
Mitigating Persistent Client Dropout
in Asynchronous Decentralized Federated Learning

Ignacy Stępka
istepka@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Nick Gisolfi
ngisolfi@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Kacper Trębacz
ktrebacz@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Artur Dubrawski
awd@andrew.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT
We consider the problem of persistent client dropout in asynchro-
nous Decentralized Federated Learning (DFL). Asynchronicity and
decentralization obfuscate information about model updates among
federation peers, making recovery from a client dropout difficult.
Access to the number of learning epochs, data distributions, and
all the information necessary to precisely reconstruct the missing
neighbor’s loss functions is limited. We show that obvious mitiga-
tions do not adequately address the problem and introduce adap-
tive strategies based on client reconstruction. We show that these
strategies can effectively recover some performance loss caused by
dropout. Our work focuses on asynchronous DFL with local regular-
ization and differs substantially from that in the existing literature.
We evaluate the proposed methods on tabular and image datasets,
involve three DFL algorithms, and three data heterogeneity scenar-
ios (iid, non-iid, class-focused non-iid). Our experiments show that
the proposed adaptive strategies can be effective in maintaining
robustness of federated learning, even if they do not reconstruct the
missing client’s data precisely. We also discuss the limitations and
identify future avenues for tackling the problem of client dropout.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Asynchronous Decentralized Federated Learning, Client Dropout,
Gradient Inversion Attacks, Model Inversion Attacks

ACM Reference Format:
Ignacy Stępka, Nick Gisolfi, Kacper Trębacz, and Artur Dubrawski. 2025. Mit-
igating Persistent Client Dropout in Asynchronous Decentralized Federated
Learning. In FedKDD: International Joint Workshop on Federated Learning for
Data Mining and Graph Analytics at 31st ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, August 3–7, 2025, Toronto, ON, Canada.
ACM, New York, NY, USA, 15 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s).

1 INTRODUCTION
The most widely used form of decentralized learning is Federated
Learning (FL), where data remains distributed across clients. Each
client performs local training and shares gradients with a central
server, which aggregates them using, e.g., the FedAvg algorithm [7]
and broadcasts the updated model back to the clients. In this work,
we focus on a decentralized variant of this paradigm, Decentralized
Federated Learning (DFL), where no central server exists. Instead,
clients interact in a peer-to-peer, asynchronous manner [10].

One of the core challenges in such systems is unequal client
participation. This is especially common in practical applications
involving mobile devices or unreliable networks. Unequal partici-
pation and the presence of stragglers in synchronous settings have
been shown to degrade overall system performance [16]. While
prior work addresses transient client dropout in centralized se-
tups [9, 11, 13], persistent dropout in asynchronous decentralized
environments remains unexplored.

DFL environments are characterized by low observability, un-
known local step counts, and high communication asynchronicity,
rendering many existing solutions incompatible. To this end, we
investigate adaptive mitigation strategies that respond to persis-
tent client dropout and aim to recover performance that would
otherwise be lost.

Our findings indicate that simply doing nothing after a dropout
significantly reduces federation performance. Similarly, naïve strate-
gies, such as removing the dropped client, lead to poor outcomes,
especially under non-iid data distributions. Motivated by these
observations, we propose adaptive strategies that reconstruct the
missing client’s data and instantiate a virtual client to continue
participating in the optimization process.

We employ gradient inversion [3, 17] and model inversion at-
tacks [5] to approximate the dropped client’s data. Empirically, we
demonstrate the effectiveness of these adaptive methods across
three different DFL algorithms and data heterogeneity scenarios.

To sum up, in this work we make two key contributions. First,
we identify the persistent client dropout problem in asynchronous
DFL under low-information assumptions and introduce mitigation
strategies that do not require modifying the core optimization algo-
rithm. Second, we demonstrate that gradient and model inversion
attacks can recover useful approximations of lost client data even
when gradients reflect multiple local steps and data points, enabling

https://orcid.org/0009-0004-4575-0689
https://orcid.org/0000-0002-9258-6285
https://orcid.org/0009-0006-5615-5935
https://orcid.org/0000-0002-2372-0831

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

virtual clients to rejoin the optimization and significantly improve
final performance.

2 RELATEDWORK
Our focus is on decentralized learning, where the presence of a
central server is explicitly disallowed. Recent advances, such as DFe-
dAvgM, a decentralized FL algorithm employing momentum-based
updates [10], have extended FL-style learning to fully decentralized
settings. In another line of work, each client optimizes its local
objective asynchronously and engages in peer-to-peer communica-
tion rounds, exchanging local models and incorporating neighbors’
models into their optimization processes. Unlike traditional FL ap-
proaches that share gradients with a central server, they adopt a
model-sharing paradigm with equivalent communication costs. No-
table decentralized optimization approaches include ADMM-based
methods [12], AIDE [8], DJAM [1], and FSR [4]. In this work, we use
DFedAvgM, DJAM, and FSR as representative baselines to assess
the effectiveness of our proposed adaptive strategies across a range
of learning paradigms.

Client Dropout and Unequal Participation. The client dropout
problem can be viewed as an extreme case of unequal participation
in federated systems, and is closely related to the issue of stragglers
[16]. Although it has been investigated in centralized FL settings,
the assumptions and architectures in thoseworks are fundamentally
different from ours. For instance, MimiC [11] proposes a correction-
based method where the server adjusts updates to account for
absent clients. DReS-FL [9] introduces a secure mechanism for
client replacement via Lagrange-coded data sharing, but it relies on
specialized cryptographic primitives and restricts model design (e.g.,
requiring integer polynomial neural networks). Friends-to-Help
[13] substitutes dropped client updates using neighboring clients
with similar data distributions, but assumes transient dropout and
the ability to exchange metadata about local data.

Our setting differs from that background in two important ways:
(1) we assume persistent client dropout, where a lost client never
returns to the federation, and (2) we operate in an asynchronous,
decentralized environment without a central server. These make
prior methods ill-suited for direct adoption, as they either depend
on central orchestration, require modification of the underlying
learning algorithms, or are infeasible in low-information regimes. In
contrast, our approach works with arbitrary DFLmethods and relies
only on observing model updates. Additionally, our methods are
compatible with setups involving local regularization/aggregation
rather than centralized aggregation.

Data Extraction Attacks. A large body of work has studied data
extraction in static centralized learning settings, often by exploiting
the loss function of the attacked model [2]. These attacks typically
initialize synthetic inputs and optimize them tominimizemodel loss,
often including domain-specific regularizers such as total variation
to enhance the realism of reconstructed samples. Haim et al. [5]
propose a KKT-based method to reconstruct real training data,
under the assumption that the model has converged to a stationary
point satisfying optimality conditions. However, enforcing these
constraints requires architectural restrictions, which substantially
harm the model performance in practice [6].

Gradient inversion attacks offer an alternative by working di-
rectly with shared gradients rather than full models. These methods
aim to match real and synthetic gradients via second-order opti-
mization, and have been explored in the context of centralized FL
[3, 14, 15, 17]. However, most prior work studies them in idealized
scenarios where gradients are exchanged frequently and correspond
to single batches or epochs. In contrast, DFL settings involve model
updates that are the cumulative result of many local steps, making
the inversion problem more difficult.

Further complicating matters, DFL algorithms often include pri-
vate regularization terms, such as neighbor model alignment in
DJAM [1] and FSR [4], introducing additional noise and obfusca-
tion in the exchanged updates. Thus, applying gradient or model
inversion in this context is more challenging and less explored. Our
work takes a first step in this direction by empirically evaluating
whether such inversion methods can still extract useful proxy data
or biases for dropout mitigation in DFL.

3 BACKGROUND
3.1 System Model
We consider a network of 𝑚 clients, where each client 𝑖 holds
private data (𝑋𝑖 , 𝑌𝑖) and trains a local model with parameters 𝜃𝑖 .
The collective goal is to minimize the average loss across clients
while encouraging alignment between models:

minimize
𝜃1,...,𝜃𝑚

1
𝑚

𝑚∑︁
𝑖=1
L𝑖 (𝜃𝑖 , 𝑋𝑖 , 𝑌𝑖) s.t. R(𝜃1, . . . , 𝜃𝑚) = 0 (1)

Here,L𝑖 is the local data loss for client 𝑖 , andR is a regularization
term that encourages consistency between clients. Traditionally,
R is defined in parameter space enforcing 𝜃0 + 𝜃1 ... + 𝜃𝑚−1 ≈ 0 as
in DJAM or DFedAvgM. However, it can also operate in function
space, as in FSR, where alignment is measured in the function space
𝑓𝑖 , where 𝑓𝑖 := F (𝜃𝑖). F (·) maps parameters to functions, e.g., a
neural network forward pass.

Each client independently minimizes its local loss:

minimize
𝜃𝑖

L𝑖 (𝜃𝑖 , 𝑋𝑖 , 𝑌𝑖) (2)

but the choice of a particular optimization strategy varies by algo-
rithm.

3.2 Algorithms
We consider three decentralized algorithms that represent distinct
design choices in DFL: DJAM, FSR, and DFedAvgM.

3.2.1 DJAM. [1] is an asynchronous method that learns personal
models through parameter-space regularization. Locally, each client
minimizes the following objective:

LDJAM = L𝑑 + ∥𝜃𝑡𝑖 − 𝜃
𝑡−1
𝑖 ∥2 +

1
2

𝑁∑︁
𝑗=1

𝑔𝑖 𝑗 ∥𝜃𝑖 − 𝜃𝑡𝑖 𝑗 ∥2 (3)

where L𝑑 is the standard data loss (e.g., cross-entropy). The second
and third loss terms are, respectively, for self and neighbor regular-
ization and are calulated as an L2 norm between model parameters.
DJAM requires model design homogeneity across clients to enable
the L2-based parameter space regularization.

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

3.2.2 DFedAvgM. [10] implements FedAvg-style updates in a de-
centralized and, in our case, asynchronous setting. In each round, a
client first averages the latest received models from its neighbors
according to the communication graph:

𝜃𝑡+1𝑖 =

𝑁∑︁
𝑗=1

𝑔𝑖 𝑗𝜃
𝑡
𝑗 (4)

Then, it performs local updates using the data loss L𝑑 , and finally
broadcasts the updated model 𝜃𝑡+1

𝑖
to its neighbors.

3.2.3 FSR. [4] supports heterogeneous models by regularizing in
function space. Its loss function includes data loss, self-regularization
acting as an adaptive learning rate, and neighbor regularization
enforcing neighbor similarity in function space:

LFSR = L𝑑 +
1 − 𝜔
𝜔
∥ 𝑓 𝑡𝑖 − 𝑓 𝑡−1𝑖 ∥2 + 𝜆

1
𝑁

𝑁∑︁
𝑗=1

𝑔𝑖 𝑗 ∥ 𝑓𝑖 − 𝑓 𝑡𝑖 𝑗 ∥2 (5)

This allows FSR to operate under model heterogeneity while adapt-
ing learning rates.

3.3 Communication
We assume an asynchronous peer-to-peer setting, where clients
communicate via a graph 𝐺 ∈ R𝑚×𝑚 . Each entry 𝑔𝑖 𝑗 > 0 indicates
a communication link between clients 𝑖 and 𝑗 . The optimization
proceeds in alternating local and communication rounds. In each
communication round, a random pair of connected clients exchange
their current models. The procedure is outlined in Algorithm 1.

4 METHODS
In this section, we introduce the concept of client dropout and
present three strategies designed to mitigate its negative effects. A
client dropout occurs when a client 𝑖 becomes permanently unavail-
able and can no longer participate in the joint optimization process.
This implies that 𝑖 stops responding to peer-to-peer communica-
tions and is effectively excluded from further updates to the global
objective eq. (1). Furthermore, the local data of the client (𝑋𝑖 , 𝑌𝑖)
are lost, making continued optimization more difficult. In settings
with iid data, such dropouts could be tolerable, as every client con-
tributes similar information. However, in more realistic scenarios
with class imbalance or non-iid data distributions, the absence of
even a single client may significantly harm global performance. We
provide empirical support for this observation in Section 5.

4.1 Baseline Strategy: No Reaction
The first baseline comes down to taking no action when a client 𝑖
drops out. Optimization continues under the assumption that 𝑖 is
still participating. In practice, this means that during any communi-
cation round involving 𝑖 , no model exchange occurs, and the other
clients retain and use the last known version of 𝜃𝑖 . While simple,
this approach often significantly hurts the performance because
that model 𝜃𝑖 will never change and thus convergence (in either
parameter or function space) is infeasible.

4.2 Baseline Strategy: Forget the Dropped Client
The second baseline removes the dropped client completely from
the federation. This is implemented in two steps: (1) client 𝑖 is

disconnected from the communication graph 𝐺 , and (2) all clients
that previously interacted with 𝑖 delete their stored copy of 𝜃𝑖 and
exclude it from future updates. For algorithms relying on neighbor
information (e.g., DJAM, FSR), this also means that in their local
objectives they will not consider the 𝑖-th neighbor in regularization.
With this approach, the largest downside is that in non-iid settings,
we simply lose all utility that could have otherwise been provided
by the lost client.

4.3 Adaptive Strategies
Unlike the baselines, our adaptive strategies attempt to reconstruct
the dropped client and restore its presence in the federation. Since
the client’s data is unavailable, we approximate it using synthetic
data derived from the last known model. A new virtual client is
instantiated using the recovered data and continues participating
in training as if it were the original.

4.3.1 Random Images as a Sanity Check. As a simple adaptive
technique, we simulate the lost client using its last known model
𝜃𝑖 and completely random data. We generate synthetic inputs 𝑋 ′ ∼
U[0, 1]𝑑 and assign labels 𝑌 ′ ∼ U{1,𝐶}, where𝐶 is the number of
classes. The virtual client then continues local training on (𝑋 ′, 𝑌 ′)
as if it were real data.

4.3.2 Gradient Inversion. Gradient inversion aims to reconstruct a
synthetic dataset whose gradients closely match those of the lost
client. We initialize 𝑋 ′ ∼ U[0, 1]𝑑 and assign either random or
trainable labels 𝑌 ′, then solve the following optimization:

LGI = 𝑑 (∇𝑊 ′ − ∇𝑊)2 + 𝜆Lprior (6)

where ∇𝑊 ′ = ∇𝜃L𝑑 (𝜃, 𝑋 ′, 𝑌) and ∇𝑊 is the observed gradient
from the lost client. The term 𝑑 (·) denotes a distance metric (e.g.,
L2 norm [17] or cosine similarity [3]), and Lprior includes domain-
specific priors (e.g., total variation for image smoothness [15]).

Label Strategies. While labels 𝑌 ′ can be sampled randomly, per-
formance improves when labels are optimized jointly with 𝑋 ′. One
approach [14] includes an additional loss term:

Llabels = ∥𝜃 (𝑋 ′) − 𝑌 ′∥2 where 𝑌 ′ = softmax(𝑌 ′)

In our experiments, we use both L2 and cosine variants and
adopt joint label optimization, which has proven effective in prior
work [3, 14, 15].

Limitations. Gradient inversion becomes difficult when gradients
reflect updates from multiple local epochs, mini-batches, and data
points, denoted by ENB (Epochs, Number of samples, Batch size). In
asynchronous DFL, ENB is often large, making ∇𝑊 less informative.
For this reason, we also explore model inversion techniques, which
do not rely on access to the client’s gradients, but rather assume a
static model.

4.3.3 Model Inversion. Model inversion assumes that the last avail-
able model 𝜃𝑖 is close to a stationary point for its local objective.
Although we do not enforce strict optimality, we assume that:

∇𝜃L𝑑 (𝜃, 𝑋,𝑌) ≈ 0 (7)

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

0 25 50 75 100 125 150 175 200
Communication round

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Strategy
drop
grad inv
model inv

no action
random
reference

(a) iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(b) non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(c) non-iid (classes)

Figure 1: Convergence plots for DFedAvgM algorithm on the wine dataset. Shaded regions represent mean ± standard deviation
across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th round. Colors: model
inversion, gradient inversion, reference, random, drop, no action

.

To recover training data, we generate a synthetic dataset (𝑋 ′, 𝑌 ′)
such that this approximate condition holds. The optimization prob-
lem becomes:

minimize
𝑋 ′

L𝑑 (𝜃, 𝑋 ′, 𝑌 ′) s.t. ∇𝜃L𝑑 (𝜃, 𝑋 ′, 𝑌 ′) ≤ 𝜖 (8)

This can be solved by any first-order optimizer (e.g., SGD, Adam)
performing iterative gradient descent, where the model 𝜃 is frozen
and the gradients are propagated onto input data 𝑋 ′

𝑋 ′𝑡+1 = 𝑋 ′𝑡 − 𝜂∇𝑋 ′𝑡L𝑑 (𝜃, 𝑋
′, 𝑌 ′) (9)

Here, 𝑋 ′ is initialized from a uniform or normal distribution, and
𝑌 ′ from a uniform categorical distribution.

Domain Constraints. For both gradient and model inversion at-
tacks we apply Lprior =

∑𝑑
𝑖=1 ReLU(𝑥𝑖 − 1) + ReLU(−𝑥𝑖), a prior

loss to ensure inputs remain within a valid range - in our case
𝑥 ∈ [0, 1]𝑑 . Additionally, we clamp 𝑋 ′ to the valid domain after
each optimization step.

Remarks. Compared to gradient inversion, model inversion may
be less sensitive to large ENB, as it does not rely on access to ∇𝑊 .
Instead, it exploits the structure of 𝜃𝑖 itself. We empirically assess
the viability of this approach across different data distributions and
DFL algorithms.

5 EXPERIMENTS
We evaluate the effectiveness of our dropout mitigation strategies
across different DFL algorithms and data distributions. All experi-
ments are conducted using logistic regression models implemented
in PyTorch. We use a fully connected communication graph𝐺 , with
𝑔𝑖 𝑗 = 1 for all 𝑖 ≠ 𝑗 , and 𝑔𝑖𝑖 = 0 to avoid self-regularization. The
federation consists of three clients, and we set the number of peer
exchanges per communication round (parameter 𝑘 in Algorithm 1)
to 2. Client dropout occurs persistently at the 5th communication
round. From that point onward, the dropped client ceases all par-
ticipation, and its data becomes inaccessible.

Each experiment uses one of three datasets from the UCI reposi-
tory1: Wine, Iris, and Digits. We apply 10-fold cross-validation and
1https://archive.ics.uci.edu

limit training to 200 communication rounds. Early stopping is trig-
gered if all clients converge to the same accuracy on a holdout test
set for 10 consecutive rounds. Full details on hyperparameters and
implementation can be found in Appendix A.

We study three different data partitioning schemes: (1) iid, where
data is uniformly distributed among clients; (2) non-iid (clusters),
where data is partitioned using 𝑘-means clustering; and (3) non-iid
(classes), where each client receives data from a distinct subset of
classes.

5.1 Empirical Results
We first present convergence results (e.g., Figure 1, full set in Ap-
pendix B) that show mean test accuracy across all clients over time.
Each curve represents a different dropout-handling strategy: the
Reference strategy (green) represents the ideal scenario without
client dropout; the Drop (forget) strategy (red) permanently re-
moves the lost client; theNoAction strategy (gray) retains a frozen
copy of the dropped client’s model; the Random strategy (black)
reinstates the client with random data; the Gradient Inversion
strategy (orange) reconstructs the client using matched gradients;
and the Model Inversion strategy (blue) attempts reconstruction
based solely on the final model weights.

Below, we first analyze the results for each method separately,
and then provide a general summary of findings.

DFedAvgM. For all datasets and data partitions, model inversion
consistently achieves the best performance, often matched closely
by gradient inversion. The random strategy ranks third, with a
negligible performance gap in the iid setting. In contrast, the drop
strategy performs well only under iid assumptions, where clients
still have reasonably representative data. In non-iid scenarios, re-
moving the client significantly reduces global performance.

FSR. The trend is similar: model inversion typically performs
best, with gradient inversion closely following. The random strategy
again performs better than baseline strategies but falls short of the
inversion-based methods.

DJAM. While model and gradient inversion still outperform the
baselines, the performance gap relative to the random strategy is
less pronounced. We hypothesize that this is due to the unobserved

https://archive.ics.uci.edu

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Dataset Distribution No action Forget Random Grad inv Model inv Reference

wine
iid 0.96 ± 0.03 0.96 ± 0.03 0.90 ± 0.06 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
non-iid (clusters) 0.62 ± 0.10 0.62 ± 0.10 0.64 ± 0.11 0.78 ± 0.14 0.86 ± 0.10 0.99 ± 0.02
non-iid (class) 0.55 ± 0.01 0.55 ± 0.01 0.63 ± 0.07 0.71 ± 0.08 0.82 ± 0.05 0.97 ± 0.03

iris
iid 0.90 ± 0.04 0.90 ± 0.04 0.89 ± 0.09 0.92 ± 0.09 0.95 ±0.04 0.97 ± 0.04
non-iid (clusters) 0.64 ± 0.11 0.64 ± 0.11 0.70 ± 0.17 0.79 ± 0.17 0.87 ± 0.12 0.94 ± 0.05
non-iid (class) 0.57 ± 0.04 0.57 ± 0.04 0.57 ± 0.13 0.62 ± 0.10 0.73 ± 0.08 0.84 ± 0.04

digits
iid 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.01
non-iid (clusters) 0.75 ± 0.04 0.75 ± 0.04 0.76 ± 0.04 0.84 ± 0.06 0.86 ± 0.04 0.95 ± 0.02
non-iid (class) 0.55 ± 0.02 0.55 ± 0.02 0.63 ± 0.05 0.69 ± 0.04 0.75 ± 0.04 0.93 ± 0.02

Table 1: Mean (± std) accuracy of clients on a test set after 200 communication rounds for DFedAvgM algorithm over 10 folds.

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

Strategy
drop
grad inv
model inv
no action
random
reference

Figure 2: Model similarity over time (L2 norm betweenmodel
parameters) for DJAM on the Digits dataset with non-iid
(class) partitioning. Lower values indicate higher similarity.
Note, that the y-axis is in logarithmic scale.

neighbor regularization loss in DJAM. Since we do not have access
to this loss component for the dropped client, the data reconstruc-
tion becomes less precise, reducing the effectiveness of our adaptive
attacks. This is supported by qualitative analysis of the recovered
images from the Digits dataset (Appendix D), where samples ex-
tracted for DJAM resemble random noise, unlike the more coherent
samples seen with DFedAvgM.

Summary. On average, adaptive strategies based on data recon-
struction outperform both baselines and the random strategy. The
performance gain is most pronounced in non-iid scenarios, high-
lighting the importance of recovering client-specific information
in heterogeneous federations.

5.2 Model Similarity
To further investigate system dynamics post-dropout, we analyze
how model similarity evolves across clients during training. Since
the goal of DFL is to reach consensus, we expect inter-client model
distances (in parameter space) to decrease over time.

In Figure 2, we plot the L2 norm between client models across
communication rounds for DJAM on the Digits dataset. The ref-
erence strategy shows a steady decrease in distance, indicating
convergence. In the drop scenario, similarity drops off as the re-
maining clients exclude the lost one, leading to model divergence. In
the no action case, similarity may stagnate or fluctuate, depending
on how aligned the stale model is with the evolving federation.

For all adaptive strategies, we observe a consistent reduction in
distance, as the reconstructed (virtual) client re-engages in learning,
pulling models toward a shared solution. These trends reinforce
the conclusion that our adaptive strategies enable more cohesive
behavior of the federation under communication loss or other client
failures.

6 CONCLUSIONS
We introduced adaptive mitigation strategies for persistent client
dropout in asynchronous decentralized federated learning, lever-
aging model and gradient inversion techniques to reconstruct lost
clients. Our experiments demonstrate that these strategies con-
sistently improve performance across various data heterogeneity
conditions (especially in non-iid settings), optimization algorithms,
and datasets, when compared to simpler alternatives.

In the future, we would like to expand this investigation to more
complex scenarios, such as high-resolution image classification
tasks, and conduct a more detailed analysis of the fidelity and
privacy implications of the reconstructed data.

Although we conducted some preliminary experiments beyond
the main results, this study does not yet systematically examine the
impact of the size of the federation, network topology, or optimiza-
tion hyperparameters. We provide select exploratory findings on
these aspects in the Appendix, and we leave a more comprehensive
investigation to future work.

ACKNOWLEDGMENTS
This work was partially supported by the NSF (awards 2406231 and
2427948), NIH (awards R01NS124642 and R01NR013912), DARPA
(HR00112420329), and the US Army (W911NF-20-D0002).

REFERENCES
[1] Inês Almeida and João Xavier. 2018. DJAM: Distributed Jacobi Asynchronous

Method for Learning Personal Models. IEEE Signal Process. Lett. 25, 9 (2018),
1389–1392.

[2] Hao Fang, Yixiang Qiu, Hongyao Yu, Wenbo Yu, Jiawei Kong, Baoli Chong, Bin
Chen, Xuan Wang, Shu-Tao Xia, and Ke Xu. 2024. Privacy leakage on dnns: A
survey of model inversion attacks and defenses. arXiv preprint arXiv:2402.04013
(2024).

[3] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020.
Inverting Gradients – How easy is it to break privacy in federated learning?
Advances in Neural Information Processing Systems 33 (2020), 16937–16937.

[4] Jack Good. 2024. Trustworthy Learning using Uncertain Interpretation of Data.
Ph. D. Dissertation. Carnegie Mellon University.

[5] Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. 2022. Re-
constructing Training Data From Trained Neural Networks. Advances in Neural

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

Information Processing Systems 35 (Dec. 2022), 22911–22924.
[6] Ziwei Ji and Matus Telgarsky. 2020. Directional convergence and alignment in

deep learning. arXiv preprint arXiv:2006.06657 (2020).
[7] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics.

[8] Sashank J Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex
Smola. 2016. Aide: Fast and communication efficient distributed optimization.
arXiv preprint arXiv:1608.06879 (2016).

[9] Jiawei Shao, Yuchang Sun, Songze Li, and Jun Zhang. 2022. Dres-fl: Dropout-
resilient secure federated learning for non-iid clients via secret data sharing.
Advances in Neural Information Processing Systems 35 (2022), 10533–10545.

[10] Tao Sun, Dongsheng Li, and Bao Wang. 2022. Decentralized federated averaging.
IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4 (2022).

[11] Yuchang Sun, YuyiMao, and Jun Zhang. 2024. MimiC: Combating Client Dropouts
in Federated Learning byMimicking Central Updates. IEEE Transactions onMobile
Computing 23, 7 (July 2024), 7572–7584.

[12] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. 2017. Decentral-
ized collaborative learning of personalized models over networks. In Artificial
Intelligence and Statistics. PMLR, 509–517.

[13] HeqiangWang and Jie Xu. 2024. Friends to Help: Saving Federated Learning from
Client Dropout. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 8896–8900.

[14] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong
Qi. 2019. Beyond Inferring Class Representatives: User-Level Privacy Leakage
From Federated Learning. In IEEE INFOCOM 2019. IEEE, 2512–2520.

[15] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo
Molchanov. 2021. See through Gradients: Image Batch Recovery via GradInver-
sion. arXiv preprint arXiv:2104.07586 (2021).

[16] Hongbin Zhu, Junqian Kuang, Miao Yang, and Hua Qian. 2022. Client selec-
tion with staleness compensation in asynchronous federated learning. IEEE
Transactions on Vehicular Technology 72, 3 (2022), 4124–4129.

[17] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gradients.
Advances in Neural Information Processing Systems 32 (Dec. 2019).

A EXPERIMENT SETUP DETAILS
A.1 Federation Parameters
We run all experiments with three participating clients, and cap
each experiment at 200 communication rounds to ensure a uniform
communication budget and fair comparison across methods. In
every round, two client pairs are randomly selected to exchange
their latest models. Regardless of participation in exchanges, each
client performs a randomly chosen number of local optimization
steps, uniformly sampled from the following categorical interval:
U{5, 10}. The outline of the global optimization procedure is pre-
sented in Algorithm 1.

Algorithm 1 Asynchronous Decentralized Federated Learning
framework
Require: No of clients𝑚, initial models {𝜃𝑖 }𝑚𝑖=1, comm. graph 𝐺
1: Initialize each client 𝑖 with model 𝜃𝑖
2: while not converged do
3: for all clients 𝑖 in parallel do
4: Sample 𝐸𝑖 ∼ U{5, 10}
5: for 𝑒 = 1 to 𝐸𝑖 do
6: 𝜃𝑖 ← argmin𝜃𝑖 L𝑖 (𝜃𝑖 , 𝑋𝑖 , 𝑌𝑖)
7: end for
8: end for
9: Randomly select 𝑘 pairs (𝑖, 𝑗) such that 𝑔𝑖 𝑗 ≠ 0
10: for all selected pairs (𝑖, 𝑗) do
11: Clients 𝑖 and 𝑗 exchange and update their models
12: end for
13: end while
14: return {𝜃𝑖 }𝑚𝑖=1

A.2 Handling Data
Each data silo contains at most 200 samples. No datapoint is dupli-
cated across clients. In the iid setting, data is randomly assigned
to clients. In the non-iid (clusters) setting, we perform 𝑘-means
clustering with 𝑘 equal to the number of clients and assign one
cluster per client. In the non-iid (classes) setting, each client is
assigned a unique subset of the available classes. If the number
of classes exceeds the number of clients, classes are distributed
as evenly as possible, but preserving the constraint of each client
having a unique subset of classes.

Each client splits its local dataset into training and validation
subsets using an 80-20 split. All experiments are performed using
10-fold cross-validation, where 9 folds are used for client training
and 1 held-out fold is used as a global test set, which we use to
calculate metrics reported in experiments.

A.3 Algorithm Parameters
All three algorithms (FSR, DJAM, DFedAvgM) use the SGD opti-
mizer for local training. For DFedAvgM, we set the learning rate to
0.01 and the momentum for self-regularization to 0.9. For FSR and
DJAM, the learning rate is set to 0.1.

In FSR, we approximate the L2 distance in Hilbert space using
random samples drawn from a uniform distribution. For each lo-
cal data batch, we generate 500 synthetic points to estimate the
function space regularization terms. While this approximation is ad-
mittedly suboptimal (particularly in high-dimensional input spaces)
we consider it sufficient for the scope of this study. As FSR was
only recently introduced by Good et al. [4], there is currently no
established method in the literature for computing neighbor regu-
larization coefficients more accurately. Additional hyperparameters
include 𝜔 = 0.01 and the neighbor regularization weight 𝜆 = 50.

A.4 Reconstruction Parameters
For all adaptive strategies, we reconstruct 50 synthetic data points
per lost client. This number is arbitrarily fixed and does not as-
sume any knowledge about the original client’s dataset size or local
training steps between model updates.

In the random baseline, the virtual client is trained for 10 epochs
on randomly generated data before being introduced back to the
federation. For both gradient inversion and model inversion, we use
a batch size of 16, the Adam optimizer, and include auxiliary losses:
Total Variation (𝜆𝑇𝑉 = 0.01) and Domain Constraint (𝜆𝑑𝑜𝑚𝑎𝑖𝑛 =

0.1).
Formodel inversion, we set the learning rate to 0.01, apply weight

decay of 0.01, and train for 1000 epochs. The generated data is class-
balanced.

For gradient inversion, the learning rate is set to 0.05 with 2000
training epochs. We run both L2 and cosine similarity variants and
report results based on the best-performing variant.

B ALL CONVERGENCE PLOTS
In this section we present convergence plots for all combinations of
dataset, algorithm and data heterogeneity type. They are grouped
by dataset in figures of 9 subplots, where each row has a different
algorithm and column, data heterogeneity type. We have plots for
wine in Figure 3, iris in Figure 4, and digits in Figure 5.

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) DJAM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(b) DJAM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(c) DJAM - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(d) FSR - iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(e) FSR - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(f) FSR - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

(g) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(h) DFedAvgM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(i) DFedAvgM - non-iid (classes)

Figure 3: Convergence plots for DJAM, FSR, and DFedAvgM algorithms on the wine dataset. Shaded regions represent mean
± standard deviation across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th
round. Colors: model inversion, gradient inversion, reference, random, drop, no action

.

C ALL TABLES
In this section, we present all results in one table (Table 2).

D WHAT DATA IS EXTRACTED
This section presents qualitative examples of images reconstructed
using model inversion and gradient inversion attacks on the Digits
dataset.

For model inversion (Figures 6 and 8), we show reconstructed
samples after 1 epoch (left) and 800 epochs (right) of attack op-
timization. For gradient inversion (Figures 7 and 9), we present
reconstructions at 1 epoch (left) and 1500 epochs (right).

In general, model inversion appears to recover structural patterns
resembling noisy or averaged digit shapes. While the reconstruc-
tions are imperfect, they are not random and reflect underlying data
structure. Gradient inversion yields darker, lower-contrast images
with less visible structure, though still non-random.

Based on both this qualitative inspection and the quantitative
performance gains shown in Section 5, we hypothesize that the
reconstructed images—though degraded—retain useful statistical
biases, enabling the virtual client to partially preserve the contribu-
tion of the original client lost due to persistent dropout.

E SIMILARITY PLOTS
This section presents model similarity plots corresponding to the
experiments and convergence plots shown in Figures 10 to 12 and
detailed in Appendices B and C.

A key observation is that for the FSR algorithm, models do not
converge in parameter space during optimization. This is not a
surprise, as FSR explicitly optimizes for similarity in function space
rather than parameter space. Aside from this, the similarity trends
across experiments align with our findings in the main text and
provide further evidence that the proposed adaptive strategies lead
to more cohesive and aligned models across the federation.

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

0 25 50 75 100 125 150 175 200
Communication round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(a) DJAM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(b) DJAM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(c) DJAM - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(d) FSR - iid

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(e) FSR - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(f) FSR - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(g) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(h) DFedAvgM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(i) DFedAvgM - non-iid (classes)

Figure 4: Convergence plots for DJAM, FSR, and DFedAvgM algorithms on the iris dataset. Shaded regions represent mean
± standard deviation across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th
round. Colors: model inversion, gradient inversion, reference, random, drop, no action

.

F RESULTS WITH NEURAL NETWORKS
This section presents a smaller set of experiments where the under-
lying model is a neural network instead of logistic regression. In
Figure 13, we show results on the digits dataset using theDFedAvgM

algorithm with a 3-layer multilayer perceptron (MLP), where each
hidden layer has 128 units.

The key takeaway is that performance trends are consistent with
those observed for simpler models. Adaptive strategies, particularly
model and gradient inversion, remain effective even when using a
neural network as the base model.

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0 25 50 75 100 125 150 175 200
Communication round

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(a) DJAM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(b) DJAM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(c) DJAM - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(d) FSR - iid

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(e) FSR - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

(f) FSR - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(g) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(h) DFedAvgM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(i) DFedAvgM - non-iid (classes)

Figure 5: Convergence plots for DJAM, FSR, and DFedAvgM algorithms on the digits dataset. Shaded regions represent mean
± standard deviation across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th
round. Colors: model inversion, gradient inversion, reference, random, drop, no action

.

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

Algorithm Dataset Distribution No action Forget Random Grad inv Model inv Reference

DJAM

wine
iid 0.53 ± 0.14 0.80 ± 0.05 0.87 ± 0.08 0.74 ± 0.17 0.88 ± 0.05 0.91 ± 0.08
non-iid (clusters) 0.41 ± 0.08 0.56 ± 0.02 0.64 ± 0.03 0.66 ± 0.05 0.62 ± 0.05 0.95 ± 0.04
non-iid (class) 0.38 ± 0.08 0.57 ± 0.04 0.65 ± 0.02 0.69 ± 0.04 0.64 ± 0.05 0.94 ± 0.05

iris
iid 0.42 ± 0.18 0.65 ± 0.08 0.73 ± 0.08 0.57 ± 0.21 0.69 ± 0.12 0.71 ± 0.08
non-iid (clusters) 0.49 ± 0.12 0.55 ± 0.08 0.57 ± 0.13 0.59 ± 0.15 0.63 ± 0.16 0.66 ± 0.11
non-iid (class) 0.56 ± 0.08 0.59 ± 0.03 0.65 ± 0.04 0.67 ± 0.02 0.64 ± 0.07 0.78 ± 0.06

digits
iid 0.73 ± 0.08 0.84 ± 0.03 0.86 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.89 ± 0.02
non-iid (clusters) 0.65 ± 0.10 0.65 ± 0.06 0.64 ± 0.05 0.70 ± 0.06 0.69 ± 0.05 0.90 ± 0.02
non-iid (class) 0.41 ± 0.05 0.54 ± 0.02 0.60 ± 0.05 0.62 ± 0.05 0.61 ± 0.05 0.92 ± 0.02

FSR

wine
iid 0.65 ± 0.17 0.86 ± 0.09 0.90 ± 0.05 0.94 ± 0.03 0.96 ± 0.04 0.95 ± 0.04
non-iid (clusters) 0.61 ± 0.11 0.71 ± 0.12 0.71 ± 0.11 0.81 ± 0.13 0.80 ± 0.14 0.96 ± 0.04
non-iid (class) 0.58 ± 0.08 0.63 ± 0.06 0.67 ± 0.05 0.77 ± 0.12 0.74 ± 0.13 0.96 ± 0.03

iris
iid 0.73 ± 0.07 0.87 ± 0.05 0.91 ± 0.07 0.83 ± 0.15 0.90 ± 0.09 0.93 ± 0.05
non-iid (clusters) 0.71 ± 0.07 0.75 ± 0.13 0.76 ± 0.14 0.79 ± 0.15 0.85 ± 0.11 0.91 ± 0.06
non-iid (class) 0.67 ± 0.08 0.65 ± 0.06 0.64 ± 0.07 0.71 ± 0.08 0.68 ± 0.03 0.95 ± 0.06

digits
iid 0.93 ± 0.02 0.94 ± 0.01 0.82 ± 0.03 0.86 ± 0.06 0.94 ± 0.01 0.95 ± 0.01
non-iid (clusters) 0.59 ± 0.06 0.57 ± 0.04 0.54 ± 0.05 0.56 ± 0.05 0.67 ± 0.07 0.72 ± 0.06
non-iid (class) 0.33 ± 0.01 0.35 ± 0.01 0.33 ± 0.06 0.43 ± 0.05 0.48 ± 0.04 0.48 ± 0.07

DFedAvgM

wine
iid 0.96 ± 0.03 0.96 ± 0.03 0.90 ± 0.06 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03
non-iid (clusters) 0.62 ± 0.10 0.62 ± 0.10 0.64 ± 0.11 0.78 ± 0.14 0.86 ± 0.10 0.99 ± 0.02
non-iid (class) 0.55 ± 0.01 0.55 ± 0.01 0.63 ± 0.07 0.71 ± 0.08 0.82 ± 0.05 0.97 ± 0.03

iris
iid 0.90 ± 0.04 0.90 ± 0.04 0.89 ± 0.09 0.92 ± 0.09 0.95 ± 0.04 0.97 ± 0.04
non-iid (clusters) 0.64 ± 0.11 0.64 ± 0.11 0.70 ± 0.17 0.79 ± 0.17 0.87 ± 0.12 0.94 ± 0.05
non-iid (class) 0.57 ± 0.04 0.57 ± 0.04 0.57 ± 0.13 0.62 ± 0.10 0.73 ± 0.08 0.84 ± 0.04

digits
iid 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.01
non-iid (clusters) 0.75 ± 0.04 0.75 ± 0.04 0.76 ± 0.04 0.84 ± 0.06 0.86 ± 0.04 0.95 ± 0.02
non-iid (class) 0.55 ± 0.02 0.55 ± 0.02 0.63 ± 0.05 0.69 ± 0.04 0.75 ± 0.04 0.93 ± 0.02

Table 2: Mean accuracy of clients on a holdout test set after 200 communication rounds for all algorithms.

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

(a) After 1 epoch (b) After 800 epochs

Figure 6: Reconstructed images using model inversion on the Digits dataset (DFedAvgM, non-iid (class)).

(a) After 1 epoch (b) After 1500 epochs

Figure 7: Reconstructed images using gradient inversion on the Digits dataset (DFedAvgM, non-iid (class)).

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

(a) After 1 epoch (b) After 800 epochs

Figure 8: Reconstructed images using model inversion on the Digits dataset (DJAM, non-iid (class)).

(a) After 1 epoch (b) After 1500 epochs

Figure 9: Reconstructed images using gradient inversion on the Digits dataset (DJAM, non-iid (class)).

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0 25 50 75 100 125 150 175 200
Communication round

10 2

10 1

100

L2
 n

or
m

(a) DJAM - iid

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

(b) DJAM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

(c) DJAM - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

101

L2
 n

or
m

(d) FSR - iid

0 25 50 75 100 125 150 175 200
Communication round

101

4 × 100

6 × 100

2 × 101

L2
 n

or
m

(e) FSR - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

101

6 × 100

L2
 n

or
m

(f) FSR - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

100

101

L2
 n

or
m

(g) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

101

L2
 n

or
m

(h) DFedAvgM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

100

101

L2
 n

or
m

(i) DFedAvgM - non-iid (classes)

Figure 10: Similarity plots for DJAM, FSR, and DFedAvgM algorithms on the digits dataset. Shaded regions represent mean
± standard deviation across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th
round. Colors:model inversion, gradient inversion, reference, random, drop, no action

.

FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Stępka et al.

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

(a) DJAM - iid

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

(b) DJAM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

(c) DJAM - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

100L2
 n

or
m

(d) FSR - iid

0 25 50 75 100 125 150 175 200
Communication round

10 3

10 2

10 1

100

101

L2
 n

or
m

(e) FSR - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

100

101

L2
 n

or
m

(f) FSR - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

10 3

10 2

10 1

100

101

L2
 n

or
m

(g) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

101

L2
 n

or
m

(h) DFedAvgM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

100

101

L2
 n

or
m

(i) DFedAvgM - non-iid (classes)

Figure 11: Similarity plots for DJAM, FSR, and DFedAvgM algorithms on the wine dataset. Shaded regions represent mean
± standard deviation across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th
round. Colors: model inversion, gradient inversion, reference, random, drop, no action

.

Mitigating Persistent Client Dropout FedKDD @ KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

L2
 n

or
m

(a) DJAM - iid

0 25 50 75 100 125 150 175 200
Communication round

10 3

10 2

10 1

100

L2
 n

or
m

(b) DJAM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

10 2

10 1

100

L2
 n

or
m

(c) DJAM - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

101

L2
 n

or
m

(d) FSR - iid

0 25 50 75 100 125 150 175 200
Communication round

100L2
 n

or
m

(e) FSR - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

100

L2
 n

or
m

(f) FSR - non-iid (classes)

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

101

L2
 n

or
m

(g) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

10 1

100

101

L2
 n

or
m

(h) DFedAvgM - non-iid (clusters)

0 25 50 75 100 125 150 175 200
Communication round

100

101

L2
 n

or
m

(i) DFedAvgM - non-iid (classes)

Figure 12: Similarity plots for DJAM, FSR, and DFedAvgM algorithms on the iris dataset. Shaded regions represent mean ±
standard deviation across 10 folds, over 200 communication rounds. A random client is dropped persistently after the 5th
round. Colors: model inversion, gradient inversion, reference, random, drop, no action

.

0 25 50 75 100 125 150 175 200
Communication round

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(a) DFedAvgM - iid

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(b) DFedAvgM

0 25 50 75 100 125 150 175 200
Communication round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(c) DFedAvgM - non-iid (classes)

Figure 13: Convergence plots for DFedAvgM on the digits dataset using a neural network model (3-layer MLP with 128 hidden
units per layer). Shaded regions represent mean ± standard deviation across 3 folds, over 200 communication rounds. A random
client is dropped persistently after the 5th round. Colors: model inversion, gradient inversion, reference, random, drop, no
action.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 System Model
	3.2 Algorithms
	3.3 Communication

	4 Methods
	4.1 Baseline Strategy: No Reaction
	4.2 Baseline Strategy: Forget the Dropped Client
	4.3 Adaptive Strategies

	5 Experiments
	5.1 Empirical Results
	5.2 Model Similarity

	6 Conclusions
	Acknowledgments
	References
	A Experiment Setup Details
	A.1 Federation Parameters
	A.2 Handling Data
	A.3 Algorithm Parameters
	A.4 Reconstruction Parameters

	B All convergence plots
	C All tables
	D What Data is Extracted
	E Similarity Plots
	F Results with Neural Networks

