
Scallop: From Probabilistic Deductive Databases to
Scalable Differentiable Reasoning

Jiani Huang ∗
University of Pennsylvania
jianih@seas.upenn.edu

Ziyang Li ∗
University of Pennsylvania
liby99@seas.upenn.edu

Binghong Chen
Georgia Institute of Technology

binghong@gatech.edu

Karan Samel
Georgia Institute of Technology

ksamel@gatech.edu

Mayur Naik
University of Pennsylvania
mhnaik@seas.upenn.edu

Le Song
Georgia Institute of Technology

lsong@cc.gatech.edu

Xujie Si
McGill University and CIFAR AI Chair, Mila

xsi@cs.mcgill.ca

Abstract

Deep learning and symbolic reasoning are complementary techniques for an intelli-
gent system. However, principled combinations of these techniques are typically
limited in scalability, rendering them ill-suited for real-world applications. We pro-
pose Scallop, a system that builds upon probabilistic deductive databases, to bridge
this gap. On synthetic tasks involving mathematical and logical reasoning, Scallop
scales significantly better without sacrificing accuracy compared to DeepProbLog,
a principled neural logic programming approach. Scallop also scales to a real-world
Visual Question Answering (VQA) benchmark that requires multi-hop reasoning,
achieving 84.22% accuracy and outperforming two VQA-tailored models based on
Neural Module Networks and transformers by 12.42% and 21.66% respectively.

1 Introduction
Integrating deep learning and symbolic reasoning in a principled manner into a single effective system
is a fundamental problem in artificial intelligence [6]. Despite the great potential in terms of accuracy,
interpretability, and generalizability, it is challenging to scale differentiable reasoning in the combined
system while preserving the benefits of the neural and symbolic sub-systems [18].

In this paper, we propose Scallop, a systematic and effective framework to address this problem.
The key insight underlying Scallop is a principled relaxation of exact probabilistic reasoning via a
parameter k that specifies the level of reasoning granularity. We observe that scalability is primarily
hindered by reasoning about all proofs in computing the probability of each outcome. For a given k,
Scallop only reasons about the top-k most likely proofs, which asymptotically reduces computational
cost while providing formal accuracy guarantees relative to the exact instantiation. Scallop thereby
generalizes exact probabilistic reasoning and enables easy exploration of a rich space of tradeoffs.
This tradeoff mechanism allows to drastically speed up the stochastic training of the involved neural
components without sacrificing generalization ability.

The main technical contribution of Scallop concerns computing the set of top-k proofs associated with
each discrete fact efficiently, during the evaluation of a logic program, and correctly, by maintaining
all and only the top-k proofs. Scallop achieves this goal by formulating the problem in the framework
of provenance for deductive databases [5]. The framework provides the theory and algorithms for
tagging discrete facts derived by a logic program with information—in our case the set of top-k proofs.
Concretely, Scallop targets Datalog [1], a syntactic subset of Prolog. Although not Turing-complete,
Datalog supports recursion and is expressive enough for a wide variety of applications.

∗Jiani Huang and Ziyang Li contributed equally to this work.

Figure 1: Illustration of our approach on the task + = 10 using different values of parameter k.

(Constant) c
(Variable) V

(Term) t V | c
(Predicate) a

(Atom) α a(t1, . . . , tn)
(Fact) g a(c1, . . . , cn) ∈ G

(Input Fact) f̄ g ∈ F̄
(Rule) r α :− α1, . . . , αm ∈ R

(Probability) p
(Prob. Input Fact) f p :: f̄ ∈ F

(Disjunction) j f1; . . . ; fn ∈ J
(Query) Q α

(Query Result) q g
(Program) P̄ (F̄ ,R,Q)

(Prob. Program) P (F ,R,J ,Q)

Figure 2: Abstract syntax of probabilistic Datalog programs.

We evaluate Scallop on diverse tasks that involve combining perception with reasoning. On a
suite of synthetic tasks that involve mathematical and logical reasoning over hand-written digits,
Scallop scales significantly better without sacrificing accuracy compared to DeepProbLog [16], a
principled neural logic programming approach. We also create and evaluate on a real-world task called
VQAR (Visual Question Answering with Reasoning) which augments the VQA task with an external
common-sense knowledge base for multi-hop reasoning. The goal is to answer a programmatic
question with the correct subset of objects in a real-world image.

Scallop’s differentiable symbolic reasoning pipeline enables it to achieve 84.22% test accuracy,
outperforming two VQA-tailored neural models based on Neural Module Networks and transformers
by 12.42% and 21.66% respectively.

2 Background
We recap Datalog, the logic programming language that underlies Scallop, and present its probabilistic
extensions that we leverage for inference and training tasks.

Syntax of Datalog. As shown in Figure 2, a Datalog program P̄ consists of a set of input facts F̄ , a
set of rulesR, and a queryQ. The building block is an atom a(t1, . . . , tn) which consists of an n-ary
predicate a and a list of terms t1, . . . , tn as arguments. A fact g is an atom which all the argument
terms are constants; it may be an input fact (EDB) or a derived fact (IDB). Datalog rules are of the
form α :− α1, . . . , αm, meaning that atom α in the head is true if all atoms αi in the body are true.
Multiple rules sharing a single head predicate denote disjunction (or union).

Semantics of Datalog. Datalog programs can be executed using a bottom-up evaluation strategy.
Starting from the input facts F̄ , we repeatedly apply the rules R in any order to derive new facts
until a fixed point is reached. Upon completion, we obtain all the output facts q of the query Q.
For example, with F̄ = {left(o1, o2), below(o2, o3)} and Q = left(o1,O), the execution of program
(F̄ , ∅,Q) produces {left(o1, o2)}. We denote the execution result as Exec(P̄) = {qi}ni=1.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

2

Figure 3: Illustration of top-k natural join using k = 3. Each ellipse represents a proof of the fact shown in
the box. Given the top 3 proofs for each of “name(o2, animal)” and “subgoal(o2)”, we wish to derive the top 3
proofs for their conjunction, “target(o2)”. The join yields 9 possible proofs. After computing the likelihood for
each of the 9 proofs, we keep the top 3 most likely ones (green ellipses) and discard the rest (white ellipses).

Probabilistic Extensions. To handle uncertain data, we introduce two probabilistic extensions to
Datalog, which are inspired by pD [9] and ProbLog [7]. First, we specify probabilistic input facts
f by associating a probability p with f̄ , declaring that Pr(f) = p. Deterministic input facts have
probability 1.0. Secondly, we allow disjunctions J among probabilistic input facts, denoted by
f1; . . . ; fm. For example, the disjunction

0.01 :: digit(, 0); . . . ; 0.82 :: digit(, 3); . . . ; 0.06 :: digit(, 9).

states that the digit is recognized to be 0 to 9 with their respective probabilities, but cannot be
more than one simultaneously. F and J form a probabilistic database. By combining the F , J with
R and Q, we obtain a probabilistic Datalog program P .

Probability Calculation. Unlike discrete Datalog, which provides definite answers to queries, we
wish to compute the success probability of each query result q: Exec(P) = {(qi,Pr(qi))}ni=1. To
compute success probabilities, we first define a proof of any fact g as a minimal set of (probabilistic)
input facts f that can derive g. We denote a proof as F ∈ P(F) where P denotes power set. Since
a fact g may be explained by multiple proofs, we use Sg to denote the complete set of proofs of g.
Given the set of proofs Sq for a query result q, the success probability Pr(q) is simply the likelihood
of Sq , denoted Pr(Sq), which can be computed using Weighted Model Counting (WMC) [13].

3 Framework
Probabilistic Datalog. Probabilistic Datalog [7, 9] underlies Scallop, providing a basis for prob-
abilistic reasoning. A probabilistic Datalog program P consists of (F ,R,J ,Q), with F a set of
relational facts, J a set of disjunctions, R a set of rules, and Q a query. In addition to each query
result qi we get in traditional Datalog execution, we also obtain the success probability of each result,
Pr(qi). To compute success probabilities, we first define a proof (F) of any fact g as a minimal set
of (probabilistic) input facts f ∈ F that can derive g. We then use Sg to denote the complete set of
proofs of g. Given the set of proofs Sq , the success probability Pr(q) is simply the likelihood of Sq ,
denoted Pr(Sq), which can be computed using Weighted Model Counting (WMC) [13].

Proof Construction. The set of proofs for a given query result q, Sq , can be efficiently constructed
during the bottom-up execution with tagged provenance. We initially tag each input fact f ∈ F with
Sf = {{f}} and propagate proofs during execution from known facts to newly derived facts. When
g is derived from a conjunction on f1 and f2, we combine the sets of proofs Sf1 and Sf2 to produce
Sg. The resulting Sg contains a single proof {f1, f2}, as both f1 and f2 must be true for g to be
true. More formally, we define two binary operations ⊗, and ⊕ corresponding to conjunction and
disjunction respectively. Given two sets of proofs S1 and S2, we have

S1 ⊗ S2 = {F | F = F1 ∪ F2, (F1, F2) ∈ S1 × S2, F contains no disjunction conflict}. (1)
S1 ⊕ S2 = S1 ∪ S2. (2)

With ⊕ and ⊗, the collection of sets of proofs P(P(F)) forms a semiring (Appendix B.1), which we
call the proof semiring. However, the complexity of Sq renders the computation infeasible.

Top-k Proof Construction. The probabilistic nature of our problem setting opens up room for
approximation. A key observation is that, when the inference system is used in a learning setting,

3

Task Goal Predicate #Out Max #Proofs Scallop DPL
k = 1 k = 3 k = 5 k = 10

T1 sum2(, , 10) 19 10 97.46% 96.90% 96.67% 96.29% 96.82%
T2 sum3(, , , 15) 28 75 95.31% 95.43% 95.76% 95.76% 95.56%
T3 sum4(, , , , 17) 37 670 47.11% 95.47% 95.31% 95.07% –
T4 sort2(, , 0, 1) 2 55 80.43% 91.55% 91.75% 95.49% 98.04%
T5 sort3(, , , 1, 2, 0) 6 220 70.34% 93.20% 96.15% 97.09% 95.50%
T6 sort4(, , , , 3, 1, 2, 0) 24 715 68.67% 87.90% 92.02% 91.87% 89.96%

Table 1: Testing accuracy of Scallop and DeepProbLog (DPL) on a suite of 6 synthetic tasks. All numbers
except k = 1 have a standard deviation of < 2%.

the probability of a ground truth fact should significantly outweigh other facts, forming a skewed
distribution. We can exploit this property by only including the “most likely” proofs in Sq, with
the likelihood of a proof F defined by Pr(F) =

∏
f∈F Pr(f). We thereby introduce a top-k proof

inference algorithm. With a user-specified hyper-parameter k ≥ 1, we perform top-k filtering at each
step of the proof construction. We define two new operations, ⊗(k) and ⊕(k):

S1 ⊗(k) S2 = Topk(S1 ⊗ S2), S1 ⊕(k) S2 = Topk(S1 ⊕ S2). (3)
Intuitively, whenever ⊗ or ⊕ is performed, we rank proofs by their likelihood and preserve only
the top-k proofs. This allows us to discard the vast majority of proofs and thus make inference
tractable. An example run-through of top-3 natural join (⊗(3)) is depicted in Figure 3, where we
perform a normal ⊗ operation followed by a top-3 filtering. As before, we construct a top-k proof
semiring (Appendix B.2), with which we can express the resulting approximated beam of proofs
S̃q =

⊕(k)
F derives q

(⊗(k)
f∈F Sf

)
. Note that the size of S̃q is bounded by k, |S̃q| = O(k), reducing the

exponential complexity of exact inference to a near constant one.

Learning We want to train a perception model Mθ that takes in an input x and produces a
probabilistic database (F ,J) such that after execution of (R,Q), can derive the ground truth y as
the output. Note that the probability of the input facts in the probabilistic database is generated by the
perception modelMθ. Therefore each input probability pi = Pr(fi) is also associated with their
gradients∇Pr(fi) with respect to the model parameters θ. To back-propagate the gradients through the
inference process, similar to DeepProbLog [16], Scallop adopts a gradient semiring augmented WMC
procedure. The beam of proofs S̃q will be transformed into a weighted Conjunctive Normal Form
(CNF) formula, where for each variable, fi, we attach the dual number (Pr(fi),∇Pr(fi)) as its weight.
As a result, the associated differentiable probability of each query result qi will be (Pr(qi),∇Pr(qi)),
as computed by WMC. The result of the execution ŷθ = {(qi, (Pr(qi),∇Pr(qi)))}ni=1, along with the
ground truth y is passed to the given loss function L. We, therefore, aim to minimize the following
objective function: J(θ) = 1

|D|
∑

(x,y)∈D L
(
ŷθ, y

)
.

4 Evaluation

4.1 Synthetic Tasks

We extend and evaluate on a suite of 6 synthetic tasks from DeepProbLog (DPL), as shown in Table 1.
Each task takes as input multiple MNIST [14] images and requires performing simple arithmetic
(T1-T3) or sorting (T4-T6) over digits depicted in the given images. The difficulty of each task is
reflected by the third and fourth columns, which show the size of the output space and the maximum
number of proofs per output, respectively. Our goal is to train a digit classifier end-to-end with the
combined perception + reasoning pipeline. We elaborate on individual tasks further in Appendix F.

Accuracy. We show accuracy comparison with DPL in Table 1. All models are trained under the
same learning setting. Scallop is able to achieve on par accuracy as DPL, despite using far fewer
proofs. It also shows that in general, larger k implies better accuracy. Note that we are unable to
collect results for DPL on T3, as DPL takes 24 hours only to complete 100 out of the 15,000 training
samples. In contrast, Scallop with k = 3 finishes 5 epochs (75,000 training samples) within 4 hours.

Runtime vs. Accuracy. We next evaluate the tradeoff between the training runtime vs. testing
accuracy in Scallop, as shown in Figure 4. With k = 1, Scallop learns the fastest in the beginning,
but its high variance prevents it from converging to an optimal solution; with k = 5, it has much less
variance and converges the fastest despite being slower in the beginning. All Scallop experiments
converge within 30 minutes, while it takes DPL 14 hours to achieve the same accuracy (95.56%).

4

Figure 4: Training runtime (in seconds) vs. valida-
tion accuracy for task T2 (sum3).

Test Dataset LXMERT NMN Scallop
1000 C2 66.75% 79.32% 85.17%
1000 C3 61.69% 61.98% 82.82%
1000 C4 63.82% 71.17% 83.25%
1000 C5 64.05% 74.62% 85.53%
1000 C6 56.51% 72.04% 84.30%

5000 Call 62.56% 71.80% 84.22%

Table 2: Testing accuracy (in Recall@5) of
Scallop, NMNs, and LXMERT on VQAR dataset.

4.2 Visual Question Answering
Dataset. The VQAR dataset contains (a) 80,178 images from GQA [12], (b) object feature vectors
+ bounding boxes, (c) scene graphs with 500 object names, 609 attributes, and 229 relationships,
(d) a shared knowledge graph with 6 rules and 3K knowledge triplets from CRIC [10], and (e) 4M
programmatic queries and answer pairs. We further categorize these queries into different levels of
difficulty by the number of occurring clauses from C2 to C6, where C2 is the simplest and C6 is
the hardest. We formulate VQAR as a multi-label classification task. For each datapoint (x, y) in
our VQAR dataset, the input x consists of (a) the shared knowledge graph KG, (b) a programmatic
query, and (c) the object feature vectors and bounding boxes. The ground truth y is the set of objects
that the given programmatic query identifies. All of our evaluated models but LXMERT share this
same set of input and output. The accuracy is measured by Recall@5.

Setup of Scallop. We use a perception module consisting of three MLP-classifiers, Mθ =
(Mn

θ ,Ma
θ ,Mr

θ), which predict names, attributes, and relations respectively. All predictions along
with the entire KG form the probabilistic database. Over the database, we perform Datalog execution
on the given programmatic query to obtain the set of identified objects. To compare the predicted set
of objects and the ground truth set, we utilize binary cross-entropy as the loss function. The goal is to
train the three classifiers in Scallop end-to-end and find the correct objects according to the question.

Baseline 1: DeepProbLog. It is prohibitively slow to train with DPL from scratch—a regular
training sample from C6 can take DPL more than 100 hours to run. Therefore, instead of training
with DPL, we use the perception modelMθ trained with Scallop to test DPL’s inference capability.
With 10 seconds timeout, DPL times out on 68.66% of the testing samples, while Scallop finishes all
with an average running time under 0.3 seconds per sample.

Baseline 2: Neural Module Network. We compare against RVC [10], a Neural Module Network
approach for VQA with external common-sense knowledge. This method first pretrains a TransE
embedding [3] for the knowledge graph. Then, to mimic the reasoning process, it trains a set of
neural modules that perform knowledge retrieval, scene graph traversal, and logical operations. The
modules are assembled according to the programmatic query and can leverage object-based features.

Baseline 3: LXMERT. We also compare to LXMERT [20], a recent transformer-based approach that
emphasizes its transfer learning ability. LXMERT takes in a natural language question corresponding
to the given programmatic query. As this model cannot explicitly use a knowledge base, we leverage
the implicit relations learned through pre-training over a variety of image-language tasks: MS COCO
[15], Visual Genome [2], and GQA [12]. Finally, we fine-tune LXMERT on our VQAR training set.

5 Conclusion and Future Work
We proposed Scallop, a framework for scaling differentiable reasoning based on Datalog, motivated by
real-world applications that necessitate combining perception and reasoning. The key idea underlying
Scallop is to relax exact probablistic reasoning via a tunable parameter that specifies the level of
reasoning granularity. In future, we plan to develop expressive extensions to Scallop, target more
challenging neuro-symbolic applications, and optimize the end-to-end pipeline on modern hardware.

Acknowledgements. We thank our anonymous reviewers for valuable feedback. This research was
supported by grants from ONR (#N00014-18-1-2021), NSF (#2107429 and #1836936), and the
Canada CIFAR AI Chair Program.

5

References
[1] ABITEBOUL, S., HULL, R., AND VIANU, V. Foundations of Databases: The Logical Level,

1st ed. Pearson, 1994.

[2] ANTOL, S., AGRAWAL, A., LU, J., MITCHELL, M., BATRA, D., ZITNICK, C. L., AND
PARIKH, D. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision (2015), pp. 2425–2433.

[3] BORDES, A., USUNIER, N., GARCIA-DURAN, A., WESTON, J., AND YAKHNENKO, O.
Translating embeddings for modeling multi-relational data. In Neural Information Processing
Systems (NIPS) (2013), pp. 1–9.

[4] CHEN, W., GAN, Z., LI, L., CHENG, Y., WANG, W., AND LIU, J. Meta module network
for compositional visual reasoning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (2021), pp. 655–664.

[5] CHENEY, J., CHITICARIU, L., AND TAN, W.-C. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1, 4 (Apr. 2009).

[6] D’AVILA GARCEZ, A., GORI, M., LAMB, L. C., SERAFINI, L., SPRANGER, M., AND TRAN,
S. N. Neural-symbolic computing: An effective methodology for principled integration of
machine learning and reasoning, 2019.

[7] DE RAEDT, L., KIMMIG, A., AND TOIVONEN, H. Problog: A probabilistic prolog and its
application in link discovery. pp. 2462–2467.

[8] DEUTCH, D., GILAD, A., AND MOSKOVITCH, Y. Efficient provenance tracking for datalog
using top-k queries. The VLDB Journal 27 (2018), 245–269.

[9] FUHR, N. Probabilistic datalog—a logic for powerful retrieval methods. In Proceedings
of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (New York, NY, USA, 1995), SIGIR ’95, Association for Computing
Machinery, p. 282–290.

[10] GAO, D., WANG, R., SHAN, S., AND CHEN, X. From two graphs to n questions: A vqa dataset
for compositional reasoning on vision and commonsense. arXiv preprint arXiv:1908.02962
(2019).

[11] GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. Provenance semirings. In Proceedings
of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS)
(2007).

[12] HUDSON, D. A., AND MANNING, C. D. GQA: a new dataset for compositional question
answering over real-world images. CoRR abs/1902.09506 (2019).

[13] KIMMIG, A., DEN BROECK, G. V., AND RAEDT, L. D. Algebraic model counting. CoRR
abs/1211.4475 (2012).

[14] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[15] LIN, T., MAIRE, M., BELONGIE, S. J., BOURDEV, L. D., GIRSHICK, R. B., HAYS, J.,
PERONA, P., RAMANAN, D., DOLLÁR, P., AND ZITNICK, C. L. Microsoft COCO: common
objects in context. CoRR abs/1405.0312 (2014).

[16] MANHAEVE, R., DUMANČIĆ, S., KIMMIG, A., DEMEESTER, T., AND RAEDT, L. D. Deep-
problog: Neural probabilistic logic programming. In NeurIPS 2018 (2018).

[17] MARINO, K., RASTEGARI, M., FARHADI, A., AND MOTTAGHI, R. Ok-vqa: A visual question
answering benchmark requiring external knowledge. In Conference on Computer Vision and
Pattern Recognition (CVPR) (2019).

6

[18] RAEDT, L. D., MANHAEVE, R., DUMANCIC, S., DEMEESTER, T., AND KIMMIG, A. Neuro-
symbolic = neural + logical + probabilistic. In International Workshop on Neural-Symbolic
Learning and Reasoning (2019).

[19] SANG, T., BEAME, P., AND KAUTZ, H. A. Performing bayesian inference by weighted model
counting. In AAAI (2005), vol. 5, pp. 475–481.

[20] TAN, H., AND BANSAL, M. Lxmert: Learning cross-modality encoder representations from
transformers. arXiv preprint arXiv:1908.07490 (2019).

[21] WANG, P., WU, Q., SHEN, C., HENGEL, A., AND DICK, A. Explicit knowledge-based
reasoning for visual question answering.

[22] WILLIAMS, R. J. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning 8, 3-4 (1992), 229–256.

7

Figure 5: Illustration of our approach on the task + = 10 using different values of parameter k.

A Illustrative Overview
We illustrate our approach using two tasks: a simple task called sum2 and the real-world VQAR task.

A Simple Task. The sum2 task from [16] concerns classifying sums from pairs of hand-written
digits, e.g., + = 10. As depicted in Figure 5, we specify this task using a neural and a symbolic
component, following the style of DeepProbLog [16]. The neural component is a perception model
that takes in an image of hand-written digit [14] and classifies it into discrete values {0, . . . , 9}. The
symbolic component, on the other hand, is a logic program in Datalog for computing the resulting
sum. The interface between the neural and symbolic components is a probabilistic database which
associates each candidate output of the perception model with a probability. For instance, the fact
0.85 :: d(, 3) denotes that image is recognized to be the digit 3 with probability 0.85.

Evaluating the logic program on the probabilistic database yields a weighted boolean formula for
each possible result of the sum of two digits, i.e., values in the range {0, . . . , 18}. Each clause of
such a formula represents a different proof of the corresponding result. For instance, the bottom left
of Figure 5 shows the formula representing all 9 proofs of the ground truth result 10. Each such
formula is input to an off-the-shelf weighted model counting (WMC) solver to yield the probability
of the corresponding result, e.g., 0.7261 :: sum(, , 10).

The scalability of this approach is limited in practice by WMC solving whose complexity is at least
#P-complete [19]. We observe that computing only the top-k most likely proofs bounds the size
of each formula to k clauses, thereby allowing to trade diminishing amounts of accuracy for large
gains in scalability. Moreover, stochastic training of the deep perception models itself can tolerate
noise in data. As we show later in our experiments, the additional noise introduced by the top-k
approximation can be well-compensated for by the stochastic training algorithm.

Scallop embodies this insight by introducing a parameter k which can be task-dependent, and even
for a particular task, tuned differently for learning and inference. A higher k leads to slower inference,
but accelerates the convergence of learning, especially for complex or sparse feedback; thus, Scallop
enables to achieve the best of both worlds by employing a higher k during training, and a lower k
thereafter. While Scallop’s inference time is under 0.1 second per task for the sum2 task regardless
of the choice of k, the difference is much more pronounced for the sum3 task of adding three digits:
0.05 seconds for k = 1 versus 6.15 seconds for k = 15.

Visual Question Answering. We next illustrate applying Scallop to a complex real-world task,
Visual Question Answering (VQA) [2], which is widely studied in the deep learning literature. The
task concerns answering a given question using knowledge from a given image of a scene. Since
we are interested in tasks that combine perception with reasoning, we extend the VQA task with
multi-hop reasoning over an external common-sense knowledge base. The resulting task, which we

8

Figure 6: An instance of the VQAR task. The scene graph and knowledge base are shown graphically (above)
and in Scallop (below). The question and answer are shown in natural language (above) and in Scallop (below).

call VQAR, improves upon the VQA task in two important ways: it generalizes the VQA task by
allowing questions that require external knowledge, and it allows to precisely control the reasoning
complexity through the number of hops needed to answer them. 2 We thereby develop a new dataset
consisting of real-world images of scenes and object identification questions that necessitate varying
hops of reasoning in a fixed external knowledge base.

It is natural to express the VQAR task using a combination of neural and symbolic modules akin to
the sum2 task. As Figure 6 illustrates, these modules are more complex, reflecting the real-world
nature of this task. The neural module is a perception model that takes the object feature vectors
(extracted by pre-trained vision models) and outputs a scene graph comprising the predicted name
and attribute distributions of each object, and relationships between the objects—all of which are
uniformly represented as a probabilistic database. For instance, the tuple 0.83 :: name(o12, giraffe)
denotes that name of object o12 is classified as giraffe with probability 0.83.

Likewise, the symbolic module uniformly represents both the logic representation of the question
and the external knowledge base as a logic program in Datalog.3 Evaluating the program on the
probabilistic database yields the answer, e.g., target(o12). The example in Figure 6 highlights the
need for external knowledge: although the question refers to the concept of an “animal” that is missing
in the scene graph, Scallop is able to derive the conclusion name(o12, animal) without changing the
perception model. The derivation involves two-hop reasoning—two applications of the recursive rule
name(O,N) :− name(O,N′), is_a(N′,N) to facts from the scene and knowledge graphs:

name(o12, giraffe) is_a(giraffe,mammal)

name(o12,mammal) is_a(mammal, animal)

name(o12, animal)

While more sophisticated models can learn the representation of concepts such as animal from a large
corpus, relying on such pretrained representation sacrifices the benefits of symbolic reasoning, such
as interpretability, data efficiency, and generalization to unseen concepts.

2In contrast, prior works such as the GQA dataset [12] are limited to varying the reasoning complexity in the
question alone, which renders the question unweildy.

3We presume that the input question is in programmatic form because existing models for semantic parsing
achieve high accuracy in translating from natural language text to programmatic form [4].

9

B Theoretical Guarantee

B.1 Proof Semiring

Definition B.1 Given a program P = (F ,R,J ,Q), the collection of sets of proofs S is defined to
be

{S | S ∈ P(P(F)),∀F ∈ S, F is a proof}.
Note that F being a proof implies that there is no disjunction conflict in F . That is,

∀f1, f2 ∈ F, j ∈ J , f1 ∈ j =⇒ f2 /∈ j

Definition B.2 The two binary operators ⊕ and ⊗: S × S → S are defined as
S1 ⊕ S2 = S1 ∪ S2,

S1 ⊗ S2 = {F | F = F1 ∪ F2, (F1, F2) ∈ S1 × S2,

F contains no disjunction conflict}.

Theorem B.3 (S,⊕,⊗, ∅, {∅}) forms a commutative semiring, which we call Proof Semiring.

Proof We show that (1). ∅ is a ⊕ identity, (2). {∅} is a ⊗ identity, (3). ⊕ and ⊗ are commutative
and associative, (4). multiplication is distributive, and (5). multiply by ∅ annihilates the operand.

1. ∅ is a ⊕ identity. Given S ∈ S,
S ⊕ ∅ = S ∪ ∅ = S = ∅ ∪ S = ∅ ⊕ S.

2. {∅} is a ⊗ identity. Given S = {F1, F2, . . . , Fn} ∈ S, we have
S ⊗ {∅} = {F1 ∪ ∅, F2 ∪ ∅, . . . , F2 ∪ ∅} = S

3. ⊕ is commutative: Given S1 and S2,
S1 ⊕ S2 = S1 ∪ S2 = S2 ∪ S1 = S2 ⊕ S1.

⊗ is commutative: Given S1 and S2,
S1 ⊗ S2 = {F 1

1 ∪ F 2
1 , . . . } = S2 ⊗ S1

⊕ is associative: Given S1, S2, S3 ∈ S,
S1 ⊕ (S2 ⊕ S3) = S1 ∪ (S2 ∪ S3) = (S1 ∪ S2) ∪ S3.

⊗ is associative: Given S1, S2, S3 ∈ S and Si = {F i1, F i2, . . . , F ini
}. We denote

Fxyz =

{
F 1
x ∪ F 2

y ∪ F 3
z if no disjunction conflict

∅ otherwise,
where x ∈ 1 . . . n1, y ∈ 1 . . . n2, z ∈ 1 . . . n3. We then have

S1 ⊗ (S2 ⊗ S3) = {F111, F112, . . . , Fn1n2n3
}

= (S1 ⊗ S2)⊗ S3

4. Distributive. Given S1, S2, and S3 ∈ S similar to above, we have
S1 ⊗ (S2 ⊕ S3) = S1 ⊗ (S2 ∪ S3) (4)

= (S1 ⊗ S2) ∪ (S1 ⊗ S3) (5)
= (S1 ⊗ S2)⊕ (S1 ⊗ S3) (6)

5. Multiplying ∅ annihilates the operand:
S1 ⊗ ∅ = ∅.

Therefore (S,⊕,⊗, ∅, {∅}) forms a semiring.

Theorem B.4 S is naturally ordered and ω-complete [11].

Proof We define a partial order ≤ such that S1 ≤ S2 ⇐⇒ S1 ⊂ S2. Therefore our S is naturally
ordered. In addition, our chain has a strict upper bound which is P(F), as ∀S ∈ S, S ⊂ P(F). Hence
S is also ω-complete.

10

Theorem B.5 The end result Sq can be expressed as

Sq =
⊕

F derives q

(⊗
f∈F

Sf

)
.

Proof Under the provenance semiring framework [11], we define a S-Relation R : G → S , such that
R(f) = {{f}} = Sf ,∀f ∈ F .

With S being a commutative ω-continuous semiring, Q being a datalog query, and our S-Relation R,
by Definition 5.1 [11], we have

Q(R)(t) =
⊕

τ yields t

(⊗
t′∈leaves(τ)

R(t′)
)
,

where τ ranges over all Q-derivation trees for t. In our case, we seek the result t = q, which is,
Sq = Q(R)(q). At the same time, we know that τ is a derivation tree for q and its leaf nodes t′ are
from our input facts F . Note that leaves(τ) is simply a proof F in our case and each t′ ∈ leaves(τ) is
an input fact f ∈ F . Therefore we know that t′ ∈ F and R(t′) = St′ . At last, we can express Sq as

Sq = Q(R)(q) =
⊕

F derives q

(⊗
f∈F

Sf

)
,

as expected.

Proposition B.6 |Sq| = O(2|F|).

Proof (Sketch) Theoretically, 2|F| is the absolute upper bound as there could be at most 2|F| proofs,
given by that each input fact f ∈ F can be in or not in a proof.

In reality, this upper bound can rarely be achieved. The actual size of Sq is always determined by
various factors including input facts, rules, and disjunctions.

B.2 Top-k Proof Semiring

We repeat our definitions of ⊕(k) and ⊗(k) here:

Definition B.7 With a Topk : S → S defined as keeping the top-k proofs, we define

S1 ⊗(k) S2 = Topk(S1 ⊗ S2),

S1 ⊕(k) S2 = Topk(S1 ⊕ S2).

Proposition B.8 The approximated set of proofs S̃q can be expressed as

S̃q =

(k)⊕
F derives q

((k)⊗
f∈F

Sf

)
.

Proof (Sketch) First show that S still form a semiring under ⊕(k) and ⊗(k) with the exact same
proof as in Theorem A.3. Then follow Theorem A.5 to show that this expression still holds.

Proposition B.9 |S̃q| = O(k).

Proof (Sketch) This follows directly from the definition of ⊕(k) and ⊗(k) as at each step the size of
the resulting set of proofs is capped by k.

B.3 Approximation Analysis

Proposition B.10 We give an approximation error bound

|Pr(Sq)− Pr(S̃q)| ≤
∑
F ∈ Sq\S̃q

Pr(F).

11

This is a loose bound given by the difference between Sq and S̃q. Equality happens when all the
proofs in Sq are disjoint.

Proposition B.11 For a program P = (F ,R,J ,Q), if J = ∅, then we have S̃q = Topk(Sq).

The proof of this proposition can be found in Theorem 1 of [8]. Under that setting, there is no J and
therefore J = ∅. At the same time the top-k derivation tree is equivalent to our top-k proof.

12

Category Function Name
Scene Graph INITIAL, FIND NAME, FIND ATTR, RELATE, RELATED REVERSE

Knowledge Graph FIND KG, FIND HYPERNYM
Logic Operators AND, OR

Table 3: Basic functions used to generate questions in VQAR.

C VQAR Dataset Collection

C.1 Dataset Generation

We focus on the task of multi-hop VQA with external common-sense knowledge. For this purpose,
we generate an object retrieval VQA dataset, called VQAR, by building upon two existing datasets,
GQA [12] and CRIC [10]. These datasets comprise real-world images from the Visual Genome and
have complementary qualities necessary for our task. In particular, we use curated scene graphs of
the images from the GQA dataset, and we use curated knowledge graphs related to visual questions
from the CRIC dataset.

Scene and Knowledge Graphs. Starting with the image and scene graph pairs from the GQA
dataset, we further pre-process the scene graphs to generate cleaner questions, as follows. We only
include the top 500 most frequently occurring object names, which covers more than 88% of all
object occurrences. We retain 609 attributes and 229 relationships after normalizing their names.
Finally, we ensure that every image has more than 5 objects so that its scene graph is complex enough.
After pre-processing, we are left with 80,178 images with their scene graphs.

The knowledge graph provided by the CRIC dataset comprises triplets of the form 〈e1, r, e2〉, where
e1 and e2 are two entities, and r describes a relationship between them, e.g., 〈giraffe, is_a, animal〉.
We represent each type of relationship as a separate binary relation. There are 10 different types
of relationships, such as is_a, used_for, and capable_of. We considered two alternatives to CRIC:
OK-VQA [17] and KB-VQA [21]. OK-VQA includes common-sense knowledge as part of the
question itself, and thus precludes multi-hop reasoning.

KB-VQA comprises over 160M probabilistic common-sense knowledge triplets drawn from Wik-
ilinks, but is noisy.

Programmatic Query Generation. Existing programmatic VQA questions typically seek aggre-
gated results which makes them liable to exploitable bias. For instance, a binary choice question
may be answered by an educated guess without using reasoning. We therefore generate object
identification queries that require reasoning to varying degrees. Such queries are harder to exploit,
since objects vary from scene to scene.

We use GQA’s domain specific language to generate programmatic queries for our purpose. Such
a query is composed of a functions sequence that successively identify a set of objects, where the
final set of objects are the targets to our query. We define a suite of 9 such functions as shown
in Table 3. Consider for instance the RELATE function. Viewing the scene graph as a relation
〈subject, predicate, object〉, this function identifies the object, given the subject and predicate. Then,
the natural language question in Figure 6 corresponds to the following programmatic query:

[INITIAL, RELATE(left), FIND HYPERNYM(animal), FIND ATTR(tall)]

The number of clauses n determines the degree of multi-hop reasoning in the query, which we call
a query of type Cn. Thus, the above example is a query of type C4. Furthermore, such queries are
straightforward to translate into Datalog, allowing them to be executed using Scallop. The Datalog
counterpart of the above query is also shown in Figure 6.

Our query generation procedure always starts with the INITIAL function which refers to all objects in
the scene graph. It then traverses through the scene graph and the knowledge graph to identify valid
clauses to append to the query. Lastly, we execute the resulting query using Scallop to obtain the
ground truth answer. We control the difficulty of the query by the number of its clauses.

Since we are not targeting the natural language questions, we only generate these questions in
functional program form. For each image, we generate 10 different question and answer pairs for
each clause length 2 to 6, to obtain 4 million data points in total. We split them into training (60%),

13

validation (10%), and testing (30%) sets, and ensure that all the questions about the same image occur
within the same split to test generalizability.

14

D Experiments

D.1 Machines

All experiments are conducted on a machine with two 20-core Intel Xeon CPUs, four GeForce RTX
2080 Ti GPUs, and 768 GB RAM.

D.2 Synthetic Experiment Setup

Models. Our perception model uses two convolutional layers and two fully connected layers, which
takes in the MNIST image as input, and output a distribution on 10 possible numbers, 0-9. This
model is trained from scratch in an end-to-end fashion.

Training Hyper-parameters. The learning rate for both DeepProbLog and Scallop is 0.01; the batch
sizes for Scallop is 64, and 2 for DeepProbLog, as batch size 64 for DeepProbLog converges too
slow. We set the epoch size to 20, where both of the methods converge before 5 epochs.

Evaluation Metric. Our evaluation metric is accuracy. If the predicted outcome is the same as the
correct one, the accuracy is 1, otherwise, the accuracy is 0.

D.3 VQAR Experiment Setup

Models. Our perception model uses pre-trained fixed-weight Mask RCNN and ResNet models, which
take as input an image and produces feature vectors (along with bounding boxes). Then, input facts
representing names, attributes, and object relationships are extracted by 3 separate trainable MLP
classifiers. We note that these classifiers integrated with our reasoning engine are trained from scratch
in an end-to-end fashion. We also note that to ensure a fair comparison, the visual input (features +
bounding boxes) we feed to all baselines (including LXMERT) are the same.

Baselines. We use three baselines that are representative of different state-of-the-art approaches to
combining perception and reasoning: (1). Neural Module Network (NMN), which uses a set of neural
modules, one per basic function, (2). DATALOG-RL, a reinforcement learning approach supervised
by a discrete logic reasoning engine, (3). DeepProbLog, a probabilistic logic programming approach,
and (4). LXMERT, a transformer based approach.

Dataset. To evaluate performance, we sample 50K tasks from the training split, 5K from the
validation split, and 5K from the testing split. To measure generalizability and sample complexity,
we sample 10 to 10K tasks of type C2 for training, and 1K tasks each of type C2 to C6 for testing.

Training Hyper-parameters. All the models converge under 20 training epochs. The learning rate is
tuned and is 0.0001 for Scallop, NMN, and DPL, 0.00001 for LXMERT. We select the loss function
to be binary cross-entropy loss, except DPL that only supports cross-entropy loss. With batch size 16
and k = 10, Scallop achieves the best accuracy in reasonable training time. All the optimizers are
Adam.

Model Size Comparison. The model for Scallop, datalog-RL and DeepProbLog are the same, so
they share the same model size: 10.91MB for attribute classification, 14.67MB for name classification,
17.78MB for relation classification. The neural modular networks method contains 8 modular network.
The and and or modules are 0.02MB, the find_name and find_attribute modules are 9.63MB,
the find_hypername and find_KG are 8.61MB, the relate and relate_reverse modules are
18.06MB. The LXMERT method uses a large pretrained module, which is 836MB.

Evaluation Metric. Since our tasks essentially involve object retrieval, any ground truth label is a
set of object IDs that satisfy the constraints stated in the question. For set comparison, we select the
recall@5 rate as the evaluation metric. It assesses the recall on the top 5 probable predictions.

D.4 More VQAR experiments

Top-k selection. We compare the performance of Scallop under different choices of k: 1, 5, 10, and
15. We train on 10K C2 tasks and test on 1K tasks of varying clause length. As shown in Figure ??,
We observe that the recall@5 score increases as k grows, as expected. However, the larger the k, the
longer it takes to process a single task at training time. Our running time increases modestly from
k = 1 to k = 10, and more dramatically when k = 15. We thus confirm that Scallop can strike a

15

C2 C3 C4 C5 C6

20

40

60

80

Test Dataset

R
ec

al
l@

5
(%

)

LXMERT DATALOG-RL NMN Scallop

Figure 7: Generalizability to harder questions when
trained on 10K C2.

10 100 1000 10000

40

60

80

Training Data Size

R
ec

al
l@

5
(%

)

LXMERT DATALOG-RL NMN Scallop

Figure 8: Data efficiency given training data size
from 10 to 10,000 C2.

balance between efficiency and accuracy by tuning the k value, and that exact probabilistic reasoning
is not required to obtain good performance on VQAR tasks.

C2 C3 C4 C5 C6

76

78

80

82

Test Dataset

R
ec

al
l@

5
(%

)

k=1 k=5 k=10 k=15

(a) Results of training on 10000 C2 tasks and testing on 1000 tasks
of types C2-C6. The recall rate grows as k increases from 1 to 15.

C2 C3 C4 C5 C6

0.5

1

Test Dataset

A
vg

.
R

un
Ti

m
e

pe
rT

as
k

(s
)

k=1 k=5 k=10 k=15

(b) Results of training on 10000 C2 tasks and testing on 1000 tasks
of types C2-C6. Running time grows as k increases from 1 to 15.

Figure 9: Comparison of Scallop across different choices of k.

Ablation Study: Datalog Reinforcement Learning (DATALOG-RL). In this study, we remove the
differentiability in Scallop’s learning pipeline. Instead, we sample a discrete scene graph, run it
through the standard Datalog execution, and use the overlap in predicted objects as a reward to
estimate the gradient using REINFORCE [22]. This method does not scale with the training dataset
of 50K tasks, so we only perform the generalizability experiments (Figure 7).

Results. Table 2 and Figure ?? compares the performance of Scallop, NMN, and LXMERT based on
50K training tasks. Scallop significantly outperforms both in terms of accuracy and data efficiency.
Figure 7 shows that Scallop generalizes to answer more difficult questions (1K from each of C2-C6)
even when trained on only the easiest ones (10K C2). Figure 8, on the other hand, shows the testing
accuracy (on 1K C2) when trained on varying dataset sizes (10, 100, 1000, and 10,000 C2). We
observe that Scallop has the best data efficiency. Finally, with DATALOG-RL we observe that the
addition of differentiable reasoning is crucial to Scallop’s learning performance.

D.5 DeepProbLog

We give a more fine-grained analysis of the DeepProbLog performance. In particular, we investigate
the relation between timeout rate and query complexity. Again, our timeout is set to 10 seconds.

Test Dataset Timeout Rate w/ KG Timeout Rate w/ Rela
1000 C2 100% 21.43%
1000 C3 91.55% 73.09%
1000 C4 88.79% 70.74%
1000 C5 88.54% 62.27%
1000 C6 87.85% 75.20%

Table 4: Success Rates of DeepProbLog

16

Dataset (Clause-n) 2 3 4 5 6
Timeout rate (%) 54.5% 69.7% 74.4% 70.7% 74.0%

Table 5: DeepProbLog timeout rate on 1000 tasks of types C2-C6.

Table 5. In the above table, column 2 shows DeepProbLog’s timeout rate when at least one KG-related
clause is presented in the programmatic query. It is worth noting that DeepProbLog performs the
worst on the C2 dataset. In C2, the KG-related clause is the only clause in the programmatic query
other than the first INITIAL clause. This implies that there is no constraint posed around the KG
clause, leading to a huge amount of possible proofs, and in turn causing the timeout.

Column 3 shows DeepProbLog’s timeout rate when at least one relation-related clause is presented in
the programmatic query. As one would expect, the more relation is included in the query, the deeper
the reasoning will need to be. The table clearly shows that DeepProbLog, without approximation
strategy, suffers from handling deep reasoning chain, as that would lead to an exponential amount of
proofs.

17

E Implementation Details

The Scallop implementation is composed of compilation, runtime, and weighted model counting.
The compilation part takes in a Datalog program and compiles it into a positive relational algebra
form. Then, the runtime executes the generated relational algebra expression and generates the query
output with its top-k proofs. Last, the weighted model counting process takes in the query output with
the fact probability and calculates the corresponding output probability with gradients. We implement
Scallop in Rust for better efficiency.

E.1 Compilation

The compilation process takes in the high-level datalog program and compiles it into an executable
form. First, the compiler preprocesses the program, ensures no parsing errors and type errors
occur in the given program. Then, it analysis the datalog program and convert it into a mid level
positive relational algebra form, which contains empty, union, projection, selection, natural join
and renaming. These mid-level relational algebra forms will be further compiled into join and
disjunction, which are directly executable by the runtime.

E.2 Runtime

The runtime execution adopts a bottom-up evaluation strategy with a tagging system for the prove-
nance semiring. It starts with all the input facts tagged with themselves as proofs and keeps applying
the rules in the join and disjunction form until a fixpoint is reached. Whenever a join happens on
tuple t1 tagged with F1, and tuple t2 tagged with F2, the generated tuple is tagged with F1 ⊗ F2,
where the⊗ is easily configurable. The story is similar for disjunction case. In terms of optimization,
we adopt the leap join strategy rather than the naive join to increase the evaluation efficiency.

E.3 Weight Model Counting

The weighted model counting algorithm is the same as DeepProbLog. We depend on the sentential
decision diagram to realize the weighted model counting process. To realize the gradient calculation,
we also implemented a semiring system to carry the additional information during weighted model
counting.

18

F Synthetic Task Details

F.1 Sum n numbers

The sum n numbers task is an extension from the original MNIST digit recognition task. Instead of
recognizing a single digit from the image, this task takes in n images, and recognizes the sum of all
the input images. For example, sum(, , 10) is corresponding to a sum2 task. In a scallop program,
we have the rule sum(I1, I2, DA + DB) :- digit(I1, DA), digit(I2, DB), where Ij are the image ids in the MNIST
dataset. This rule propagates the probability from low level perception in digit(, 3) and digit(, 7) to
the high level answer sum(, , 10). We list the code for sum n digit tasks below.

Sum2 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Int).
sum(imgA, imgB, DA + DB) :- digit(imgA, DA), digit(imgB, DB).

}
Figure 10: sum 2 numbers.

Sum3 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Symbol, Int).
sum(imgA, imgB, imgC, DA + DB + DC) :-

digit(imgA, DA), digit(imgB, DB), digit(imgC, DC).
}

Figure 11: sum 3 numbers.

Sum4 {
decl digit(Symbol, Int).
decl sum(Symbol, Symbol, Symbol, Symbol, Int).
sum(imgA, imgB, imgC, imgD, DA + DB + DC + DD) :-

digit(imgA, DA), digit(imgB, DB), digit(imgC, DC), digit(imgD, DD).
}

Figure 12: sum 4 numbers.

F.2 Sort-n-numbers

The sort n numbers task is another extension from the original MNISTT digit recognition task. In
this task, the input are n images in the MNIST dataset, and the desired output is to sort them in
order. For example, sort2(, ,0,1) means the given input and has the order 0, 1 from small to
large. In the scallop program to sort two numbers, we have the corresponding rules: sort(imgA, imgB,

0, 1) :- digit(imgA, DA), digit(imgB, DB), DA <= DB. sort(imgA, imgB, 1, 0) :- digit(0, DA), digit(1, DB), DA > DB. This means,
if the first number is smaller or equal to the second number, then we given them the order (0, 1),
else we give them the order (1, 0). We manually assign the order if two numbers are the same. The
corresponding scallop programs are shown below:

Sort2 {
decl digit(Symbol, Int).
decl sort_2(Int).
sort_2(0) :- digit(0, DA), digit(1, DB), DA <= DB.
sort_2(1) :- digit(0, DA), digit(1, DB), DA > DB.

}
Figure 13: sort 2 numbers.

19

Sort3 {
decl digit(Symbol, Int).
decl sort_3(Int).
decl digit_abc(Int, Int, Int).
digit_abc(DA, DB, DC) :- digit(0, DA), digit(1, DB), digit(2, DC).
sort_3(0) :- digit_abc(DA, DB, DC), DA <= DB, DB <= DC. // 0, 1, 2
sort_3(1) :- digit_abc(DA, DB, DC), DA <= DC, DC < DB. // 0, 2, 1
sort_3(2) :- digit_abc(DA, DB, DC), DB < DA, DA <= DC. // 1, 0, 2
sort_3(3) :- digit_abc(DA, DB, DC), DB <= DC, DC < DA. // 1, 2, 0
sort_3(4) :- digit_abc(DA, DB, DC), DC < DA, DA <= DB. // 2, 0, 1
sort_3(5) :- digit_abc(DA, DB, DC), DC < DB, DB < DA. // 2, 1, 0

}
Figure 14: sort 3 numbers.

Sort4 {
decl digit(Symbol, Int).
decl sort_4(Int).
decl digits(Int, Int, Int, Int).
digits(D0, D1, D2, D3) :- digit(0, D0), digit(1, D1), digit(2, D2), digit(3, D3).
sort_4(0) :- digits(D0, D1, D2, D3), D0 <= D1, D1 <= D2, D2 <= D3. // 0, 1, 2, 3
sort_4(1) :- digits(D0, D1, D2, D3), D0 <= D1, D1 <= D3, D3 < D2. // 0, 1, 3, 2
sort_4(2) :- digits(D0, D1, D2, D3), D0 <= D2, D2 < D1, D1 <= D3. // 0, 2, 1, 3
sort_4(3) :- digits(D0, D1, D2, D3), D0 <= D2, D2 <= D3, D3 < D1. // 0, 2, 3, 1
sort_4(4) :- digits(D0, D1, D2, D3), D0 <= D3, D3 < D1, D1 <= D2. // 0, 3, 1, 2
sort_4(5) :- digits(D0, D1, D2, D3), D0 <= D3, D3 < D2, D2 < D1. // 0, 3, 2, 1
sort_4(6) :- digits(D0, D1, D2, D3), D1 < D0, D0 <= D2, D2 <= D3. // 1, 0, 2, 3
sort_4(7) :- digits(D0, D1, D2, D3), D1 < D0, D0 <= D3, D3 < D2. // 1, 0, 3, 2
sort_4(8) :- digits(D0, D1, D2, D3), D1 <= D2, D2 < D0, D0 <= D3. // 1, 2, 0, 3
sort_4(9) :- digits(D0, D1, D2, D3), D1 <= D2, D2 <= D3, D3 < D0. // 1, 2, 3, 0
sort_4(10) :- digits(D0, D1, D2, D3), D1 <= D3, D3 < D0, D0 <= D2. // 1, 3, 0, 2
sort_4(11) :- digits(D0, D1, D2, D3), D1 <= D3, D3 < D2, D2 < D0. // 1, 3, 2, 0
sort_4(12) :- digits(D0, D1, D2, D3), D2 < D0, D0 <= D1, D1 <= D3. // 2, 0, 1, 3
sort_4(13) :- digits(D0, D1, D2, D3), D2 < D0, D0 <= D3, D3 < D1. // 2, 0, 3, 1
sort_4(14) :- digits(D0, D1, D2, D3), D2 < D1, D1 < D0, D0 <= D3. // 2, 1, 0, 3
sort_4(15) :- digits(D0, D1, D2, D3), D2 < D1, D1 <= D3, D3 < D0. // 2, 1, 3, 0
sort_4(16) :- digits(D0, D1, D2, D3), D2 <= D3, D3 < D0, D0 <= D1. // 2, 3, 0, 1
sort_4(17) :- digits(D0, D1, D2, D3), D2 <= D3, D3 < D1, D1 < D0. // 2, 3, 1, 0
sort_4(18) :- digits(D0, D1, D2, D3), D3 < D0, D0 <= D1, D1 <= D2. // 3, 0, 1, 2
sort_4(19) :- digits(D0, D1, D2, D3), D3 < D0, D0 <= D2, D2 < D1. // 3, 0, 2, 1
sort_4(20) :- digits(D0, D1, D2, D3), D3 < D1, D1 < D0, D0 <= D2. // 3, 1, 0, 2
sort_4(21) :- digits(D0, D1, D2, D3), D3 < D1, D1 <= D2, D2 < D0. // 3, 1, 2, 0
sort_4(22) :- digits(D0, D1, D2, D3), D3 < D2, D2 < D0, D0 <= D1. // 3, 2, 0, 1
sort_4(23) :- digits(D0, D1, D2, D3), D3 < D2, D2 < D1, D1 < D0. // 3, 2, 1, 0

}
Figure 15: sort 4 numbers.

20

G VQAR Dataset Details

G.1 VQAR Stats

C2 C3 C4 C5 C6

0%

20%

40%

60%

80%

100% Find_KG

Find_Hypernym

Find_Name

Find_Attr

Relate_Reverse

Relate

And

Or

Figure 16: This is the distribution of functions in queries. We only introduce AND and OR for the questions with
more than 5 clauses.

C2 C3 C4 C5 C6

0%

20%

40%

60%

80%

100%

KG_0

KG_1

KG_2

KG_3

KG_4

KG_5

Figure 17: This is the distribution of knowledge graph related function number in queries. FIND_HYPERNAME
and FIND_KG are the two basic functions that requires look into the knowledge graph. When the question has
more clauses, it is more likely include knowledge base related clauses.

C2 C3 C4 C5 C6

0%

20%

40%

60%

80%

100%

rela_0

rela_1

rela_2

rela_3

rela_4

rela_5

Figure 18: This is the distribution of relation related function number in queries. RELATE and RELATE_REVERSE
are the two basic functions that requires look into the knowledge graph. When the question has more clauses, it
is more likely include knowledge base related clauses.

G.2 VQAR Examples

We show 6 images in our VQAR dataset in Figures 19, 20, 21, 22, 23, and 24, each paired with 2
question and answer pairs. For each question, we show its original Programmatic Query as well as
the transformed Datalog Query. The object IDs are shown on the bounding boxes (in white) on the
image.

Then the program is Pxθ = (KGF ∪ Fn ∪ Fa ∪ Fr,KGR, Jn,Q). Note the universal knowledge
graph KGF is the same across different tasks.

21

Programmatic Query [INITIAL, RELATE_REVERSE(left), HYPERNYM_FIND(vehicle), HYPERNYM_FIND(thing)]
Datalog Query target(O) :− left(O,O′), name(O, vehicle), name(O, thing).
Answer {1630226, 1630228}

Programmatic Query [INITIAL, FIND_ATTR(parked), FIND_NAME(truck), RELATE_REVERSE(right)]
Datalog Query target(O) :− attr(O, parked), name(O, truck), right(O,O′).
Answer {3642007}

Figure 19: VQAR Example 1

Programmatic Query [INITIAL, FIND_KG(can, hold flowers), RELATE_REVERSE(left), RELATE(left)]
Datalog Query target(O) :− name(O,N), can(N, holdflowers), left(O,O2), left(O3,O).
Answer {4458161, 4458148}

Programmatic Query [INITIAL, RELATE_REVERSE(left), INITIAL, FIND_ATTR(blue), RELATE_REVERSE(right), OR]

Datalog Query target(O) :− left(O,O′).
target(O) :− attr(O, blue), right(O,O′).

Answer {4458150, 4458153, 4383115, 4458156, 4383118, 4458159, 4458161, 4383122, 4458165}

Figure 20: VQAR Example 2

Programmatic Query [INITIAL, FIND_ATTR(cloudy), RELATE_REVERSE(in)]
Datalog Query target(O) :− attr(O, cloudy), in(O,O′).
Answer {999665, 999666, 999660}

Programmatic Query [INITIAL, FIND_ATTR(black), INITIAL, FIND_KG(can be, opened or closed), AND]
Datalog Query target(O) :− attr(O, black), name(O,N), can_be(N, opened or closed).
Answer {999674, 999675, 999676, 999677, 999678}

Figure 21: VQAR Example 3

22

Programmatic Query [INITIAL, FIND_ATTR(grey)]
Datalog Query target(O) :− attr(O, grey).
Answer {3981862, 4133398, 3981863}

Programmatic Query [INITIAL, HYPERNYM_FIND(odd-toed ungulate), HYPERNYM_FIND(herbivore)]
Datalog Query target(O) :− name(O, odd-toed ungulate), name(O, herbivore).
Answer {3981865, 4133447}

Figure 22: VQAR Example 4

Programmatic Query [INITIAL, FIND_KG(can, hold water)]
Datalog Query target(O) :− name(O,N), can(N, hold water).
Answer {831745}

Programmatic Query [INITIAL, FIND_NAME(bottle), INITIAL, RELATE(standing by), FIND_KG(can, grow branches), OR]

Datalog Query target(O) :− name(O, bottle).
target(O) :− standing_by(O′,O), name(O,N), can(N, grow branches).

Answer {831745, 831764}

Figure 23: VQAR Example 5

Programmatic Query [INITIAL, FIND_HYPERNYM(aircraft), FIND_ATTR(black), FIND_NAME(propeller)]
Datalog Query target(O) :− name(O, aircraft), attr(O, black), name(O, propeller).
Answer {776649}

Programmatic Query [INITIAL, FIND_ATTR(neon), INITIAL, RELATE_REVERSE(by), OR]

Datalog Query target(O) :− attr(O, neon).
target(O) :− by(O,O′).

Answer {776674, 776661, 776677, 776664, 776666, 776654}

Figure 24: VQAR Example 6

23

	Introduction
	Background
	Framework
	Evaluation
	Synthetic Tasks
	Visual Question Answering

	Conclusion and Future Work
	Illustrative Overview
	Theoretical Guarantee
	Proof Semiring
	Top-k Proof Semiring
	Approximation Analysis

	VQAR Dataset Collection
	Dataset Generation

	Experiments
	Machines
	Synthetic Experiment Setup
	VQAR Experiment Setup
	More VQAR experiments
	DeepProbLog

	Implementation Details
	Compilation
	Runtime
	Weight Model Counting

	Synthetic Task Details
	Sum n numbers
	Sort-n-numbers

	VQAR Dataset Details
	VQAR Stats
	VQAR Examples

