to
the Manager and the Repository Custodian. The custodian identifies candidate files relevant to the
issue for modification. With the issue description and a list of candidate files, the Manager defines
tasks and assembles a team, where each member is a Developer specifically designed for the defined
task. The Manager holds a kick-off meeting with Developers and devises a plan. During coding,
Developers undertake their assigned tasks from the Manager, and the QA Engineer reviews each code
change. If a change fails to meet quality standards, the QA Engineer provides feedback, prompting
further revisions until the QA Engineer approves or a set iteration limit is reached. More details can
be found in our GitHub repository 2.

2https://github.com/co-evolve-lab/magis

4

https://github.com/co-evolve-lab/magis

3.1 Agent Role Design

Our workflow draws inspiration from the GitHub Flow[22], an effective human workflow paradigm
adopted by many software teams. Both the human workflow and our LLM-based agent framework
prioritize collaboration among individuals with diverse skills. While the underlying principles are
similar, there are notable differences. Accordingly, we have tailored the roles as follows:

• Manager. The Manager’s role is pivotal in planning. In conventional setups, managers
decompose the issue into tasks according to the pre-formed team and allocate these tasks for
members with different skills. In contrast, our Manager agent can first decompose the issue into
tasks and then design Developer agents to form a team. This setup improves team flexibility and
adaptability, enabling the formation of teams that can meet various issues efficiently.

• Repository Custodian. Considering extensive files in a repository, the custodian agent’s task
is to locate files relevant to the issue. Unlike humans, who can browse through the entire repository,
the LLM-based agent faces challenges in browsing. Although LLMs have extended context limits,
their application is constrained in two aspects. First, it is a high computational cost to query each
file in an entire repository for each update, particularly when some repositories update frequently.
Second, the performance of LLMs degrades when the context input is long [31, 33, 67].

• Developer. Compared to human developers, the Developer agent can work continuously and
efficiently. Therefore, scheduling the agent to work in parallel is easier than scheduling humans who
require considering factors beyond the task. Additionally, although numerous developer agents are
capable of generating code [23, 43], their ability to modify existing code is not equally proficient.
To address this issue, our framework decomposes the code modification process into sub-operations
including code generation. This approach enables Developers to leverage the benefits of automatic
code generation thereby producing applicable code changes.

• QA Engineer. In software evolution, QA Engineers play a crucial role in maintaining software
quality through code review [34, 30]. Despite their importance, code review practices are often
undervalued or even overlooked [4]. Such neglect can hinder software development, illustrated
by instances where developers may experience delays of up to 96 hours awaiting code review
feedback [6]. To address this problem, our framework pairs each Developer agent with a QA
Engineer agent, designed to offer task-specific, timely feedback. This personalized QA approach
aims to boost the review process thereby better ensuring the software quality.

3.2 Collaborative Process

3.2.1 Planning

Algorithm 1 Locating.
1: Input: repository: Ri including files
{fi}, GitHub issue: qx, LLM: L

2: Config: filter top width: k, prompts: P ,
find the latest previous version of the file
and its summary: find

3: Output: candidate files: Cki ←∅, repos-
itory evolution memory:M← ∅

4: Ri← BM25(Ri, qx)
5: Cki ←Ri[:k]
6: for fi ∈ Cki do
7: fh, sh← find (fi,M)
8: if ∃ fh and len(sh) < len(fi) then
9: if h is i then

10: si← sh
11: else
12: ∆d← diff(fh, fi)
13: m←L(∆d,P1)
14: si← sh ∪m
15: end if
16: else
17: si←L(fi,P2)
18: end if
19: M←M.update({fi : si})
20: if L((si, qx),P3) is false then
21: Cki ← Cki - fi
22: end if
23: end for

Three types of role agents engage in the planning: Repos-
itory Custodian, Manager, and Developer. This process
comprises three phases: locating code files, team building,
and kick-off meeting.

Locating Code Files. Firstly, the Repository Custodian
employs the BM25 algorithm [45] to rank the files in the
repository based on the GitHub issue description. Subse-
quently, the top k files are selected as potential candidates
for further coding. However, as described in §2, this sim-
ple retrieval method can introduce irrelevant files, increas-
ing the cost and reducing the effectiveness of subsequent
coding process. Therefore, we filter these files based on
relevance to minimize their number. While it is feasible
to directly assess the relevance between each file and the
issue by LLMs, queries to the LLM may contain the same
code snippets as previous ones, leading to unnecessary
computational costs. Considering that applying the code
change often modifies a specific part of the file rather than
the entire file, we propose a memory mechanism to reuse
the previously queried information.

5

Algorithm 1 outlines the process of locating files with our designed memory M. If a file fi is
compared for the first time with an issue qx, the LLM L with prompt P2 compresses it into the
summary si, where i denotes the file’s version. This summary is shorter than the code content in
the file and it is stored in memory for future reuse. If the file fi has been previously compared,
the latest previous version (h) of the file fh can be found by the script find. Since fi can be
represented as the combination of fh and the difference between them (∆d that be obtained via the
“git diff” command), LLMs can understand fi by using fh and ∆d. If the difference is small
and the file fi is long, it is valuable to reuse the previous summary sh stored in memory rather
than the content of fi. Specifically, if the length of sh is less than that of fi, L with prompt P1

can summarize the code changes ∆d as a “commit message” m. The combination of sh and m
forms the description of the newer version fi, enabling the LLM L with prompt P3 to determine
whether it is relevant to the issue in fewer context length. Based on their relevance, the custodian
agent filters irrelevant files, allowing the Manager agent to define tasks with remaining relevant files.

Algorithm 2 Making the plan.
1: Input: candidate files: Cki , issue: qx, LLM: L
2: Config: prompts: P
3: Output: tasks: T k

i ← ∅, Developer agents’
role description: Dk

i ← ∅, plan: cmain

4: for fi ∈ Cki do
5: ti←L((fi, qx), P4)
6: T k

i ← T k
i ∪ (fi, ti)

7: ri←L((t, qx), P5)
8: Dk

i ←Dk
i ∪ ri

9: end for
10: recording = kick_off_meeting(Dk

i)
11: Dk

i ←L((Dk
i , recording), P6)

12: cmain←L(recording, P7)

Team Building. In this process, the Manager agent
has the flexibility to “recruit” team members as the
issue needs. Firstly, upon receiving the located files,
the Manager begins with analyzing the GitHub issue
for the repository and breaks them into detailed file-
level tasks. Specifically, for each code file fi in the
candidate set Ck

i , the Manager leverages the LLM
L with the prompt P4 and the issue description qx
to define the corresponding file-level task ti. One
issue can be converted to multiple tasks. These tasks,
along with the associated code file, are stored in a
task set T k

i . Once a task is clarified, the Manager
defines the personality role ri of the Developer by
invoking LLM L with the prompt P5 and the task ti.
By iterating through these candidate code files, the Manager agent ultimately designs a collection of
Developer agent role descriptions Dk

i , thus forming the development team. The details of the team
building are shown in Algorithm 2. This approach simplifies the task for LLMs because each team
member only needs to handle a sub-task rather than resolving the entire complex issue.

Kick-off Meeting. After building the team, the Manager organizes a kick-off meeting. This meeting
serves two purposes: ① To confirm whether the tasks assigned by the Manager are reasonable and
ensure that all Developers in the team can collaboratively resolve the issue qx, ② To determine which
Developers’ tasks can be executed concurrently and which tasks have dependencies need to be sorted.
The meeting takes the form of a circular speech: the Manager is responsible for opening the speech,
guiding the discussion and summarizing the results, and the Developers provide their opinions based
on previous discussions in turn. One example of the meeting can be found in Appendix B. After the
meeting, Developers adjust their role descriptions Dk

i based on the discussion recording, and the
Manager, leveraging the LLM L and the prompt P7, generates a main work plan cmain. This plan is
presented as code, and embedded into the program for execution. The meeting makes collaboration
among Developers more efficient and avoids potential conflicts.

3.2.2 Coding

Based on the empirical study on line locating and the complexity (§2), we transform the code change
generation into the multi-step coding process that is designed to leverage the strengths of LLMs in
code generation while mitigating their weaknesses in code change generation. Two types of agents
participate in the coding process: Developers and QA Engineers. As outlined in Algorithm 3, for
each task ti and its associated code file fi in T k

i , the Developer agent generates the role description
of the QA Engineer ai by the LLM L with the prompt P8. Subsequently, Developers collaborate
with their QA Engineers to execute the coding tasks. During each execution of the Developer, the
range of lines of code that need to be modified is firstly determined as a set of intervals {[s′i, e′i]}
where s′i represents the starting line number in the i-th hunk, and e′i is the ending line number. The
determination is generated by analyzing the task content ti and file content fi using L with the
prompt P9. These intervals split the original code file fi into parts to be modified (old_part) and

6

Algorithm 3 Coding task execution.
1: Input: file-task pairs set: T k

i , LLM: L
2: Config: prompts: P , the max of iteration: nmax
3: Output: code changes: D
4: for fi, ti ∈ T k

i do
5: ai←L((fi, ti), P8)
6: for j ∈ [0, nmax) do
7: if j > 0 then
8: ti = (ti, review_comment)
9: end if

10: {[s′i, e′i]} ← L((fi, ti), P9)
11: fi, old_part← split(fi, {[s′i, e′i]})
12: new_part←L((fi, ti, old_part), P10)
13: f ′

i ← replace(fi, {[s′i, e′i]}, new_part)
14: ∆di← diff(fi, f ′

i)
15: review_comment = L((ti, ∆di), P11)
16: review_decision = L((review_comment), P11)
17: if review_decision is true then
18: break
19: end if
20: end for
21: ∆d← diff(f ′

i , fi)
22: D ←D ∪∆d
23: end for

parts to be retained. Developers then gener-
ate new code snippets, new_part, by L with
the prompt P10. The code snippets replace
old_part, resulting in a new version of the code
file f ′

i . Utilizing Git tools, the code change
∆di for this file fi is generated. With the
code change ∆di, QA Engineer produce re-
view_comment and review_decision, by the
LLM L with the prompt P11. If the deci-
sion, review_decision, is negative (i.e., false),
the feedback, review_comment, prompts De-
velopers to revise the code in the next attempt.
This iterative process continues until the code
change meets the quality standards (i.e., re-
view_decision is true) or reaches a predefined
maximum number of iterations. After the it-
eration, the final version of the code change,
∆d, is fixed, which is the ultimate modification
result on each file. All generated final-version
code changes during this process are merged
into the repository-level code change D as the
issue solution.

4 Experiments and Analysis

4.1 Setup

In the experiments, we employ the SWE-bench dataset as the evaluation benchmark because it is the
latest dataset specifically designed for evaluating the performance of the GitHub issue resolution.
SWE-bench comprises 2, 294 issues extracted from 12 popular Python repositories, representing
real software evolution requirements. Given the observation that experimental outcomes on the 25%
subset of SWE-bench align with those obtained from the entire dataset [27], we opt for the same 25%
subset previously utilized in experiments for GPT-4 according to their materials [13]. Moreover, the
experimental scores for the five LLMs, have been made available by them [28].

Our framework is flexible to integrate various LLMs. To compare with the scores reported by
SWE-bench, GPT-4 is selected as the base LLM. Another reason for the selection is that GPT-4 shows
remarkable performance on code generation and understanding as demonstrated on benchmarks such
as MBPP [2] and HumanEval [12]. Claude-2 is not chosen due to the unavailability of API access.

Following SWE-bench [27], the applied and resolved ratio is used to evaluate the performance under
the setting with the files requiring modification provided. The applied ratio indicates the proportion of
instances where the code change is successfully generated and can be applied to the code repository
by Git. The resolved ratio refers to the proportion of instances where the code change is successfully
applied and passes a series of tests. Additional elaboration is provided in Appendix C.

4.2 How Effective is Our Framework? (RQ 2)

Table 2: The comparison of overall performance between
MAGIS and baselines on SWE-bench.

Method % Applied % Resolved

GPT-3.5 11.67 0.84
Claude-2 49.36 4.88
GPT-4 13.24 1.74
SWE-Llama 7b 51.56 2.12
SWE-Llama 13b 49.13 4.36

MAGIS 97.39 13.94
MAGIS (w/o QA) 92.71 10.63
MAGIS (w/o hints) 94.25 10.28
MAGIS (w/o hints, w/o QA) 91.99 8.71

The comparative performance analysis
between our framework and other LLMs
on the same dataset is presented in Tab. 2.
The results indicate that our framework
significantly outperforms other LLMs.
Notably, with a resolved ratio of 13.94%,
our framework’s effectiveness is eight-
fold that of the base LLM, GPT-4.
This substantial increase underscores our
framework’s capability to harness the po-
tential of LLMs more effectively. Fur-
thermore, when contrasted with the pre-

7

6.06.57.07.58.08.59.0

0.64

0.65

0.66

0.67

0.68

0.69

0.70 BM25
Ours

File Number

R
ec

al
l

Figure 3: Comparison of recall scores between Ours
and BM25.

1 2 3 4 50

10

20

30

40

50 Not Resolved
Resolved

Correlation Level

N
um

be
r

Figure 4: Distribution of the correlation score between the
generated task description and the reference code change.

vious state-of-the-art LLM, Claude-2, our framework’s resolved ratio exceeds that benchmark by
more than two-fold. This superior performance unequivocally establishes the advance of our method.

The ablation study is designed to simulate two scenarios: ① Without QA (w/o QA): Considering
the QA Engineer agent as optional within our framework, we directly evaluate the code changes
generated by the Developer agent, bypassing the QA process. This scenario aims to investigate the
effectiveness and necessity of QA Engineer review. ② Without hints (w/o hints): Hints refer to the
textual content found in the comments section of pull requests, which are typically created before the
first commit of the pull request. This setting means our framework operates without any clarifications
except for the issue, despite such information being available on GitHub before the issue resolution
process begins. This analysis aims to explore if the participation of humans could potentially improve
the success rate of issue resolution.

Our framework shows a significant improvement in issue resolution, even without QA or hints. It
achieves a resolved ratio of 8.71%, which is five times higher than that of the base LLM. This increase
underscores the contribution of other agents in MAGIS to its overall performance. Furthermore,
integrating cooperation with QA or hints separately can further elevate the resolved ratio by 1.92%
or 1.57%, respectively. These findings underscore the value of QA Engineers and the participation of
humans, as demonstrated by the resolved rates achieved through their integration.

For instance, to resolve the issue [17] from the repository Django [15], the developer modifies four
hunks in two files [16], as shown in Fig. 15. Despite the availability of two provided files, our method
opts for modifications in only one file, as illustrated in Figure 16. Remarkably, this simpler code
change enables the repository to pass all requisite test cases.

Additional comparison can be found in Appendix D and E, and detailed case study is shown in
Appendix H. Furthermore, the statistics on the generated code changes can be found in Appendix F.

4.3 How Effective is Our Planning Process? (RQ 3)

To investigate the effectiveness of the planning process, we analyze the Repository Custodian and
Manager agent. The performance of the Repository Custodian agent is observed in the recall score
versus the file number curve, as shown in Fig. 3. This curve demonstrates that our method consistently
outperforms the BM25 baseline across varying numbers of selected files, indicating that our approach
can identify the maximum number of relevant code files with the minimum selection.

For the Manager agent, we examined the alignment of its generated task descriptions with the
reference code change by LLM. Following the study [63], we select GPT-4 as an evaluator to score
the correlation between the reference code change and the generated task description. The correlation
scores are determined based on a set of criteria defined in Tab. 6. A higher correlation score indicates
a better alignment and thus, a more accurate and effective planning direction. The distribution of
these correlation scores is presented in Fig. 4. Notably, most of the scores are 3 or above, implying
that the majority of task descriptions are in the right direction concerning planning. Furthermore, the
higher scores correlate with a higher probability of issue resolution, indicated by a larger proportion
of “resolved” outcomes in scores 4 and 5. This signifies that when the generated task description
closely aligns with the reference, there is a higher possibility of resolving the issue. The analysis

8

Figure 5: Comparison of line locating coverage
between MAGIS (Ours) and baselines.

0.2 0.4 0.6 0.8 1.00.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.0

0.2

0.4

0.6

0.8

1.0Cumulative Frequency

Line Locating Coverage Ratio

R
es

ol
ve

d
R

at
io

C
um

ulative Frequency

Figure 6: Resolved ratio in different line locating coverage
intervals.

above demonstrates the effectiveness of both the Repository Custodian and the Manager agent in the
planning process of our framework.

4.4 How Effective is Our Coding Process? (RQ 4)

To evaluate the effectiveness of the coding process in our framework, we analyze the performance of
Developers in locating code lines and resolving issues of different complexity.

Fig. 5 illustrates the distribution of the line locating coverage ratio of MAGIS and the baselines. This
visualization reveals that our Developer agent frequently attains a line locating coverage ratio nearing
1. Compared with baselines, the Developer agent demonstrates a pronounced preference for higher
distribution values close to 1, and conversely, a reduced preference for lower distribution values near
0. Such a distribution validates the superior performance of MAGIS in locating code lines.

Further analysis is provided in Fig. 6 illustrating the relationship between the line locating coverage
ratio and the issue resolved ratio within those coverages. As shown in Fig. 6, the right four bars are
higher than the five left, which indicates that the resolved ratio can increase with the line locating
coverage. This observation also suggests that locating lines accurately is important for issue resolution.
The cumulative frequency curve, shown in orange, provides an additional analysis, indicating the
cumulative proportion of issues resolved ratio up to each point along the line locating coverage.
A steady increase in cumulative frequency accompanies the increase in line locating coverage,
reinforcing the idea that resolving issues is more successful in areas of high coverage. The slope
of the curve’s left half is lower than that of the right half, indicating that the benefits of increasing
the coverage ratio are less pronounced at lower coverage ratios than at higher ones. Therefore, the
Developer agent should prioritize improving its capability of locating code lines.

Moreover, as shown in Tab. 3, we present a logistic regression analysis that quantifies the correlation
between several complexity indices and issue resolution. The results show that GPT-4 has significant
negative correlations across the number of files and functions, suggesting that as these indices increase,
the likelihood of issue resolution decreases. Conversely, the negative correlations are less pronounced
with our model, MAGIS, particularly in the number of files and functions, suggesting mitigation of
challenges corresponding to these complexity indices.

Table 3: Correlation between the complexity indices and the issue resolution.

Method # Files # Functions # Hunks # Added LoC # Deleted LoC # Changed LoC

GPT-4 −25.15* −25.15* −0.06 −0.10 −0.04 −0.21
MAGIS −1.55* −1.55* −0.12* −0.04* −0.06* −0.57*

* The correlation between the index and the issue resolution is significant (P-value < 0.05).

To evaluate the performance of the QA Engineer, the ablation experiment is conducted and the results
are shown in Tab. 2. As the table shows, in settings with and without hints, the presence of the QA
Engineer can increase the resolved ratio by 1.57% and 3.31%, respectively. This overall enhancement

9

substantiates the QA Engineer’s contribution to improving outcomes. Furthermore, a case detailed in
Appendix I underscores the QA Engineer’s effectiveness.

5 Related Work

Researchers have developed LLM-based multi-agent systems, enabling more complex task com-
pletion. For instance, MetaGPT [23, 24] simulates a programming team’s Standardized Operating
Procedures (SOPs) and achieves leading scores on benchmarks like HumanEval [12] and MBPP [2].
Similarly, ChatDev [43] functions as a virtual development company, decomposing requirements into
atomic tasks and utilizing mutual communication and self-reflection to mitigate LLM hallucinations.
While these systems excel in transforming requirements into code, they often overlook the challenges
of code change generation during software evolution [25]. GitHub issues include different types of
requirements and most of them belong to bug fixing. Previous researchers have proposed methods
to localize the bugs [65, 42] and some researchers explored various methods to automatic program
repair[57, 7, 55, 3, 59, 53]. The full version of related work can be found in Appendix J.

6 Conclusion

This paper illuminates the potential of LLMs in software development, particularly in resolving
GitHub issues. Our empirical study identifies the challenges of direct LLM application. To address
the challenges, we propose a novel LLM-based multi-agent framework, MAGIS, enhancing issue
resolution through well-designed agents’ collaboration. The superiority of MAGIS on the SWE-
bench against popular LLMs highlights its effectiveness, pointing towards a promising direction for
integrating LLMs into software evolution workflows.

References
[1] Anthropic. Claude 2. https://www.anthropic.com/news/claude-2, 2023.

[2] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. arXiv Preprint, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

[3] Thomas H. Austin, Thomas Schmitz, and Cormac Flanagan. Multiple facets for dynamic
information flow with exceptions. ACM Trans. Program. Lang. Syst., 39(3):10:1–10:56, 2017.
doi: 10.1145/3024086. URL https://doi.org/10.1145/3024086.

[4] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. Factors influencing code review
processes in industry. In Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su, editors,
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pages 85–96. ACM, 2016.
doi: 10.1145/2950290.2950323. URL https://doi.org/10.1145/2950290.2950323.

[5] Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillère, Jacques Klein, and
Yves Le Traon. Got issues? who cares about it? A large scale investigation of issue trackers from
github. In IEEE 24th International Symposium on Software Reliability Engineering, ISSRE 2013,
Pasadena, CA, USA, November 4-7, 2013, pages 188–197. IEEE Computer Society, 2013. doi:
10.1109/ISSRE.2013.6698918. URL https://doi.org/10.1109/ISSRE.2013.6698918.

[6] Amiangshu Bosu and Jeffrey C. Carver. Impact of developer reputation on code review
outcomes in OSS projects: an empirical investigation. In Maurizio Morisio, Tore Dybå, and
Marco Torchiano, editors, 2014 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, Torino, Italy, September 18-19, 2014, pages 33:1–
33:10. ACM, 2014. doi: 10.1145/2652524.2652544. URL https://doi.org/10.1145/
2652524.2652544.

[7] Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. Repairagent: An autonomous,
llm-based agent for program repair. arXiv Preprint, abs/2403.17134, 2024. doi: 10.48550/
ARXIV.2403.17134. URL https://doi.org/10.48550/arXiv.2403.17134.

10

https://www.anthropic.com/news/claude-2
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3024086
https://doi.org/10.1145/2950290.2950323
https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1145/2652524.2652544
https://doi.org/10.1145/2652524.2652544
https://doi.org/10.48550/arXiv.2403.17134

[8] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Túlio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with GPT-4. arXiv Preprint, abs/2303.12712, 2023. doi: 10.48550/ARXIV.2303.12712. URL
https://doi.org/10.48550/arXiv.2303.12712.

[9] Jiayi Geng Carlos E. Jimenez, John Yang. Swe-bench lite. https://www.swebench.com/
lite.html, 2024.

[10] Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie
Fu, and Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent
debate. arXiv Preprint, abs/2308.07201, 2023. doi: 10.48550/ARXIV.2308.07201. URL
https://doi.org/10.48550/arXiv.2308.07201.

[11] Lichang Chen, Jiuhai Chen, Heng Huang, and Minhao Cheng. PTP: boosting stability and
performance of prompt tuning with perturbation-based regularizer. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 13512–
13525. Association for Computational Linguistics, 2023. URL https://aclanthology.org/
2023.emnlp-main.833.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. arXiv Preprint, abs/2107.03374,
2021. URL https://arxiv.org/abs/2107.03374.

[13] Google Drive. Swe-bench_api_generation. https://drive.google.com/drive/folders/
1EnrKzGAnsb_NmZKyECGmA2DrAc8ZuJ80, 2024.

[14] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for
evaluating llms on class-level code generation, 2023.

[15] Django Software Foundation. Django. https://github.com/django/django, 2024.

[16] Django Software Foundation. Fixed #30255 – fixed admindocs errors when rendering docstrings
without leading newlines. https://github.com/django/django/pull/12155/files,
2024.

[17] Django Software Foundation. #30255 (docutils reports an error rendering view docstring when
the first line is not empty). https://code.djangoproject.com/ticket/30255, 2024.

[18] Django Software Foundation. #30664 (sqlite3 migrations can fail when used quoted db_table.).
https://code.djangoproject.com/ticket/30664, 2024.

[19] Django Software Foundation. Custom query - django. https://code.djangoproject.com/
query, May 11, 2024.

[20] Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL
https://github.com/openlm-research/open_llama.

[21] Inc. GitHub. Github. https://github.com, 2024.

[22] Inc. GitHub. Github flow. https://docs.github.com/en/get-started/using-github/
github-flow, 2024.

11

https://doi.org/10.48550/arXiv.2303.12712
https://www.swebench.com/lite.html
https://www.swebench.com/lite.html
https://doi.org/10.48550/arXiv.2308.07201
https://aclanthology.org/2023.emnlp-main.833
https://aclanthology.org/2023.emnlp-main.833
https://arxiv.org/abs/2107.03374
https://drive.google.com/drive/folders/1EnrKzGAnsb_NmZKyECGmA2DrAc8ZuJ80
https://drive.google.com/drive/folders/1EnrKzGAnsb_NmZKyECGmA2DrAc8ZuJ80
https://github.com/django/django
https://github.com/django/django/pull/12155/files
https://code.djangoproject.com/ticket/30255
https://code.djangoproject.com/ticket/30664
https://code.djangoproject.com/query
https://code.djangoproject.com/query
https://github.com/openlm-research/open_llama
https://github.com
https://docs.github.com/en/get-started/using-github/github-flow
https://docs.github.com/en/get-started/using-github/github-flow

[23] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang,
Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2023. URL https://doi.org/10.48550/arXiv.2308.00352.

[24] Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi
Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo,
Tuo Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang,
Yaying Fei, Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An LLM agent for
data science. arXiv Preprint, abs/2402.18679, 2024. doi: 10.48550/ARXIV.2402.18679. URL
https://doi.org/10.48550/arXiv.2402.18679.

[25] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo,
John C. Grundy, and Haoyu Wang. Large language models for software engineering: A system-
atic literature review. arXiv Preprint, abs/2308.10620, 2023. doi: 10.48550/ARXIV.2308.10620.
URL https://doi.org/10.48550/arXiv.2308.10620.

[26] Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann.
Practitioners’ expectations on automated code comment generation. In 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022, pages 1693–1705. ACM, 2022. doi: 10.1145/3510003.3510152. URL
https://doi.org/10.1145/3510003.3510152.

[27] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=VTF8yNQM66.

[28] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Official comments to reviewer bfzn on swe-bench: Can language models resolve
real-world github issues? https://openreview.net/forum?id=VTF8yNQM66¬eId=
lfJF38VxJr, 2024.

[29] Thomas Johnsson. Attribute grammars as a functional programming paradigm. In Gilles Kahn,
editor, Functional Programming Languages and Computer Architecture, Portland, Oregon,
USA, September 14-16, 1987, Proceedings, volume 274 of Lecture Notes in Computer Science,
pages 154–173. Springer, 1987. doi: 10.1007/3-540-18317-5_10. URL https://doi.org/
10.1007/3-540-18317-5_10.

[30] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W. Godfrey. In-
vestigating code review quality: Do people and participation matter? In Rainer Koschke, Jens
Krinke, and Martin P. Robillard, editors, 2015 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1, 2015,
pages 111–120. IEEE Computer Society, 2015. doi: 10.1109/ICSM.2015.7332457. URL
https://doi.org/10.1109/ICSM.2015.7332457.

[31] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms strug-
gle with long in-context learning. arXiv Preprint, abs/2404.02060, 2024. doi: 10.48550/
ARXIV.2404.02060. URL https://doi.org/10.48550/arXiv.2404.02060.

[32] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html.

[33] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio
Petroni, and Percy Liang. Lost in the middle: How language models use long con-
texts. arXiv Preprint, abs/2307.03172, 2023. doi: 10.48550/ARXIV.2307.03172. URL
https://doi.org/10.48550/arXiv.2307.03172.

12

https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.48550/arXiv.2402.18679
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/10.1145/3510003.3510152
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66¬eId=lfJF38VxJr
https://openreview.net/forum?id=VTF8yNQM66¬eId=lfJF38VxJr
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1109/ICSM.2015.7332457
https://doi.org/10.48550/arXiv.2404.02060
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2307.03172

[34] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The impact of code
review coverage and code review participation on software quality: a case study of the qt, vtk,
and ITK projects. In Premkumar T. Devanbu, Sung Kim, and Martin Pinzger, editors, 11th
Working Conference on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June
1, 2014, Hyderabad, India, pages 192–201. ACM, 2014. doi: 10.1145/2597073.2597076. URL
https://doi.org/10.1145/2597073.2597076.

[35] Fangwen Mu, Xiao Chen, Lin Shi, Song Wang, and Qing Wang. Developer-intent driven code
comment generation. In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 768–780. IEEE, 2023. doi: 10.1109/
ICSE48619.2023.00073. URL https://doi.org/10.1109/ICSE48619.2023.00073.

[36] OpenAI. GPT-4 technical report. Arxiv Preprint, abs/2303.08774, 2023. doi: 10.48550/
ARXIV.2303.08774. URL https://doi.org/10.48550/arXiv.2303.08774.

[37] OpenAI. Gpt-3.5 turbo fine-tuning and api updates. https://openai.com/blog/gpt-3-5-
turbo-fine-tuning-and-api-updates, 2023.

[38] OpenAI. Gpt-4. https://openai.com/research/gpt-4, 2023.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. scikitlearn. https://github.com/scikit-learn/scikit-
learn, 2024.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. [mrg] add seeds when n_jobs=1 and use seed as random_state.
https://github.com/scikit-learn/scikit-learn/pull/9288, 2024.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Kmeans gives slightly different result for n_jobs=1 vs. n_jobs 1.
https://github.com/scikit-learn/scikit-learn/issues/9784, 2024.

[42] Binhang Qi, Hailong Sun, Wei Yuan, Hongyu Zhang, and Xiangxin Meng. Dreamloc: A deep
relevance matching-based framework for bug localization. IEEE Trans. Reliab., 71(1):235–249,
2022. doi: 10.1109/TR.2021.3104728. URL https://doi.org/10.1109/TR.2021.3104728.

[43] Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize Chen, Yusheng Su, Yufan Dang, Jiahao
Li, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Communicative agents for software
development. arXiv Preprint, 2023.

[44] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018.

[45] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and Mike
Gatford. Okapi at TREC-3. In Donna K. Harman, editor, Proceedings of The Third Text REtrieval
Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4, 1994, volume 500-225
of NIST Special Publication, pages 109–126. National Institute of Standards and Technology
(NIST), 1994. URL http://trec.nist.gov/pubs/trec3/papers/city.ps.gz.

[46] Jessica Shieh. Best practices for prompt engineering with openai api. OpenAI, Febru-
ary https://help. openai. com/en/articles/6654000-best-practices-for-prompt-engineering-with-
openai-api, 2023.

[47] Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, Qipeng Guo, Xipeng Qiu, Pengcheng Yin, Xiaoli
Li, Fei Yuan, Lingpeng Kong, Xiang Li, and Zhiyong Wu. A survey of neural code intelligence:
Paradigms, advances and beyond, 2024.

[48] Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the
power of intelligent LLM agents. arXiv Preprint, abs/2306.03314, 2023. doi: 10.48550/
ARXIV.2306.03314. URL https://doi.org/10.48550/arXiv.2306.03314.

13

https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1109/ICSE48619.2023.00073
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/research/gpt-4
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn/pull/9288
https://github.com/scikit-learn/scikit-learn/issues/9784
https://doi.org/10.1109/TR.2021.3104728
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.48550/arXiv.2306.03314

[49] Wei Tao, Yucheng Zhou, Yanlin Wang, Hongyu Zhang, Haofen Wang, and Wenqiang Zhang.
Kadel: Knowledge-aware denoising learning for commit message generation. ACM Trans.
Softw. Eng. Methodol., jan 2024. ISSN 1049-331X. doi: 10.1145/3643675. URL https:
//doi.org/10.1145/3643675.

[50] The Cognition Team. Swe-bench technical report, 2024. URL https://www.cognition-
labs.com/post/swe-bench-technical-report.

[51] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv Preprint, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971.
URL https://doi.org/10.48550/arXiv.2302.13971.

[52] Michele Tufano, Anisha Agarwal, Jinu Jang, Roshanak Zilouchian Moghaddam, and Neel
Sundaresan. Autodev: Automated ai-driven development, 2024. URL https://doi.org/
10.48550/arXiv.2403.08299.

[53] Weishi Wang, Yue Wang, Shafiq Joty, and Steven C. H. Hoi. Rap-gen: Retrieval-augmented
patch generation with codet5 for automatic program repair. In Satish Chandra, Kelly Blincoe,
and Paolo Tonella, editors, Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023,
San Francisco, CA, USA, December 3-9, 2023, pages 146–158. ACM, 2023. doi: 10.1145/
3611643.3616256. URL https://doi.org/10.1145/3611643.3616256.

[54] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 8696–8708.
Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.685.
URL https://doi.org/10.18653/v1/2021.emnlp-main.685.

[55] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues. Varfix: balancing
edit expressiveness and search effectiveness in automated program repair. In Diomidis Spinellis,
Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta, editors, ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021, pages 354–366. ACM, 2021. doi:
10.1145/3468264.3468600. URL https://doi.org/10.1145/3468264.3468600.

[56] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
multi-agent conversation framework. arXiv Preprint, abs/2308.08155, 2023. doi: 10.48550/
ARXIV.2308.08155. URL https://doi.org/10.48550/arXiv.2308.08155.

[57] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in
the era of large pre-trained language models. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1482–
1494. IEEE, 2023. doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/
ICSE48619.2023.00129.

[58] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent computer interfaces enable software engi-
neering language models, 2024.

[59] He Ye and Martin Monperrus. ITER: iterative neural repair for multi-location patches. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, ICSE
2024, Lisbon, Portugal, April 14-20, 2024, pages 10:1–10:13. ACM, 2024. doi: 10.1145/
3597503.3623337. URL https://doi.org/10.1145/3597503.3623337.

[60] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Au-
tonomous program improvement. arXiv Preprint, abs/2404.05427, 2024. doi: 10.48550/
ARXIV.2404.05427. URL https://doi.org/10.48550/arXiv.2404.05427.

14

https://doi.org/10.1145/3643675
https://doi.org/10.1145/3643675
https://www.cognition-labs.com/post/swe-bench-technical-report
https://www.cognition-labs.com/post/swe-bench-technical-report
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2403.08299
https://doi.org/10.48550/arXiv.2403.08299
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3468264.3468600
https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1145/3597503.3623337
https://doi.org/10.48550/arXiv.2404.05427

[61] Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and
Rui Wang. Unifying the perspectives of nlp and software engineering: A survey on language
models for code, 2024. URL https://arxiv.org/abs/2311.07989.

[62] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. arXiv Preprint, abs/2303.18223, 2023. doi:
10.48550/ARXIV.2303.18223. URL https://doi.org/10.48550/arXiv.2303.18223.

[63] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, edi-
tors, Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html.

[64] Zibin Zheng, Kaiwen Ning, Jiachi Chen, Yanlin Wang, Wenqing Chen, Lianghong Guo, and
Weicheng Wang. Towards an understanding of large language models in software engineering
tasks. arXiv Preprint, abs/2308.11396, 2023. doi: 10.48550/ARXIV.2308.11396. URL
https://doi.org/10.48550/arXiv.2308.11396.

[65] Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In Martin Glinz, Gail C.
Murphy, and Mauro Pezzè, editors, 34th International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages 14–24. IEEE Computer Society, 2012.
doi: 10.1109/ICSE.2012.6227210. URL https://doi.org/10.1109/ICSE.2012.6227210.

[66] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. Fault analysis
and debugging of microservice systems: Industrial survey, benchmark system, and empirical
study. IEEE Trans. Software Eng., 47(2):243–260, 2021. doi: 10.1109/TSE.2018.2887384.
URL https://doi.org/10.1109/TSE.2018.2887384.

[67] Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang Tao, Guodong Long, Jian-Guang
Lou, and Jianbing Shen. Thread of thought unraveling chaotic contexts. arXiv Preprint,
abs/2311.08734, 2023. doi: 10.48550/ARXIV.2311.08734. URL https://doi.org/
10.48550/arXiv.2311.08734.

[68] Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024. URL https://arxiv.org/abs/2406.16554.

15

https://arxiv.org/abs/2311.07989
https://doi.org/10.48550/arXiv.2303.18223
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/arXiv.2308.11396
https://doi.org/10.1109/ICSE.2012.6227210
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.48550/arXiv.2311.08734
https://doi.org/10.48550/arXiv.2311.08734
https://arxiv.org/abs/2406.16554

A Detailed Explanation in Empirical Study

A.1 Coverage Ratio

The formula for calculating the coverage ratio is Equation 1. As it shows, for each instance of GitHub
issue resolution, the range of code change (in terms of the number of lines) in the reference r is
represented as a set of intervals Lr = {[s0, e0], ..., [sn, en]}, while the line ranges of the generated
code change g is Lg = {[s′0, e′0], ..., [s′m, e′m]}, where s and e respectively represent the starting and
ending line number of each modification hunk in the file, with n hunks in the reference code change
and m hunks in the generated one.

A.2 Observation on Fig. 1

As shown in Fig. 1, we observe that: ① The distribution near the coverage ratio 0 (left side of the
figure) is the highest for all three LLMs, indicating that in most cases, the content generated by these
models has a very low coverage ratio with the reference in terms of locating code lines. This means
that these LLMs are most likely not able to accurately locate code lines that need to be modified
in the process of generating the code change. ② In the distribution near the line locating coverage
of 1 (right side of the figure), the three models show a consistent ranking (i.e., Claude-2 > GPT-4
> GPT-3.5) and this ranking is also consistent with the proportion of instances solved by the three
models. This phenomenon suggests that the performance of LLMs in generating the code change is
probably related to their ability to locate code lines accurately.

A.3 Analysis on Complexity of the Code Change

As shown in Fig. 1, compared with GPT-3.5 and GPT-4, Claude-2 exhibits a different pattern, with
much lower negative correlations for the number of files and functions, which indicates that it is a
more efficient approach to generate the code change for GitHub issue resolution. However, it also
shows significant negative correlations across other indices such as the number of hunks, added lines
of code (LoC), deleted LoC, and changed LoC.

B Kick-off Meeting Example

Figure 7 illustrates a kick-off team meeting. In this meeting, three participants are present: the
Manager agent, Oliver CodeLead, and two Developer agents, Django Database Specialist and Alex
Rossini. They discuss a specific issue3, assigned tasks, and determine the workflow sequence.

C Metrics

The applied ratio indicates the proportion of instances where the code change is successfully generated
and can be applied to the existing code repository using Git tools, i.e.,

Applied Ratio =
|D|
|I|

, (2)

where D represents the set of instances in the generated code change set that could be applied to the
original code repository using the “git apply” operation, and I is the set of all instances in the test
set. The resolved ratio refers to the proportion of instances in which the code change is successfully
applied and passed a series of tests, i.e.,

Resolved Ratio =

∣∣∣∑l
i=0({Told(di)} ∩ {Tnew(di)})

∣∣∣
|I|

, (3)

where Told denotes all the test cases that the old version of the code repository could pass, Tnew

represents all the test cases designed for new requirements, and di denotes the code change generated
to resolve the issue in the i-th instance. Furthermore, T (d) = True means that the code change d can
pass all the test cases in T .

3https://code.djangoproject.com/ticket/30664

16

https://code.djangoproject.com/ticket/30664

����������	
����

����������������

�������������������������������� �!���"�������#����$%����#�����&�����������#�������%%�#����'���#����(���������)� �#������ �����*+,�#�-������#���%�.�������(����.�#��/ �#����01#�0(������%��2 �����(%�����#.�!�(�3�4��%#��#����% ���#��#�#�����%#�)#���%���)��#�������0�����%���)����������)(�����������/ �#��#��)�((�)#���(����%�(���#��%��%% ���*�)�����#���%%�%%�.��#����� ��#�%�%�)���0��)�������� #����'���((�(������!���#��#���%#�0(�%����(���)�(�%�/ ��)��!���#�%��)��'(�#�����&�������#��(������#������!�����'�#��#��((���!!�)#���!�(�%����)(�����5�"����6�060�)����%6%/(�#�-6%)�����'�5�����5�"����6�060�)����%6'�%#���%/(6%)�����'�5��,�#$%�%#��#�0��% �����7����� ��) ����#� ����%#��������!�#���'��0(�������#���%�(#����%#��#����.����������'(�)���85((�#�����'���#���!(����!�����' #��%'�)�!�)�((��(�������#������#�!��������%%����'��)�%������'�����)��%�������#�%�%��,�#$%�����#�����'�#��%���%) %%����'���)#��������!�) %����*��((�.��0�����.�#���� ��9"�����9�#�0�%��*'�)��(�%#��#������� %�����������.��!�#���%#�# %�/ �:;%��� 5������#�������#����'���#����(�������#��#�.������!�)�����%�� ��#������)#(��/ �#���#�0(������%����#���<�01#�0(�<��'#����.����.�������.�#��*+,�#�-�����%��%% �����%�%�� ����������#�����!�#���#�0(����%��#�(��%#�����!����������������%��#�=��������%�)� %���0��#����� 0(��/ �#�����!�#���<�01#�0(�<����#���<>?@;�@��;A,@<�%#�#����#��B��'(����%�#��(�)�#����������!��#�������)#(��/ �#���<�01#�0(�<����� ��)���0�%���)������#���<1������1#�0(�<���#�������#���<9�#�0�%�*)����@��#��<�)(�%%�#������(��#��%��#�0(������%�)����)#(���������% ���� ��*+,�%#�#����#�������#�����))������#�%�#�0(������%�.�#��/ �#�%�.�#�� #�(�������#�������%��8�.�((��=#��%���(��#�%#�#��%��)�����%�#�������% ���#���������#���#���)�������%%���%������#��!����.�#��!�������������(�#���%��'%��8�.�((���) ���#��((�)�����%������='(��������''���)��#���((�#�������0��%�!���#���%'����)������! # �����!����)���8!�#������%���#�������%%����!�������'(������������'�����)��%�#��#�8����������(�������8�0�(�����8�)���%#��#�.����������#��%�'��0(����������� ��9"�����9�#�0�%��*'�)��(�%#��!����� ����%���#! (��������.��C� ��'(���%� ��%�)��'�����%��������'��!�)#(�������%%�%�#���#�)���)�(�#�%�%�!���#�����#�0�%��%�����!�#����%��;%�8� ����%#�����#���� 5���'(��������������!�����#���)����#��#�������#�%�*+,�#�����(�.�#��/ �#���#�0(������%�)����)#(����%'�)��((��� �����*+,�#�-������#���%�����(�����!����������%��������#��#��#�����'��#��!�#���'(�������(��%� '��#����#���<1������1#�0(�<���#����������(�#���! �)#���%�#������(��/ �#���#�0(������%�)����)#(�����% �����#��#�#���5�����#��� 0(�D/ �#����!�#���������(������/ �#����8�.�((��(%����!�)#�������E�%#���*+,D%'�)�!�)��##��0 #�%�#��% �#�*+,�#��;'��#�!����#��#���������)��#�)�(�'��#��!����'(����%�#���)���#�����!���#�%#�#����'���)��#����%% ������#�%#�#���%�(#��������%��%��%%��#��(�#��������#��%�'��0(���!�������)) ���������#���! # ��������#����% ���� ��!�=��%�����������!!�)#�����B���''���)����)(��%���%���������#�%#�#��#�%�� (�#�%��������#��������(�����������(�.�#����/ �#���<�01#�0(�<��������(���#����#���!�=�0��)��'������#���������#���*+,������%#�#����='�)#�����% (#�� %����<�%%��#@/ �(FG<�#��)��!������#)�������(�%�8��% �������8�0�(������ ��)��0������!!��#%�.�((���% �����)��'�����%����%�(#����#��#���/ �#���<�01#�0(�<������#�����%% ���E(��%��)��'�����!�#�������������'��#%��� �0�(�����.���������������(���������%'�)�!�)%�#��#�.�������#��)�������#���2#���.�%���8�0�(�����.�������((�%�#�#����)���!!�� ��#�%�%��������� ��9"�����9�#�0�%��*'�)��(�%#�����;(�=�?�%%�����!����� ��)(�����������.%��8#�%���%�#��#�.�5������#���%����'��������������#���������� �(�%#��#����%�!��������%%����#��������#�����%% �%�.�#��/ �#���#�0(������%��9"�����9�#�0�%��*'�)��(�%#���� ����(��.�((�����(�����" %#����#���<9�#�0�%�*)����@��#��<������;(�=���� 5((�0����%'��%�0(��!���)���#����#�%#%�#����% ���#��#�#����%% ���%���%�(�����������%���#����)) ���A�!����.��'��)�����8�.��#�#����% ���#����������������(�'%����0(�)�������'�����)��%����� ���!!��#%��8#�%���%�0�#���!��� ��#�%�%�����)(�%�(����(�#�����������#�0���!�#�!����)(�%��)�������#������%'�)��((��)��%��������#���%������ %���!�#���<1������1#�0(�<���#��������#��������!���)��'�����%����#�%#�����,�#5%�0���!(����%) %%��!�#����5%���(���)�(�������!���#��%��#�%�%�#��#�)� (���'#���7��� ��.���!(�.��9��%�#���)������!�)#�����������#��0��)��'(�#���0�!����.��)����!!�)#���(�����!#�#���#�%#�)�%�%��;(�=:�2��)���#��%��#.��#�%�%�0����������'���((�(�.�#��'������)�)��)�D��%�#��%��)�����7���� ������(�'���#%:�8!�.��!����#��#���%�/ ��)���%���/ ������.��.�((�#����!����(�7��#���%#�'%�#��#�����������!��.���%��;(%���.��(��!�) %�������*+,�#�-��(�#5%������0���#��)��%������!�����)�����%�����#��������#��#(���!!�)#�E�%#���*+,��'���#���%���%�.���������(����.�#��%������!�(�%�2�)��.�������)(���!����#��%��.��)����%#�0(�%����#���(��������)��)�'���#%�!���� ��'�����%%�������% ���#��#������������%�.��#�#���������#��0�����#�����.�����8!�#�������������#��(%��'����%%���%���������#����(���!����#������/ ������'(��%�����%��#������.�%��.��)��������%%�#����'���'#(���������� �!����� ����%���#%��2(������8����%'��%��#���� ��/ �%#�����#����������!��'���#���%����%����������##����4��%#��.��%�� (������#�!���)) ����)�%��!�<�01#�0(�<�/ �#�������)#(����%�#��%�.�((������ %���)(����'�)# ����!�#���)�����%�#��#������#��0����������#���<9�#�0�%�*)����@��#��<�)(�%%��H�=#��#���<1������1#�0(�<���#����%�� (��0�� '��#���#������(��/ �#���<�01#�0(�<�����%�)����)#(���2�)��.�������#��%��#.��%#�'%�)��'(�#�����������!�����.��)�������!��#�����#���%����(����.�#��*+,�%#�#����#�������#����;#�#��%�%#�����;(�=�.� (��0���0(��#��%#��#�.��#����#���#�%#%�����%�%�/ ��)��.� (���(%��'�����#� %�!�����������#����.��#��#�%#%������" %#�#����#���))������#��)�����%������#���#����'��#%��!�#���%�%#���� �����#���'��)�%%��������#���%)�'���!�.�����'������)�)��)�'���#%�.� (��0��0���!�)��(�!���#���#����#��%��)� '���������!��#��#������#������%�'��)��������%�'(������;%��� 5������#�������.���������(����.�#��%������!�(�%��;���)�����%�.������������������#��#(���!!�)#�E�%#���*+,�����#������#�0�%��0�)����%�����������#��%��.��%�� (����% ���#��#�� ��)�����%�����%'�)�!�)�#��*+,�#���'���#���%����������#��������#��#(��)������#���0��������!����#������#�0�%�%�?������������������%� �)�%��85��)��!��#�0(��.�#��#���'������������(�'����))�%%�'����%%���%���������(�0(����) ���#�#�����8!����#������(%��)���%� '��85((������% ���#��)��� ��)�#��'���'#(���8!�#�������������#����/ �%#���%����)��)���%��8�0�(�����.�5���������#��'��)����III�;(�=�?�%%����������� ��9"�����9�#�0�%��*'�)��(�%#��!�����#�) (�#����#���%�/ ��)���!�� ��.���!(�.�)(���(���8�������.�#���� ��% ���%#����������!��'���#���%��2�)���� 5�����" %#���#���<9�#�0�%�*)����@��#��<�����<�01#�0(�<��'���#���%��8�)���)��#���(��!�((�.� '�.�#��#���#�%#�)���#�����85((��(%����% ���� ��%�(#�������%�5#��!!�)#��#������#�0�%��0�)����%�0����(������!�����*+,�#�D%'�)�!�)�)����'�#�%�;%�!�����%� �)�%��8�����(%��)��!��#�0(��.�#��#����))�%%�'����%%���%���������(�'���#�%#�)��'���������8��(%��#������#�.� (��0��0���!�)��(�#���������� (���)��)�D��%�#����(���#��� ��'�����%%���������#����#���%'����)���J�(�%%�#�������������! �#����)(���!�)�#���%��8����������#��0��������'��#��!�#���.�����%�%�����%�9"�����9�#�0�%��*'�)��(�%#���%�)��'(�#���#����%�A�%������� ����%) %%������#��''���%�.���������)(����'(����������������D '���%�/ ��)���!�#�%�%��9"�����9�#�0�%��*'�)��(�%#�.�((�%#��#�0������#�!�����/ �#���<�01#�0(�<��)) ����)�%����� '��#����#���<9�#�0�%�*)����@��#��<��2�)��#��#5%����'(�)������.��)��!����#�����#������0���������;(�=�?�%%����.�((�!�((�.� '�.�#��#���#�%#�)���#����#����% ���� ��)�����%��������%�(����#����%% ��.�#�� #��!!�)#�����#������#�0�%��0�)����%��������#���������# ��������% ������)��#�)�(��%% �%����%���(�#5%�%)��� (����� (���)��)�D��%�����%��.�((�%������%��''��# ��#��%�#��%��)�����7��� ��'�����%%�������%%����� �!���%����)��((����%����������!��#��#�� ��)�����%�.�����%��='�)#����)��%%���!!����#���#�0�%��0�)����%������!��%#�)��)�'���#�.�((�0��%�#��!#���#������#��(���" %#���#%�#��#���<9�#�0�%�*)����@��#��<�����)��'(�#���0��9"�����9�#�0�%��*'�)��(�%#��;#�#��#�'���#��.��.�((������.�#���)�����%�������!������#������%����#��)���;(�=�.�((�'��)����.�#��.��#����#���#�%#%�8!�#�������������0"�)#���%����! �#����'���#%�#����%) %%��85((��������������%)��� (��#��%��)��)�'���#%�����'����������������.�#����� '��#���.���!(�.�)���#��;!#���#��#��.��)�����"� ���#������#��������%#��#�.����������� ����%'�)#����#�%�%��9"�����9�#�0�%��*'�)��(�%#���� ������#���������(���#�#��0����������;(�=��'(��%��'��'����!���#�%#�����(�'���#�.��(��%#������# ����!��� '��#�%����#������#��(�!�=�%��8!����������)� �#��%�'��0(��%������/ ���%��%%�%#��)���'(��%�����)��� #��%�%�����%�'�%%�0(���%��.��)��������%%�������)) '%�'���'#(��,�#5%�����#�����#�� ���0"�)#���%�.�#���!!�)���)��������)�((�0���#����%'���#���������� ��((�!����� ��)��#��0 #���%�#��#�����%) %%���������(�#5%���#�#��.���K�L48H8*MN�������� ��((�!����� ��)��#��0 #���%��8��)��)(%�����.�5((�'��)�����%�!�((�.%3�9"�����9�#�0�%��*'�)��(�%#�.�((�!��%#�����#�!����������!��#�����%#��)�%��!�����)#(��/ �#���<�01#�0(�<�����%����� '��#��#���<1������1#�0(�<���#�����2�)��#��%��#�%�%�����)��'(�#����������!�����;(�=�.�((�!�((�.�.�#��#���#�%#�����(�'���#�#����% ���� ��%�(#�����%���0 %#��������%���#��!!�)#��#������#�0�%��0�)����%��&��.�((���'(����#���� (���)��)�D��%�#��%��)�����7��� ���!!��#%����������%%������%% �%�'���'#(���&�#��� ��'(������'(�)��������%� �)�%�)��!�������(�#5%�0�����.����������� ����%'�)#����#�%�%��8!����� �!���%������/ ������#%����%���'(��%��)��� ��)�#��#�����#�#������(��%#�)��������)���B��#������"� �����

�OP�Q�
R �ST	��R �UP�V�R
�OP�Q�
R
�ST	��R
�UP�V�R
�OP�Q�
R
�OP�Q�
R

Figure 7: Kick-off meeting to resolve the issue [18].

17

The recall score versus file number curve is used to measure the effectiveness of locating code files to
be modified. The recall score refers to the proportion of files that are successfully located out of all
the files that require modification. The formula for calculating the file locating recall score for the
i-th instance is as follows:

Recall =
|Gi ∩Ri|

|Ri|
× 100%, (4)

where Gi =
∑n

j=0 gi,j represents the set of file paths located by our framework, with each file path
in the set denoted as gi,j and the total number of files as n; Ri =

∑m
k=0 ri,k denotes the paths of the

files that need to be modified, with each reference file path denoted as ri,k and the total file number as
m. In this curve, “file number” refers to the average number of files that need to be processed across
all instances to achieve the given recall score. Specifically, it illustrates how many files averagely
need to be located by our framework before reaching the recall score denoted by the curve at any
point. This metric represents both the effectiveness and efficiency of file locating.

D Comparison Result on SWE-bench Lite

Recently, some contemporaneous works, e.g., AutoCodeRover [60] and SWE-Agent [58], have been
proposed for this task. These methods are evaluated using SWE-bench lite, a canonical subset of
SWE-bench, which is recommended for evaluation [9]. Considering budget constraints, we conducted
experiments on SWE-bench lite to compare with them on the same issues’ resolution.

The experimental results are shown in Tab. 4. MAGIS achieves the highest resolved ratio, 25.33%,
than other baselines. The performance of MAGIS slightly decreased when evaluated without QA,
reaching 23.33%, and dropped under the other two ablation settings. This comparative study un-
derscores the robustness of MAGIS, particularly when provided with comprehensive inputs, and
highlights the impact of QA and hints on its performance. The results indicate that while new methods
like AutoCodeRover and SWE-Agent show promise, MAGIS remains an effective method for GitHub
issue resolution.

Table 4: The comparison of overall performance between MAGIS and baselines on SWE-bench lite.

Method AutoCodeRover SWE-Agent MAGIS

Full w/o QA w/o hints w/o (hints, QA)

Resolved 16.11% (22.33%*) 18.00% 25.33% 23.33% 16.67% 16.00%

* Note that 16.11 is the average scores among 3 runs while 22.33 is under the union of from the 3 runs.

E Comparison with Devin

Devin is a novel agent for software development [50], and its performance has also been assessed
using the SWE-bench. However, the evaluation dataset employed by Devin differs from the subset
used for experiments with GPT-4 reported by the paper of SWE-bench [27]. An analysis of the
repository name and pull request ID of each instance reveals that only 140 instances coverage between
the two datasets.

Within the shared pool of 140 instances, our framework successfully resolves 21 (15%) issues,
surpassing Devin’s resolution of 18 (12.86%) issues 4. This comparison, however, may not be entirely
equitable. Devin’s possible underlying LLM is unknown, and it possesses the capability to integrate
feedback from the environment. Moreover, Devin’s reported scores are under the setting given the
entire repository, and it operates with “common developer tools including the shell, code editor, and
browser”, and “agents with internet access could potentially find external information through other
methods” as detailed at the report 5. In contrast, our approach solely relies on the shell, without the
need of any additional external tools.

4https://github.com/CognitionAI/devin-swebench-results/tree/main/output_diffs/
pass

5https://www.cognition-labs.com/introducing-devin

18

https://github.com/CognitionAI/devin-swebench-results/tree/main/output_diffs/pass
https://github.com/CognitionAI/devin-swebench-results/tree/main/output_diffs/pass
https://www.cognition-labs.com/introducing-devin

For running time, 72% of instances resolved by Devin require greater than 10 minutes to complete.
In contrast, our framework finalizes each resolved issue within approximately 3 minutes. On average,
our framework completes the processing of each instance in under 5 minutes, demonstrating its
capability to assist in resolving GitHub issues with minimal time expenditure.

F Statistics on the Generated Code Changes

This section provides statistics on code changes corresponding to resolved issues and those applicable
but unresolved using our framework.

The statistics on the code change for instances with resolved issues are presented in Tab. 5. Overall,
the statistical information of the generated code changes for these instances, such as the average
number of code files, functions, hunks, and deleted lines, all differ slightly (not exceeding 0.3) from
the reference solutions written by humans. This indicates that for these instances, the complexity of
the code change generated by our framework is similar to that of humans. Furthermore, the maximum
values observed in the table reveal that our framework can implement code modifications involving
two files, four hunks, and 1, 655 lines modification, with single modifications reaching up to 190
lines. Results demonstrate the effectiveness of our method in resolving complex issues that need to
modify the code file on multiple locations and with long context.

Specifically, the distribution of the number of modified lines for the resolving instances is shown
in Fig. 8. We observe that the distribution of the number of modified lines in our framework for
the solved instances exceeds that of the reference solution, especially in terms of the number of
added lines being significantly higher than the reference. Upon manual inspection, we found that the
generation results provided by our framework often contained more comment information, which led
to an increase in the total number of modified lines. For example, Fig. 10 displays the generation
result of our framework. Lines 365, 368, 371, 374, 383 in the new version file correspond to the
comment for the added code. These natural language descriptions are valuable in actual software
evolution [26, 35]. In contrast, Fig. 12 shows a human-written solution lacking such explanatory
comments, which might disadvantage software maintainers in reading and understanding.

The statistics on the code change for instances without resolved issues are shown in Tab. 5. From the
table, our framework can generate applicable code changes including up to 13 files and 28 hunks, and
the location of the modifications can be as far as line 7, 150, with a single modification reaching up to
9, 367 lines. These results suggest that our method has a strong adaptability in generating applicable
code changes. However, considering that these code changes have not passed all the potential test
cases they could pass, which indicates that there is still room for improvement.

To further analyze the reasons behind the failure of test cases in these instances, we have quantified
the distribution of the lengths of code changes in the unresolved instances, as shown in Fig. 9. From
the figure, we observe that for unresolved instances, the framework tends to delete a larger number
of lines while adding fewer lines, in contrast to the distribution of human-written changes. This
discrepancy may point to different repair strategies or attitudes towards problem-solving, where the
framework presented herein might prefer to reduce errors by removing potentially problematic code,
whereas human developers may lean towards adding new code to address issues.

Add Delete Both
0

5

10

15

20

25

Add Delete Both
0

5

10

15

20

25

Figure 8: Distribution of the LoC in the resolved in-
stances.

Add Delete Both
0

100

200

300

400

500

600

Add Delete Both
0

10

20

30

40

50

60

70

80

Figure 9: Distribution of the LoC in the applied
but not resolved instances.

19

Commit

Update k_means_.py

main

itaowei committed now 1 parent 0dcff5f commit 816fba7

0 comments on commit 816fba7 Lock conversation

Write Preview

You’re receiving notifications because you’re watching this repository.

© 2024 GitHub, Inc. Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information

itaowei / draft Type / to search

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

Browse files

 47 sklearn/cluster/k_means_.py

@@ -360,42 +360,50 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

360 360 else:

361 361 raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got"

362 362 " %s" % str(algorithm))

363 if effective_n_jobs(n_jobs) == 1:-
364 # For a single thread, less memory is needed if we just store one set-
365 # of the best results (as opposed to one set per run per thread).-
366 for it in range(n_init):-
367 # run a k-means once-

363 # [NEW CODE]+
364 # [NEW CODE]+
365 # Initialize variables for the best values and results+
366 best_labels, best_inertia, best_centers, best_n_iter = None, None, None, None+
367 +
368 # Check the number of jobs specified for parallel execution+
369 effective_jobs = effective_n_jobs(n_jobs)+
370 +
371 # Set a threshold for the random state generator+
372 seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)+
373 +
374 # Run the K-means algorithm in parallel or single-threaded based on the effective_jobs+
375 if effective_jobs == 1:+
376 for seed in seeds:+
377 # Run the single K-means pass with the provided seed+

368 378 labels, inertia, centers, n_iter_ = kmeans_single(

369 379 X, sample_weight, n_clusters, max_iter=max_iter, init=init,

370 380 verbose=verbose, precompute_distances=precompute_distances,

371 tol=tol, x_squared_norms=x_squared_norms,-
372 random_state=random_state)-
373 # determine if these results are the best so far-

381 tol=tol, x_squared_norms=x_squared_norms, random_state=seed)+
382 +
383 # Check if obtained inertia is the best so far and store the result+

374 384 if best_inertia is None or inertia < best_inertia:

375 385 best_labels = labels.copy()

376 386 best_centers = centers.copy()

377 387 best_inertia = inertia

378 388 best_n_iter = n_iter_

379 389 else:

380 # parallelisation of k-means runs-
381 seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)-
382 results = Parallel(n_jobs=n_jobs, verbose=0)(-

390 # Execute parallel K-means runs+
391 all_results = Parallel(n_jobs=effective_jobs, verbose=0)(+

383 392 delayed(kmeans_single)(X, sample_weight, n_clusters,

384 393 max_iter=max_iter, init=init,

385 394 verbose=verbose, tol=tol,

386 395 precompute_distances=precompute_distances,

387 396 x_squared_norms=x_squared_norms,

388 # Change seed to ensure variety-
389 397 random_state=seed)

390 398 for seed in seeds)

391 # Get results with the lowest inertia-
392 labels, inertia, centers, n_iters = zip(*results)-
393 best = np.argmin(inertia)-
394 best_labels = labels[best]-
395 best_inertia = inertia[best]-
396 best_centers = centers[best]-
397 best_n_iter = n_iters[best]-
398 399

400 # Find the run with the lowest inertia and update the best variables accordingly+
401 for labels, inertia, centers, n_iters in all_results:+
402 if best_inertia is None or inertia < best_inertia:+
403 best_labels = labels.copy()+
404 best_inertia = inertia+
405 best_centers = centers.copy()+
406 best_n_iter = n_iters+

399 407 if not sp.issparse(X):

400 408 if not copy_x:

401 409 X += X_mean

@@ -407,7 +415,6 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

407 415 "n_clusters ({}). Possibly due to duplicate points "

408 416 "in X.".format(distinct_clusters, n_clusters),

409 417 ConvergenceWarning, stacklevel=2)

410 -
411 418 if return_n_iter:

412 419 return best_centers, best_labels, best_inertia, best_n_iter

413 420 else:

Leave a comment

Markdown is supported Paste, drop, or click to add files

Comment on this commit

Unsubscribe

Showing 1 changed file with 27 additions and 20 deletions. Whitespace Ignore whitespace Split Unified

Figure 10: Case from scikit-learn (ours, after re-
view) for the issue [41].

Commit

Update k_means_.py

main

itaowei committed now 1 parent b2a606e commit ad8afff

0 comments on commit ad8afff Lock conversation

Write Preview

You’re receiving notifications because you’re watching this repository.

© 2024 GitHub, Inc. Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information

itaowei / draft Type / to search

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

Browse files

 45 sklearn/cluster/k_means_.py

@@ -360,26 +360,24 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

360 360 else:

361 361 raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got"

362 362 " %s" % str(algorithm))

363 # [NEW CODE]+
363 364 if effective_n_jobs(n_jobs) == 1:

364 # For a single thread, less memory is needed if we just store one set-
365 # of the best results (as opposed to one set per run per thread).-
366 for it in range(n_init):-
367 # run a k-means once-
368 labels, inertia, centers, n_iter_ = kmeans_single(-
369 X, sample_weight, n_clusters, max_iter=max_iter, init=init,-
370 verbose=verbose, precompute_distances=precompute_distances,-
371 tol=tol, x_squared_norms=x_squared_norms,-
372 random_state=random_state)-
373 # determine if these results are the best so far-
374 if best_inertia is None or inertia < best_inertia:-
375 best_labels = labels.copy()-
376 best_centers = centers.copy()-
377 best_inertia = inertia-
378 best_n_iter = n_iter_-

365 # For a single thread, less computation is needed if we just store one set+
366 # of the best results (as opposed to one set per run).+
367 labels, inertia, centers, n_iter_ = kmeans_single(+
368 X, sample_weight, n_clusters, max_iter=max_iter, init=init,+
369 verbose=verbose, precompute_distances=precompute_distances,+
370 tol=tol, x_squared_norms=x_squared_norms,+
371 random_state=random_state)+
372 best_labels = labels.copy()+
373 best_centers = centers.copy()+
374 best_inertia = inertia+
375 best_n_iter = n_iter_+

379 376 else:

380 377 # parallelisation of k-means runs

381 378 seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)

382 results = Parallel(n_jobs=n_jobs, verbose=0)(-
379 # Collect results from the parallel runs+
380 all_results = Parallel(n_jobs=n_jobs, verbose=0)(+

383 381 delayed(kmeans_single)(X, sample_weight, n_clusters,

384 382 max_iter=max_iter, init=init,

385 383 verbose=verbose, tol=tol,

@@ -388,13 +386,15 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

388 386 # Change seed to ensure variety

389 387 random_state=seed)

390 388 for seed in seeds)

389 +
391 390 # Get results with the lowest inertia

392 labels, inertia, centers, n_iters = zip(*results)-
393 best = np.argmin(inertia)-
394 best_labels = labels[best]-
395 best_inertia = inertia[best]-
396 best_centers = centers[best]-
397 best_n_iter = n_iters[best]-

391 best_inertia = None+
392 for labels, inertia, centers, n_iters in all_results:+
393 if best_inertia is None or inertia < best_inertia:+
394 best_labels = labels.copy()+
395 best_inertia = inertia+
396 best_centers = centers.copy()+
397 best_n_iter = n_iters+

398 398

399 399 if not sp.issparse(X):

400 400 if not copy_x:

@@ -407,7 +407,6 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

407 407 "n_clusters ({}). Possibly due to duplicate points "

408 408 "in X.".format(distinct_clusters, n_clusters),

409 409 ConvergenceWarning, stacklevel=2)

410 -
411 410 if return_n_iter:

412 411 return best_centers, best_labels, best_inertia, best_n_iter

413 412 else:

Leave a comment

Markdown is supported Paste, drop, or click to add files

Comment on this commit

Unsubscribe

Showing 1 changed file with 22 additions and 23 deletions. Whitespace Ignore whitespace Split Unified

Figure 11: Case from scikit-learn (ours, before
review) for the issue [41].

Moreover, a comparison between the resolved instances and not resolved ones shown in Tab. 5
reveals that the latter contains a higher overall number of files, hunks, and changed lines of code.
These instances, involving more modification locations, correspond to more complex scenarios. This
phenomenon suggests that the performance of our framework in resolving such complex issues
requires further enhancement.

Furthermore, the variability in difficulty across different software repositories may influence the
effectiveness of code changes. To this end, we compile statistics on the resolved ratios in various
software repositories, as shown in Fig. 13. From the figure, we observe that there is a significant
variation in the resolved ratios across different repositories in our framework. Some repositories have
a resolved ratio as high as 40%, while others are close to 0%. This suggests that the differences among
various software such as code structure and coding style can impact the generation and application of
the code change.

20

scikit-learn / scikit-learn Public

© 2024 GitHub, Inc. Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information

Sponsor Notifications Fork 24.9k Star 57.8k

Code Issues 1.6k Pull requests 548 Discussions Actions Projects Wiki Security Insights

+20 −3

[MRG] add seeds when n_jobs=1 and use seed as random_state #9288
 Merged amueller merged 5 commits into from on Aug 16, 2019

 Conversation 24 Commits 5 Checks 0 Files changed 3

New issue

scikit-learn:master bryanyang0528:consist_n_jobs

Filter changed files

v0.22.rst

k_means_.py

test_k_means.py

tests

doc/whats_new

sklearn/cluster

@@ -26,6 +26,8 @@ random sampling procedures.

26 26

27 27 - :class:`linear_model.Ridge` when `X` is sparse. |Fix|

28 28

29 - :class:`cluster.KMeans` when `n_jobs=1`. |Fix|+
30 +

29 31 Details are listed in the changelog below.

30 32

31 33 (While we are trying to better inform users by providing this information, we

@@ -283,6 +285,10 @@ Changelog

283 285 match `spectral_clustering`.

284 286 :pr:`13726` by :user:`Shuzhe Xiao <fdas3213>`.

285 287

288 - |Fix| Fixed a bug where :class:`cluster.KMeans` produced inconsistent results+
289 between `n_jobs=1` and `n_jobs>1` due to the handling of the random state.+
290 :pr:`9288` by :user:`Bryan Yang <bryanyang0528>`.+
291 +

286 292 :mod:`sklearn.feature_selection`

287 293

288 294

@@ -360,16 +360,18 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

360 360 else:

361 361 raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got"

362 362 " %s" % str(algorithm))

363 +
364 seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)+

363 365 if effective_n_jobs(n_jobs) == 1:

364 366 # For a single thread, less memory is needed if we just store one set

365 367 # of the best results (as opposed to one set per run per thread).

366 for it in range(n_init):-
368 for seed in seeds:+

367 369 # run a k-means once

368 370 labels, inertia, centers, n_iter_ = kmeans_single(

369 371 X, sample_weight, n_clusters, max_iter=max_iter, init=init,

370 372 verbose=verbose, precompute_distances=precompute_distances,

371 373 tol=tol, x_squared_norms=x_squared_norms,

372 random_state=random_state)-
374 random_state=seed)+

373 375 # determine if these results are the best so far

374 376 if best_inertia is None or inertia < best_inertia:

375 377 best_labels = labels.copy()

@@ -378,7 +380,6 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',

378 380 best_n_iter = n_iter_

379 381 else:

380 382 # parallelisation of k-means runs

381 seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)-
382 383 results = Parallel(n_jobs=n_jobs, verbose=0)(

383 384 delayed(kmeans_single)(X, sample_weight, n_clusters,

384 385 max_iter=max_iter, init=init,

@@ -951,3 +951,13 @@ def test_minibatch_kmeans_partial_fit_int_data():

951 951 km = MiniBatchKMeans(n_clusters=2)

952 952 km.partial_fit(X)

953 953 assert km.cluster_centers_.dtype.kind == "f"

954 +
955 +
956 def test_result_of_kmeans_equal_in_diff_n_jobs():+
957 # PR 9288+
958 rnd = np.random.RandomState(0)+
959 X = rnd.normal(size=(50, 10))+
960 +
961 result_1 = KMeans(n_clusters=3, random_state=0, n_jobs=1).fit(X).labels_+
962 result_2 = KMeans(n_clusters=3, random_state=0, n_jobs=2).fit(X).labels_+
963 assert_array_equal(result_1, result_2)+

6 doc/whats_new/v0.22.rst

 7 sklearn/cluster/k_means_.py

10 sklearn/cluster/tests/test_k_means.py

Changes from all commits File filter Conversations

Sign upProduct Solutions Open Source Pricing Search or jump to... Sign in

Figure 12: Case from scikit-learn (gold) [40].

as
tro

py
/as

tro
py

dja
ng

o/d
jan

go

matp
lot

lib
/m

atp
lot

lib

mwas
ko

m/se
ab

orn

pa
lle

ts/
fla

sk

ps
f/re

qu
es

ts

py
da

ta/
xa

rra
y

py
lin

t-d
ev

/py
lin

t

py
tes

t-d
ev

/py
tes

t

sc
ikit

-le
arn

/sc
ikit

-le
arn

sp
hin

x-d
oc

/sp
hin

x

sy
mpy

/sy
mpy

Repository Fullname

0

25

50

75

100

125

150

175

200 Resolved
Applied
Resolved Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: The number of applied and resolved in-
stances in different repositories.

Table 5: The statistical analysis of our framework on resolved and applied but not resolved instances.

Resolved Instances Applied but Not Resolved Instances

MAGIS Gold MAGIS Gold

Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg.

Code Files 1 2 1.02 1 2 1.04 1 13 1.50 1 18 1.61
Functions 1 2 1.02 1 2 1.04 1 13 1.50 1 18 1.61
Hunks 1 4 1.45 1 6 1.66 1 28 2.52 1 52 3.72
Added Lines 1 146 9.75 0 38 4.34 1 920 40.38 0 3,050 28.27
Deleted Lines 0 77 5.27 0 115 5.16 0 9,160 327.27 0 2,975 14.51
Change Start Index 1 1,655 270.12 1 1,657 256.09 1 4,568 424.84 0 6,651 485.01
Change End Index 22 1,665 301.68 0 1,666 315.05 9 7,150 513.13 0 6,658 728.96
Changed Lines 2 190 15.02 1 115 9.50 1 9,367 367.65 1 6,025 42.79

G Evaluation on Task Description

Since there is no ground truth for the task descriptions generated by the Manager, we utilize GPT-4 to
simulate human evaluation and score each task description based on its corresponding reference code
change. Table 6 illustrates the standards used by GPT-4 to assess the correlation between the task
description and the code change. The score given by GPT-4 is considered the performance metric for
the task description.

Table 6: The meaning of scores in GPT-4 evaluation on the correlation between the generated task description
and the reference code change.

Score Meaning

1 The code changes are unrelated to the task description.
2 The code changes address a minor part of the task but are largely irrelevant.
3 The code changes partially meet the task requirements but lack completeness or accuracy.

4 The code changes are relevant and mostly complete, with minor discrepancies from the
task description.

5 The code changes perfectly align with the task description, fully addressing all specified
requirements with high accuracy and completeness.

21

H Case Study

Fig. 14 illustrates the detailed process of our framework used to resolve the issue from the Django
repository [15] as described in the following ticket 6. To address this issue, two candidate files were
identified for modification. Based on the issue description and the candidate files, the Manager
defined two file-level tasks. For these tasks, two Developers were assigned: Django Database
Specialist (Developer I) and Alex Rossini (Developer II). Following a kick-off meeting attended by
both Developers and Managers, the Django Database Specialist commenced work first, followed
by Alex Rossini. During the coding phase, Developer I identified the code lines to be modified and
generated the new code to replace them. The initial code changes made by Developer I were approved
by the QA Engineer. Developer II made three attempts during the coding process. The QA Engineer
provided review comments on the first two attempts. Ultimately, both Developers completed their
coding tasks, and the merged results from their code changes passed all necessary tests.

Fig. 15 shows a reference issue resolution result, which resolves the issue 7 from the repository
Django [15], the human developer modifies four hunks in two files [16]. Despite the presence of
modifications in two files, our method focuses on changes in only one file, as shown in Figure 16.
Notably, this simpler modification allows the repository to pass all necessary test cases.

I The performance of the QA Engineer Agent

Fig. 12 shows an issue [41] from the repository scikit-learn [39] and the reference code
change [40]. During the flow of our framework, the Developer firstly modifies the code as shown
in Fig. 11 but the parameterrandom_state (Line 371 in the new-version code) of the function
kmeans_single is not assigned the right number in seeds. After the erroneous modification was
made, the QA Engineer identified the mistake and provided feedback. Their commentary highlighted
the issue: “This code change modifies the implementation of K-means algorithm and doesn’t seem
entirely correct”. They further elaborated, “Running the algorithm just one time could lead to worse
results, compared to running it multiple times (n_init times) and choosing the best result, as was
originally done”. This critique specifically targets the flaw associated with the iterative process
(“running times”). With the help of the QA Engineer, the Developer further revise the code, and the
final code change is shown in Fig. 10. All of the necessary test cases are passed after applying this
code change.

J Related Work (Detailed)

J.1 Large Language Models

Large Language Models (LLMs) refer to the pre-trained language models that contain a large number
of parameters [62]. The parameter counts of these models typically range in the tens or hundreds of
billions. Popular LLMs include the Generative Pre-trained Transformer (GPT) series, such as GPT-
3 [44], GPT-4 [38], and the open-source LLaMA [51] which publicly shares its weight information.
The first version of the open-source model LLaMA has parameters ranging from 7 billion to 65 billion.
Many researchers [68, 20] have built upon the foundation of LLaMA, implementing enhancements to
forge new LLMs. These LLMs have demonstrated formidable natural language generation capabilities
in general scenarios, with GPT-4, in particular, standing out [32, 63]. It has consistently maintained
the top position in several rankings, including code generation, reflecting its significant potential in
tasks related to software engineering [25].

J.2 LLM-Based Multi-Agent System

With the powerful text generation capabilities of LLMs, many researchers [23, 48, 10, 56, 43,
52, 61] have explored the construction of LLM-based Multi-Agent Systems, enabling them to
accomplish tasks beyond the capabilities of the LLMs themselves. For example, MetaGPT [23],
which simulates the Standardized Operating Procedures (SOPs) of a programming team, completing
tasks including definition, design, planning, coding, and testing through constructed roles (e.g.,

6https://code.djangoproject.com/ticket/30664
7https://code.djangoproject.com/ticket/30255

22

https://code.djangoproject.com/ticket/30664
https://code.djangoproject.com/ticket/30255

Figure 14: Detailed overview of our framework, MAGIS (Kick-off meeting refers to Fig. 7).

23

django / django Public

© 2024 GitHub, Inc. Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information

Sponsor Notifications Fork 30.6k Star 76.3k

Code Pull requests 154 Actions Security Insights

+15 −31

Fixed #30255 -- Fixed admindocs errors when rendering docstrings without leading newlines. #12155
 Merged felixxm merged 1 commit into from on Nov 29, 2019

 Conversation 1 Commits 1 Checks 0 Files changed 3

New issue

django:master bmispelon:ticket-30255

Filter changed files

utils.py

views.py

test_utils.py

django/contrib/admindocs

tests/admin_docs

@@ -3,6 +3,7 @@

3 3 import re

4 4 from email.errors import HeaderParseError

5 5 from email.parser import HeaderParser

6 from inspect import cleandoc+
6 7

7 8 from django.urls import reverse

8 9 from django.utils.regex_helper import _lazy_re_compile

@@ -24,26 +25,13 @@ def get_view_name(view_func):

24 25 return mod_name + '.' + view_name

25 26

26 27

27 def trim_docstring(docstring):-
28 """-
29 Uniformly trim leading/trailing whitespace from docstrings.-
30 -
31 Based on https://www.python.org/dev/peps/pep-0257/#handling-docstring-indentation-
32 """-
33 if not docstring or not docstring.strip():-
34 return ''-
35 # Convert tabs to spaces and split into lines-
36 lines = docstring.expandtabs().splitlines()-
37 indent = min(len(line) - len(line.lstrip()) for line in lines if line.lstrip())-
38 trimmed = [lines[0].lstrip()] + [line[indent:].rstrip() for line in lines[1:]]-
39 return "\n".join(trimmed).strip()-
40 -
41 -
42 28 def parse_docstring(docstring):

43 29 """

44 30 Parse out the parts of a docstring. Return (title, body, metadata).

45 31 """

46 docstring = trim_docstring(docstring)-
32 if not docstring:+
33 return '', '', {}+
34 docstring = cleandoc(docstring)+

47 35 parts = re.split(r'\n{2,}', docstring)

48 36 title = parts[0]

49 37 if len(parts) == 1:

... ... @@ -1,5 +1,6 @@

1 1 import inspect

2 2 from importlib import import_module

3 from inspect import cleandoc+
3 4 from pathlib import Path

4 5

5 6 from django.apps import apps

@@ -256,7 +257,7 @@ def get_context_data(self, **kwargs):

256 257 continue

257 258 verbose = func.__doc__

258 259 verbose = verbose and (

259 utils.parse_rst(utils.trim_docstring(verbose), 'model', _('model:') + opts.model_name)-
260 utils.parse_rst(cleandoc(verbose), 'model', _('model:') + opts.model_name)+

260 261)

261 262 # Show properties and methods without arguments as fields.

262 263 # Otherwise, show as a 'method with arguments'.

... ... @@ -1,8 +1,9 @@

1 1 import unittest

2 2

3 3 from django.contrib.admindocs.utils import (

4 docutils_is_available, parse_docstring, parse_rst, trim_docstring,-
4 docutils_is_available, parse_docstring, parse_rst,+

5 5)

6 from django.test.utils import captured_stderr+
6 7

7 8 from .tests import AdminDocsSimpleTestCase

8 9

@@ -31,19 +32,6 @@ class TestUtils(AdminDocsSimpleTestCase):

31 32 def setUp(self):

32 33 self.docstring = self.__doc__

33 34

34 def test_trim_docstring(self):-
35 trim_docstring_output = trim_docstring(self.docstring)-
36 trimmed_docstring = (-
37 'This __doc__ output is required for testing. I copied this '-
38 'example from\n`admindocs` documentation. (TITLE)\n\n'-
39 'Display an individual :model:`myapp.MyModel`.\n\n'-
40 '**Context**\n\n``RequestContext``\n\n``mymodel``\n'-
41 ' An instance of :model:`myapp.MyModel`.\n\n'-
42 '**Template:**\n\n:template:`myapp/my_template.html` '-
43 '(DESCRIPTION)\n\nsome_metadata: some data'-
44)-
45 self.assertEqual(trim_docstring_output, trimmed_docstring)-
46 -
47 35 def test_parse_docstring(self):

48 36 title, description, metadata = parse_docstring(self.docstring)

49 37 docstring_title = (

@@ -106,6 +94,13 @@ def test_parse_rst(self):

106 94 self.assertEqual(parse_rst('`title`', 'filter'), markup % 'filters/#title')

107 95 self.assertEqual(parse_rst('`title`', 'tag'), markup % 'tags/#title')

108 96

97 def test_parse_rst_with_docstring_no_leading_line_feed(self):+
98 title, body, _ = parse_docstring('firstline\n\n second line')+
99 with captured_stderr() as stderr:+
100 self.assertEqual(parse_rst(title, ''), '<p>firstline</p>\n')+
101 self.assertEqual(parse_rst(body, ''), '<p>second line</p>\n')+
102 self.assertEqual(stderr.getvalue(), '')+
103 +

109 104 def test_publish_parts(self):

110 105 """

111 106 Django shouldn't break the default role for interpreted text

 20 django/contrib/admindocs/utils.py

 3 django/contrib/admindocs/views.py

23 tests/admin_docs/test_utils.py

Changes from all commits File filter Conversations

Sign upProduct Solutions Open Source Pricing Search or jump to... Sign in

Figure 15: Case from Django (gold) [16].

Commit

1 parent 68910bd commit 7e76d26

 Lock conversation

You’re receiving notifications because you’re watching this repository.

© 2024 GitHub, Inc. Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information

itaowei / draft Type / to search

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

Browse files

 3 django/contrib/admindocs/utils.py

@@ -34,7 +34,8 @@ def trim_docstring(docstring):

34 34 return ''

35 35 # Convert tabs to spaces and split into lines

36 36 lines = docstring.expandtabs().splitlines()

37 indent = min(len(line) - len(line.lstrip()) for line in lines if line.lstrip())-
37 # Determine the minimum indentation (first line doesn't count):+
38 indent = min(len(line) - len(line.lstrip()) for line in lines[1:] if line.lstrip())+

38 39 trimmed = [lines[0].lstrip()] + [line[indent:].rstrip() for line in lines[1:]]

39 40 return "\n".join(trimmed).strip()

40 41

Markdown is supported Paste, drop, or click to add files

Comment on this commit

Unsubscribe

Whitespace Ignore whitespace Split Unified

Figure 16: Case from Django (ours) for issue [17].

24

product managers, architects, project managers, etc.). This framework has achieved leading scores
on the HumanEval [12] and MBPP [2], outperforming many LLMs, and researchers show its ability
to complete a software establishment (e.g., a code repository to play Gomoku game), indicating
that a multi-agent framework can better leverage the capabilities of LLMs in code generation tasks.
Moreover, Qian et al. [43] designed ChatDev, a virtual development company simulating a human
development team, which decomposes requirements into atomic tasks assigned to the developer agents.
Developers mitigate the hallucination that may arise with the LLM through mutual communication and
self-reflection mechanisms. Experimental results show that ChatDev can complete the establishment
of some small projects (averaging no more than 5 files per project) in a relatively short time (less than
7 minutes on average). However, these works focus on the transformation from the requirements to
code and overlook the code change generation during software evolution, which requires not only
understanding the requirement but also dealing with the large repository.

J.3 Automatic Bug Fixing

GitHub issue resolution is a fundamental aspect of software evolution, with bug fixing being one
of the most common scenarios. Fixing bugs involves both bug localization and repair. Previous
researchers [65, 42] have developed methods to localize bugs before modifying the code. DreamLoc,
proposed by Qi et al. [42], effectively models the characteristics of bug reports and source code
files. For automatic program repair, Wong et al. [55] explored a retrieval-based method, while
Ye and Monperrus [59] proposed ITER, a generation-based method for handling fault localization
re-execution. Additionally, some researchers [53, 54] have combined retrieval techniques with
generation models. Recently, Xia et al. [57] demonstrated that directly applying popular LLMs
significantly outperforms existing APR methods, showcasing their potential for generating diverse
and effective patches. Bouzenia et al. [7] introduced RepairAgent, an autonomous LLM-based agent
that plans and executes bug fixes by dynamically interacting with various tools.

K Limitation

Prompt The design of prompt words may impact the performance of LLMs, thereby affecting the
validity and fairness of the results [11]. While this paper focuses on innovative aspects of the proposed
framework design and relies on practical guidelines for the design of prompt word templates [46]
to reduce the emergence of design biases, the complete elimination of the prompt bias is extremely
difficult due to the inherent biases in the dataset instances and the limitations of API resources.

Dataset The dataset contains a limited variety of software types. The evaluating dataset, SWE-
bench, encompasses 12 repositories, which cover the Python programming language. However, this
quantity remains insufficient compared to the diverse software projects available on GitHub. The
code style, architectural design, and implementation techniques of these selected repositories, while
representative, cannot fully reflect the diversity of all code repositories. In particular, the current
dataset may fail to encompass some specialized fields or different programming paradigms, such
as microservice architecture [66] and functional programming [29]. This limitation implies that,
although our framework is designed to be independent of any specific software, the validation of its
effectiveness and general applicability might be affected by this limited sample scope. Therefore,
applying the findings of this paper to other code repositories may require further validation.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract (line 5 - 16) and introduction (line 46 -
68).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation can be found in Appendix K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

26

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details about our framework are described in Section 3. The setup of the
experimental can be found in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27

Answer: [Yes]

Justification: The data will be made public in GitHub repository: https://github.com/
co-evolve-lab/magis.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting/details can be found in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance of the experiments can be found in Tab. 1, Tab. 3, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

28

https://github.com/co-evolve-lab/magis
https://github.com/co-evolve-lab/magis
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The experiments are conducted through LLMs’ API rather than local compute
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive societal impacts can be found in Section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

29

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper [27] that produced the dataset, SWE-bench.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

30

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Empirical Study
	Methodology
	Agent Role Design
	Collaborative Process
	Planning
	Coding

	Experiments and Analysis
	Setup
	How Effective is Our Framework? (RQ 2)
	How Effective is Our Planning Process? (RQ 3)
	How Effective is Our Coding Process? (RQ 4)

	Related Work
	Conclusion
	Detailed Explanation in Empirical Study
	Coverage Ratio
	Observation on Fig. 1
	Analysis on Complexity of the Code Change

	Kick-off Meeting Example
	Metrics
	Comparison Result on SWE-bench Lite
	Comparison with Devin
	Statistics on the Generated Code Changes
	Evaluation on Task Description
	Case Study
	The performance of the QA Engineer Agent
	Related Work (Detailed)
	Large Language Models
	LLM-Based Multi-Agent System
	Automatic Bug Fixing

	Limitation

