
 Detailed responses 

 1.  Performance Concern: 

 It seems that the test accuracy of the original MAML method on the 5-way 5-shot setting on the mini-Imagenet 
 dataset is significantly lower (reported 62.71% in Table A5 of [E] but only 60.16% in Table 2 of the revised paper). It 
 also means the proposed method may underperform MAML in this setting (the proposed TA-MAML achieves 62.48% 
 accuracy as shown in Table 2 of the revised paper). As shown in Table 3 of the revised paper, the proposed TA 
 method underperforms the GCP and ATS methods in the 5-shot setting. 

 Response: 

 We  agree  that  the  accuracies  of  our  baselines  (models  without  attention)  denoted  by  *  in  Table  2  were  lower  than 
 those  reported  in  the  literature  (denoted  by  #  in  Table  2).  Our  careful  investigation  revealed  the  cause  to  be 
 differences  in  the  reported  (in  the  literature)  and  our  experimental  setup.  Our  experimental  setup,  as  discussed  below, 
 is  more  challenging,  resulting  in  lower  accuracies  for  the  baselines.  The  decreased  accuracy  of  the  baselines  also 
 propagates  to  their  task-attended  counterparts.  Comparing  baseline  accuracies  reported  in  the  literature  and  our 
 proposed  method  (which  are  under  different  experimental  setups)  is  unfair.  Therefore,  we  perform  an  additional  set  of 
 experiments  using  the  reported  setups  [B,J,G,C]  and  show  the  merit  of  the  proposed  approach  even  on  the  setups 
 reported  in  the  literature  [B,J,G,C].  We  also  retain  the  results  from  the  baseline  re-runs  and  the  task  attended 
 counterparts  obtained  from  our  experimental  setup.  While  we  present  the  results  in  Table  2  of  the  main  paper,  we 
 highlight  the  results  obtained  for  the  task-attention  framework  using  the  experimental  setup  reported  in  the  literature 
 for the reviewer’s benefit (this was the reviewers’ primary concern). 

 Table  2:  Comparison  of  few-shot  classification  performance  of  vanilla  ML  algorithms  with  their  task  attended  versions 
 on  miniImagenet  and  tieredImagenet  datasets  for  5  way  (1  and  5  shot)  settings  on  reported  experimental  setups 
 (denoted by #). 

 Algorithm  Test Accuracy 

 5 way 1 shot  5 way 5 shot 

 miniImagenet 

 MAML  #  [B]  48.07±1.75  63.15±0.91 

 CA-MAML  #  [L]  47.86±2.50  64.27±1.26 

 TAML  #  [K]  51.77±1.86  65.6±0.93 

 TA-MAML  #  53.80±1.85  66.11±0.11 

 MetaSGD  #  [J]  50.47±1.87  64.03±0.94 

 TA-MetaSGD  #  52.60±0.25  67.54±0.12 

 ANIL  #  [C]  46.7±0.4  61.5±0.5 



 TA-ANIL  #  49.53±0.41  63.73±0.33 

 tieredImagenet 

 MAML  #  [G]  47.44±0.18  64.70±0.14 

 TA-MAML  #  51.90±0.19  69.43±0.18 

 We  also  note  that  our  approach  performs  better  than  GCP  and  ATS  even  in  5  shot  setup  (Table  3  -  main  paper)  when 
 the  experimental  setup  reported  in  the  literature  (denoted  by  #)  is  used  for  training  and  testing  our  approach.  We 
 present the relevant portion of Table 3 below: 

 Algorithm  Test Accuracy 

 5 way 1 shot  5 way 5 shot 

 miniImagenet 

 MAML with GCP  #  46.92 ±  0.83  63.28 ± 0.66 

 MAML with ATS  #  47.89 ± 0.77  64.07 ±  0.70 

 TA-MAML  #  (Ours)  53.80 ± 1.85  66.11 ± 0.11 

 MetaSGD with GCP  #  47.77 ±  0.75  63.50 ±0.71 

 MetaSGD with ATS  #  48.59 ±  0.79  64.79 ± 0.74 

 TA-MetaSGD  #  (Ours)  52.60 ± 0.25  67.54 ± 0.12 

 Explanation for the variation in the results: 

 The  literature  reports  significant  variations  in  the  meta-test  performances  of  various  ML  approaches  (Table  7  in 
 supplementary  material  and  presented  below).  The  reported  average  meta-test  accuracies  of  MAML  on  the 
 miniImagenet  dataset  range  from  46.47  %  to  48.70%  (55.16%  to  64.39%)  for  5  way  1  shot  (5  shot)  settings.  Similarly, 
 for  ANIL,  meta-test  accuracies  vary  from  46.59  %  to  47.82  %  (61.5  %  to  63.47%)  for  5  way  1  shot  (5  shot)  settings.  A 
 careful  analysis  reveals  the  different  experimental  setups  resulting  in  the  observed  variation.  The  experimental  setups 
 [B,G,C,A,H,I]  differ  in  the  number  of  examples  per  class  in  the  query  set,  the  number  of  gradient  descent  steps  in  the 
 inner  loop,  meta-batch  size,  inductive  or  transductive  batch  normalization,  etc.  Our  setup  (denoted  using  *)  has  the 
 same  train  and  test  conditions.  Specifically,  we  set  the  query  examples  per  class  to  15  and  gradient  steps  to  5  for 
 both  the  meta-train  and  meta-test  phases.  However,  for  10  way  5  shot  setting,  we  use  only  2  gradient  steps  to  reduce 
 the  computational  burden.  More  query  examples  per  class  (15)  during  the  meta-test  provide  a  robust  estimate  of  the 
 model's  generalizability.  Further,  setting  gradient  steps  to  5  (or  2)  can  evaluate  the  quick  adaptation  capabilities  of  a 
 learned prior. 



 Table  7:  Variations  in  the  reported  performances  of  MAML  and  ANIL  on  miniImagenet  dataset  on  5  way  1  and  5  shot 
 settings. 

 Algorithm  MAML  ANIL 

 5 way 1 shot  5 way 5 shot  5 way 1 shot  5 way 5 shot 

 Original  Papers  (  Finn 
 et.al  [B],  Raghu  et.al 
 [C]) 

 48.70 ± 1.84%  63.11 ± 0.92%  46.7 ± 0.4  %  61.5 ± 0.50  % 

 Antoniou  et.al [F]  48.25±0.62%  64.39±0.31%  -  - 

 Oh  et.al  [G]  47.44 ± 0.23%  61.75 ± 0.42%  47.82 ± 0.20  %  63.04 ± 0.42  % 

 Raghu  et.al [C]  46.9 ± 0.2%  63.1 ± 0.4% 

 Chen  et.al  [E]  46.47 ± 0.82%  62.71 ±0.71%  -  - 

 Arnold et.al [A]  46.88±0.60%  55.16±0.55%  46.59±0.60  %  63.47±0.55  % 

 Agarwal  et.al  [D]  47.13 ± 8.78%  57.69 ± 7.92% 

 2.  Motivation concern. 

 As mentioned in Question (6), the proposed method only aims to re-weight the tasks with a softmax normalization in 
 each batch, which may be meaningless and problematic. Specifically, there are huge or even infinite tasks in meta 
 learning and different tasks are used in every batch. The normalized weight for one task only represents its 
 importance in the current task batch instead of the global task pool. Thus, this motivation is not much interesting and 
 significant in meta learning. If to re-weight tasks in each batch, many multi-task learning methods like [L, N] can also 
 achieve it, thus it is better to compare with them to show the effectiveness of the proposed TA method. 

 Response: 

 We  agree  with  the  reviewer  that  our  approach  considers  the  task  importance  with  respect  to  the  current  task  batch 
 and  meta-model  only.  We  are  motivated  by  our  hypothesis  that  the  task  importance  is  not  only  related  to  the  property 
 of  the  data  in  the  task  but  also  to  the  property  of  the  current  meta-model's  configuration.  For  example,  in  the  initial 
 stage  of  the  meta-training,  coarse-grained  tasks  (tasks  composed  of  semantically  distinct  classes)  may  have  higher 
 importance  than  fine-grained  tasks  (tasks  composed  of  visually  similar  classes),  while  this  behavior  may  flip  as  the 
 training  progresses.  We  agree  that  global  task  weighting  is  an  interesting  direction  that  has  been  studied  recently  [A, 
 M].  In  fact,  [A]  empirically  shows  that  the  hardness  or  easiness  of  a  task  is  retained  throughout  the  training  of  a 
 meta-model.  But  we  have  to  emphasize  the  differences  in  the  notion  of  importance  in  [A]  (overall)  and  the  proposed 
 setup  (with  respect  to  the  current  meta  model  state).  Further,  we  empirically  show  that  our  weighting  mechanism 
 imparts  better  generalizability  to  the  meta-model  than  the  global  weighting  of  the  tasks.  This  is  demonstrated  in  the 
 Tables  3,  4  and  5  (main  paper)  for  various  algorithms  (MAML,  ANIL,  MetaSGD),  under  different  few-shot  settings 
 (5.1,  5.5),  datasets  (miniImagenet,  miniImagenet  noisy)  and  dataset  properties  (In  distribution,  Noisy  distribution,  and 
 Cross-domain). Thus, we believe that the approach and the results are relevant to the meta-learning community. 



 We  thank  the  reviewer  for  drawing  our  attention  to  similar  literature  in  allied  areas.  [L]  proposed  an  optimization 
 method  to  neutralize  conflicts  of  an  average  model  with  individual  tasks  in  multi-task  learning.  Specifically,  they  find 
 an  optimal  update  vector  that  lies  within  the  proximity  of  the  average  gradient  across  the  batch  of  the  tasks  without 
 conflicting  with  any  task  gradient.  We  first  note  the  subtle  difference  between  the  multi-task  and  meta-learning  setup. 
 In  multi-task  learning,  the  (meta)  train  and  (meta)  test  tasks  are  similar  (have  the  same  classes),  and  the  aim  is  to 
 learn  a  model  that  performs  well  on  all  the  tasks  in  a  training  batch  (consequently  testing  batch).  On  the  other  hand, 
 meta-learning  aims  to  improve  the  model's  generalizability  to  unseen  meta-test  tasks  (classes)  from  the  same 
 distribution.  Thus,  the  uniform  performance  of  each  task  in  the  training  batch  is  not  critical  for  a  meta-learning  setup. 
 We  hypothesize  some  tasks  may  contribute  more  to  the  meta-model's  knowledge  than  others,  depending  on  the 
 stage  of  the  training.  Consider  the  stage  when  the  model  has  already  acquired  generic  knowledge,  i.e.,  distinctive 
 classes  like  a  pen,  ball,  and  a  lion  could  be  easily  differentiated.  A  task  with  such  distinctive  classes  will  not  contribute 
 significantly  to  the  meta-model's  learning  at  this  stage.  However,  a  task  containing  comparable  classes,  like  three 
 breeds  of  black  dogs,  is  more  challenging  and  thus  contribute  more  to  the  meta-model's  learning  (Fig  9 
 supplementary). 

 The  idea  of  constraining  the  gradients  of  tasks  in  a  batch  to  an  average  gradient  [L]  is  similar  to  the  baseline  (TAML) 
 [K]  that  we  had  considered.  Finding  an  update  vector  in  [L]  is  an  unconstrained  optimization  that  is  hard  to  solve.  To 
 limit  the  search  space,  the  update  vector  is  constrained  to  be  close  to  the  average  gradient  vector  on  a  task  batch 
 using  a  hyper-parameter.  Similarly,  in  [K]  the  loss  of  each  task  is  pushed  towards  the  average  loss  of  a  task  batch 
 using  a  hyper-parameter.  Penalizing  the  tasks  that  improve  the  model's  generalizability  towards  average  gradient  [L] 
 or  loss  [K]  on  task-batch  may  circumvent  their  knowledge  flow  to  the  meta-model.  The  task  models  are  not  penalized 
 in  our  setup.  Penalizing  tasks  imparts  equity  among  the  task  models  and  thus  we  hypothesize  that  [L]  and  [K]  are 
 more  suitable  to  the  multi-task  setup  rather  than  a  meta-learning  setup.  As  [L]  is  a  recent  approach  that  outperforms 
 [N]  on  a  multi-task  learning  setup,  we  compare  our  approach  with  only  to  [L].  Specifically,  we  extend  [L]  to  a 
 meta-learning  setup  by  computing  the  average  and  weighted  average  gradients  on  query  loss  of  the  adapted  models 
 instead  of  a  model  from  the  previous  iteration  (as  in  a  multi-task  setup).  However,  [L]  and  [K]  are  more 
 computationally  feasible  as  they  do  not  require  the  training  of  an  additional  attention  network.  Table  2  in  the  main 
 paper  and  the  relevant  portion  highlighted  below  demonstrates  that  the  proposed  attention  mechanism  has  better 
 generalizability  to  unseen  tasks  than  conflict-averse  gradient  descent  adapted  for  the  meta-learning  setup 
 (CA-MAML). 

 Table 2: Comparison of few-shot classification performance of MAML [B], CA-MAML [L], TAML [K], and TA-MAML on 
 miniImagenet dataset for 5 way (1 and 5 shot) settings on reported experimental setups (denoted by #). 

 Algorithm  Test Accuracy 

 5 way 1 shot  5 way 5 shot 

 miniImagenet 

 MAML  #  [B]  48.07±1.75  63.15±0.91 

 CA-MAML  #  [L]  47.86±2.50  64.27±1.26 

 TAML  #  [K]  51.77±1.86  65.6±0.93 

 TA-MAML  #  53.80±1.85  66.11±0.11 



 3.  Efficiency concern. 

 As mentioned in Question (9), the proposed method may bring huge computational costs, and at least the authors 
 should clarify this and report the training time of the proposed method. 

 Response: 

 The  training  time  for  all  scheduling  /sampling  approaches  is  expected  to  be  higher  than  their  non-scheduling/sampling 
 counterparts.  We  observe  a  three-fold  increase  in  the  training  time  from  the  vanilla  setting  for  a  model  trained  with  our 
 strategy  and  a  two-fold  increase  in  the  training  time  if  a  non-neural  scheduling  approach  [L]  is  employed.  However, 
 our  approach  significantly  outperforms  vanilla  ML  approaches  and  all  state-of-the-art  scheduling  strategies  on  various 
 datasets,  training  setups,  and  learning  paradigms  (Tables  2,  3,  4  and  5  -  main  paper).  As  training  is  typically 
 performed  offline,  the  increased  computational  overhead  is  expected  to  be  permissible.  Further,  ours,  as  well  as  other 
 approaches,  perform  vanilla  finetuning  during  meta-testing  (i.e.,  task  attention,  neural  scheduling  or  conflict  resolving 
 mechanism  is  not  employed  during  meta-testing),  resulting  in  comparable  test  time  (15-20  seconds  on  300  tasks  for 
 MAML  5-way  1-  and  5-shot  setups).  We  also  note  that  we  do  not  pre-train  the  attention  network,  unlike 
 state-of-the-art schedulers like ATS [M]. 
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Abstract

Meta-learning (ML) has emerged as a promising direction in learning models under con-1

strained resource settings like few-shot learning. The popular approaches for ML either2

learn a generalizable initial model or a generic parametric optimizer through batch episodic3

training. In this work, we study the importance of tasks in a batch for ML. We hypothesize4

that the common assumption in batch episodic training where each task in a batch has an5

equal contribution to learning an optimal meta-model need not be true. We propose to6

weight the tasks in a batch according to their “importance” in improving the meta-model’s7

learning. To this end, we introduce a training curriculum called task attended meta-training8

to learn a meta-model from weighted tasks in a batch. The task attention module is a stan-9

dalone unit and can be integrated with any batch episodic training regimen. Comparison of10

task-attended ML models with their non-task-attended counterparts on complex datasets,11

performance improvement of proposed curriculum over state-of-the-art task scheduling algo-12

rithms on noisy datasets, and cross-domain few shot learning setup validate its effectiveness.13

1 Introduction14

The ability to infer knowledge and discover complex representations from data has made deep learning models15

widely popular in the machine learning community. However, these models are data-hungry, often requiring16

large volumes of labeled data for training. Collection and annotation of such large amounts of training data17

may not be feasible for many real life applications, especially in domains that are inherently data constrained,18

like medical and satellite image classification, drug toxicity estimation, etc. Meta-learning (ML) has emerged19

as a promising direction for learning models in such settings, where only a limited amount (few-shots) of20

labeled training data is available. A typical ML algorithm employs an episodic training regimen that differs21

from the training procedure of conventional learning tasks. This episodic meta-training regimen is backed22

by the assumption that a machine learning model quickly generalizes to novel unseen data with minimal23

fine-tuning when trained and tested under similar circumstances (Vinyals et al., 2016). To facilitate such24

a generalization capacity, a meta-training phase is undertaken, where the model is trained to optimize its25

performance on several homogeneous tasks/episodes randomly sampled from a dataset. Each episode or task26

is a learning problem in itself. In the few-shot setting each task is a classification problem, a collection of K27

support (train) and Q query (test) samples corresponding to each of the N classes. Task-specific knowledge28

is learned using the support data, and meta-knowledge across the tasks is learned using query samples,29

which essentially encodes “how to learn a new task effectively.” The learned meta-knowledge is generic and30

agnostic to tasks from the same distribution. It is typically characterized in two different forms - either as an31

optimal initialization for the machine learning model or a learned parametric optimizer. Under the optimal32

initialization view, the learned meta-knowledge represents an optimal prior over the model parameters, that33

is equidistant, but close to the optimal parameters for all individual tasks. This enables the model to rapidly34

adapt to unseen tasks from the same distribution (Finn et al., 2017; Li et al., 2017; Jamal & Qi, 2019).35

Under the parametric optimizer view, meta-knowledge pertaining to the traversal of the loss surface of tasks36

is learned by the meta-optimizer. Through learning task specific and task agnostic characteristics of the loss37

surface, a parametric optimizer can thus effectively guide the base model to traverse the loss surface and38

achieve superior performance on unseen tasks from the same distribution (Ravi & Larochelle, 2017).39

1
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Initialization based ML approaches accumulate the meta-knowledge by simultaneously optimizing over a40

batch of tasks. On the other hand, a parametric optimizer sequentially accumulates meta-knowledge across41

individual tasks. The sequential accumulation process leads to a long oscillatory optimization trajectory42

and a bias towards the last task, limiting the parametric optimizer’s task agnostic potential. However,43

recently meta-knowledge has been accumulated in a batch mode even for the parametric optimizer (Aimen44

et al., 2021). Further, under such batch episodic training (for both initialization and optimization views), a45

common assumption in ML that the randomly sampled episodes of a batch contribute equally to improving46

the learned meta-knowledge need not hold good. Due to the latent properties of the sampled tasks in a47

batch and the model configuration, some tasks may be better aligned with the optimal meta-knowledge48

than others. We hypothesize that proportioning the contribution of a task as per its alignment towards49

the optimal meta-knowledge can improve the meta-model’s learning. This is analogous to classical machine50

learning algorithms like sample re-weighting, which however, operate at sample granularity. In re-weighting,51

samples leading to false positives are prioritized and therefore replayed. Hence, the latent properties due to52

which a sample is prioritized are explicitly defined. For complex task distributions, explicitly handcrafting53

the notion of “importance” of a task would be hard. To this end, we propose a task attended meta-training54

curriculum that employs an attention module that learns to assign weights to the tasks of a batch with55

experience. The attention module is parametrized as a neural network that takes meta-information in terms56

of the model’s performance on the tasks in a batch as input and learns to associate weights to each of the tasks57

according to their contribution in improving the meta-model. Overall, we make the following contributions,58

• We propose a task attended meta-training strategy wherein different tasks of a batch are weighted59

according to their “importance” defined by the attention module. This attention module is a stan-60

dalone unit that can be integrated into any batch episodic training regimen.61

• We extend the empirical investigation of the batch-mode parametric optimizer (MetaLSTM++) to62

complex datasets like miniImagenet, FC100, and tieredImagenet and validate its efficiency over its63

sequential counter-part (MetaLSTM).64

• We conduct extensive experiments on miniImagenet, FC100, and tieredImagenet datasets and com-65

pare ML algorithms like MAML, MetaSGD, ANIL, and MetaLSTM++ with their task-attended66

counterparts to validate the effectiveness of the task attention module and its coupling with any67

batch episodic training regimen.68

• We compare the proposed training curriculum with task-disagreement resolving approaches like69

TAML (Jamal & Qi, 2019) and conflict-averse gradient descent (Liu et al., 2021a) and validate the70

goodness of the proposed hypothesis. We extend these task-disagreement based approaches to the71

meta-learning regimen for a fair comparison.72

• We further compare task-attended curriculum with state-of-the-art task scheduling approaches and73

also show the merit of the proposed approach on the miniImagenet-noisy dataset and cross-domain74

few shot learning (CDFSL) setup.75

• We perform exhaustive empirical analysis and visual inspections to decipher the working of the task76

attention module.77

2 Related Work78

ML literature is profoundly diverse and may broadly be classified into initialization (Finn et al., 2017; Li et al.,79

2017; Jamal & Qi, 2019; Raghu et al., 2020; Rusu et al., 2019; Sun et al., 2019) and optimization approaches80

(Ravi & Larochelle, 2017) depending on the metaknowledge. However, these approaches assume uniform81

contribution of tasks in learning a meta-model. In supervised learning, assigning non-uniform priorities to82

the samples is not new (Kahn & Marshall, 1953; Shrivastava et al., 2016). Self-paced learning (Kumar et al.,83

2010) and hard example mining (Shrivastava et al., 2016) have popularly been used to reweight the samples84

and various attributes like losses, gradients, and uncertainty have been used to assign priorities to samples85

(Lin et al., 2017; Zhao & Zhang, 2015; Chang et al., 2017). Zhao & Zhang (2015) introduce importance86
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sampling to reduce variance and improve the convergence rate of stochastic optimization algorithms over87

uniform sampling. They theoretically prove that the reduction in the variance is possible if the sampling88

distribution depends on the norm of the gradients of the loss function. Chang et al. (2017) conclude that89

mini-batch SGD for classification is improved by emphasizing the uncertain examples. Lin et al. (2017)90

propose reshaped cross-entropy loss (focal loss) that down-weights the loss of confidently classified samples.91

Nevertheless, assigning non-uniform priorities to tasks in meta-learning is under-explored and has recently92

drawn attention (Kaddour et al., 2020; Gutierrez & Leonetti, 2020; Liu et al., 2020; Yao et al., 2021; Arnold93

et al., 2021). Gutierrez & Leonetti (2020) propose Information-Theoretic Task Selection (ITTS) algorithm94

to filter training tasks that are distinct from each other and close to the tasks of the target distribution. This95

algorithm results in a smaller pool of training tasks. A model trained on the smaller subset learns better than96

the one trained on the original set. On the other hand, Kaddour et al. (2020) propose probabilistic active97

meta-learning (PAML) that learns probabilistic task embeddings. Scores are assigned to these embeddings98

to select the next task presented to the model. These algorithms are, however, specific to meta-reinforcement99

learning (meta-RL). On the contrary, our focus is on the few shot classification problem. Liu et al. (2020)100

propose a greedy class-pair potential-based adaptive task sampling strategy wherein task selection depends101

on the difficulty of all class-pairs in a task. This sampling technique is static and operates at a class102

granularity. On the other hand, our approach is dynamic and operates at a task granularity. Assigning103

non-uniform weights to samples prevents overfitting on corrupt data points (Ren et al., 2018b; Jiang et al.,104

2018). Ren et al. (2018b) used gradient directions to re-weight the data points, and Jiang et al. (2018)105

learned a curriculum on examples using a mentor network. However, these approaches assume availability106

of abundant labeled data. Yao et al. (2021) extend Jiang et al. (2018) to the few-shot learning setup. They107

propose an adaptive task scheduler (ATS) to predict the sampling probability of tasks from a candidate108

pool containing a subset of tasks sampled from the original (noisy or imbalanced) task distribution (similar109

to (Jiang et al., 2018). Thus, the sampling probabilities of the tasks are (approximately) global. Another110

global task sampling approach is Uniform Sampling (Arnold et al., 2021), built on the premise that task111

difficulty (defined as the negative log-likelihood of the model on the task) approximately follows a normal112

distribution and is transferred across model parameters during training. They also find sampling uniformly113

over episode difficulty outperforms other sampling schemes like curriculum, easy and hard mining. Our114

work is different from these approaches (ATS and Uniform Sampling) as we do not propose a global task115

sampling strategy but a dynamic task-batch re-weighting mechanism for the current meta-model update.116

We hypothesize that the task’s importance depends on the data contained in it and the current meta-117

model’s configuration. For example, in the initial stage of the meta-models training, coarse-grained tasks118

(tasks composed of semantically distinct classes) may have higher importance than fine-grained tasks (tasks119

composed of comparable classes), while this behavior may reverse as the training progresses. Further,120

our approach differs from Uniform Sampling in the definition of task difficulty, i.e., we neither explicitly121

handcraft the notion of task difficulty nor assume a normal distribution over it. Instead, we let an attention122

network learn the suitable weights for the tasks in a batch. Although ATS also dynamically learns the task123

sampling priority, it maintains a candidate pool to satisfy the global task priority criteria, causing overhead.124

Further, it performs an additional warm start to the scheduler, utilizes more task batches in a run, and uses125

REINFORCE for reward estimation; therefore, it is more expensive than the proposed approach. Contrary126

to our idea is TAML (Jamal & Qi, 2019) - a meta-training curriculum that enforces equity across the tasks in127

a batch. We show that weighting the tasks according to their “importance” and hence utilizing the diversity128

present in a batch given the meta-model’s current configuration offers better performance than enforcing129

equity in a batch of tasks.130

3 Preliminary131

In a typical ML setting, the principal dataset D is divided into disjoint meta-sets M (meta-train set),132

Mv (meta-validation set) and Mt (meta-test set) for training the model, tuning its hyperparameters and133

evaluating its performance, respectively. Every meta-set is a collection of tasks T drawn from the joint134

task distribution P (T ) where each task Ti consists of support set Di = {(xc
k, yc

k)K
k=1}N

c=1 and query set135

D∗
i = {(x∗c

q , y∗c
q )Q

q=1}N
c=1. Here (x, y) represents a (sample, label) pair and N is the number of classes, K and136

Q are the number of samples belonging to each class in the support and query set, respectively. According137
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Figure 1: Computational Graph of the forward pass of the meta-model using task attended meta-training
curriculum. The output of this procedure is a meta-model θn. Gradients are propagated through solid lines
and restricted through dashed lines.

to support-query characterization M, Mv and Mt could be represented as {(Di, D∗
i )}M

i=1, {(Di, D∗
i )}R

i=1,138

{(Di, D∗
i )}S

i=1 where M, R and S are the total number of tasks in M, Mv and Mt respectively. During139

meta-training, meta-model θ is adapted on Di of all tasks in a batch {Ti}B
i=1 of size B, T times to obtain ϕT

i .140

The adaptation occurs through gradient descent or parametric update on the train loss L using learning rate141

α. The adapted model ϕT
i is then evaluated on D∗

i to obtain test loss L∗, which along with learning rate β,142

is used to update θ. The output of this episodic training is either an optimal prior or a parametric optimizer,143

both aiming to facilitate the rapid adaptation of the model on unseen tasks from Mt. The detailed note on144

initialization and optimization approaches is deferred to the supplementary material.145

4 Task Attention in Meta-learning146

A common assumption under the batch-wise episodic training regimen adopted by ML is that each task in a147

batch has an equal contribution in improving the learned meta-knowledge. However, this need not always be148

true. It is likely that given the current configuration of the meta-model, some tasks may be more important149

for the meta-model’s learning. A contributing factor to this difference is that tasks sampled from complex150

data distributions can be profoundly diverse. The diversity and latent properties of the tasks coupled with151

the model configuration may induce some tasks to be better aligned with the optimal meta-knowledge than152

others. The challenging aspect in the meta-learning setting is to define the “importance” and associate153

weights to the tasks of a batch proportional to their contribution to improving the meta-knowledge. As154

human beings, we learn to associate importance to events subjective to meta-information about the events155

and prior experience. This motivates us to define a learnable module that can map the meta-information of156

tasks to their importance weights.157

4



Under review as submission to TMLR

4.1 Characteristics of Meta-Information158

Given a task-batch {Ti}B
i=1, the task attention module takes as input meta-information about each task (Ti)159

in the batch, defined as the four tuple below:160

I =
{ (

||∇ϕT
i

L∗(ϕT
i )||, L∗(ϕT

i ), A∗(ϕT
i ), L∗(ϕT

i )
L∗(ϕ0

i )

) }B

i=1
(1)

where corresponding to each task i in the batch ||∇ϕT
i

L∗(ϕT
i )|| denotes the norm of gradient, L∗(ϕT

i ) and161

A∗(ϕT
i ) are the test loss and accuracy of the adapted model respectively, and L∗(ϕT

i )
L∗(ϕ0

i ) is the ratio of the162

model’s test loss post and prior adaptation.163

4.1.1 Gradient Norm164

Let P =
{

ϕT
i

}B

i=1 be the parameters of the models obtained after adapting the initial model (for T iterations)165

on the support data {Di}B
i=1 of tasks {Ti}B

i=1. Also, let G =
{
∇ϕT

i
L∗(ϕT

i )
}B

i=1
be the gradients of the166

adapted model parameters w.r.t the query losses {L∗(ϕT
i )}B

i=1. The gradient norm
{
||∇ϕT

i
L∗(ϕT

i )||
}B

i=1
is167

the L2 norm of the gradients and quantifies the magnitude of the consolidated displacement of the adapted168

model parameters during a gradient descent update on query data. Larger gradient norm on query dataset169

could indicate that the model has either not learned the support set or has overfitted. Hence the model is not170

generalizable on query set compared to the models with low gradient norm. Gradient norm, therefore, carries171

information about the convergence and generalizability of the adapted models which has been theoretically172

studied in (Li et al., 2019).173

4.1.2 Test Loss174

{L∗(ϕT
i )}B

i=1 represents the empirical error (cross entropy loss) of the adapted base models on unseen query175

instances and hence characterizes their generalizability. Unlike gradient norm, which characterizes the gen-176

eralizability in parameter space, query loss quantifies generalizability in the output space as the divergence177

between the real and predicted probability distributions. As {L∗(ϕT
i )}B

i=1 is a key component in the meta-178

update equation, it is an important factor influencing the meta-model’s learning. Further, test errors of179

classes have been widely used to determine their “easy or hardness” (Bengio et al., 2009; Liu et al., 2021b;180

Arnold et al., 2021). Thus {L∗(ϕT
i )}B

i=1 acquaints the attention module with the generalizability aspect of181

task models and their influence in updating the meta-model.182

4.1.3 Test Accuracy183

{A∗(ϕT
i )}B

i=1 corresponds to the accuracies of {ϕT
i }B

i=1 on {D∗
i }B

i=1 scaled in the range [0,1]. A∗(ϕT
i ) eval-184

uates the thresholded predictions (predicted labels) unlike L∗(ϕT
i ), which evaluates the confidence of the185

model’s predictions on the true class labels. Two task models may predict the same class labels but differ186

in the confidence of the predictions. In such scenarios, neither loss nor accuracy is individually sufficient to187

comprehend this relationship among the tasks. So, the combination of these two entities is more reflective188

of the nature of the learned task models.189

4.1.4 Loss-ratio190

Let L∗(ϕ0
i ) be the loss of θ on the D∗

i , and L∗(ϕT
i ) be the loss of the adapted model ϕT

i on D∗
i . The loss-ratio191

L∗(ϕT
i )

L∗(ϕ0
i ) is representative of the relative progress of a meta-model on each task. Higher values (> 1) of the192

loss-ratio suggests adapting θ to Di has an adverse effect on generalizing it to D∗
i (negative impact), while193

lower values (< 1) of the loss-ratio indicates the benefit of adaptation of θ on Di (positive impact). Loss-ratio194

of exactly one signifies adaptation attributes to no additional benefit (neutral impact). Therefore, loss-ratio195

provides information regarding the impact of adaptation on each task for a given meta-model.196
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4.2 Task Attention Module197

We learn a task attention module parameterized by δ, which attends to the tasks that contribute more to the198

model’s learning i.e., the objective of the task attention module is to learn the relative importance of each199

task in the batch for the meta-model’s learning. Thus the output of the module is a B−dimensional vector200

Algorithm 1: Task Attended Meta-Training
Input:
Dataset: M = {Di, D∗

i }M
i=1

Models: Meta-model θ, Base-model ϕ, Att-module δ
Learning-rates: α, β, γ
Parameters: Iterations niter, Batch-size B,

Adaptation-steps T
Output: Meta-model θ

1 Initialization: θ, δ ← Random Initialization
2 for iteration in niter do
3 {Ti}B

i=1 = {Di, D∗
i }B

i=1 ← Sample task-batch(M)
4 for all Ti do
5 ϕ0

i ← θ

6 L∗(ϕ0
i ), _← evaluate(ϕ0

i , D∗
i ) ▷ Compute loss

and accuracy of input model on given dataset.
7 ϕT

i = adapt(ϕ0
i , Di)

8 L∗(ϕT
i ), A∗(ϕT

i )← evaluate(ϕT
i , D∗

i )
9 end

10 [wi]Bi=1 ← Att_module([
L∗(ϕT

i )
L∗(ϕ0

i ) , A∗(ϕT
i ), ||∇ϕT

i
L∗(ϕT

i )||, L∗(ϕT
i )
]B

i=1

)
11 θ ← θ − β∇θ

∑B
i=1 wiL

∗(ϕT
i )

12 {Dj , D∗
j }B

j=1 ← Sample task-batch(M)
13 for all Tj do
14 ϕ0

j ← θ

15 ϕT
j = adapt(ϕ0

j , Dj)
16 end
17 δ ← δ − γ∇δ

∑B
j=1 L∗(ϕT

j )
18 end
19 Return θ
20 Function adapt(ϕt

i, Di):
21 θ ← ϕt

i

22 if θ is optimal-initialization then
23 for t=1 to T do
24 ϕt+1

i ← ϕt
i − α∇ϕt

i
L(ϕt

i)
25 end
26 end
27 else if θ is parametric-optimizer then
28 for t=1 to T do
29 ϕt+1

i ← θ
(

L(ϕt
i),∇ϕt

i
L(ϕt

i)
)

▷ Parameter
updates given by cell state of θ.

30 end
31 end
32 Return ϕT

i

w = [w1, . . . , wB ], (
∑B

i=1 wi = 1 and ∀Ti, wi ≥201

0) quantifying the attention-score (weight - wi)202

for each task. The attention vector w is multi-203

plied with the corresponding task losses of the204

adapted models L∗(ϕT
i ) on the held-out datasets205

D∗
i to update the meta-model θ:206

θt+1 ← θt − β∇θt

B∑
i=1

wiL
∗(ϕT

i ) (2)

After the meta-model is updated using the207

weighted task losses, we evaluate the goodness208

of the generated attention weights. We sam-209

ple a new batch of tasks {Dj , D∗
j }B

j=1 and adapt210

a base-model ϕj using the updated meta-model211

θt+1 on the train data {Dj} of each task. The212

mean test-loss of the adapted models {ϕT
j }B

j=1213

reflect the goodness of the weights assigned by214

the attention-module in the previous iteration.215

The attention module δ is thus updated using216

the gradients flowing back into it w.r.t to this217

mean test-loss. The attention network is trained218

simultaneously with the meta-model in an end to219

end fashion using the update rule:220

δt+1 ← δt − γ∇δt

B∑
j=1

L∗(ϕT
j ) (3)

where ϕT
j is adapted from θt+1 and γ is the learn-221

ing rate .222

4.3 Task Attended Meta-Training Algorithm223

We demonstrate the meta-training curriculum224

using the proposed task attention in Figure 1225

and formally summarize it in Algorithm 1. As226

with the classical meta-training process, we first227

sample a batch of tasks from the task distribu-228

tion. For each task Ti, we adapt the base-model229

ϕi using the train data Di for T time-steps (line230

7 and lines 20-32 in Algorithm 1). Specifically,231

for initialization approaches, adaptation is per-232

formed by gradient descent on train loss L (lines233

22-26 in Algorithm 1). However, for optimiza-234

tion approaches, current loss and gradients are235

inputted to the meta-model θ, which outputs236

the updated base-model parameters (lines 27-31237

in Algorithm 1). Then we compute the meta-238

information about the adapted model corresponding to each task. It comprises of the loss L∗(ϕT
i ), accuracy239
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A∗(ϕT
i ), loss-ratio L∗(ϕT

i )
L∗(ϕ0

i ) and gradient norm ||∇ϕT
i

L∗(ϕT
i )|| on the test data D∗

i . This meta-information240

corresponding to each task in a batch is given as input to the task attention module (Figure 1 - Label: 2 )241

which outputs the attention vector (line 10 in Algorithm 1). The attention vector and test losses {L∗(ϕT
i )}B

i=1242

are used to update meta-model parameters θ according to equation 2 (line 11 in Algorithm 1, Figure 1 -243

Label: 4 ). We sample a new batch of tasks {Dj , D∗
j }B

j=1 and adapt the base-models {ϕT
j }B

j=1 using the244

updated meta-model (lines 12-16 in Algorithm 1, Figure 1 - Label: 5 ). We compute the mean test loss over245

the adapted base-models {L∗(ϕT
j )}B

j=1, which is then used to update the parameters of the task attention246

module δ according to equation 3 (line 17 in Algorithm 1, Figure 1 - Label: 6 ).247

The attention network is designed as a stand-alone module to learn the mapping from the meta-information
space to the importance of tasks in a batch. The meta-model is learned according to equation 2 and aims
to minimize the weighted loss. It is important to decouple the learning of the attention network from that
of the meta-model. If there is information flow from the task attention module to the meta-model, the
latter may reduce its weighted loss by learning an initialization that is suboptimal, but for which the task
attention network assigns lower weights. This would introduce an undesirable bias to the learning process.
To circumvent this bias, we restrict the flow of gradients to the meta-model θ through the task attention
module δ by enforcing ∇θwiL

∗(ϕT
i ) = wi∇θL∗(ϕT

i ) i.e., ∇θwi is not computed. Also, gradients flowing
through the attention network to the meta-model create additional computational overhead. Specifically,
the term ∇θ

∑
i

wiL
∗(ϕT

i ) from equation 2 can be expanded as follows -

∇θ

∑
i

wiL
∗(ϕT

i ) =
∑

i

∇θwiL
∗(ϕT

i ) =
∑

i

wi∇θL∗(ϕT
i )︸ ︷︷ ︸

Term 1

+
∑

i

L∗(ϕT
i )∇θwi︸ ︷︷ ︸

Term 2

The ∇θwi in Term 2 is computationally expensive as ∇θwi = ∇δwi.∇Iδ.∇ϕI.∇θϕ. Restricting the gradient248

flow avoids these additional computations. We also note that the meta-model and attention network are249

updated only once during each training iteration, although on different batches of tasks.250

5 Experiments and Results251

We conduct experiments to demonstrate the merit of the task-attention across multiple datasets, training252

setups, and learning paradigms. We verify that the proposed regimen could be integrated with various253

ML approaches like MAML, MetaSGD, MetaLSTM++, and ANIL and further show its superiority over254

state-of-the-art task-scheduling and conflict-resolving approaches. We also analyze the attention network.255

5.1 Dataset and Implementation Details256

Figure 2: Architecture of Task-attention module.

In line with the state-of-the-art literature (Sun et al.,257

2020; Arnold et al., 2021), we use miniImagenet, FC100,258

and tieredImagenet for evaluating the effectiveness of the259

proposed attention module as they are more challenging260

datasets comprising of highly diverse tasks. We also test261

the efficacy of the proposed approach on noisy dataset262

(miniImagenet-noisy), and under cross-domain few shot263

learning (CDFSL) miniImagenet → CUB-200 and mini-264

Imagenet→ FGVC-Aircrafts datasets. The details of the265

datasets are presented in the supplementary material.266

We use a 4-layer CNN from (Finn et al., 2017) as a base267

model and a two-layer LSTM (Ravi & Larochelle, 2017)268

for the parametric optimizer. The architecture of the269

task-attention module is illustrated in Figure 2 and de-270

scribed as follows.The task attention module is implemented as a 4-layer neural network. The first layer271

7
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performs a 1×1 convolution over the input (meta-information) of size B×4 where B denotes the meta-batch272

size, producing a vector of size B×1 as output. This vector is then passed through two fully connected273

layers with 32 hidden nodes, each followed by a ReLU activation. This output is then passed through a fully274

connected layer with B nodes, followed by a softmax activation to produce the normalized attention weights.275

Table 1: Comparison of few-shot classification performance of MAML and
TA-MAML on miniImagenet dataset with meta-batch size 4 and 6 and
8 for 5 and 10 way (1 and 5 shot) settings. The ± represents the 95%
confidence intervals over 300 tasks. Algorithms denoted by * are rerun
on their optimal hyper-parameters on our experimental setup. We observe
that TA-MAML consistently performs better than MAML, and an increase
in the tasks in a batch improves the performance of both MAML and TA-
MAML.

Test Accuracy (%) on miniImagenet

5 Way 10 Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

Batch Size 4

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TA-MAML∗ 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

Batch Size 6

MAML∗ 47.72 ± 1.041 63.45 ± 1.083 31.55 ± 0.626 46.27 ± 0.64
TA-MAML∗ 49.14 ± 1.211 65.26 ± 0.956 32.62± 0.635 46.67 ± 0.63

Batch Size 8

MAML∗ 47.68±1.20 63.81±0.98 31.54±0.66 46.15±0.58
TA-MAML∗ 50.35±1.22 65.69±1.08 32.00±0.68 48.33±0.63

We perform a grid search over276

30 different configurations for277

5000 iterations to find the opti-278

mal hyper-parameters for each279

setting. The search space is280

shared across all meta-training281

algorithms and datasets. The282

meta, base and attention model283

learning rates are sampled284

from a log uniform distribu-285

tion in the ranges
[
1e−4, 1e−2],286 [

1e−2, 5e−1] and
[
1e−4, 1e−2]

287

respectively (see appendix for288

more details). The hyperpa-289

rameter λ for TAML (Theil)290

is sampled from a log uniform291

distribution over the range of292 [
1e−2, 1

]
. For CA-MAML, c is293

set as 0.5. The meta-batch size294

is set to 4 for all settings (Finn295

et al., 2017; Jamal & Qi, 2019).296

However, we study its impact in Table 1. All models were trained for 55000 iterations (early stopping was297

employed for tieredImagenet) using the optimal set of hyper-parameters using an Adam optimizer (Kingma298

& Ba, 2015). All the experimental results and comparisons correspond to our re-implementation of the ML299

algorithms integrated into learn2learn library (Arnold et al., 2020) to ensure fairness and uniformity. We300

believe that integrating the proposed attention module and additional ML algorithms into the learn2learn301

library will benefit the ML community. We perform individual hyperparameter tuning for all the models302

over the same hyperparameter space to ensure a fair comparison. The source code is publicly available.1303

The literature reports significant variations in the meta-test performances of various ML approaches (Table304

7 in supplementary material). The reported average meta-test accuracies of MAML on the miniImagenet305

dataset range from 46.47 % to 48.70 % (55.16% to 64.39%) for 5 way 1 shot (5 shot) settings. A careful306

analysis reveals the different experimental setups resulting in the observed variation. Experimental setups307

(Finn et al., 2017; Oreshkin et al., 2018; Oh et al., 2020) differ in the number of examples per class in the308

query set, the number of gradient descent steps in the inner loop, meta-batch size, inductive or transductive309

batch normalization, etc. We conduct two sets of experiments to test the proposed task attention model’s310

efficacy in a fair manner. The first set of experiments use the train and test setups reported in the literature311

(denoted using #). The second set uses our setup (denoted using ∗) that has the same train and test312

conditions. Specifically, we set the query examples per class to 15 and gradient steps to 5 for both the meta-313

train and meta-test phases. However, for 10 way 5 shot setting, we use only 2 gradient steps to reduce the314

computational burden. More query examples per class (15) during the meta-test provide a robust estimate of315

the model’s generalizability. Further, setting gradient steps to 5 (or 2) better evaluates the quick adaptation316

capabilities of a learned prior.317

5.2 Influence of Task Attention on Meta-Training318

As task-attention (TA) is a standalone module, it can be integrated with any batch episodic training regimen.319

We, therefore, use MetaLSTM++ (batch mode of MetaLSTM) for our experiments. In (Aimen et al., 2021),320

authors demonstrated the merit of MetaLSTM++ on MetaLSTM only on Omniglot dataset. We extend upon321

1https://github.com/taskattention/task-attended-metalearning.git
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this empirical investigation by comparing the performance of MetaLSTM and MetaLSTM++ on complex322

datasets like miniImagenet, FC100, and tieredImagenet (Table 2). It is evident from the results that batch-323

wise episodic training is more effective than sequential episodic training. We also investigate the performance324

of models trained with the TA meta-training regimen with their non-TA counterparts on both (our and325

reported - wherever available) setups. Specifically, we compare MAML, MetaSGD, MetaLSTM++, and326

ANIL with their task-attended versions on 5 and 10 way (1 and 5 shot) settings on miniImagenet, FC100, and327

tieredImagenet datasets and report the results in Table 2. We consider 300 meta-test tasks for all approaches328

unless specified otherwise. For ANIL and its task-attended counterpart, we consider 1000 testing tasks. From329

Table 2, we observe that models trained with TA regimen generalize better to the unseen meta-test tasks than330

their non-task-attended versions across all the settings in all datasets. Note that the proposed task attention331

mechanism aims not to surpass the state-of-the-art meta-learning algorithms but provides new insight into the332

batch episodic meta-training regimen, which as per our knowledge, is common to all meta-learning algorithms.333

MAML∗

m
in

iI
m

ag
en

et

MetaSGD∗ MetaLSTM++∗

ti
er

ed
Im

ag
en

et

Figure 3: Mean validation accuracies of MAML∗ (Col-1), MetaSGD∗ (Col-2) and
MetaLSTM++∗ (Col-3) across 300 tasks with/without attention on 5 way 1 shot
setting on miniImagenet (Row-1) and tieredImagenet (Row-2) datasets.

We also compare the334

performance of TA-335

MAML against TAML -336

a meta-training regimen337

that forces the meta-338

model to be equally339

close to all the tasks.340

The results, as presented341

in Table 2, suggest that342

TA-MAML performs343

better than TAML on344

all benchmarks across345

all settings. Note that346

both TAML and TA-347

MAML are approaches348

that built upon MAML349

to address the inequal-350

ity/diversity of tasks351

in a batch. Our aim is352

thus to compare TAML353

and TA-MAML and not354

to assess the efficacy of355

TAML when meta-trained using task attention. Liu et al. (2021a) proposed an optimization method to356

neutralize conflicts of an average model with individual tasks in a multi-task learning setup. Specifically,357

they find an optimal update vector that lies in the proximity of the average gradient across the batch of358

the tasks without conflicting with any task gradient. This method is similar to (Jamal & Qi, 2019) in a359

meta-learning setup, which constrains the losses of tasks towards the average loss on a task batch. As the360

update vector is constrained to be close to the average gradient vector on a task batch, information flow361

from certain useful tasks to the meta-model may decrease. We note that we extend (Liu et al., 2021a) to a362

meta-learning setup by computing the average and weighted average gradients on query loss of the adapted363

models instead of a model from the previous iteration (as in a multi-task setup). Table 2 demonstrates364

that the proposed attention mechanism has better generalizability to unseen tasks than conflict-averse365

gradient descent adapted for a meta-learning setup (CA-MAML). Our approach utilizes a non-linear model366

to extract knowledge from multiple meta-information components to learn the weights, which helps it to367

outperform TAML and CA-MAML.368

We investigate the influence of the TA meta-training regimen on the model’s convergence by analyzing the369

trend of the model’s validation accuracy over iterations. Figure 3 depicts the mean validation accuracy over370

300 tasks on miniImagenet and tieredImagenet datasets for a 5 way 1 shot setting across training iterations.371

We observe that the models meta-trained with TA regimen tend to achieve higher/at-par performance in372

fewer iterations than the corresponding models meta-trained with the non-TA regimen.373
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Table 2: Comparison of few-shot classification performance of vanilla ML algorithms with their task attended
versions on miniImagenet, FC100 and tieredImagenet datasets for 5 and 10 way (1 and 5 shot) settings. The
± represents the 95% confidence intervals over 300 tasks. Algorithms denoted by * and # are rerun on
using the optimal hyper-parameters on our and reported experimental setups, respectively. Attention-based
ML algorithms perform better than their corresponding vanilla approaches across all the settings. Further,
MetaLSTM++ and TA-MAML perform better than MetaLSTM and TAML (and CA-MAML) , respectively,
across all settings and datasets.

Test Accuracy (%)

5 Way 10 Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

miniImagenet

MAML#(Finn et al., 2017) 48.07 ± 1.75 63.15 ± 0.91 - -
CA-MAML#(Liu et al., 2021a) 47.86 ± 2.50 64.27 ± 1.26 - -
TAML#(Jamal & Qi, 2019) 51.77 ± 1.86 65.6 ± 0.93 - -
TA-MAML# 53.80 ± 1.85 66.11 ± 0.11 - -

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TAML∗ 46.26 ± 0.21 53.40 ± 0.14 29.76 ± 0.11 36.88 ± 0.10
TA-MAML∗ 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

MetaSGD# (Li et al., 2017) 50.47 ± 1.87 64.03 ± 0.94 - -
TA-MetaSGD# 52.60 ± 0.25 67.54 ± 0.12 - -

MetaSGD∗ 47.65± 0.21 61.60 ± 0.17 30.09± 0.10 42.22 ± 0.11
TA-MetaSGD∗ 49.28 ± 0.20 63.37 ± 0.16 31.50± 0.11 44.06 ± 0.10

MetaLSTM∗ 41.48 ± 1.02 58.87 ± 0.94 28.62 ± 0.64 44.03 ± 0.69
MetaLSTM++∗ 48.00 ± 0.19 62.73 ± 0.17 31.16 ± 0.09 45.46 ± 0.10
TA-MetaLSTM++∗ 49.18 ± 0.17 64.89 ± 0.16 32.07± 0.11 46.66 ± 0.09

ANIL#(Raghu et al., 2020) 46.7 ± 0.4 61.5 ± 0.5 - -
TA-ANIL# 49.53 ± 0.41 63.73 ± 0.33 - -

ANIL∗ 46.92 ± 0.62 58.68 ± 0.54 28.84 ± 0.34 40.95 ± 0.32
TA-ANIL∗ 48.84 ± 0.62 60.80± 0.55 31.14± 0.34 42.52 ± 0.34

FC100

MAML∗ 36.40 ± 0.38 46.76±0.21 23.93±0.14 31.14 ± 0.07
TAML∗ 38.00 ± 0.26 48.05± 0.13 21.60± 0.14 33.19± 0.07
TA-MAML∗ 39.86± 0.25 49.56 ± 0.13 25.46± 0.15 36.06± 0.08

MetaSGD∗ 33.46 ± 0.23 43.96± 0.13 21.40±0.15 30.59± 0.07
TA-MetaSGD∗ 35.66±0.25 49.49± 0.12 23.80±0.15 32.08±0.07

MetaLSTM∗ 37.20 ± 0.26 47.89 ± 0.13 21.70 ± 0.14 32.11 ± 0.07
MetaLSTM++∗ 38.60 ±0.23 49.82 ± 0.12 22.80 ± 0.14 33.46 ± 0.08
TA-MetaLSTM++∗ 41.53 ±0.28 51.17 ±0.13 25.33 ±0.15 34.18 ±0.08

ANIL∗ 34.08 ± 1.29 44.74 ± 0.68 20.65 ± 0.77 27.93 ± 0.42
TA-ANIL∗ 38.06 ± 1.26 46.94± 0.69 23.27± 0.79 28.29 ± 0.40

tieredImagenet

MAML#(Oh et al., 2020) 47.44 ± 0.18 64.70 ± 0.14 - -
TA-MAML# 51.90 ± 0.19 69.43± 0.18 - -

MAML∗ 44.40 ± 0.49 57.07 ± 0.22 27.40 ± 0.25 34.30 ± 0.14
TAML∗ 46.40 ± 0.40 56.80 ± 0.23 26.40 ± 0.25 34.40 ± 0.15
TA-MAML∗ 48.40 ± 0.46 60.40 ± 0.25 31.00± 0.26 37.60± 0.15

MetaSGD∗ 52.80 ± 0.44 62.35 ± 0.26 31.90 ± 0.27 44.16 ± 0.15
TA-MetaSGD∗ 56.20 ± 0.45 64.56 ± 0.24 33.20± 0.29 47.12 ± 0.16

MetaLSTM∗ 37.00 ± 0.44 59.83 ± 0.25 29.80 ± 0.28 39.28 ± 0.13
MetaLSTM++∗ 47.60 ± 0.49 63.24 ± 0.25 30.70 ± 0.27 47.97 ± 0.16
TA-MetaLSTM++∗ 49.00 ± 0.44 66.15 ± 0.23 32.10± 0.27 51.35 ± 0.17

ANIL∗ 45.08 ± 1.37 59.71 ±0.77 29.32 ± 0.83 42.76 ± 0.50
TA-ANIL∗ 45.96 ± 1.32 60.96± 0.72 32.68± 0.92 47.56 ± 0.51
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5.3 Comparison with Sampling Approaches374

Table 3: Comparison (Test Accuracy (%)) of task at-
tention with GCP, ATS and Uniform Sampling for
MAML and MetaSGD (or ANIL) on miniImagenet
dataset and various sampling techniques for ANIL on
the miniImagenet-noisy dataset for 5 way 1 and 5 shot
settings. For miniImagenet, algorithms denoted by *
and # are rerun on the optimal hyper-parameters on
our and reported experimental setups, respectively.

5 Way
Model 1 Shot 5 Shot

miniImagenet

MAML with GCP# 46.92 ± 0.83 63.28 ± 0.66
MAML with ATS# 47.89 ± 0.77 64.07 ± 0.70
MAML+UNIFORM (Offline)# 46.67 ± 0.63 62.09 ± 0.55
MAML+UNIFORM (Online)# 46.70 ± 0.61 61.62 ± 0.54
TA-MAML∗ (Ours) 48.36 ± 0.23 62.48 ± 0.18
TA-MAML# (Ours) 53.80 ± 1.85 66.11 ± 0.11

MetaSGD with GCP# 47.77 ± 0.75 63.50 ± 0.71
MetaSGD with ATS# 48.59 ± 0.79 64.79 ± 0.74
TA-MetaSGD∗ (Ours) 49.28 ± 0.20 63.37± 0.16
TA-MetaSGD# (Ours) 52.60 ± 0.25 67.54 ± 0.12

ANIL+UNIFORM (Offline)# 46.93 ± 0.62 62.75 ± 0.60
ANIL+UNIFORM (Online)# 46.82 ± 0.63 62.63 ± 0.59
TA-ANIL∗ 48.84 ± 0.62 60.80± 0.55
TA-ANIL# 49.53 ± 0.41 63.73 ± 0.33

miniImagenet-noisy

Uniform 41.67 ± 0.80 55.80 ± 0.71
SPL 42.13 ± 0.79 56.19 ± 0.70
Focal Loss 41.91 ± 0.78 53.58 ± 0.75
GCP 41.86 ± 0.75 54.63 ± 0.72
PAML 41.49 ± 0.74 52.45 ± 0.69
DAML 41.26 ± 0.73 55.46 ± 0.70
ATS 44.21 ± 0.76 59.50 ± 0.71
TA-ANIL∗ (Ours) 45.17 ± 0.23 62.15 ± 1.01

We compare our proposed approach with ATS375

(Yao et al., 2021) and uniform sampling (Arnold376

et al., 2021) and demonstrate that our weight-377

ing mechanism imparts better generalizability to378

the meta-model than the global weighting of the379

tasks. Yao et al. (2021) ascertained the merit380

of ATS over Greedy class-pair (GCP) technique381

(Liu et al., 2020) on miniImagenet dataset. We382

extend this comparison and show in Table 3 that383

the proposed approach performs better than state-384

of-the-art ATS and GCP in both 1 and 5 shot385

settings. We also observe that the TA mecha-386

nism performs better than uniform sampling on the387

miniImagenet dataset on 1 and 5 shot settings for388

MAML and ANIL. ATS has been designed for noisy389

and imbalanced task distributions. So, we com-390

pare the proposed approach with GCP, ATS, and391

other sampling techniques on the miniImagenet-392

noisy dataset (Yao et al., 2021) and report the393

results in Table 3. We observe that task atten-394

tion outperforms all scheduling algorithms on the395

miniImagenet-noisy dataset. As ATS is the most396

competitive baseline for the proposed method on397

the miniImagenet-noisy dataset, we compare the398

TA-ANIL and ATS on varying noise ratios for the399

miniImagenet dataset on 5 way 1 shot setting (Ta-400

ble 4). We observe that the proposed method out-401

performs ATS on all noise ratios except 0.8. Note402

that the algorithm used for all sampling approaches403

is ANIL.404

5.4 Effectiveness of Task Attention in CDFSL setup405

Classical meta-learning approaches assume meta-train and meta-test data belong to the same distribution406

such that the meta-trained model extends its knowledge to the meta-test set. This is, however, not always407

the case. The difference in the data acquisition techniques, or evolution of data with time, may cause a408

discrepancy between the meta-train and meta-test distributions. This realistic setting is popularly termed409

as cross-domain few-shot learning (CDFSL) (Guo et al., 2020). We conducted experiments to show the merit410

of the proposed approach in CDFSL setup. Specifically, we train a model using TA meta-training regimen on411

the miniImagenet dataset and meta-test it on CUB-200 and FGVC-Aircraft datasets. The results reported412

for 5 way 1 and 5 shot settings in Table 5 indicate that the proposed approach outperforms the state-of-413

the-art task scheduling approach (Uniform Sampling (Arnold et al., 2021)) on CDFSL setup by a large414

margin.415

5.5 Ablation Studies416
Table 4: Comparative analysis of ANIL integrated with ATS and proposed
method on miniImagenet dataset with varying noise ratios for 5 way 1 shot
setting. BNS is the best non-adaptive scheduler.

Test Accuracy (%) on miniImagenet-noisy

Noise ratio 0.2 0.4 0.6 0.8

ANIL with Uniform 43.46 ± 0.82 42.92 ± 0.78 41.67 ± 0.80 36.53 ± 0.73
ANIL with BNS 44.04 ± 0.81 43.36 ± 0.75 42.13 ± 0.79 38.21 ± 0.75
ANIL with ATS 45.55 ± 0.80 44.50 ± 0.86 44.21 ± 0.76 42.18 ± 0.73
TA-ANIL∗ (Ours) 47.98 ± 0.26 46.69 ± 0.22 45.17 ± 0.23 40.35 ± 1.14

To examine the significance of417

each input given to the task418

attention model, we conduct419

an ablation study on 5 way420

1 and 5 shot TA-MAML on421

miniImagenet dataset and re-422
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port the results in Table 6. We observe that all the components of meta-information contribute to the423

learning of a more generalizable meta-model. To further support this observation, we investigate the re-424

lationship between the meta-information and weights assigned by the task attention module by analyz-425

ing the mean Pearson correlation of each of the components (four tuple) of the meta-information with426

the attention vector across the training iterations. This is depicted in Figure 4 for TA-MAML on 5427

way 1 and 5 shot settings for miniImagenet dataset. We observe that the loss ratio and loss are posi-428

tively correlated with the attention vector, while accuracy and gradient norm are negatively correlated.429

Table 5: Comparative analysis of proposed ap-
proach and uniform sampling (Arnold et al., 2021)
in a CDFSL setting after training on miniImagenet
dataset and tested on CUB-200 and FGVC-Aircraft
datasets for 5 way 1 and 5 shot settings.

5 Way
Model 1 Shot 5 Shot

CUB-200

MAML+ UNIFORM (Online) 35.84 ± 0.54 46.67 ± 0.55
TA-MAML∗ (Ours) 42.87 ± 1.18 57.49 ± 0.99

FGVC-Aircraft

MAML+ UNIFORM (Online) 26.62 ± 0.39 34.41 ± 0.44
TA-MAML∗ (Ours) 29.42 ± 0.78 36.34 ± 0.86

In 5 way 5 shot setting, we observe that the correla-430

tion pattern is comparable to 5 way 1 shot setting, but431

the mean correlation value of grad norm across itera-432

tions is less than that of the 5 way 1 shot setting. This433

could be because the 5 way 5 shot setting is richer in434

data than the 5 way 1 shot setting, which allows better435

learning and therefore has low average values of grad436

norm (Section 4.1.1). The critical observation, how-437

ever, is that the meta-information components have a438

weak correlation with the attention weights, indicating439

that the TA module does not trivially follow any single440

component of meta-information. We also analyze the441

ranks of the tasks for maximum and minimum values442

of : loss, loss ratio, accuracy, and grad norm in a batch,443

as per the weights across training iterations, and describe results in the supplementary material. The rank444

analysis also reinforces the same observation. We ascertain the decreasing trend of mean weighted loss across445

iterations in the supplementary material.446

5.6 Analysis of Attention Network447

Table 6: Effect of ablating components of meta-information in
TA-MAML∗ for 5 way 1 and 5 shot settings on miniImagenet
dataset.

Ablation on inputs

Grad norm Loss Loss-ratio Accuracy Test Accuracy

5 way 1 shot 5 way 5 shot

× × × × 46.10±0.19 60.16±0.17
× 47.30±0.16 60.48±0.16

× 47.62±0.17 62.17±0.17
× 48.10±0.18 60.90±0.20

× 47.30±0.18 61.52±0.16
48.36±0.23 62.48±0.18

To gain further insights into the operation448

of the attention module, we also examine449

the trend of the attention-vector (Figure 5)450

while meta-training TA-MAML for 5 way451

1 and 5 shot settings on the miniImagenet452

dataset. We plot the maximum and the453

minimum attention score assigned to the454

tasks of a batch across iterations together455

with a few weighted task batches in 5 way456

1 shot setting for illustration. We note that457

the weighted task batches are only intended458

to demonstrate the change in the tasks’ at-459

tention scores across iterations. The next experiment presents a more rigorous analysis studying the rela-460

tionship among classes in a task and attention scores assigned.461

We note that the mean attention score is always 0.25 as we follow a meta-batch size of 4. We observe462

that the TA module’s output follows an interesting trend. Initially, the TA module assigns almost uniform463

weights to all the tasks of a batch; however, as the iterations increase, it assigns unequal scores to the tasks464

in a batch, preferring some over the other. This suggests that during the initial phases of the meta-model’s465

training, all tasks have equal contribution towards learning a generic structure of the meta-knowledge.466

As the meta-model’s learning proceeds, learning the further fine-grained meta-knowledge structure requires467

prioritizing some tasks in a batch over the others, which are potentially better aligned with learning the468

optimal meta-knowledge. We study the computational burden imposed by TA regimen in the appendix.469

We further decipher the functioning of the black box attention network by analyzing the qualitative relation470

among weights and the classes of task batches (Figure 9 is presented in appendix due to space constraints).471
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Figure 4: Mean Pearson correlation of TA-MAML∗ on 5 way 1
shot (left) and 5 shot (right) setting on miniImagenet.

In Figure 9 left column (col-1) corre-472

sponds to the cases where the assignment473

of attention scores to the tasks is human474

interpretable. In contrast, the right col-475

umn (col-2) refers to the uninterpretable476

attention scores. From the human per-477

spective, tasks containing images from478

similar classes are hard to distinguish and479

are assigned higher attention scores indi-480

cated by red bounding boxes (Figure 9481

col-1). Specifically, (col-1, row-1) task482

2 is regarded as most important, possibly because it includes three breeds of dogs followed by task 4,483

which comprises two species of fish. However, the aforementioned is not a hard constraint, as there are484

some task batches (Figure 9 col-2) in which the distribution of weights cannot be explained qualitatively.485

6 Conclusion486

Figure 5: Trend of an attention vector in 5 way 1 shot (left) and
5 shot (right) settings on miniImagenet dataset for TA-MAML∗.

In this work we have shown that the487

batch wise episodic training regimen488

adopted by ML strategies can benefit489

from leveraging knowledge about the im-490

portance of tasks within a batch. Un-491

like prior approaches that assume uni-492

form importance for each task in a batch,493

we propose task attention as a way to494

learn the relevance of each task accord-495

ing to its alignment with the optimal496

meta-knowledge. We have validated the497

effectiveness of task attention by aug-498

menting it to popular initialization and499

optimization based ML strategies. We500

have demonstrated through experiments501

on miniImagenet, FC100 and tieredIma-502

genet datasets that augmenting task attention helps attain better generalization to unseen tasks from the503

same distribution while requiring fewer iterations to converge. We also show that the task attention is504

meritorious over existing task scheduling algorithms, even on noisy and CDFSL setups. We also conduct505

an exhaustive empirical analysis on the distribution of attention weights to study the nature of the meta-506

knowledge and task attention module. We leave the theoretical motivation of the meta-information compo-507

nents and the proof of convergence of the proposed curriculum as part of our future work. We believe that508

this end-to-end attention-based meta training paves the way towards efficient and automated meta-training.509
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